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INTERPOLATION AND DUALITY IN SPACES

OF PSEUDOCONTINUABLE FUNCTIONS

KONSTANTIN M. DYAKONOV

Abstract. Given an inner function θ on the unit disk, let K
p
θ := Hp ∩ θzHp

be the associated star-invariant subspace of the Hardy space Hp. Also, we put
K∗θ := K2

θ ∩ BMO. Assuming that B = BZ is an interpolating Blaschke product
with zeros Z = {zj}, we characterize, for a number of smoothness classes X , the
sequences of values W = {wj} such that the interpolation problem f

∣∣
Z
= W has

a solution f in K2

B ∩ X . Turning to the case of a general inner function θ, we
further establish a non-duality relation between K1

θ and K∗θ. Namely, we prove
that the latter space is properly contained in the dual of the former, unless θ is a
finite Blaschke product. From this we derive an amusing non-interpolation result
for functions in K∗B, with B = BZ as above.

1. Introduction and results

We write T for the unit circle {ζ ∈ C : |ζ | = 1} andm for the normalized arc length
measure on T; thus, dm(ζ) = |dζ |/(2π). We then define the spaces Lp := Lp(T, m)
in the usual way and let ‖·‖p denote the standard norm on Lp. Also, for 1 ≤ p ≤ ∞,
we introduce the Hardy space Hp by putting

Hp := {f ∈ Lp : f̂(n) = 0 for n = −1,−2, . . . },

where f̂(n) is the nth Fourier coefficient of f given by

f̂(n) :=

∫

T

ζ
n
f(ζ) dm(ζ), n ∈ Z.

The Poisson integral (i.e., harmonic extension) of an Hp function being holomorphic
on the disk

D := {z ∈ C : |z| < 1}

(see [15, Chapter II]), we may use this extension to view elements of Hp as holo-
morphic functions on D when convenient.

Furthermore, we write P+ (resp., P−) for the orthogonal projection from L2 onto

H2 (resp., onto zH2 = L2⊖H2). By a classical theorem of M. Riesz (see [15, Chapter
III]), each of these projections admits a bounded extension—or restriction—to Lp,
with 1 < p <∞, and maps Lp onto Hp (resp., onto zHp).
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2 KONSTANTIN M. DYAKONOV

Now suppose θ is an inner function, meaning that θ ∈ H∞ and |θ| = 1 a.e. on T.
The corresponding star-invariant (or model) subspace Kp

θ is then defined by

(1.1) Kp
θ := {f ∈ Hp : zfθ ∈ Hp}, 1 ≤ p ≤ ∞,

so that Kp
θ = Hp ∩ θzHp. (When p = 2, yet another equivalent definition is K2

θ =
H2 ⊖ θH2.) It is clear from (1.1) that the antilinear isometry

(1.2) f 7→ zfθ =: f̃

leaves Kp
θ invariant. Also, it is well known (see [6, 20]) that each Kp

θ is invariant
under the backward shift operator

B : f 7→
f − f(0)

z
, f ∈ Hp,

and conversely, that every closed and nontrivial B-invariant subspace of Hp, with
1 ≤ p <∞, arises in this way.

The functions belonging to some Kp
θ space (i.e., noncyclic vectors of B) are known

as pseudocontinuable functions. In fact, they are characterized by the property of
having a meromorphic pseudocontinuation to D− := C\(D∪T); that is, the function
in question should agree a.e. on T with the boundary values of some meromorphic
function of bounded characteristic in D− (see [6] for details).

The orthogonal projection from H2 onto K2
θ is given by f 7→ θP−(θf), and the

M. Riesz theorem shows that the same formula provides, for 1 < p <∞, a bounded
projection from Hp onto Kp

θ parallel to θHp. This yields the direct sum decompo-
sition

(1.3) Hp = Kp
θ ⊕ θHp, 1 < p <∞,

with orthogonality for p = 2.
Among the inner functions θ, of special relevance to us are Blaschke products.

Recall that, for a sequence Z = {zj} ⊂ D with

(1.4)
∑

j

(1− |zj |) <∞,

the associated Blaschke product is given by

B(z) = BZ(z) :=
∏

j

|zj |

zj

zj − z

1− zjz

(if zj = 0, then we set |zj |/zj = −1). The product converges uniformly on compact
subsets of D and defines an inner function that vanishes precisely at the zj ’s; see
[15, Chapter II]. If, in addition,

(1.5) inf
j
|B′(zj)| (1− |zj|) > 0,

then we say that B is an interpolating Blaschke product. Accordingly, the sequences
Z = {zj} in D that satisfy (1.4) and (1.5), with B = BZ , are called interpolating (or
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H∞-interpolating) sequences. By a celebrated theorem of Carleson (see [3] or [15,
Chapter VII]), these are precisely the sequences Z with the property that

H∞
∣∣
Z
= ℓ∞.

Here and below, the following standard notation (and terminology) is used. Given
a sequence Z = {zj} of pairwise distinct points in D, the trace f

∣∣
Z

of a function
f : D → C is defined to be the sequence {f(zj)}; and if X is a certain function space
on D, then the corresponding trace space is

X
∣∣
Z
:=

{
f
∣∣
Z
: f ∈ X

}
.

We shall be concerned with interpolation problems for functions in star-invariant
subspaces—specifically, for those in Kp

B, where B is an interpolating Blaschke prod-
uct. Some of the earlier results in this area can be found in [1, 7, 16, 18], while
others, more relevant to our current topic, will be recalled presently.

First, we need yet another piece of notation. Given numbers p > 0, γ ∈ R and
a sequence Z = {zj} ⊂ D, we write ℓpγ(Z) for the set of all sequences {wj} ⊂ C

satisfying ∑

j

|wj|
p(1− |zj |)

γ <∞.

Now, if 1 < p < ∞ and if B = BZ is an interpolating Blaschke product with zero
sequence Z, then we have

Kp
B

∣∣
Z
= Hp

∣∣
Z
= ℓp1(Z).

Indeed, the left-hand equality follows from (1.3) with θ = B, while the other holds
by a well-known theorem of Shapiro and Shields [21]. In addition, for each sequence
W = {wj} in ℓ

p
1(Z), there is a unique function f ∈ Kp

B with f
∣∣
Z
= W; the uniqueness

is due to the fact that Kp
B ∩ BHp = {0}.

The case of K∞

B is subtler, as the next result shows.

Theorem A. Suppose that Z = {zj} is an interpolating sequence in D and B = BZ

is the associated Blaschke product. Then we have

(1.6) K∞

B |Z = ℓ∞

if and only if

(1.7) sup

{
∑

j

1− |zj|

|ζ − zj |
: ζ ∈ T

}
<∞.

This theorem is essentially a consequence of Hruščev and Vinogradov’s work in
[19]; see also [5, Section 3] for details.

Condition (1.7) above is known as the uniform Frostman condition, and the se-
quences Z = {zj} in D that obey it are called Frostman sequences. While a Frostman
sequence need not be interpolating (in fact, its points are not even supposed to be
pairwise distinct), it does necessarily split into finitely many interpolating sequences;
see [19] for a proof. Finally, a Blaschke product whose zeros form a Frostman se-
quence will be referred to as a Frostman Blaschke product.



4 KONSTANTIN M. DYAKONOV

We mention in passing that, by a theorem of Vinogradov [22], the identity

K∞

B2 |Z = ℓ∞

is valid whenever Z is an interpolating sequence and B = BZ . It should be noted,
however, that K∞

B2 is strictly larger than K∞

B .
To describe the trace class K∞

B |Z in the general case (i.e., when (1.7) no longer
holds), we first introduce a bit of notation. Once the interpolating sequence Z =
{zj} is fixed, we associate with each sequence W = {wj} from ℓ11(Z) the conjugate

sequence W̃ = {w̃k} whose elements are

(1.8) w̃k :=
∑

j

wj
B′(zj) · (1− zjzk)

(k = 1, 2, . . . ).

The absolute convergence of the series in (1.8) is ensured, for any k ∈ N, by the fact
that W ∈ ℓ11(Z) in conjunction with (1.5). Because ℓ11(Z) contains ℓ∞, as well as

every ℓp1(Z) with 1 < p < ∞, the sequence W̃ is well defined whenever W belongs
to one of these spaces.

The following result was established in [13].

Theorem B. Suppose that Z = {zj} is an interpolating sequence in D and B = BZ

is the associated Blaschke product. Given a sequence W ∈ ℓ∞, one has W ∈ K∞

B

∣∣
Z

if and only if W̃ ∈ ℓ∞.

It was further conjectured in [13, 14] that the trace space K1
B

∣∣
Z
is describable in

similar terms, i.e., that the necessary conditions W ∈ ℓ11(Z) and W̃ ∈ ℓ11(Z) are also
sufficient for W to be in K1

B

∣∣
Z
. To the best of our knowledge, the conjecture is still

open.
Here, our purpose is to supplement Theorem B by characterizing the values of

smooth, not just bounded, functions in K2
B on the (interpolating) sequence Z =

B−1(0). To be more precise, of concern are trace spaces of the form (K2
B ∩X)

∣∣
Z
,

where X is a certain smoothness class on T. Specifically, X will be one of the
following spaces.

• The Lipschitz–Zygmund space Λα = Λα(T) with α > 0. This is the set of
functions f ∈ C(T) satisfying

‖∆n
hf‖∞ = O(|h|α), h ∈ R,

where n is some (any) integer with n > α, and ∆n
h denotes the nth order difference

operator with step h. (As usual, the difference operators ∆k
h are defined inductively:

we put

(∆1
hf)(ζ) := f(eihζ)− f(ζ), ζ ∈ T,

and ∆k
hf := ∆1

h∆
k−1
h f for k ≥ 2.)

• BMO = BMO(T), the space of functions of bounded mean oscillation on T.
Recall that an integrable function f on T belongs to BMO if and only if

‖f‖∗ :=

∣∣∣∣
∫

T

f dm

∣∣∣∣+ sup
I

1

m(I)

∫

I

|f − fI | dm <∞,
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where fI := m(I)−1
∫
I
f dm; the supremum is taken over the open arcs I ⊂ T. Even

though BMO contains discontinuous and unbounded functions, there are reasons
for viewing it as a smoothness class. In a sense, it corresponds to the endpoint as
α→ 0 of the Λα scale. We also need the analytic subspace BMOA := BMO ∩H2.

• The Gevrey class Gα = Gα(T) with α > 0. This is the set of functions f ∈
C∞(T) satisfying

‖f (n)‖∞ ≤ Qn+1
f (n!)1+1/α, n = 0, 1, 2, . . . ,

with some constant Qf > 0. Here, we write f (n)(eit) for the nth order derivative of
the function t 7→ f(eit), which is assumed to be C∞-smooth on R.

• The Sobolev space Lps = Lps(T) with 1 < p <∞ and s > 0, defined by

Lps := {f ∈ Lp : f (s) ∈ Lp},

with the appropriate interpretation of the (possibly fractional) derivative f (s). Pre-
cisely speaking, we write f (s) ∈ Lp to mean that there is a function g ∈ Lp satisfying

ĝ(n) = (in)sf̂(n) for all n ∈ Z.

For each of these choices ofX , we now characterize the sequences W from the trace

space (K2
B ∩X)

∣∣
Z
in terms of the conjugate sequence W̃ , as defined by (1.8) above.

The description always involves a certain decay condition (or growth restriction) on

W̃ , as we shall presently see.

Theorem 1.1. Let α > 0, 1 < p <∞ and s > 0. Also, let X be one of the following
spaces: Λα, BMO, Gα or Lps. Given an interpolating Blaschke product B = BZ with
zeros Z = {zk} and a sequence W = {wk} ∈ ℓ21(Z), we have

W ∈
(
K2
B ∩X

) ∣∣
Z

if and only if
(a) |w̃k| = O ((1− |zk|)

α) when X = Λα,

(b) W̃ ∈ ℓ∞ when X = BMO,
(c) there is a constant c > 0 such that

|w̃k| = O

(
exp

(
−

c

(1− |zk|)α

))

when X = Gα,

(d) W̃ ∈ ℓp1−sp(Z) when X = Lps.

The intersection K2
B ∩BMO, which corresponds to case (b) above, will be hence-

forth denoted by K∗B. Similarly, for a general inner function θ, we define

K∗θ := K2
θ ∩ BMO.

Comparing Theorem B with the BMO part of Theorem 1.1, we see that the structure
of the trace space K∞

B

∣∣
Z

is remarkably similar to that of K∗B

∣∣
Z
. In light of this

observation, we may wonder what the BMO counterpart of Theorem A could look
like. Specifically, we may ask if there exist infinite Blaschke products B = BZ for
which the trace spaceK∗B

∣∣
Z
is completely determined by the natural (and necessary)

logarithmic growth condition on the values.
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To be more precise, suppose that Z = {zk} is a sequence of pairwise distinct
points in D, and write ℓ∞log(Z) for the space of sequences W = {wk} ⊂ C with

|wk| = O

(
log

2

1− |zk|

)
.

It is well known (and easily shown) that every f ∈ BMOA satisfies

|f(z)| = O

(
log

2

1− |z|

)
, z ∈ D,

so BMOA
∣∣
Z
is always contained in ℓ∞log(Z). The equality

(1.9) BMOA
∣∣
Z
= ℓ∞log(Z)

obviously need not hold in general, but it does actually occur for some infinite
sequences Z = {zk} (which form a tiny subfamily among the H∞-interpolating
sequences). For instance, (1.9) will be valid provided that

|zj − zk| ≥ c(1− |zj|)
s, j 6= k,

for some constants c > 0 and s ∈ (0, 1
2
); see [10, Theorem 11].

The question is what happens to (1.9) when BMOA gets replaced by its subspace
K∗B, with B = BZ . The property that arises is thus

(1.10) K∗B

∣∣
Z
= ℓ∞log(Z),

and we regard it as an analogue of (1.6) in the BMO setting. In contrast to (1.6),
however, (1.10) does not lead to any nontrivial class of sequences. Indeed, our next
result shows that (1.10) is only possible when Z = B−1(0) is a finite set.

Proposition 1.2. Whenever B = BZ is an infinite Blaschke product with simple
zeros, the trace space K∗B

∣∣
Z
is properly contained in ℓ∞log(Z).

This will be deduced from another result, which deals with the case of a general
inner function θ and asserts an amusing lack of duality between the star-invariant
subspaces K1

θ and K∗θ.
It is well known that, for 1 < p <∞, the dual of the Hardy space Hp (under the

pairing 〈f, g〉 =
∫
T
fg dm) is Hq with q = p/(p− 1), while the dual of H1 is BMOA;

see, e.g., [15, Chapter VI]. The former duality relation has a natural counterpart in
the Kp

θ setting, namely (Kp
θ )

∗ = Kq
θ for p and q as above (see [4, Lemma 4.2]), and

one may wonder if the identity (K1
θ )

∗ = K∗θ has any chance of being true, at least
for some inner functions θ. Our last theorem says that this is never the case, except
when θ is a finite Blaschke product.

Theorem 1.3. Given an inner function θ, other than a finite Blaschke product,
there exists a non-BMO function g ∈ K2

θ such that the functional

f 7→

∫

T

fg dm,

defined initially for f ∈ K2
θ , extends continuously to K1

θ .
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In other words, whenever θ is an “interesting” (i.e., nonrational) inner function,
K∗θ is properly contained in (K1

θ )
∗. One might compare this non-duality result with

Bessonov’s duality theorem for K1
θ that appears in [2]. There, θ was assumed to

be a one-component inner function, meaning that the set {z ∈ D : |θ(z)| < ε} is
connected for some ε ∈ (0, 1), and the dual of K1

θ ∩zH
1 was identified with a certain

discrete BMO space on T.
In the remaining part of the paper, we first list a number of auxiliary facts (these

are collected in Section 2) and then use them to prove our current results. The
proofs are in Sections 3 and 4.

Acknowledgement. I thank Carlo Bellavita for a helpful conversation. In particu-
lar, Theorem 1.3 of this paper arose in response to a question he asked me.

2. Preliminaries

Several background results will be needed. When stating the first of these, we
shall assume that X is one of our smoothness spaces (namely, Λα, BMO, Gα or Lps),
the admissible values of the parameters α, p and s being as above.

Lemma 2.1. Let f ∈ H2 and let B = BZ be an interpolating Blaschke product with
zeros Z = {zk}. In order that P−(Bf) ∈ X, it is necessary and sufficient that

(a) |f(zk)| = O ((1− |zk|)
α) when X = Λα,

(b) {f(zk)} ∈ ℓ∞ when X = BMO,
(c) for some c > 0,

|f(zk)| = O

(
exp

(
−

c

(1− |zk|)α

))

when X = Gα,
(d) {f(zk)} ∈ ℓp1−sp(Z) when X = Lps.

The statements corresponding to parts (a) and (b) were proved in [8] as Theorems
4.1 and 5.2. For parts (c) and (d), we refer to [11]; specifically, see Theorems 1 and
7 therein.

Another (well-known) fact to be used below is that the space BMOA enjoys the so-
called K-property of Havin, as defined in [17]. The precise meaning of this assertion
is as follows.

Lemma 2.2. For every ψ ∈ H∞, the Toeplitz operator Tψ given by

Tψf := P+(ψf), f ∈ BMOA,

maps BMOA boundedly into itself.

To prove this, it suffices to observe (in the spirit of [17]) that Tψ is the adjoint of

the multiplication operator g 7→ ψg, which is obviously bounded on H1.
Before proceeding, we need to introduce a bit of notation. Namely, with an inner

function θ and a number ε ∈ (0, 1) we associate the sublevel set

Ω(θ, ε) := {z ∈ D : |θ(z)| < ε}.

The following result is a restricted version of [9, Theorem 1].
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Lemma 2.3. Suppose that f ∈ BMOA and θ is an inner function. Then fθ ∈ BMO
if and only if

(2.1) sup{|f(z)| : z ∈ Ω(θ, ε)} <∞

for some (or every) ε with 0 < ε < 1.

Next, we recall a remarkable maximum principle for K2
θ functions that was estab-

lished by Cohn in [5].

Lemma 2.4. Let θ be inner, and suppose f ∈ K2
θ is a function that satisfies (2.1)

for some ε ∈ (0, 1). Then f ∈ H∞.

Our last lemma reproduces yet another result of Cohn (see [4, p. 737]), which char-
acterizes the inner functions θ with the property that K∗θ contains only bounded
functions. This characterization is, in turn, a consequence of Hruščev and Vino-
gradov’s earlier work from [19] on the multipliers of Cauchy type integrals.

Lemma 2.5. Let θ be an inner function. Then K∗θ = K∞

θ if and only if θ is a
Frostman Blaschke product.

We also refer to [12, Theorem 1.7] for a refinement of this result in terms of
inn(K∗θ), the set of inner factors for functions from K∗θ.

3. Proof of Theorem 1.1

We shall only give a detailed proof of part (a), the other cases being similar. Since
W = {wk} ∈ ℓ21(Z), we know that there exists a unique f ∈ K2

B such that f
∣∣
Z
= W.

Therefore, in order that

(3.1) W ∈
(
K2
B ∩ Λα

) ∣∣
Z

it is necessary and sufficient that

(3.2) f ∈ Λα.

To find out when the latter condition holds, we apply Lemma 2.1, part (a), to the
function g := zfB in place of f . (Note that g ∈ H2 because f ∈ K2

B.) This tells us
that P−(Bg) ∈ Λα if and only if

(3.3) |g(zk)| = O ((1− |zk|)
α) , k ∈ N.

On the other hand,

P−(Bg) = P−(zf) = zf,

and it is clear that the function zf belongs to Λα if and only if f does. Thus, we
may rephrase (3.2) as (3.3).

To arrive at a further—and definitive—restatement of (3.3), we need to express
the numbers g(zk) in terms of W. For z ∈ D, Cauchy’s formula yields

g(z) =

∫

T

g(ζ)

1− ζz
dm(ζ).
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Consequently,

g(zk) =

∫

T

g(ζ)

1− ζzk
dm(ζ) =

∫

T

ζf(ζ)B(ζ)

1− ζzk
dm(ζ)

=
1

2πi

∫

T

f(ζ)

B(ζ) · (1− ζzk)
dζ.

Computing the last integral by residues, while recalling that f(zj) = wj , we find
that

(3.4) g(zk) =
∑

j

wj
B′(zj) · (1− zjzk)

= w̃k

for each k ∈ N. (To justify the application of the residue theorem, one may begin by
evaluating the integral over the circle rnT, where {rn} ⊂ (0, 1) is a suitable sequence
tending to 1, and then pass to the limit as n→ ∞.)

Finally, we use (3.4) to rewrite (3.3) in the form

(3.5) |w̃k| = O ((1− |zk|)
α) , k ∈ N.

The equivalence of (3.1) and (3.5) is thereby established, proving the Λα part of the
theorem.

The remaining statements (i.e., those involving BMO, Gα and Lps) are proved
similarly, by combining the appropriate parts of Lemma 2.1 with identity (3.4).

4. Proofs of Proposition 1.2 and Theorem 1.3

We begin by proving Theorem 1.3. Once this is done, Proposition 1.2 will be
derived as a corollary.

Proof of Theorem 1.3. Given an inner function θ distinct from a finite Blaschke
product, we want to find a function g ∈ K2

θ \ BMO that induces a bounded linear
functional on K1

θ . We shall distinguish two cases.

Case 1. Assume that θ is an infinite Frostman Blaschke product. Its zero se-
quence, say Z = {zj}, must then have a limit point on T. Of course, nothing is lost
by assuming that Z clusters at 1. Now let

ϕ(z) := log(1− z),

where “log” stands for the holomorphic branch of the logarithm that lives on the
right half-plane and satisfies log 1 = 0. We have ϕ ∈ BMOA (because Imϕ ∈ L∞),
so the corresponding linear functional acts boundedly on H1 and hence on K1

θ .
Clearly, the same functional on K1

θ is also induced, in a similar manner, by the
function

g := θP−(θϕ),

which is the orthogonal projection (in H2) of ϕ onto K2
θ . Precisely speaking, the

functional

f 7→

∫

T

fg dm

(
=

∫

T

fϕ dm

)
, f ∈ K2

θ ,

extends continuously to K1
θ .
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We know that g ∈ K2
θ , and to conclude that g does the job, we only need to check

that

(4.1) g /∈ BMO.

To this end, observe first that supj |ϕ(zj)| = ∞ and hence, a fortiori,

sup{|ϕ(z)| : z ∈ Ω(θ, ε)} = ∞

for every ε ∈ (0, 1). By Lemma 2.3, this implies that θϕ /∈ BMO. On the other
hand,

θϕ = P−(θϕ) + P+(θϕ),

where the last term, P+(θϕ), is in BMOA(⊂ BMO) thanks to Lemma 2.2. It
follows readily that P−(θϕ) /∈ BMO. In particular, P−(θϕ) /∈ L∞ (just note that
L∞ ⊂ BMO). Equivalently, the function θP−(θϕ) = g is not in L∞.

Now, if g were in BMO, then we would have g ∈ K∗θ; and since our current
assumption on θ yields K∗θ = K∞

θ (in accordance with Lemma 2.5), g would have
to be bounded, which it is not. This proves (4.1).

Case 2. Assume that θ is not a Frostman Blaschke product. This time, using
Lemma 2.5 again, we can find an unbounded function h ∈ K∗θ. We have then

h̃ := zhθ ∈ K2
θ , and we go on to claim that h̃ /∈ BMO. (Here and below, the “tilde

operation” (1.2) is being used repeatedly.) Indeed, if h̃ were in BMO, then so would
be hθ, and Lemma 2.3 would tell us that

sup{|h(z)| : z ∈ Ω(θ, ε)} <∞

for some (any) ε ∈ (0, 1). This, however, would imply that h ∈ H∞ by virtue of
Lemma 2.4, whereas h is actually unbounded by assumption.

Now we know that h̃ ∈ K2
θ \BMO, and we proceed by showing that h̃ generates a

continuous linear functional on K1
θ . This will allow us to conclude that h̃ is eligible

as g (the function we are looking for), and the proof will be complete.

Given f ∈ K2
θ , we have the elementary identity fh̃ = f̃h. Recalling also the facts

that f̃ ∈ H2(⊂ H1) and h ∈ BMOA, we use the duality relation (H1)∗ = BMOA to
infer that ∣∣∣∣

∫

T

f h̃ dm

∣∣∣∣ =
∣∣∣∣
∫

T

f h̃ dm

∣∣∣∣ =
∣∣∣∣
∫

T

f̃ h dm

∣∣∣∣

≤ C‖f̃‖1‖h‖∗ = C‖f‖1‖h‖∗

with some absolute constant C > 0. Consequently, for g = h̃, the (densely defined)
functional

(4.2) f 7→

∫

T

fg dm

is indeed continuous on K1
θ , and we are done. �

Proof of Proposition 1.2. Assuming that B = BZ is an infinite Blaschke product
with zeros Z = {zj}, where the zj ’s are pairwise distinct, we want to find a sequence
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of values W = {wj} in ℓ∞log(Z) that is not the trace of any K∗B function on Z.
Consider, for each j ∈ N, the function

fj(z) :=
1

1− zjz

and note that fj ∈ K2
B. Observe also that

(4.3) ‖fj‖1 ≤M log
2

1− |zj|
, j ∈ N,

for some fixed constant M > 0.
Now, Theorem 1.3 provides us with a function g ∈ K2

B \ BMO such that the
associated functional (4.2), defined initially for f ∈ K2

B, acts boundedly on K1
B,

say with norm Ng. When applied to f = fj , this functional takes the value g(zj);
indeed, Cauchy’s formula gives

∫

T

f jg dm = g(zj)

for each j. In conjunction with (4.3), this yields

(4.4) |g(zj)| ≤ Ng‖fj‖1 ≤MNg log
2

1− |zj |
, j ∈ N.

Finally, we put

wj := g(zj), j ∈ N.

The sequence W = {wj} is then in ℓ∞log(Z), as (4.4) shows, while

(4.5) W /∈ K∗B

∣∣
Z

as required. To verify (4.5), it suffices to note that g is the only function in K2
B that

interpolates W on Z (indeed, a K2
B function is uniquely determined by its trace on

Z = B−1(0)), whereas g /∈ BMO. The proof is complete. �

Remark. We have seen above that if g ∈ K2
B, with B = BZ , and if the func-

tional (4.2) is continuous on K1
B, then g

∣∣
Z

∈ ℓ∞log(Z). Now, if Z has the BMOA-
interpolating property (1.9), then every sequence W in ℓ∞log(Z) is actually writable

as g
∣∣
Z

for some g ∈ K2
B that induces a continuous linear functional on K1

B. (To

see why, take G ∈ BMOA with G
∣∣
Z

= W and then put g = BP−(BG), so that

g is the orthogonal projection of G onto K2
B.) Of course, things become different

if condition (1.9) is dropped. For instance, there are interpolating sequences Z for
which ℓ∞log(Z) 6⊂ ℓ21(Z); and if this is the case, then no sequence in ℓ∞log(Z) \ ℓ21(Z) is

the trace of any H2 function on Z.
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