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ON THE EQUIDISTRIBUTION OF CLOSED GEODESICS AND
GEODESIC NETS

XINZE LI AND BRUNO STAFFA

Abstract. We show that given a closed n-manifold M , for a Baire-generic set
of Riemannian metrics g on M there exists a sequence of closed geodesics that
are equidistributed in M if n = 2; and an equidistributed sequence of embedded
stationary geodesic nets if n = 3. One of the main tools that we use is the Weyl
Law for the volume spectrum for 1-cycles, proved in [14] for n = 2 and in [11] for
n = 3. We show that our proof of the equidistribution of stationary geodesic nets
can be generalized for any dimension n ≥ 2 provided the Weyl Law for 1-cycles in
n-manifolds holds.
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1. Introduction

Marques, Neves and Song proved in [18] that for a generic set of Riemannian
metrics in a closed manifold Mn, 3 ≤ n ≤ 7 there exists a sequence of closed,
embedded, connected minimal hypersurfaces which is equidistributed in M . In this
paper, we study the equidistribution of closed geodesics and stationary geodesic
nets (which are 1-dimensional analogs of minimal hypersurfaces) on a Riemannian
manifold (Mn, g), n ≥ 2. We prove the following two results, for dimensions 2 and 3
of the ambient manifold respectively:

Theorem 1.1. Let M be a closed 2-manifold. For a Baire-generic set of C∞ Rie-
mannian metrics g on M , there exists a set of closed geodesics that is equidis-
tributed in M . Specifically, for every g in the generic set, there exists a sequence
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2 XINZE LI AND BRUNO STAFFA

{γi : S1 → M} of closed geodesics in (M, g), such that for every C∞ function
f : M → R we have

lim
k→∞

∑k
i=1

∫

γi
f dLg

∑k
i=1 Lg(γi)

=

∫

M
f dVolg

Vol(M, g)
.

Theorem 1.2. Let M be a closed 3-manifold. For a Baire-generic set of C∞ Rie-
mannian metrics g onM , there exists a set of connected embedded stationary geodesic
nets that is equidistributed in M . Specifically, for every g in the generic set , there
exists a sequence {γi : Γi → M} of connected embedded stationary geodesic nets in
(M, g), such that for every C∞ function f : M → R we have

lim
k→∞

∑k
i=1

∫

γi
f dLg

∑k
i=1 Lg(γi)

=

∫

M
f dVolg

Vol(M, g)
.

Remark 1.3. We have an equivalent notion of equidistribution for a sequence of
closed geodesics or geodesic nets: we say that {γi}i∈N is equidistributed in (M, g) if
for every open subset U ⊆M it holds

lim
k→∞

∑k
i=1 Lg(γi ∩ U)
∑k

i=1 Lg(γi)
=

Volg U

VolgM
.

Theorem 1.2 is, as far as the authors know, the first result on equidistribution of
k-stationary varifolds in Riemannian n-manifolds for k < n− 1 (i.e. in codimension
greater than 1). Regarding Theorem 1.1, similar equidistribution results for closed
geodesics have been proved for compact hyperbolic manifolds in [4] in 1972 and for
compact surfaces with constant negative curvature in [22] in 1985. More recently,
those results were extended to non-compact manifolds with negative curvature in
[23] and to surfaces without conjugate points in [8]. The four previous works have
in common that they approach the problem from the dynamical systems point of
view. In the present paper, we approach it using Almgren-Pitts min-max theory
(as it was done in [18] for minimal hypersurfaces). Additionally, Theorem 1.1 is the
first equidistribution result for closed geodesics on closed surfaces that is proved for
generic metrics, without any restriction regarding the curvature of the metric or the
presence of conjugate points.

Our proof is inspired by the ideas in [18]. There are two key results used in [18]
to prove equidistribution of minimal hypersurfaces for generic metrics: the Bumpy
Metrics Theorem of Brian White [25] and the Weyl Law for the Volume Spectrum
proved by Liokumovich, Marques and Neves in [14]: given a compact Riemannian
manifold (Mn, g) with n ≥ 2 (possibly with boundary), we have

lim
p→∞

ωn−1
p (M, g)p−

1
n = α(n) Vol(M, g)

n−1
n
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for some constant α(n) > 0. Here, given 1 ≤ k ≤ n − 1 we denote by ωkp(M, g) the
k-dimensional p-width of M with respect to the metric g (for background on this,
see [10], [15], [17] [13]). It was conjectured by Gromov (see [9, section 8.4]) that the
Weyl law can be extended to other dimensions and codimensions. In this work, we
are interested in the case of 1-dimensional cycles. The following is the most general
version of the Weyl law we could expect for 1-cycles.

Conjecture 1.4. Let (Mn, g) be a closed n-dimensional manifold, n ≥ 2. Then
there exists a constant α(n, 1) > 0 such that

lim
p→∞

ω1
p(M

n, g)p−
n−1
n = α(n, 1) Vol(Mn, g)

1
n .

So far, Conjecture 1.4 has been proved for n = 2 as a particular case of [14] and
recently for n = 3 by Guth and Liokumovich in their work [11]. In this article,
we use those two versions of the Weyl law to prove Theorem 1.1 and Theorem 1.2;
and we also use the Structure Theorem for Stationary Geodesic Networks proved by
Staffa in [24] and the Structure Theorem of White ([25]) for the case of embedded
closed geodesics. The work of Chodosh and Mantoulidis in [7] is used to upgrade
the equidistribution result for stationary geodesic networks to closed geodesics in
dimension 2. The only obstruction to extend our proof of the equidistribution of
stationary geodesic nets to arbitrary dimensions of the ambient manifold M is that
Conjecture 1.4 has not been proved yet if n > 3. As all the rest of our argument
works for any dimension n > 3, what we do is to prove the following result and then
show that it implies Theorem 1.1 and Theorem 1.2.

Theorem 1.5. Let Mn, n ≥ 2 be a closed manifold. Assume that the Weyl law
for 1-cycles in n-manifolds holds. Then for a Baire-generic set of C∞ Riemannian
metrics g on M , there exists a set of connected embedded stationary geodesic nets
that is equidistributed in M . Specifically, for every g in the generic set , there exists
a sequence {γi : Γi →M} of connected embedded stationary geodesic nets in (M, g),
such that for every C∞ function f : M → R we have

lim
k→∞

∑k

i=1

∫

γi
f dLg

∑k

i=1 Lg(γi)
=

∫

M
f dVolg

Vol(M, g)
.

In order to simplify the exposition, we consider integrals of C∞ functions instead
of the more general traces of 2-tensors discussed in [18]. Next we proceed to describe
the intuition behind the proof, the technical issues which appear when one tries to
carry on that intuition and how to sort them.

Let g be a Riemannian metric on M . We want to do a very small perturbation
of g to obtain a new metric ĝ which admits a sequence of equidistributed stationary
geodesic networks. Let f : M → R be a smooth function. Consider a conformal
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perturbation ĝ : (−δ, δ) → M∞ (for some δ > 0 small) defined as

ĝ(t) = e2tfg.

By [15, Lemma 3.4] the normalized p-widths t 7→ p−
n−1
n ω1

p(M, ĝ(t)) are uniformly
locally Lipschitz. This combined with the Weyl Law (recall that we assume it holds)
implies that the sequence of functions hp : (−δ, δ) → R

hp(t) =
p−

n−1
n ω1

p(M, ĝ(t))

Vol(M, ĝ(t))
1
n

converges uniformly to the constant α(n, 1). Considering

h̃p(t) = log(hp(t)) = −
n− 1

n
log(p) + log(ωp(M, ĝ(t))) −

1

n
log(Vol(M, ĝ(t)))

we have that h̃p converges uniformly to the constant log(α(n, 1)). On the other hand,
Almgren showed that there is a correspondence between 1-widths and the volumes
of stationary varifolds (see [1], [2], [5], [19], [20], [21]) such that for each p ∈ N and
t ∈ (−δ, δ) there exists a (possibly non unique) stationary geodesic network γp(t)
such that

(1) Lĝ(t)(γp(t)) = ω1
p(ĝ(t)).

Assume that the γp(t)’s can be chosen so that all of them are parametrized by the
same graph Γ and the maps (−δ, δ) → Ω(Γ,M), t 7→ γp(t) are differentiable (this
is a very strong assumption and doesn’t necessarily hold, as the map t 7→ ω1

p(ĝ(t))
may not be differentiable; a counterexample is shown below). In that case we can

differentiate h̃p and obtain

d

dt
h̃p(t) =

1

ωp(M, ĝ(t))

d

dt
ω1
p(M, ĝ(t)) −

1

nVol(M, ĝ(t))

d

dt
Vol(M, ĝ(t))

=
1

Lĝ(t)(γp(t))

∫

γp(t)

f dLĝ(t) −
1

nVol(M, ĝ(t))

∫

M

nf dVolĝ(t)

= −

∫

γp(t)

f dLĝ(t) −−

∫

M

f dVolĝ(t) .

As {h̃p}p converges uniformly to a constant, we could expect that the sequence

{h̃′p(t)}p converges to 0 for some values of t. If that was the case, the sequence
{γp(t)}p would verify the equidistribution formula for the function f with respect
to the metric ĝ(t). Nevertheless, this does not have to be true, because of two
reasons. The first one is that the uniform convergence of a sequence of functions to
a constant does not imply convergence of the derivatives to 0 at any point. Indeed,
we can construct a sequence of zigzag functions which converges uniformly to 0 but
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h′p(t) does not converge to 0 for any t. The second one is that the differentiability of
t 7→ γp(t) could fail, a counterexample is shown in the next paragraph. And even if
that reasoning was true and such t existed, the sequence {γp(t)}p constructed would
only give an equidistribution formula for the function f (which is used to construct
the sequence) instead of for all C∞ functions at the same time; and with respect to
a metric ĝ(t) which could also vary with f .

An example when t 7→ ω1
p(ĝ(t)) is not differentiable is the following. Let us consider

a dumbbell metric g on S2 obtained by constructing a connected sum of two identical
round 2-spheres S2

1 and S2
2 of radius 1 by a thin neck. Define a 1-parameter family

of metrics {ĝ(t)}t∈(−1,1) such that ĝ(t) = (1 + t)2g along S2
1 , ĝ(t) = (1− t)2g along S2

2

(interpolating along the neck so that it is still very thin). It is clear than for t ≥ 0,
the 1-width is realized by a great circle in S2

1 with length 1 + t, and for t ≤ 0 it is
realized by a great circle in S2

2 of length 1 − t. Therefore

ω1
1(ĝ(t)) =

{

1 − t if t ≤ 0

1 + t if t ≥ 0

and hence it is not differentiable at 0.
To fix the previous issue (differentiability of ω1

p(g(t))), we prove Proposition 4.1
which is a version for stationary geodesic networks of [18, Lemma 2]. Regarding the
convergence of h′p(t) to 0 for certain values of t, we use Lemma 4.6 which is exactly
[18, Lemma 3]. To obtain a sequence of stationary geodesic networks that verifies
the equidistribution formula for all C∞ functions (and not only for a particular one
as above), we carry on a construction described in Section 5 using certain stationary
geodesic nets which realize the p-widths in a similar way as the γp(t)’s above. The key
idea here is that the integral of any C∞ function f over M can be approximated by
Riemann sums along small regions with piecewise smooth boundary where f is almost
constant. Therefore, if we have an equidistribution formula for the characteristic
functions of those regions (or some suitable smooth approximations), then we will
be able to deduce it for an arbitrary f ∈ C∞(M,R). The advantage of doing this
is that we reduce the problem to a countable family of functions. This argument is
also inspired by [18].

The paper is structured as follows. In Section 2, we introduce the set up and nec-
essary preliminaries. In Section 3, we define the Jacobi Operator along a stationary
geodesic net and show that it has all the nice properties that an elliptic operator
has (mainly, admitting an orthonormal basis of eigenfunctions and therefore having
a min-max characterization for its eigenvalues). This is crucial to prove Proposition
4.5. In Section 4, the technical propositions necessary to prove Theorem 1.5 are
discussed. In Section 5 we prove Theorem 1.5 and get Theorem 1.2 as a corollary
using the Weyl law for 1 cycles in 3 manifolds proved in [11]. In Section 6, we use
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the Weyl law from [14] and the proof of Theorem 1.5 combined with the work of
Chodosh and Mantoulidis in [7] (where it is proved that the p-widths on a surface
are realized by finite unions of closed geodesics) to prove Theorem 1.1.

Remark 1.6. Rohil Prasad pointed out that an alternative proof of Theorem 1.1
could be obtained using the methods of Irie in [12]. Given a closed Riemannian 2-
manifold (M, g), its unit cotangent bundle U∗

gM is a closed 3-manifold equipped with
a natural contact structure induced by the contact form λg which is the restriction
of the Liouville form λ on T ∗M to U∗

gM . It is a well known fact that the Reeb vector
field associated to λg generates the geodesic flow of (M, g). Additionally, given a
function f : M → R, the Riemannian metric g′ = efg corresponds to the conformal

perturbation λg′ = e
f◦π
2 λg of the contact form in U∗

gM (here π : U∗
gM → M is the

projection map); and both λg and λg′ are compatible with the same contact structure
on U∗

gM . Thus one would like to apply [12, Corollary 1.4] to U∗
gM with the contact

structure induced by λg. However, that result is about generic perturbations of the

contact form of the type ef̃λg, where f̃ : U∗
gM → R and we only want to consider

perturbations f̃ = f ◦ π which are liftings to U∗
gM of maps f : M → R so some

work should be done here in order to apply Irie’s result in our setting. This issue
was pointed out in [6, Remark 2.3], where a similar problem is studied for Finsler
metrics and a solution is given for that class of metrics. Additionally, Irie’s theorem
would give us an equidistributed sequence for a generic conformal perturbation of
each metric g. This immediately implies that for a dense set of Riemannian metrics
such an equidistribution result holds, but some additional arguments are needed to
prove it for a Baire-generic metric. It is important to point out that the result in
[12] uses the ideas of [18] but in the different setting of contact geometry, applying
results of Embedded Contact Homology with the purpose of finding closed orbits
of the Reeb vector field; while in [18] Almgren-Pitts theory is used to find closed
minimal surfaces.
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2. Preliminaries

Definition 2.1 (Weighted Multigraph). A weighted multigraph is a graph Γ =
(E ,V , {n(E)}E∈E ) consisting of a set of edges E , a set of vertices V and a multiplicity
n(E) ∈ N assigned to each edge E ∈ E . A weighted multigraph is good if it is
connected and either it is a closed loop with mutiplicity or each vertex v ∈ V has
at least three different incoming edges (here loop edges E at v count twice as an
incoming edge at v, see [24] for a more detailed discussion). In the later case we say
Γ is good*.

Definition 2.2. Given a weighted multigraph (E ,V , {n(E)}E∈E ), we identify each
edge E ∈ E with the interval [0, 1] and we denote π = πE : {0, 1} → V the map
sending i ∈ {0, 1} to the vertex v ∈ V under the identification E ∼= [0, 1].

Definition 2.3 (Γ-net). A Γ-net γ on M is a continuous map γ : Γ →M which is a
C2-immersion restricted to the edges of Γ. We will denote Ω(Γ,M) the space of Γ-nets
on M . It has a natural Banach manifold structure as a subspace of

∏

E∈E
C2(E,M)

(see [24]).

Definition 2.4. We say that two Γ-nets γ1 and γ2 are equivalent if for every edge
E of Γ the map γ1|E is a C2 reparametrization of γ2|E fixing the endpoints. This

defines an equivalence relation ∼ in Ω(Γ,M). We denote Ω̂(Γ,M) = Ω(Γ,M)/ ∼

the quotient space. Given γ ∈ Ω̂(Γ,M) we will often denote a representative of
the equivalence class γ also by γ, and regard different representatives as different
parametrizations of the geometric object γ ∈ Ω̂(Γ,M).

Notation 2.5. Given a Γ-net γ and an edge E ∈ E , we denote γE the restriction of
γ to E. We also define γE(0) := γE(πE(0)) and γE(1) := γE(πE(1)).

Notation 2.6. Given 1 ≤ q ≤ ∞, let us denote Mq the set of Cq Riemannian
metrics on M .

Definition 2.7. Let γ ∈ Ω̂(Γ,M) and let h be a continuous function defined in
Im(γ) ⊆M . Given a metric g ∈ Mq we define

∫

γ

h dLg =
∑

E∈E

n(E)

∫

E

h ◦ γ(u)
√

gγ(u)(γ̇(u), γ̇(u))du.

Observe that the right hand side is independent of the parametrization we choose
and therefore

∫

γ
h dLg is well defined.

Definition 2.8 (g-Length). Given g ∈ Mq and γ ∈ Ω̂(Γ,M), we define the g-length
of γ by

Lg(γ) =

∫

Γ

1 dLg =
∑

E∈E

n(E)

∫

E

√

gγ(u)(γ̇(u), γ̇(u))du.
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Definition 2.9 (Stationary Geodesic Network). We say that γ ∈ Ω(Γ,M) is a
stationary geodesic network with respect to a metric g ∈ Mq (q ≥ 2) if it is a critical
point of the length functional Lg : Ω(Γ,M) → R. This means that given any smooth
one parameter family γ̃ : (−δ, δ) → Ω(Γ,M) with γ̃(0) = γ we have

d

ds

∣

∣

∣

∣

s=0

Lg(γ̃(s)) = 0.

Assuming that the edges of γ are parametrized by constant speed, if X(t) = ∂γ̃

∂s
(0, t)

(here we regard γ̃ : (−δ, δ) × Γ →M) then

(2)
d

ds

∣

∣

∣

∣

s=0

Lg(γ̃(s)) = −
∑

E∈E

n(E)

l(E)

∫

E

〈γ̈(t), X(t)〉gdt+
∑

v∈V

〈Vv(γ), X(v)〉g

where l(E) = Lg(γE) and

Vv(γ) =
∑

(E,i):πE(i)=v

(−1)i+1n(E)
γ̇E(i)

|γ̇E(i)|
.

Equation (2) is called the First Variation Formula and was computed in [24, Sec-
tion 1]. It implies that γ : Γ → M is stationary with respect to g if and only if each
edge is mapped to a geodesic segment in (M, g) and the stability condition at the
vertices Vv(γ) = 0 is verified. The latter means that for each v ∈ V , the sum of the
inward pointing unit tangent vectors to each edge at v is 0.

Definition 2.10. We say that γ ∈ Ω̂(Γ,M) is a stationary geodesic network if every
representative γ̃ ∈ Ω(Γ,M) of γ is a stationary geodesic network.

Definition 2.11. We denote C2(γ) the space of continuous vector fields along γ
whose restriction to each edge is of class C2.

Remark 2.12. If g ∈ Mq, q ≥ 2 and γ ∈ Ω(Γ,M) is stationary with respect to g
then by the regularity of the solutions of an ODE, γE is of class Cq for every E ∈ E .
This is why we only ask C2 regularity to Γ-nets and vector fields along them.

Assume γ ∈ Ω(Γ,M) is a stationary geodesic net with respect to a Cq metric with
q ≥ 3 (so that the Riemann curvature tensor is of class C1). Let γ̃ : (−δ, δ)2 →
Ω(Γ,M) be a smooth 2-parameter family of Γ-nets with γ̃(0, 0) = γ. Let X(t) =
∂γ̃

∂x
(0, 0, t) and Y (t) = ∂γ̃

∂s
(0, 0, t). We define the Hessian Hessγ Lg : C2(γ)×C2(γ) → R

of the length functional at γ as the bilinear form

Hessγ Lg(X, Y ) =
∂2

∂x∂s

∣

∣

∣

∣

(0,0)

Lg(γ̃(x, s)).
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In [24, Section 2] it was shown that Hessγ Lg is well defined (i.e. it does not depend
on which two parameter variation γ̃ with directional derivatives X and Y we choose)
and in fact it holds

(3) Hessγ Lg(X, Y ) =
∑

E∈E

∫

E

〈AE(X)(t), Y (t)〉gdt +
∑

v∈V

〈Bv(X), Y (v)〉g

where

AE(X) = −
n(E)

l(E)
[Ẍ⊥

E +R(γ̇, X⊥
E )γ̇]

Bv(X) =
∑

(E,i):πE(i)=v

(−1)i+1n(E)

l(E)
Ẋ⊥
E (i)

being XE the restriction of the vector field X to the edge E and X⊥
E the component

of XE orthogonal to γE. Observe that AE is (up to a positive constant) the Jacobi
operator along γE. Equation (3) is the Second Variation Formula.

Definition 2.13. We say that a vector field J ∈ C2(γ) is Jacobi if it is a null vector
of Hessγ Lg, i.e. if Hessγ Lg(J,X) = 0 for every X ∈ C2(γ). By the Second Variation
Formula, J is Jacobi along γ if and only if AE(J) = 0 for every E ∈ E and Bv(J) = 0
for every v ∈ V .

Definition 2.14. A vector field X ∈ C2(γ) is said to be parallel if XE is parallel
along γE for every E ∈ E .

Remark 2.15. Observe that every parallel vector field J along γ is Jacobi.

Definition 2.16. A stationary geodesic net γ : Γ → (M, g) is nondegenerate if every
Jacobi field along γ is parallel.

Remark 2.17. In [15, Lemma 2.5], it was shown that every stationary geodesic
network with respect to a metric g can be represented by a map γ : Γ → M , where
Γ =

⋃P
i=1 Γi is the finite union of the good weighted multigraphs {Γi}1≤i≤P and γ|Γi

is an embedded stationary geodesic network for each 1 ≤ i ≤ P (moreover, the map
γ : Γ →M is a topological embedding).

Definition 2.18. Given a stationary geodesic network γ : Γ → (M, g), we say that
its connected components are nondegenerate if

(1) We can express Γ =
⋃P

i=1 Γi as a disjoint union of good weighted multigraphs.
(2) γ|Γi

is an embedded nondegenerate stationary geodesic network for every
1 ≤ i ≤ P .

Definition 2.19. An almost embedded closed geodesic in a Riemannian manifold
(M, g) is a map γ : S1 → (M, g) such that
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(1) γ is geodesic (i.e. γ̈(t) = 0 for every t ∈ S1).
(2) γ is an immersion (i.e. γ̇(t) 6= 0 for every t ∈ S1).
(3) All self-intersections of γ are transverse, which means that for every s, t ∈ S1

such that γ(s) = γ(t) and s 6= t, the velocities γ̇(s) and γ̇(t) are not colinear.

This terminology is inspired in [26, Definition 2.2], where Brian White extends his
Bumpy Metrics Theorem to almost embedded minimal surfaces.

Notation 2.20. Given a symmetric 2-tensor T , a metric g ∈ Mq, a stationary
geodesic network γ : Γ →M on (M, g) and t ∈ Γ, we denote

trγ,g T (t) = T (
γ̇(t)

|γ̇(t)|g
,
γ̇(t)

|γ̇(t)|g
)

which is the trace of the tensor T along γ with respect to the metric g.

Definition 2.21 (Average integral along γ). Let Γ be a weighted multigraph. Given
γ ∈ Ω(Γ,M), a metric g ∈ Mq and a continuous function h defined in Im(γ), we
define the average integral of h with respect to metric g as

−

∫

γ

h dLg :=
1

Lg(γ)

∫

γ

h dLg .

3. The Jacobi Operator

In this section we will study some properties of the Jacobi operator of an embedded
stationary geodesic network γ : Γ → (M, g), where Γ is a good weighted multigraph
and g ∈ Mq, q ≥ 3. We will focus on the case when Γ is good* (i.e. every vertex has
at least three different incoming edges), because when Γ is a loop with multiplicity
what we get is the Jacobi operator along an embedded closed geodesic acting on
normal vector fields, which is known to be elliptic; and hence it has all the nice
properties that we will describe below. We first introduce some notation. Let

C2(γ) = {X continuous vector field along γ : XE is C2 ∀E ∈ E }

C2(γ)‖ = {X ∈ C2(γ) : X(t) ∈ 〈γ̇(t)〉 ∀t ∈ Γ}

C2
0(γ)⊥ = {X ∈ C2(γ) : X(t) ⊥ γ̇(t) ∀t ∈ Γ \ V and X(v) = 0 ∀v ∈ V }

C2(E)⊥ = {X ∈ C2(E) : X(t) ⊥ γ̇(t) ∀E ∈ E }

C2(E )⊥ =
∏

E∈E

C2(E)⊥.

Observe that as Γ is good*, if X ∈ C2(γ)‖ then X(v) = 0 for every v ∈ V . Denote

TV =
∏

v∈V

Tγ(v)M.
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By the second variation formula (3), we can define the Jacobi operator L : C2(γ) →
C0(E )⊥ × TV as

(4) L(J) = ((−
n(E)

l(E)
(J̈⊥
E +R(γ̇, J⊥

E )γ̇))E∈E , (Bv(J))v∈V ).

We know that each X ∈ C2(γ)‖ is Jacobi (i.e. it verifies L(J) = 0). We want to
construct a complement of C2(γ)‖ in C2(γ), and show that when we restrict L to
that complement it behaves like an elliptic operator (this complement will play the
role of the space of normal Jacobi fields along a minimal submanifold in the smooth
case, when it is known that the stability operator is elliptic).

To do this, we will need to define a finite dimensional subspace S2(γ) ⊆ C2(γ) such
that the evaluation map ev : S2(γ) → TV , J 7→ (J(v))v∈V is a linear isomorphism.
This can be done by taking a basis Bv of Tγ(v)M for each v ∈ V , and for each
pair (v, w) with v ∈ V and w ∈ Bv defining a vector field J(v,w) ∈ C2(γ) such that
J(v,w)(v) = w and J(v,w)(v

′) = 0 for every v′ 6= v. Then we can define S2(γ) = 〈J(v,w) :
v ∈ V , w ∈ Bv〉. Of course the choice of S2(γ) is not canonical, but we fix one choice
and work with it for the rest of the section (it will be deduced from the arguments
below that the results that we prove hold independently of the choice of S2(γ)). It
is clear that

C2(γ) = C2(γ)‖ ⊕ C2
0(γ)⊥ ⊕ S2(γ).

Denote C2(γ)C = C2
0(γ)⊥ ⊕ S2(γ) which is a complement of the space of parallel

vector fields along γ. Same as in the theory of elliptic operators, we can extend the
Jacobi operator to Sobolev spaces of vector fields along γ once we have a suitable
definition of them. Denote

H2
0 (E) = {X normal vector field of class H2

0 along E}

H2
0 (γ) =

∏

E∈E

H2
0 (E)

H2(γ) = H2
0 (γ) ⊕ S2(γ)

L2(E) = {X normal vector field of class L2 along E}

L2(E ) =
∏

E∈E

L2(E)

L2(γ) = L2(E ) ⊕ TV .

Notice that H2(γ) is the H2-version of C2(γ)C and will be the domain of the Jacobi
operator we will work with (as that operator vanishes on C2(γ)‖). The previous
spaces are defined in analogy with the spaces of C2, H2 and L2 normal vector fields
along a smooth closed submanifold which appear when studying the ellipticity of its
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Jacobi operator. The space L2(γ) is a Hilbert space with the inner product

〈((XE)E , (uv)v), ((YE)E , (wv)v)〉 =
∑

E∈E

∫

E

〈XE(t), YE(t)〉gdt+
∑

v∈V

〈uv, wv〉g

and we have a monomorphism ι : H2(γ) → L2(γ) with dense image given by

ι(J) = ((JE)⊥E∈E , (J(v))v∈V )

which allow us to write the Hessian Hessγ Lg : H2(γ) ×H2(γ) → R as

Hessγ Lg(J, J̃) = 〈L(J), ι(J̃)〉

where 〈, 〉 is the inner product in L2(γ). Here we considered L : H2(γ) → L2(γ)
given by (4) which is a bounded linear operator. As in the smooth case, we can also
regard L as an unbounded operator L : L2(γ) → L2(γ) whose domain is the dense
linear subspace H2(γ). We would therefore expect that for sufficiently big λ ∈ R

the operator L + λι : L2(γ) → L2(γ) has a compact inverse, and from that get an
orthonormal basis of L2(γ) consisting of eigenvectors of L. This indeed holds, as it
is shown in the following proposition.

Proposition 3.1. For every λ ∈ R, the operator L − λι : H2(γ) → L2(γ) defined
as (L − λι)(J) = L(J) − λι(J) is Fredholm of index 0. The spectrum of L consists
of an increasing sequence of eigenvalues λ1 ≤ λ2 ≤ ... with limn→∞ λn = +∞ (i.e.
L−λι has nontrivial kernel if and only if λ ∈ {λn}n∈N and has a continuous inverse
(L − λι)−1 : L2(γ) → H2(γ) otherwise). In addition, there exists sequence {Jn}n∈N
in H2(γ) such that {ι(Jn)}n∈N is an orthonormal basis of L2(γ) and L(Jn) = λnι(Jn)
for each n ∈ N. Therefore, we have the following min-max characterization of the
eigenvalues of L

λn = min
W

max
J∈W\{0}

〈L(J), ι(J)〉

〈ι(J), ι(J)〉

where the minimum is taken over all n-dimensional subspaces W ⊆ H2(γ).

Proof. Let λ ∈ R. Then if J ∈ H2
0 (γ) and J̃ ∈ S2(γ),

(L− λι)(J + J̃) = ((LE(JE) − λJE)E + (LE(J̃⊥
E ) − λJ̃⊥

E )E, (Bv(J + J̃) − λJ̃(v))v)

where LE : H2
0 (E) → L2(E) is (a constant multiple of) the Jacobi operator along γE

given by J 7→ −n(E)
l(E)

(J̈ +R(γ̇, J)γ̇). We know that each LE is elliptic, and therefore

LE−λ is Fredholm of index 0 for every λ ∈ R. This implies that the product operator
L̃ : H2

0 (γ) → L2(E ), L̃ = (LE)E verifies that L̃− λ is Fredholm of index 0 for every
λ ∈ R. Thus the fact that L−λι is always Fredholm of index 0 can be deduced from
the following lemma:
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Lemma 3.2. Let E1, E2, E1, E2 be Banach spaces with dim(E2) = dim(E2) < ∞.
Let L : E1 ⊕ E2 → E1 ⊕ E2 be a continuous linear map, and write L(e1.e2) =
(L11(e1) +L21(e2), L12(e1) +L22(e2)) with Lij : Ei → Ej. Assume L11 is Fredholm of
index 0. Then L is Fredholm of index 0.

Proof of Lemma 3.2. Let L̃ : E1 ⊕ E2 → E1 ⊕ E2 be the operator L̃(e1, e2) =
(L11(e1), 0). Because L11 is Fredholm of index 0 and dim(E2) = dim(E2), we see that

L̃ is also Fredholm of index 0. As L = L̃ + F with F (e1, e2) = (L21(e2), L12(e1) +
L22(e2)) compact because of the finite dimensionality of E2 and E2, by [16, Theo-
rem 12-5.13] we deduce that L is also Fredholm of index 0. �

Now we are going to show that the quadratic form Hessγ Lg : H2(γ)×H2(γ) → R

is bounded from below. We know

Hessγ Lg(J, J̃) =
∑

E∈E

∫

E

〈LE(J⊥
E )(t), J̃⊥

E (t)〉gdt +
∑

v∈V

〈Bv(J), J̃(v)〉g.

Denote by C : H2(γ) × H2(γ) → R the form C(J, J̃) =
∑

v∈V
〈Bv(J), J̃(v)〉g. C is

symmetric because so are Hessγ Lg and LE for each E ∈ E . If we endow S2(γ) with
the inner product

〈J, J̃〉 =
∑

v∈V

〈J(v), J̃(v)〉g

then as dim(S2(γ)) <∞, we can see that there exists some constant α > 0 such that

(5) |C(J, J)| ≤ α
∑

v∈V

〈J(v), J(v)〉g

for every J ∈ S2(γ). But then as C vanishes on H2
0 (γ), by its bilinearity and

symmetry we can see that in fact (5) is valid for every J ∈ H2(γ).
On the other hand, using that each LE is elliptic, for each E ∈ E there exists

βE ∈ R such that

(6)

∫

E

〈LE(J⊥
E )(t), J⊥

E (t)〉gdt ≥ βE

∫

E

〈J⊥
E (t), J⊥

E (t)〉gdt.

Thus if β = min{βE : E ∈ E } and γ = min{β,−α}, from (5) and (6) we deduce

Hessγ Lg(J, J) ≥ β
∑

E∈E

∫

E

〈J⊥
E (t), J⊥

E (t)〉gdt− α
∑

v∈V

〈J(v), J(v)〉g ≥ γ〈ι(J), ι(J)〉

which considering that Hessγ Lg(J, J) = 〈L(J), ι(J)〉 implies that for every λ ∈ R it
holds

〈(L+ λι)(J), ι(J)〉 ≥ (λ+ γ)〈ι(J), ι(J)〉

and in particular if λ > −γ implies that L+λι is a monomorphism. Because we also
know that these operators are Fredholm of index 0, by the Open Mapping Theorem
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we conclude that L + λι : H2(γ) → L2(γ) is a continuous linear isomorphism for
every λ > −γ.

Fix λ > −γ. We will now show that ι ◦ (L + λι)−1 : L2(γ) → L2(γ) is compact.

Let (Xn)n∈N be a bounded sequence in L2(γ) and define (Jn, J̃n) = (L + λι)−1(Xn)

with Jn ∈ H2
0 (γ) and J̃n ∈ S2(γ). As (L + λι)−1 is bounded, (Jn, J̃n) is a bounded

sequence in H2(γ). Therefore, for each E ∈ E the sequence of normal vector fields
(JnE)n∈N along γE is bounded in H2

0 (E) and therefore in H1
0 (E). Hence, by the

Rellich-Kondrachov Compactness Theorem we can find a subsequence (nk)k∈N such
that (Jnk

E )k∈N converges in L2(E) for every E ∈ E . On the other hand, using that
S2(γ) is finite dimensional, we can extract a further subsequence (nkl)l to have the

additional property that (J̃nkl )l∈N converges in S2(γ). This implies that the sequence
of general term ι ◦ (L + λι)−1(Xnkl

) = ι(Jnkl , J̃nkl ) converges in L2(γ), and this

completes the proof that ι ◦ (L+ λι)−1 is compact.
The symmetry of Hessγ Lg(J, J̃) = 〈L(J), ι(J̃)〉 implies that ι ◦ (L + λι)−1 is self-

adjoint, which together with its compactness implies the existence of an orthonormal
basis {Xn}n∈N of L2(γ) such that ι ◦ (L + λι)−1Xn = δnXn for some decreasing
sequence δn → 0+ (because by our choice of λ, ι ◦ (L + λι)−1 ≥ 0). But we claim
that X ∈ L2(γ) is an eigenvector of ι ◦ (L + λι)−1 of eigenvalue δ ∈ R if and only
if X = ι(J) for some J ∈ H2(γ) such that L(J) = (δ−1 − λ)ι(J). This is because
ι ◦ (L + λι)−1(X) = δX if and only if there exists J ∈ H2(γ) with ι(J) = X which
verifies any of the the following equivalent conditions:

ι ◦ (L+ λι)−1 ◦ ι(J) = δι(J)

(L+ λι)−1 ◦ ι(J) = δJ

ι(J) = δ(L+ λι)(J)

L(J) = (δ−1 − λ)ι(J).

From the previous, we conclude that if λn := δ−1
n − λ then spec(L) = {λn}n,

limn→∞ λn = +∞ and L(Jn) = λnι(Jn). This implies the min-max theorem for
the eigenvalues holds for L, which completes the proof. �

4. Some auxiliary results

Proposition 4.1. Let g : IN → Mq be a smooth embedding, N ∈ N, I = (−1, 1).
If q ≥ N + 3, there exists an arbitrarily small perturbation in the C∞ topology
g′ : IN → Mq such that there is a full measure subset A ⊆ IN with the following
properties: for any p ∈ N and any t ∈ A, the function s 7→ ω1

p(g
′(s)) is differentiable

at t, and there exists a (possibly disconnected) weighted multigraph Γ and a stationary
geodesic network γp = γp(t) : Γ → (M, g′(t)) such that the following two conditions
hold
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(1) ω1
p(g

′(t)) = Lg′(t)(γp(t)).

(2) ∂
∂v

(ω1
p ◦ g

′)
∣

∣

s=t
= 1

2

∫

γp(t)
trγp(t),g′(t)

∂g′

∂v
(t) dLg′(t).

To prove the proposition, we will need to have a condition for a sequence of em-
bedded stationary geodesic nets γn : Γ → (M, gn) converging to some γ : Γ → (M, g)
that guarantees that γ is also embedded. The condition we will work with can be
expressed as a collection of lower and upper bounds of certain functionals defined for
pairs (g, γ) where γ is stationary with respect to g. We proceed to describe those
functionals.

The first one is

F1(g, γ) = min{|γ̇E(t)|g : t ∈ E,E ∈ E }.

A lower bound for this functional will imply that the limit net is an immersion along
each edge.

Then we have a family of functionals F
(E1,i1),(E2,i2)
2 defined for each pair

((E1, i1), (E2, i2)) ∈ (E × {0, 1})2 such that πE1(i1) = πE2(i2) (see Section 2 for
the notation) as follows

F
(E1,i1),(E2,i2)
2 (g, γ) = (−1)i1+i2

〈γ̇E1(i1), γ̇E2(i2)〉g
|γ̇E1(i1)|g|γ̇E2(i2)|g

.

Notice that (−1)ij
γ̇Ej

(ij)

|γ̇Ej
(ij)|g

is the unit inward tangent vector to γ at v = πEj
(ij)

along Ej , j = 1, 2 (and observe that in case E is a loop at v, there are two inward
tangent vectors to γ along E at v represented by the pairs (E, 0) and (E, 1)). The

condition F
(E1,i1),(E2,i2)
2 (gn, γn) ≤ 1 − δ for some δ > 0 and for every possible choice

(E1, i1) 6= (E2, i2) with πE1(i1) = πE2(i2) implies that the limit (g, γ) has the property
that given v ∈ V , there exists an open neighborhood Uv of v in Γ such that γ : Uv →
γ(Uv) is a homeomorphism. Explicitly,

Uv =
⋃

(E,i):πE(i)=v

{t ∈ E : |t− i| < min{
inj(g)

Lg(γE)
,

1

2
}}

where inj : Mq → R>0, g 7→ inj(g) is a continuous choice of the injectivity radius for
each Cq Riemannian metric g. This is because if we consider Uv as a graph obtained
by gluing at v one edge for each pair (E, i) ∈ E × {0, 1} such that πE(i) = v, this
graph is mapped by γ into a geodesic ball centered at γ(v) of radius inj(g) and the
image of each incoming edge at v has a different inward tangent vector at γ(v).

To ensure injectivity along the edges, we define for each edge E ∈ E a function

dE(g,γ)(t) = min{dg(γ(t), γ(s)) : s ∈ E, |t− s| ≥
inj(g)

Lg(γE)
}.
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In case πE(0) = πE(1), the distance |s− t| between two points s, t ∈ E is measured
with respect of the length of S1 = E/0 ∼ 1.

To ensure that the images of different edges under γ do not overlap, we define for

each pair E,E ′ ∈ E , E 6= E ′ a function dE,E
′

(g,γ) : E → R≥0 as

dE,E
′

(g,γ)(t) = min{dg(γ(t), γ(s)) : s ∈ E ′, |s− i| ≥
inj(g)

Lg(γE′)
for each i ∈ {0, 1}

s.t. ∃j ∈ {0, 1} with πE′(i) = πE(j) and |t− j| ≤
inj(g)

Lg(γE)
}.

Let us fix an auxiliary embedding ψ : M → R
l and identify from now on our man-

ifold M with the submanifold ψ(M) ⊆ R
l. Given a multigraph Γ and a continuous

map γ : Γ →M which is C3 when restricted to each edge, we can consider

‖γ‖3 = ‖γ‖0 + ‖γ̇‖0 + ‖γ̈‖0 + ‖
...
γ ‖0

where given a collection u = (uE)E∈E of continuous functions along the edges of Γ,
we define

‖u‖0 = max{|uE(t)| : t ∈ E,E ∈ E }

being | · | the Euclidean norm in R
l. We have the following compactness result.

Lemma 4.2. Let (gn)n∈N be a sequence of C3 Riemannian metrics converging to
some metric g ∈ M3. Let γn : Γ → (M, gn) be a sequence of stationary geodesic
networks. Assume ‖γn‖3 ≤ M for some M ∈ R>0. Then there exists a subsequence
(γnk

)k and γ ∈ Ω(Γ,M) such that limk→∞ γnk
= γ in Ω(Γ,M) and γ : Γ → (M, g) is

stationary.

Proof. The Arzela-Ascoli Theorem gives a subsequence γnk
→ γ in Ω(Γ,M). The

fact that γ is stationary with respect to g comes from the continuity of the operator
H defined in [24] (which plays the role of the mean curvature operator on minimal
surfaces) which vanishes in a pair (g, [γ]) if and only if γ is stationary with respect
to g. �

We will also need the following two lemmas.

Lemma 4.3. Let F : Rn → N be a function. Then there exists m ∈ N and a basis
{v1, ..., vn} of Rn such that F (vi) = m for all 1 ≤ i ≤ n.

Proof. Observe that R
n =

⋃

m∈N F
−1(m) and therefore R

n =
⋃

m∈N〈F
−1(m)〉 where

given A ⊆ R
n we denote 〈A〉 the subspace spanned by A. If F−1(m) did not contain

a basis of R
n for every m ∈ N, 〈F−1(m)〉 would a proper subspace for every m.

Therefore, Rn would be a countable union of closed subspaces with empty interior,
which leads to a contradiction due to the Baire Category Theorem. �
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Lemma 4.4. Let γ : (−1, 1)N → Ω(Γ,M) and g : (−1, 1)N → Mq be smooth maps.
Assume that γ(s) is stationary with respect to g(s) for every s ∈ (−1, 1)N . Then for
every t ∈ (−1, 1)N and every v ∈ R

N

∂

∂v

∣

∣

s=t
L(g(s), γ(s)) =

1

2

∫

γ(t)

trγ(t),g(t)
∂g

∂v
(t) dLg(t) .

Proof. Using that the length functional is a smooth function L : Mq×Ω(Γ,M) → R

and the chain rule, we get

∂

∂v

∣

∣

s=t
L(g(s), γ(s)) = D L(g(t),γ(t))(D(g × γ)t(v))

= D L(g(t),γ(t))(
∂g

∂v
(t),

∂γ

∂v
(t))

= D1 L(g(t),γ(t))(
∂g

∂v
(t)) +D2 Lg(t),γ(t))(

∂γ

∂v
(t))

= D1 L(g(t),γ(t))(
∂g

∂v
(t)).

The second term in the penultimate equation vanishes because γ(t) is stationary
with respect to g(t). Hence

∂

∂v

∣

∣

s=t
L(g(s), γ(s)) =

d

ds

∣

∣

s=0
L(g(t+ sv), γ(t))

=
d

ds

∣

∣

s=0

∑

E∈E

n(E)

∫

E

√

gt+sv(γ̇t(u), γ̇t(u))du

=
∑

E∈E

n(E)

∫

E

d

ds

∣

∣

s=0

√

gt+sv(γ̇t(u), γ̇t(u))du

=
∑

E∈E

n(E)

∫

E

∂g

∂v
(t)(γ̇t(u), γ̇t(u))

2
√

gt(γ̇t(u), γ̇t(u))
du

=
1

2

∑

E∈E

n(E)

∫

E

∂g

∂v
(t)(γ̇t(u), γ̇t(u))

gt(γ̇t(u), γ̇t(u))

√

gt(γ̇t(u), γ̇t(u))du

=
1

2

∑

E∈E

n(E)

∫

γ(t)E

trγ(t),g(t)
∂g

∂v
(t) dLg(t)

=
1

2

∫

γ(t)

trγ(t),g(t)
∂g

∂v
(t) dLg(t) .

�
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Proof of Proposition 4.1. Notice that it suffices to show that for each p ∈ N, there
exists a full measure subset A(p) ⊆ IN where (1) and (2) hold, because in that case
A =

⋂

p∈NA(p) will have the desired property. Therefore we will assume p ∈ N is
fixed.

Let g : IN → Mq be a smooth embedding. Let {Γi}i≥1 be a sequence enumerating
the countable collection of all good weighted multigraphs. For each i ≥ 1, let Sq(Γi)
be the space of pairs (g, [γ]) where g ∈ Mq, γ : Γi → (M, g) is an embedded
stationary geodesic net and [γ] denotes its class modulo reparametrization as defined
in [24] for connected multigraphs with at least three incoming edges at each vertex
and in [25] for embedded closed geodesics. By the structure theorems proved in
[24] and [25], each Sq(Γi) is a second countable Banach manifold and the projection
map Πi : Sq(Γi) → Mq mapping (g, [γ]) 7→ g is Fredholm of index 0. A pair
(g, [γ]) ∈ Sq(Γi) is a critical point of Πi if and only if γ admits a nontrivial Jacobi
field with respect to the metric g.

By Smale’s transversality theorem, we can perturb g : IN → Mq slightly in the C∞

topology to a C∞ embedding g′ : IN → Mq which is transversal to Πi : Sq(Γi) → Mq

for every i ∈ N. Transversality implies that Mi = Π−1
i (g′(IN)) is an N -dimensional

embedded submanifold of Sq(Γi) for every i ∈ N. Let πi = (g′)−1 ◦Πi

∣

∣

Mi
: Mi → IN .

Let Ãi ⊆ In be the set of regular values of πi, which is a set of full measure by
Sard’s theorem. Let Ã0 ⊆ IN be the set of points for which the Lipschitz function
s 7→ ω1

p(g
′(s)) is differentiable. Observe that Ã0 has full measure by Rademacher’s

theorem. Therefore, Ã =
⋂

i≥0 Ãi is a full measure subset of IN . Notice that by

transversality, if t ∈ Ã then g′(t) is a bumpy metric, i.e. all embedded stationary
geodesic nets with respect to g′(t) and with domain a good weighted multigraph are
nondegenerate; and also the map s 7→ ω1

p(g
′(s)) is differentiable at s = t.

Given a weighted multigraph Γ =
⋃P
i=1 Γi whose connected components Γi are

good and a natural number M ∈ N, we define BΓ,M as the set of all t ∈ IN such that
there exists a stationary geodesic network γ : Γ → (M, g′(t)) verifying

(1) γi = γ|Γi
is an embedding for each 1 ≤ i ≤ P .

(2) ‖γi‖3 ≤M for every 1 ≤ i ≤ P .
(3) F1(g

′(t), γi) ≥
1
M

for every 1 ≤ i ≤ P .

(4) F
(E1,i1),(E2,i2)
2 (g′(t), γi) ≤ 1 − 1

M
for every 1 ≤ i ≤ P and every pair (E1, i1) 6=

(E2, i2) in Ei × {0, 1} such that πE1(i1) = πE2(i2).
(5) dE(g′(t),γi)(s) ≥

1
M

for every 1 ≤ i ≤ P , E ∈ Ei and s ∈ E.

(6) dE,E
′

(g′(t),γi)
(s) ≥ 1

M
for every 1 ≤ i ≤ P , E 6= E ′ ∈ Ei and s ∈ E.

(7) ω1
p(g

′(t)) = Lg′(t)(γ).
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where Ei denotes the set of edges of Γi. Observe that IN =
⋃

Γ,M BΓ,M because of

(1) and Remark 2.17. We claim that each BΓ,M ⊆ IN is closed.
Indeed, suppose we have a sequence {tj}j∈N ⊆ BΓ,M converging to some t ∈ IN . Let

γj be the stationary geodesic network corresponding to g′(tj) and verifying properties
(1) to (7) above. By property (2) and Lemma (4.2), passing to a subsequence we
have that if γji = γj

∣

∣

Γi
then there exists γi : Γi → M such that limj→∞ γji = γi in

Ω(Γi,M) and γi is stationary with respect to g′(t) for each 1 ≤ i ≤ P . Observe also
that if γ =

⋃

j γi

Lg′(t)(γ) = lim
j→∞

Lg′(tj )(γ
j) = lim

j→∞
ωp(tj) = ωp(t).

Properties (2) to (6) are preserved when we take the limit of the sequence γj, so
it suffices to show that γ|Γi

is embedded for each 1 ≤ i ≤ P . Fix such i. Properties
(3), (4) and (5) imply that γi is injective along the edges and property (6) combined
with property (4) imply that the images of different edges do not intersect (except
at the common vertices).

As each BΓ,M is closed, they are measurable and therefore so are the sets ÃΓ,M =

Ã ∩ BΓ,M (whose union is Ã). Let AΓ,M be the set of points t ∈ ÃΓ,M where

the Lebesgue density of ÃΓ,M at t is 1. By the Lebesgue Differentiation Theorem,

ÃΓ,M \ AΓ,M has Lebesgue measure 0 for each pair (Γ,M). Let us define A =
⋃

Γ,M AΓ,M , observe that as Ã \ A has measure 0, A ⊆ IN has full measure.

Fix t ∈ A. Let (Γ,M) be such that t ∈ AΓ,M . As the density of ÃΓ,M at t is 1,

given v ∈ R
N with |v| = 1 we can find a sequence {tm(v)}m∈N ⊆ ÃΓ,M such that

limm→∞ tm(v) = t and limm→∞
t−tm(v)
|t−tm(v)|

= v. Denoting ωp(s) = ω1
p(g

′(s)), using that

ωp is a Lipschitz function we can see that

(7) lim
m→∞

ωp(tm(v)) − ωp(t)

|t− tm|
=

∂

∂v
ωp(t).

As tm(v) ∈ ÃΓ,M , for each m ∈ N there exists a stationary geodesic network
γm : Γ → M with respect to g′(tm(v)) such that

ωp(tm(v)) = ω1
p(g

′(tm(v))) = Lg′(tm(v))(γm)

and properties (1) to (6) above hold. By the reasoning used to prove that the BΓ,M

are closed, we can construct a stationary geodesic net γ : Γ → (M, g′(t)) which is
embedded when restricted to each connected component Γi of Γ, is the limit of (a
subsequence of) the γm’s in the C2 topology and realizes the width ω1

p(g
′(t)). Hence

from (7) we get
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∂

∂v
ωp(t) = lim

m→∞

Lg′(tm)(γm) − Lg′(t)(γ)

|t− tm|
.

As γ|Γi
is an embedded stationary geodesic net with respect to g′(t) for each

1 ≤ i ≤ P and g′(t) is bumpy, Πi : Sq(Γi) → Mq is a diffeomorphism from a
neighborhood Ui of (g′(t), [γi]) to a neighborhood Wi = Πi(U) of g′(t). Denote Ξi its

inverse. As there exists m0 ∈ N such that g′(tm) ∈ W =
⋂P
i=1Wi and [γm

∣

∣

Γi
] ∈ Ui

for every m ≥ m0, we deduce that [γm
∣

∣

Γi
] = Ξi(g

′(tm(v))) for each m ≥ m0 and each

1 ≤ i ≤ P . Let us define Ξ : W → Ω̂(Γ,M) as Ξ(g) = h where h|Γi
= Ξi(g). Thus

by Lemma 4.4

∂

∂v
ωp(t) = lim

m→∞

Lg′(tm)(Ξ(g′(tm))) − Lg′(t)(Ξ(g′(t)))

|tm − t|

=
∂

∂v

∣

∣

s=t
L(g′(s),Ξ(g′(s)))

=
1

2

∫

γv

trγv,g′(t)
∂g′

∂v
(t) dLg′(t) .

Where γv = Ξ(g′(t)) is the one constructed before. Observe that γv depends on v
and that the previous formula holds for each v ∈ R

N , |v| = 1. Notice that each γv is
a stationary geodesic network with respect to g′(t), and as g′(t) is bumpy there are
countably many possible γ′vs, say {hj}j∈N. This induces a map F : RN → N defined
as F (0) = 1 and if w 6= 0 then F (w) = j where γ w

|w|
= hj . By Lemma 4.3 we can

obtain m ∈ N and a basis w1, ..., wN of RN with the property γ(wi) = m for every
1 ≤ i ≤ N . Therefore if we set vi := wi

|wi|
, v1, ..., vN is still a basis and by definition

γvi = hm for every i. By linearity of directional derivatives, denoting γ = hm we
deduce that

∂

∂v
ωp(t) =

1

2

∫

γ

trγ,g′(t)
∂g′

∂v
(t) dLg′(t)

for every unit v ∈ R
N , which completes the proof. �

Proposition 4.5. Let M be a closed manifold and let g be a Cq Riemannian metric
on M , q ≥ 3. Let γ1, ..., γk be a finite collection collection of connected, embedded
stationary geodesic networks on (M, g) whose domains are good weighted multigraphs
and let U ⊆ Mq be an open neighborhood of g. Then there exists g′ ∈ U such that
γ1, ...γk are non-degenerate stationary geodesic nets with respect to g′.

Proof. Following [18, Lemma 4], we will consider conformal perturbations of the

metric of the form gε(x) = e−2εφ(x)g(x). Let us denote γ̃ =
⋃k
i=1 γi, Γ̃ =

⋃k
i=1 Γi
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(where γi : Γi → M) and Ẽ the set of edges of γ̃. Notice that γ̃ : Γ̃ → M is a
stationary geodesic network whose edges may overlap, even non-transversally. Given
E ∈ E , let Reg(γ̃E) be the set of interior points of γ̃E which are not points of
transverse intersection with any other edge γ̃E. We define a finite poset

P = {
l
⋂

i=1

Reg(γ̃Ei
) 6= ∅ : E1, ..., El ∈ Ẽ , Ei 6= Ej ∀i 6= j}

which is the collection of finite non-empty intersections of sets in {Reg(γ̃E) : E ∈ E },
with the order given by the inclusion. Denote by P ′ the set of minimal elements in
P. Observe that if α, α′ are two different elements of P ′ then they are disjoint. Given
α ∈ P ′, write α =

⋂l
i=1 Reg(γ̃Ei

) in the unique way such that α ∩ γ̃E = ∅ for every

E ∈ Ẽ \ {E1, ..., El}. Pick tα ∈ α for every α ∈ P ′, and let η > 0 be such that the
geodesic balls Bα = B(pα, η) verify

• Bα ∩ Bα′ = ∅ if α 6= α′.
• Bα ∩ γE = ∅ if E /∈ {E1, ..., El}.
• Bα ∩ γEi

⊆ α for every i = 1, ..., l.
• There exists a diffeomorphism ρα : Bα → R

n such that ρα(γEi
∩ Bα) =

ρα(α ∩ Bα) = {(t, 0, 0, ..., 0) : t ∈ R} for each i = 1, ..., l.

Denote B′
α = B(pα,

η

2
). Observe that for each E ∈ Ẽ there exists at least one α ∈ P ′

such that α ⊆ γ̃E. Choose such an α for each E ∈ E and denote BE = Bα and
B′
E = B′

α. We can now proceed to define the function φ which will induce the
one-parameter family of metrics gε(x) = e−2εφ(x) mentioned before.

For each α ∈ P ′, let ψα : M → R be a smooth function with 0 ≤ ψα ≤ 1,
spt(ψα) ⊆ Bα and ψα ≡ 1 in B′

α. Let fα : Bα → R be given in local coordi-
nates under the chart (Bα, ρα) by fα(x) =

∑n

i=2 x
2
i . We define φ =

∑

α∈P ′ ψαfα.
An easy computation shows that Dφ vanishes along γ̃ and in local coordinates
Hessγ̃(t) φ(X, Y ) = ψα(x)

∑n
i=2 xiyi if γ̃(t) ∈ Bα, X = (x1, ..., xn) and Y = (y1, ..., yn);

and Hessγ̃(t) φ ≡ 0 if t /∈
⋃

α∈P ′ Bα. In particular, if γ̃(t) ∈ B′
α for some α ∈ P ′ then

Hessγ̃(t) φ(X,X) = 0 if and only if X ∈ 〈γ̇Ej
(t)〉 for some (or equivalently, for every)

j ∈ {1, ..., l} where α =
⋂l
i=1 Reg(γ̃Ei

).
Therefore we know that φ and Dφ vanish along each γi. Hence by [3, Theorem

1.159], the γ1, ..., γk are still stationary with respect to gε(x) = e−2εφ(x)g(x). Fix
γ = γi : Γ → M with set of vertices V and set of edges E . We assume that Γ
is good* (i.e. every vertex has at least 3 different incoming edges), the case when
γ is an embedded closed geodesic can be handled with the same method using the
ellipticity of its Jacobi operator. As discussed in Section 3, the stability operator of
γ with respect to g is the map L : H2(γ) → L2(γ) given by
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L(J) = ((LE(J))E∈E , (Bv(J))v∈V )

where

LE(J) = −
n(E)

l(E)

[

J̈⊥
E +R(γ̇, J⊥

E ), γ̇

]

Bv(J) =
∑

(E,i):πE(i)=v

(−1)i+1n(E)

l(E)
J̇⊥
E (i).

Let us compute which is the change in the Jacobi operator along γ when we switch
from the metric g to gε. We will denote Lε the operator corresponding to gε. Using
[3, Theorem 1.159] and the fact that Dφ = 0 along γi, we can see that Bε

v = Bv for
all v ∈ V , and that

LεE(J) = −
n(E)

l(E)
(J̈⊥
E + R(γ̇, J⊥

E )γ̇ + εHessφ(J⊥
E ))

where the covariant derivatives and the curvature tensor R are taken with respect
to the metric g, and at each point p ∈ M , Hessp(φ) : TpM → TpM is the linear
transformation such that the Hessian of φ at p is given by (X, Y ) 7→ 〈Hessp φ(X), Y 〉g.

We know from Section 3 that each Lε : H2(γ) → L2(γ) admits a non-decreasing
sequence of eigenvalues λε1 ≤ λε2 ≤ ... ≤ λεQ ≤ ... which are characterized by

λεi = inf
W

max
J∈W\{0}

〈Lε(J), ι(J)〉

〈ι(J), ι(J)〉

where the infimum is taken over all i-dimensional subspaces W of H2(γ). Also, the
map ε 7→ Lε is continuous; therefore λεi varies continuously with ε for every i ∈ N.
We will use these facts to show that for sufficiently small values of ε > 0, 0 is not an
eigenvalue of Lε.

Let Q be the unique natural number such that 0 = λQ < λQ+1 (here λi := λ0i ).
Denote S the sum of the eigenspaces corresponding to λ1, ..., λQ. Let J ∈ S, J 6= 0.
Then we have

〈Lε(J), ι(J)〉

〈ι(J), ι(J)〉
=

〈L(J), ι(J)〉

〈ι(J), ι(J)〉
−

∑

E∈E

∫

E

n(E)
l(E)

ε〈Hessγ(t)(φ)(J⊥
E (t)), J⊥

E (t)〉gdt

〈ι(J), ι(J)〉

≤ −ε
∑

E∈E

n(E)

l(E)

∫

E
〈Hessγ(t)(φ)(J⊥

E (t)), J⊥
E (t)〉gdt

〈ι(J), ι(J)〉

≤ 0

because Hessγ(t) φ ≥ 0 for every t ∈ Γ. Suppose there is equality for some J ∈ S\{0}.
Then the two inequalities should be equalities. From the first one we deduce that J
is Jacobi along γ for the metric g, and thus it verifies J̈⊥

E +R(γ̇, J⊥
E )γ̇ = 0 for every
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E ∈ E . From the second one, by considering the values of t for which γ(t) ∈ B′
E ,

we see that J⊥
E is a null vector of Hessγ(t) φ along γE ∩ B′

E and therefore J⊥
E = 0 on

γE ∩B′
E; and as it satisfies the Jacobi equation this implies J⊥

E = 0 for every E ∈ E .
Thus J must be parallel and hence J = 0 as H2(γ) does not contain non-trivial
parallel vector fields. But this is a contradiction because we chose J ∈ S \ {0}.
Hence we just proved that

〈Lε(J), ι(J)〉

〈ι(J), ι(J)〉
< 0

for every J ∈ S \ {0}. As S is finite dimensional and 〈Lε(J),ι(J)〉
〈ι(J),ι(J)〉

is invariant under

rescaling of J , the compactness of the unit ball in S implies that there exists c(ε) > 0
such that

〈Lε(J), ι(J)〉

〈ι(J), ι(J)〉
≤ −c(ε)

for every J ∈ S \ {0}. By the min-max characterization of the eigenvalues for Lε,
we see that λε1 ≤ λε2 ≤ ... ≤ λεQ ≤ c(ε) < 0. If we also choose ε sufficiently small so
that λεQ+1 > 0, we get that for 0 < ε < ε(γ), γ is nondegenerate with respect to gε.
Taking 0 < ε < min{ε(γi) : 1 ≤ i ≤ k} such that gε ∈ U and defining g′ := gε we get
the desired result.

�

Lemma 4.6. Given η > 0 and N ∈ N, there exists ε > 0 depending on η and N
such that the following is true: for any Lipschitz function f : IN → R satisfying

|f(x) − f(y)| ≤ 2ε

for every x, y ∈ IN , and for any subset A of IN of full measure, there exist N +
1 sequences of points {y1,m}m, · · · , {yN+1,m}m contained in A and converging to a
common limit y ∈ (−1, 1)N such that:

• f is differentiable at each yi,m,
• the gradients ∇f(yi,m) converge to N + 1 vectors v1, · · · , vN+1 with

dRN (0,Conv(v1, · · · , vN+1)) < η.

Proof. See [18, Lemma 3]. �

5. Proof of the Main Theorem

Fix an n-dimensional closed manifold M . We are going to consider several choices
and constructions over M . Let g be a C∞ Riemannian metric on M . Let ε1 > 0 be a
positive constant such that ε1 < inj(M, g), where inj(M, g) is the injectivity radius of

(M, g). Let K be an integer and B̂1, ..., B̂K be disjoint domains in M , with piecewise
smooth boundary, such that the union of their closures covers M . Let B1, ..., BK
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be some open neighbourhoods of B̂1, ..., B̂K respectively with the property that each
of them is contained in a geodesic ball of radius of ε1. Denote Mq the space of all
Cq Riemannian metrics on M . For each 1 ≤ k ≤ K, we define a smooth function
0 ≤ φk ≤ 1, spt(φk) ⊆ Bk such that

φk =

{

1 on B̂k

0 on Bc
k

.

Consider also the partition of unity ψk = φk∑K
l=1 φl

. We denote

Cg,K̃,ε1 := {(K, {B̂k}, {Bk}, {φk})}

the set of all possible choices as above with K ≥ K̃. Notice that Cg,K̃,ε1 is non-empty,
as we can always find a sufficiently fine triangulation of (M, g). We claim that the
following property holds:

Proposition 5.1. Assume that the Weyl law for 1-cycles in n-manifolds holds as
stated in Conjecture 1.4. Then for any metric g ∈ M∞, for every ε1 > 0, K̃ > 0
and any choice of

S = (K, {B̂k}, {Bk}, {φk}) ∈ Cg,K̃,ε1
there is a metric g̃ ∈ M∞ arbitrarily close to g in the C∞ topology such that the
following holds: there are stationary geodesic networks γ1, ..., γJ with respect to g̃
whose connected components are nondegenerate (according to Definition 2.18) and

coefficients α1, ..., αJ ∈ [0, 1] with
∑J

j=1 αj = 1 satisfying

(8)
∣

∣

∣

J
∑

j=1

αj−

∫

γj

ψkdLg̃ −−

∫

M

ψkdVolg̃

∣

∣

∣
<
ε1
K

for every k = 1, ..., K.

In the proof, we will need to measure the distance between two rescaled functions.
In order to do that, we introduce the following definition.

Definition 5.2. We say that two functions f, g : (−δ, δ)K → R are ε-close if

‖
1

δ
fδ −

1

δ
gδ‖∞ < ε

where fδ, gδ : (−1, 1)K → R are given by fδ(s) = f(δs) and gδ(s) = g(δs).

Remark 5.3. Observe that 1
δ
fδ is differentiable at s ∈ (−1, 1)K if and only if f is

differentiable at δs ∈ (−δ, δ)K and in that case ∇(1
δ
fδ)(s) = ∇f(δs).
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Proof of Proposition 5.1. Let g ∈ M∞, K̃ ∈ N and ε1 > 0. Fix (K, {B̂k}, {Bk}, {φk}) ∈
Cg,K̃,ε1. Let U be a C∞ neighborhood of g. Choose ε′0 > 0 sufficiently small and
q ≥ K+ 3 sufficiently large so that if g′ ∈ M∞ satisfies ‖g− g′‖Cq < ε′0, then g′ ∈ U .
Let ε′ ≤ ε′0 be a positive real number (which we will have to shrink later in the argu-
ment). Our goal is to show that there exists g̃ ∈ M∞ such that ‖g̃ − g‖Cq < ε′0 and
(8) holds for some stationary geodesic nets γ1, ..., γJ (whose connected components
are nondegenerate) with respect to g̃ and some coefficients α1, ..., αJ .

Consider the following K-parameter family of metrics. For a t = (t1, ..., tK) ∈
(−1, 1)K , we define

ĝ(t) = e2
∑

k tkψkg.

At t = 0, for each k, we have

∂

∂tk

∣

∣

t=0
Vol(M, ĝ(t)) =

∂

∂tk

∣

∣

t=0

∫

M

(e2
∑

k tkψk(x))
n
2 dVolg

=

∫

M

nψk(x) dVolg .

As t goes to zero, we have the following expansion

(9) Vol(M, ĝ(t))
1
n = Vol(M, g)

1
n +

K
∑

k=1

tk Vol(M, g)−
n−1
n

∫

M

ψk(x) dVolg +R(t)

where |R(t)| ≤ C1‖t‖
2 if t ∈ (−1, 1)K , where C1 is a constant which depends only

on g (this can be checked by computing the second order partial derivatives of t 7→

Vol(M, ĝ(t))
1
n and using the fact that e−n Vol(M, g) ≤ Vol(M, ĝ(t)) ≤ en Vol(M, g)

as Vol(M, ĝ(t)) =
∫

M
en

∑
k tkψk(x) dVolg). Following [18] we can define the following

function

f0(t) =
Vol(M, ĝ(t))

1
n

Vol(M, g)
1
n

−
K
∑

k=1

tk−

∫

M

ψk(x) dVolg .

Because of (9), |f0(t) − 1| = | R(t)

Vol(M,g)
1
n
| ≤ C2‖t‖

2 for every t ∈ (−1, 1)K ; where

C2 = C1

Vol(M,g)
1
n

depends only on g (as C1 and other constants Ci to be defined later).

By the previous, f0 is C2ε
′-close to 1 in (−δ, δ)K if δ < ε′ (see Definition 5.2). Let

δ < ε′ be such that ĝ : (−δ, δ)K → Mq is an embedding and ‖ĝ(t)−g‖Cq < ε′

2
for every

t ∈ (−δ, δ)K . We can slightly perturb ĝ in the C∞ topology to another embedding
g′ : (−δ, δ)K → Mq applying Proposition 4.1. We can assume ‖g′(t) − ĝ(t)‖Cq < ε′

2

and ‖∂g
′

∂v
− ∂ĝ

∂v
‖Cq < ε′ for every t ∈ (−δ, δ)K and v ∈ R

K : |v| = 1. Consider the
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function

f1(t) =
Vol(M, g′(t))

1
n

Vol(M, g)
1
n

−
∑

k

tk−

∫

M

ψk(x) dVolg .

By the properties of g′, there exists C3 > 0 such that f1 is C3ε
′-close to the constant

function equal to 1 on (−δ, δ)K .
Now we will use the assumption that the Weyl law for 1-cycles in n-manifolds

holds, which means that

(10) lim
p→∞

ω1
p(M

n, g)p−
n−1
n = α(n, 1) Vol(Mn, g)

1
n .

The normalized p-widths p−
n−1
n ω1

p(g
′(t)) are uniformly Lipschitz continuous on

(−δ, δ)K by [15, Lemma 3.4]. Hence, by (10) the sequence of functions

t 7→ p−
n−1
n ω1

p(M, g′(t)) converges uniformly to the function t 7→ a(n) Vol(M, g′(t))
1
n .

This implies that for the previously defined δ > 0, there exists p0 ∈ N such that
p ≥ p0 implies

|p−
n−1
n ω1

p(M, g′(t)) − α(n, 1) Vol(M, g′(t))
1
n | < δε′

and hence

|
ω1
p(M, g′(t))

α(n, 1)p
n−1
n Vol(M, g)

1
n

−
Vol(M, g′(t))

1
n

Vol(M, g)
1
n

| < C4δε
′

for every t ∈ (−δ, δ)K . The previous means that h(t) =
ω1
p(M,g′(t))

α(n,1)p
n−1
n Vol(M,g)

1
n

−

Vol(M,g′(t))
1
n

Vol(M,g)
1
n

is C4ε
′-close to 0 in (−δ, δ)K and therefore as f1 is C3ε

′-close to 1, by

triangle inequality we have that

f2(t) =
ω1
p(M, g′(t))

α(n, 1)p
n−1
n Vol(M, g)

1
n

−
K
∑

k=1

tk−

∫

M

ψk(x) dVolg

is C5ε
′-close to 1 if p ≥ p0, for some C5 > 0.

On the other hand, by our choice of g′ using Proposition 4.1, there exists a full
measure subset A ⊆ (−δ, δ)K such that for each t ∈ A and p ∈ N the map t 7→
ω1
p(g

′(t)) is differentiable at t and there exists a stationary geodesic net γp(t) with
respect to g′(t) so that

(1) ω1
p(g

′(t)) = Lg′(t)(γp(t))

(2) ∂
∂v

(ω1
p ◦ g

′(s))|s=t = 1
2

∫

γp(t)
trγp(t),g′(t)

∂g′

∂v
(t) dLg′(t).

Define f3 : (−1, 1)K → R as f3(t) = 1
δ
f2(δt). We know that ‖f3 − 1‖∞,(−1,1)K < C5ε

′.
Now we want to use Lemma 4.6. In order to do that we will need to impose more
restrictions on ε′. Let η > 0. Let ε > 0 be the one depending on η and N = K
according to Lemma 4.6. Choose ε′ small enough so that C5ε

′ < ε, ε′ < η and ε′ ≤ ε′0.
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Observe that this allows us to define δ > 0 and p0 ∈ N with all the properties in the
construction above. Then we have

|f3(x) − f3(y)| ≤ 2ε

for every x, y ∈ (−1, 1)K . As f3 is Lipschitz, we can apply Lemma 4.6 to f3 and
the full measure subset A′ = { t

δ
: t ∈ A}. After passing to (−δ, δ)K by rescaling

and using Remark 5.3, we get K + 1 sequences of points {s1,m}m, ..., {sK+1,m}m∈N

contained in A and converging to a common limit s ∈ (−δ, δ)K such that:

(1) f2 is differentiable at each sj,m.
(2) The gradients ∇f2(sj,m) converge to K + 1 vectors v1, ..., vK+1 with

dRN (0,Conv(v1, ..., vK+1)) < η.

Let α1, ..., αK+1 ∈ [0, 1] be such that
∑K+1

j=1 αj = 1 and |
∑K+1

j=1 αjvj | < η. Then if
m is sufficiently large,

|
K+1
∑

j=1

αj∇f2(sj,m)| < η

and hence

|
K+1
∑

j=1

αj
∂f2
∂tk

(sj,m)| < η

for every k = 1, ..., K. But using the definition of f2 and denoting γj,m = γp(sj,m),

∂f2
∂tk

(sj,m) =
∂
∂tk
ω1
p(M, g′(s))|s=sj,m

α(n, 1) Vol(M, g)
1
np

n−1
n

−−

∫

M

ψk(x) dVolg

=

∫

γj,m
trγj,m,g′(sj,m)

∂g′

∂tk
(sj,m) dLg′(sj,m)

2α(n, 1) Vol(M, g)
1
np

n−1
n

−−

∫

M

ψk(x) dVolg .

As the lengths Lg′(sj,m)(γj,m) = ωp(g
′(sj,m)) of the γj,m’s are uniformly bounded,

passing to a subsequence we can obtain stationary geodesic networks γ1, ..., γK+1

with respect to g′(s) verifying

(11) lim
m→∞

γj,m = γj

in the varifold topology for every j = 1, ..., K + 1. Hence from the previous,

|
K+1
∑

j=1

αj

∫

γj
trγj ,g′(s)

∂g′

∂tk
(s) dLg′(s)

2α(n, 1) Vol(M, g)
1
n p

n−1
n

−−

∫

M

ψk(x) dVolg | ≤ η
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for every k = 1, ..., K. Using that ‖ĝ(t) − g‖Cq < ε′

2
, ‖g′(t) − ĝ(t)‖Cq < ε′

2
and

‖∂g
′

∂v
− ∂ĝ

∂v
‖Cq < ε′ for every t ∈ (−δ, δ)K and v ∈ R

K : |v| = 1; and the fact that
ε′ < η, we can see that there exists a constant C6 > 0 such that

|
K+1
∑

j=1

αj

∫

γj
trγj ,ĝ(s)

∂ĝ

∂tk
(s) dLĝ(s)

2α(n, 1) Vol(M, g′(s))
1
np

n−1
n

−−

∫

M

ψk(x) dVolg′(s) | ≤ C6η.

By definition of ĝ, ∂ĝ

∂tk
(s) = 2ψkĝ(s) thus

|
K+1
∑

j=1

αj

∫

γj
ψk dLĝ(s)

α(n, 1) Vol(M, g′(s))
1
n p

n−1
n

−−

∫

M

ψk(x) dVolg′(s) | ≤ C6η.(12)

Combining (12) with the fact that ‖g′(s) − ĝ(s)‖Cq < ε′

2
,

(13) |
K+1
∑

j=1

αj

∫

γj
ψk dLg′(s)

α(n, 1) Vol(M, g′(s))
1
n p

n−1
n

−−

∫

M

ψk(x) dVolg′(s) | ≤ C7η.

But we know that  Lg′(s)(γj) = ω1
p(g

′(s)) for every j = 1, ..., K + 1, so

|

∫

γj
ψk dLg′(s)

α(n, 1) Vol(M, g′(s))
1
n p

n−1
n

−−

∫

γj

ψk dLg′(s) | =

|−

∫

γj

ψk dLg′(s) ||
ω1
p(g

′(s))

α(n, 1) Vol(M, g′(s))
1
np

n−1
n

− 1| ≤

|
ω1
p(g

′(s))

α(n, 1) Vol(M, g′(s))
1
np

n−1
n

− 1| ≤ η

if p ≥ p1 for some p1 ∈ N, because of the Weyl law and the fact 0 ≤ ψk ≤ 1. Hence
from (13),

|
K+1
∑

j=1

αj−

∫

γj

ψk dLg′(s) −−

∫

M

ψk dVolg′(s) | ≤ C8η

for some constant C8 depending only on g. Let us take η = ε1
2C8K

and p ≥ max{p0, p1}.

Notice that ‖g′(s) − g‖Cq ≤ ‖g′(s) − ĝ(s)‖Cq + ‖ĝ(s) − g‖Cq < ε′

2
+ ε′

2
< ε′0. Let

us represent each γi as a map γi : Γi → M where each connected component of
the weighted multigraph Γi is good and the restrictions of γi to those connected
components are embedded (here we are using Remark 2.17). The metric g′(s) has
all the properties required by Proposition 5.1 except that the components of the
γi’s may not be non-degenerate and may not be C∞ (in principle they are only Cq).
Using Proposition 4.5, we can change g′(s) for another Cq metric g which still verifies
‖g− g‖Cq < ε′0, and has the property that γ1, ..., γK+1 are non-degenerate stationary
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geodesic nets with respect to g. If on top of that we apply the Implicit Function
Theorem (see [15, Lemma 2.6]), we can find a C∞ metric g̃ close enough to g in
the Cq topology so that ‖g̃ − g‖Cq < ε0 which admits stationary geodesic networks
γ̃1, ..., γ̃k+1 whose connected components are nondegenerate and verify

|
K+1
∑

j=1

αj−

∫

γ̃j

ψk dLg̃ −−

∫

M

ψk dVolg̃ | <
ε1
K

for every k = 1, ..., K + 1. This completes the proof.
�

Now we will show that Proposition 5.1 implies Theorem 1.5. Given g ∈ M∞,
ε1 > 0, K̃ ∈ N and S ∈ Cg,K̃,ε1 we will denote M(g, ε1, K̃, S) the set of all metrics
g̃ ∈ M∞ such that ‖g̃ − g‖Cq < ε1 (computed with respect to g) and there exist
stationary geodesic networks γ1, ..., γJ with respect to g̃ whose connected components
are nondegenerate (according to Definition 2.18) and coefficients α1, ..., αJ ∈ [0, 1]

with
∑J

j=1 αj = 1 such that (8) holds for every k = 1, ..., K. By the Implicit Function

Theorem, M(g, ε1, K̃, S) is open (see [15, Lemma 2.6]). Therefore given ε1 > 0 and
K̃ ∈ N the set

M(ε1, K̃) =
⋃

g∈M∞

⋃

S∈C
g,ε1,K̃

M(g, ε1, K, S)

is open and by Proposition 5.1 it is also dense in M∞. Define

M̃ =
⋂

m∈N

M(
1

m
,m)

which is a generic subset of M∞ in the Baire sense. We are going to prove that if
g̃ ∈ M̃ then there exists a sequence of equidistributed stationary geodesic networks
with respect to g̃.

Fix g̃ ∈ M̃. By definition, given m ∈ N there exists g ∈ M∞ such that
g̃ ∈ M(g, 1

m
, m, S) for some S ∈ Cg, 1

m
,m. Therefore, g̃ belongs to a 1

m
neighbor-

hood of g in the CK topology; and there exist J = Jm ∈ N, stationary geodesic
networks γm,1, ..., γm,Jm with respect to g̃ and coefficients αm,1, ..., αm,Jm ∈ [0, 1] with
∑Jm

j=1 αm,j = 1 satisfying

(14) |
Jm
∑

j=1

αm,j−

∫

γm,j

ψk(x) dLg̃ −−

∫

M

ψk(x) dVolg̃ | <
1

mK

for every k = 1, ..., K. Let f ∈ C∞(M,R). We want to obtain a formula analogous to
the previous one but replacing ψk by f , which will imply the following proposition.



30 XINZE LI AND BRUNO STAFFA

Proposition 5.4. Let g̃ ∈ M̃. For each m ∈ N, there exists J = Jm depending on
m, integers {cm,j}1≤j≤Jm and stationary geodesic networks {γm,j}1≤j≤Jm such that

|

∑Jm
j=1 cm,j

∫

γm,j
f dLg̃

∑Jm
j=1 cm,j Lg̃(γm,j)

−−

∫

M

f dVolg̃ | ≤
D(f)

m

for every f ∈ C∞(M,R), where D(f) > 0 is a constant depending only on f and the
metric g̃.

Proof. Given m ∈ N, consider as above g ∈ M∞ and S ∈ Cg, 1
m
,m such that

g̃ ∈ M(g, 1
m
, m, S). Define Jm ∈ N, stationary geodesic networks γm,1, ..., γm,Jm

with respect to g̃ and coefficients αm,1, ..., αm,Jm such that (14) holds. Taking S =

(K, {B̂k}k, {Bk}k, {φk}k) ∈ Cg, 1
m
,m into account, let us choose points q1, ..., qK with

qk ∈ B̂k for each k = 1, ..., K. The idea will be to approximate the integral of f(x)

by the integral of the function
∑K

k=1 f(qk)ψk(x). First of all, by using (14) we can
see that

(15) |
Jm
∑

j=1

αm,j−

∫

γm,j

[

K
∑

k=1

f(qk)ψk(x)]dLg̃ −−

∫

M

[

K
∑

k=1

f(qk)ψk(x)]dVolg̃ | <
D1

m

where D1 = ‖f‖∞ = max{f(x) : x ∈M} depends only on f (and not on m, g or S).
On the other hand, given x ∈M

|f(x) −
K
∑

k=1

f(qk)ψk(x)| = |f(x)

K
∑

k=1

ψk(x) −
K
∑

k=1

f(qk)ψk(x)|

= |
K
∑

k=1

f(x)ψk(x) − f(qk)ψk(x)|

≤
∑

k:x∈Bk

|f(x) − f(qk)||ψk(x)|

=
∑

k:x∈Bk

|∇g̃f(ck)|dg̃(x, qk)ψk(x)

≤
2‖∇g̃f‖∞

m

K
∑

k=1

ψk(x)

=
2‖∇g̃f‖∞

m
.

We used the Mean Value Theorem and the fact that supp(ψk) ⊆ Bk and diamg̃(Bk) ≤
2diamg(Bk) ≤

2
m

for every i. Combining this and (15) we get
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(16) |
Jm
∑

j=1

αm,j−

∫

γm,j

f dLg̃ −−

∫

M

f dVolg̃ | <
D2

m

where D2 depends only on f and g̃. Let us choose integers cm,j , dm ∈ N such that

|
αm,j

Lg̃(γm,j)
−
cm,j
dm

| <
1

mJm Lg̃(γm.j)
.

Then it holds

|
Jm
∑

j=1

αm,j−

∫

γm,j

f dLg̃ −
Jm
∑

j=1

cm,j
dm

∫

γm,j

f dLg̃ | ≤
Jm
∑

j=1

|
αm,j

Lg̃(γm.j)
−
cmj

dm
||

∫

γm,j

f dLg̃ |

≤
Jm
∑

j=1

1

mJm Lg̃(γm,j)
‖f‖∞ Lg̃(γm,j)

=
D1

m

and hence by (16) and triangle inequality we get

|
Km
∑

j=1

cm,j
dm

∫

γm,j

f dLg̃ −−

∫

M

f dVolg̃ | <
D3

m

where D3 = D2 +D1 depends only on f and g̃. On the other hand,

|
Jm
∑

j=1

cm,j
dm

∫

γm,j

f dLg̃ −

∑Jm
j=1 cm,j

∫

γm,j
f dLg̃

∑Jm
j=1 cm,j Lg̃(γm,j)

| ≤

|
1

dm
−

1
∑Jm

j=1 cm,j Lg̃(γm,j)
||

Jm
∑

j=1

cm,j

∫

γm,j

f dLg̃ | ≤

|
1

dm
−

1
∑Jm

j=1 cm,j Lg̃(γm,j)
|
Jm
∑

j=1

cm,j‖f‖∞ Lg̃(γm,j) =

D1|
Jm
∑

j=1

cm,j
dm

Lg̃(γm,j) − 1| ≤
D1

m
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because |
∑Jm

j=1
cm,j

dm
Lg̃(γm,j) − 1| < 1

m
. Hence

|

∑Jm
j=1 cm,j

∫

γm,j
f dLg̃

∑Jm
j=1 cm,j Lg̃(γm,j)

−−

∫

M

f dVolg̃ | ≤
D4

m

for a constant D4 depending only on f and g̃, as desired. �

Given g̃ ∈ M̃, using Proposition 5.4 we can find a sequence of finite lists of
connected embedded stationary geodesic nets {βm,1, ..., βm,Km

}m∈N with respect to g̃
satisfying the following: given f ∈ C∞(M,R), if we denote Xm,j =

∫

βm,j
f dLg̃ and

X̄m,j = Lg̃(βm,j), then

(17) |

∑Km

j=1Xm,j
∑Km

j=1 X̄m,j

− α| ≤
D(f)

m

where α = −
∫

M
f dVolg̃ and D(f) is a constant depending only on f . The lists

{βm,j}1≤j≤Km
are obtained from the lists {γm,j}1≤j≤Jm and the coefficients {cm,j}1≤j≤Jm

from Proposition 5.4 by decomposing each γm,j as a union of embedded stationary
geodesic networks whose domain is a good weighted multigraph (see Remark 2.17)
and listing each of them cm,j times. From the Xm,j’s and the X̄m,j’s, we want to
construct two sequences {Yi}i∈N, {Ȳi}i∈N such that

• For all i, there exist integers m(i), j(i) (chosen independently of f) with
Yi = Xm(i),j(i) and Ȳi = X̄m(i),j(i),

• It holds

lim
k→∞

∑k
i=1 Yi

∑k

i=1 Ȳi
= α.

This can be done as in [18, p. 437-439] and gives us a sequence {γi}i∈N of connected
embedded stationary geodesic networks with respect to g̃ (defined as γi = βm(i),j(i)),
which is constructed independently of the constant D(f). It holds

lim
k→∞

∑k

i=1

∫

γi
f dLg̃

∑k

i=1 Lg̃(γi)
= −

∫

M

f dVolg̃

for every f ∈ C∞(M,R). This gives us the desired equidistribution result and
completes the proof of Theorem 1.5.

Remark 5.5. Observe that combining the Weyl law for 1-cycles in 3-manifolds from
[11] with Theorem 1.5 which we just proved, we obtain Theorem 1.2.
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6. Equidistribution of almost embedded closed geodesics in

2-manifolds

In this section we show that the proof of Theorem 1.5 combined with the work
of Chodosh and Mantoulidis in [7] (where they show that the p-widths on a surface
are realized by collections of almost embedded closed geodesics) imply Theorem 1.1.
The strategy to show this result will be to follow the proof of Theorem 1.5 replacing
“embedded stationary geodesic network” by “almost embedded closed geodesic”.
The main change needed in the proof is the following version of Proposition 4.1:

Proposition 6.1. Let M be a closed 2-manifold. Let g : IN → Mq be a smooth
embedding, N ∈ N. If q ≥ N + 3, there exists an arbitrarily small perturbation in
the C∞ topology g′ : IN → Mq such that there is a full measure subset A ⊆ IN with
the following property: for any p ∈ N and any t ∈ A, the function s 7→ ω1

p(g
′(s)) is

differentiable at t and there exist almost embedded closed geodesics γ1p , ..., γ
P
p : S1 →

M such that the following two conditions hold

(1) ω1
p(g

′(t)) =
∑P

i=1 Lg′(t)(γ
i
p(t)).

(2) ∂
∂v

(ω1
p ◦ g

′)
∣

∣

s=t
= 1

2

∑P

i=1

∫

γip
trγip,g′(t)

∂g′

∂v
(t) dLg′(t).

Proof. We are going to adapt the proof of Proposition 4.1 by introducing some nec-
essary changes. A priori, the easiest way to do this seems to be substituting “sta-
tionary geodesic network” by “finite union of almost embedded closed geodesics”
everywhere and use the Bumpy metrics theorem for almost embedded minimal sub-
manifolds proved by Brian White in [26]. Nevertheless, there is not an easy condition
(analog to conditions (1) to (7) in the proof of Proposition 4.1) that we can impose
on a sequence of almost embedded closed geodesics to converge to another almost
embedded closed geodesic without classifying them by their self-intersections and the
angles formed there. Therefore, what we will do is to treat the almost embedded
closed geodesics as a certain class of stationary geodesic networks, and then proceed
as with Proposition 4.1.

To each almost embedded closed geodesic γ : S1 → M we can associate a connected
graph Γ = S1/ ∼ where ∼ is the equivalence relation s ∼ t if and only if γ(s) = γ(t).
This induces a map f : Γ → M defined as f([t]) = γ(t). Observe that the as the self-
intersections of γ are transverse, the vertices of Γ are mapped precisely to those self-
intersections and the map f : Γ →M is injective. Moreover, Γ is a good multigraph
and f : Γ → (M, g) is an embedded stationary geodesic network. We replace the
set {Γi}i∈N which in the proof of Proposition 4.1 is the set of all good connected
multigraphs by the countable set of pairs P = {(Γ, r)} where Γ is a good multigraph
which can be obtained as Γ = S1/ ∼ from an almost embedded closed geodesic
γ : S1 → (M, g) with respect to some metric g as before and r is the set of pairs
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((E1, i1), (E2, i2)) such that πE1(i1) = πE2(i2) and (−1)i1+1 ḟE1
(i1)

|ḟE1
(i1)|g

= (−1)i2
ḟE2

(i2)

|ḟE2
(i2)|g

(in other words, r contains the necessary information to reparametrize the geodesic
net f : Γ → M to an immersed closed geodesic γ : S1 → (M, g)). Observe that if
(Γ, r) ∈ P and f : Γ → (M, g) is an embedded stationary geodesic network verifying

(−1)i1+1 ḟE1
(i1)

|ḟE1
(i1)|g

= (−1)i2
ḟE2

(i2)

|ḟE2
(i2)|g

for every ((E1, i1), (E2, i2)) ∈ r then f : Γ → (M, g)

can be reparametrized as an immersed closed geodesic γ : S1 → (M, g) whose self
intersections occur precisely at the points {f(v) : v vertex of Γ}.

Taking the previous into account, instead of the B̃Γ,M in the proof of Proposition
4.1 we will work with the following. Consider the set of pairs (Γ, r) where Γ is a graph,

Γ =
⋃P

i=1 Γi as a union of connected components, r = (ri)1≤i≤P and (Γi, ri) ∈ P for
every 1 ≤ i ≤ P . Given such a pair (Γ, r) and a natural number M ∈ N we define
BΓ,r,M to be the set of all t ∈ (−1, 1)N such that there exists a stationary geodesic
network f : Γ → (M, g′(t)) verifying

(1) For each 1 ≤ i ≤ P , fi = f |Γi
is an embedding and verifies the relations

(−1)i1+1 ḟi,E1
(i1)

|ḟi,E1
(i1)|g′(t)

= (−1)i2
ḟi,E2

(i2)

|ḟi,E2
(i2)|g′(t)

for every ((E1, i1), (E2, i2)) ∈ ri.

(2) ‖fi‖3 ≤M for every 1 ≤ i ≤ P .
(3) F1(g

′(t), fi) ≥
1
M

for every 1 ≤ i ≤ P .

(4) F
(E1,i1),(E2,i2)
2 (g′(t), fi) ≤ 1− 1

M
for every 1 ≤ i ≤ P , and every pair (E1, i1) 6=

(E2, i2) ∈ Ei × {0, 1} such that πE1(i1) = πE2(i2).
(5) dE(g′(t),fi)(s) ≥

1
M

for every 1 ≤ i ≤ P , E ∈ Ei and s ∈ E.

(6) dE,E
′

(g′(t),fi)
(s) ≥ 1

M
for every 1 ≤ i ≤ P , E 6= E ′ ∈ Ei and s ∈ E.

(7) ω1
p(g

′(t)) = Lg′(t)(f).

Therefore, same as in Proposition 4.1 we have IN =
⋃

Γ,r,M BΓ,r,M because of the

fact showed in [7] that the p-widths on surfaces are realized by unions of almost
embedded closed geodesics; and each BΓ,r,M is closed. The rest of the proof follows
exactly as in Proposition 4.1 if we replace the pairs (Γ,M) by the triples (Γ, r,M). �

One more remark is necessary to adapt the proof of Proposition 5.1. The sequences
(γj,m)m in (11) have length uniformly bounded by some L > 0 and consist of finite
unions of almost embedded closed geodesics. This implies that the number of closed
geodesics whose union is γj,m is also bounded (independently on m). Thus by apply-
ing Arzela-Ascoli to each of those components we can get a subsequence whose limit
is not only a stationary geodesic net but also a union of closed curves with uniform
convergence in C0. The rest of the proof follows that of Theorem 1.5 word for word.
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