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Abstract

Factor models are a parsimonious way to explain the dependence of variables using several latent variables. In
Gaussian 1-factor and structural factor models (such as bi-factor, oblique factor) and their factor copula counterparts,
factor scores or proxies are defined as conditional expectations of latent variables given the observed variables. With
mild assumptions, the proxies are consistent for corresponding latent variables as the sample size and the number of
observed variables linked to each latent variable go to infinity. When the bivariate copulas linking observed variables
to latent variables are not assumed in advance, sequential procedures are used for latent variables estimation, copula
family selection and parameter estimation. The use of proxy variables for factor copulas means that approximate
log-likelihoods can be used to estimate copula parameters with less computational effort for numerical integration.
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1. Introduction

Factor models are flexible and parsimonious ways to explain the dependence of variables with one or more latent
variables. The general factor copula models in [12] and [13] are extensions of classical Gaussian factor models and
are useful for joint tail inference if the variables have stronger tail dependence that can be expected with Gaussian
models, such as with asset return data.

In classical factor analysis, estimates of the latent variables referred to factor scores (see [11] and [8]) are of
interest and useful for interpretation and further analysis. For similar reasons, the inference of the latent variables in
factor copulas is also useful.

For maximum likelihood estimation in parametric factor copula models, the copula density and likelihood involve
integrals with dimension equal to the number of latent variables. [12] and [13] provide procedures for computationally
efficient evaluations of the log-likelihood and its gradient and Hessian for 1-factor, 2-factor, bi-factor and a special
case of the oblique factor copula models. These are the cases for which integrals can be evaluated via 1-dimensional
or 2-dimensional Gaussian-Legendre quadrature. Bi-factor and oblique factor models are useful when the observed
variables can be placed into several non-overlapping homogeneous groups.

In this paper, one main focus for factor copulas is to show how use of “proxies” to estimate latent variables (a)
can help in diagnostic steps for deciding on the bivariate copula families that link observed variables to the latent
variables and (b) lead to approximate log-likelihoods for which numerical maximum likelihood estimation is much
faster. The 1-factor, bi-factor and oblique factor copula models are used to illustrate the theory because with their
previous numerical implementations for maximum likelihood, we can make comparisons with the faster proxy-based
methods introduced within. The theory developed here can be applied in other factor copula models, and this is
discussed in the final section on further research.

[14] initiate the use of proxies for latent variables to speed up numerical maximum likelihood estimation; their
approach involved unweighted means in 1-factor and unweighted group means for oblique factor copula models. Their
approach does not extend to bi-factor and other structural p-factor copula models. In order to accommodate these other
factor copula models, we use two-stage proxies, with stage 1 being factor scores based on the estimated loading matrix
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after each variable has been empirically transformed to standard normal, and stage 2 based on conditional expectations
of latent variables given the observed variables (using a copula model fitted from the stage 1 proxies).

To justify the sequential method for latent variable and copula model estimation, several theoretical results in
consistency, as the number D of observed variables increase to infinity, are needed. Factor copula models would
mainly be considered if the observed variables are monotonically related and have at least moderate dependence.
There may be more dependence in the joint tails than expected with Gaussian dependence, but the Gaussian factor
models can be considered as first-order models.

The proxies as estimates of latent variables are extensions of Gaussian regression factor scores because these are
based on conditional expectations of latent variables given the observed. For D increasing, we consider the observed
variables (or their correlations, partial correlations, or linking copulas) as being sampled from a super-population.
We first obtain conditions for the proxies or conditional expectations to be asymptotically consistent estimates (of
corresponding latent variables) when the the factor model is completely known; we also have results that suggest rates
of convergence. In cases where consistency is not possible, then we know that we cannot expect consistency when
parameters in the factor model must be estimated. One such case involves the Gaussian bi-factor model where (a) a
loading matrix of less than full column rank implies that the latent variables are not identifiable, and the model can be
reduced to an oblique factor model; and (b) the rate of convergence of the proxies is slow if the loading matrix has a
large condition number. With a sample of size N, the assumption of a super-population, combined with factor models
being closed under margins, suggest that in the case of estimated parameters, (i) all parameters can be estimated with√

N consistency and (ii) proxies are consistent under mild conditions. Because we need a method of proof that is
valid for both Gaussian and factor copula models, our technique is different from that of [2]. Their approach does not
provide insights for non-identifiability of latent variables such as in the bi-factor model.

The remainder of the paper is organized as follows. Section 2 provides the representations of Gaussian factor
models and (structured) factor copula models. Section 3 has expressions for conditional expectations, and the proxies
as estimates of the latent variables. Section 4 has some sufficient or necessary conditions for asymptotic consistency
of proxy variables with known loading matrix or known linking copulas. Section 5 has results and conditions for the
consistency of proxy variables with estimated parameters in linking copulas (with copula families known). Section 6
proposes a sequential method for the practical use of proxy variables in cases where the linking copula families are not
specified. Simulation studies in Section 7 show the proxies are useful in selecting linking copula families and getting
accurate parameter estimates with less computing time. Section 8 has sufficient conditions for using the proxies in
the Section 3 when observed variables have weak dependence, rather than independence, conditional on the observed
variables. Section 9 has a summary and discussion for further research.

2. Structured factor copula models

The 1-factor, bi-factor and oblique factor models that are the main focus of this paper are shown graphically
in Figure 1, 2 and 3 respectively. The graphical representations are valid for the Gaussian factor models and their
extensions to factor copula models.

•••

Fig. 1: 1-factor model, a sequence of the observed variables (rectangular shapes) are linked to the latent variable (circles).
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••• •••

Fig. 2: Bi-factor model, G local latent variables (circles) and a sequence of observed variables (rectangles) are all linked to the global latent
variable (circle; root variable) in solid lines; the dashed lines indicate the conditional dependence between observed variables and local latent
variables conditioned on the global latent variable. Illustration here has G = 2 groups.

•••

••• •••

Fig. 3: Oblique factor model, observed variables (rectangles) are divided into the several non-overlapping groups, latent variables (circles) are
dependent and the observed variables in each group are linked to the (local) group latent variable. Illustration here has G = 3 groups.

p-factor models with p ≥ 2 are in general do not have an identifiable loading matrix in the Gaussian case because
of orthogonal transform of the loading matrix. The bi-factor structure is a special of the p-factor model with many
structural zeros. The bi-factor and oblique factor models are two parsimonious factor models that can be considered
when variables can be divided into G non-overlapping groups.

In the graphs for 1-factor and bi-factor, each observed variable links to the (global) latent variable; the edges of
the graphs have a correlation (of observed with latent) for multivariate Gaussian and bivariate linking copula for the
factor copula.

For the bi-factor graph, there are additional edges linking each observed variable to its (local) group latent variable.
For multivariate Gaussian, these edges have partial correlation of observed variables with corresponding group latent
variable, conditioned on the global latent variable; this can be converted to a linear representation with a loading
matrix — see Section 6.16 of [9]. For the bi-factor copula, these additional edges are summarized with bivariate
copulas linking observed variables with the corresponding group latent variable, conditioned on the global latent
variable. The group latent variables are independent of each other and are independent of the global latent variable.
There is dependence of all variables from the common link to the global latent variable. There is additional within-
group dependence from links to the group latent variable.

For the oblique factor graph, each observed variable is linked to a (local) group latent variable, so that there is
within-group dependence. The group latent variables are dependent, and these leads to between-group dependence.

The linear representations (Gaussian) and copula densities are given below, with notation in a form that allows for
their study as the number of observed variables D increases to∞. References are their derivations are in Section 3.10
and 3.11 of [9], [12], [13] and [14].

For notation, observed variables are denoted as U j or U jg after transform to U(0, 1), or Z j or Z jg after transform
to N(0, 1), and latent variables are denotes as V , V0 or Vg on the U(0, 1) scale and W, W0 or Wg on the N(0, 1)
scale. Copula densities for different vectors are indicated using C with subscripts for random vectors. The generic
notation for a bivariate copula cdf has the form CU,V (u, v) and its partial derivatives are denoted as CU |V (u|v) =

∂CU,V (u, v)/∂v and CV |U(v|u) = ∂CU,V (u, v)/∂u because these are conditional distributions. Lower case variables are
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used as arguments of densities or dummy variables of integrals.
1-factor copula model with D variables UD = (U1, . . . ,UD), the copula density is:

cUD (uD) =

∫ 1

0

D∏
j=1

c jV (u j, v) dv, (1)

where c jV = cU j,V for all j.
Bi-factor copula model with dg variables in group g, fixed G groups, D = (d1, . . . , dG) and D =

∑G
g=1 dg total

number of variables. The copula density is:

cUD (uD) =

∫ 1

0

G∏
g=1

{∫ 1

0

dg∏
j=1

cU jgV0 (u jg, v0) · cU jgVg;V0

(
CU jg |V0 (u jg|v0), vg

)
dvg

}
dv0. (2)

The notation cU jgVg;V0 is the copula density assigned to the edge with connecting U jg,Vg given V0.
Oblique factor copula model with dg variables in group g as above. The copula density is:

cUD (uD) =

∫ 1

0
· · ·

∫ 1

0

G∏
g=1

dg∏
j=1

cU jg,Vg (u jg, vg) cV(v) dv1 · · · dvG. (3)

The notation cV(v) is the joint copula density of the latent variables.
When all linking copulas are bivariate Gaussian copulas, the usual representation of Gaussian factor models result

after transforms of U(0, 1) variables to standard normal N(0, 1) variables.
Gaussian 1-factor

Z j = α jW + ψ jε j j ∈ {1, . . . ,D}, (4)

where W, ε1, ε2, . . . are mutually independent N(0, 1) random variables, and −1 < α j < 1 and ψ2
j = 1 − α2

j for all j.
Gaussian bi-factor

Z jg = α jg,0W0 + α jgWg + ψ jgε jg j ∈ {1, . . . , dg}; g ∈ {1, . . . ,G}, (5)

where W0, {Wg}, {ε jg} are mutually independent N(0, 1), α’s are in (−1, 1) and ψ2
jg = 1 − α2

jg,0 − α
2
jg < 1 for all ( j, g).

Note that ρZ jg,Wg;W0 = α jg/(1 − α2
jg,0)1/2 is the partial correlation of Z jg with Wg given W0.

Gaussian oblique factor

Z jg = α jgWg + ψ jgε jg j ∈ {1, . . . , dg}; g ∈ {1, . . . ,G}, (6)

where {ε jg} are mutually independent N(0, 1), independent of the multivariate normal vector (W1, . . . ,WG), with zero
mean vector and unit variances, α’s are in (−1, 1) and ψ2

jg = 1 − α2
jg for all ( j, g). Let ΣW be the correlation matrix of

W = (W1, . . . ,WG)T .
Matrix representation

ZD = ADW +ΨDεD, (7)

where the loading matrix AD is of size D × p, Ψ2
D is a D × D diagonal matrix of individual variances (ψ j or ψ jg), εD

is a D × 1 column vector of ε j or ε jg, and ZD is a D × 1 column vector of Z j or Z jg. For 1-factor, p = 1; for bi-factor,
p = G + 1 and W = (W0,W1, . . . ,WG)T , and for oblique factor, p = G and W = (W1, . . . ,WG)T .

A matrix identity that is useful in calculations of conditional expectation and covariance of W given ZD is the
following

AT
D(AD AT

D +Ψ2
D)−1 = (Ip + AT

DΨ
−2
D AD)−1 AT

DΨ
−2
D , (8)

when AD AT
D +Ψ2

D is non-singular and Ψ2
D has no zeros on the diagonal. This identity is given in [11].

In general, except for the case of bivariate Gaussian linking copulas, the integrals in the above copula densities
do not simplify, and numerical maximum likelihood involves numerical integration when there is a random sample
of size N. With a parametric family for each bivariate linking copula, [12] and [13] outline numerically efficient
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approaches for a modified Newton-Raphson method for optimizing the negative log-likelihood for 1-factor, bi-factor
and a special nested factor subcase of the oblique factor copulas. 1-dimensional or 2-dimensional Gauss-Legendre
quadrature is used to evaluate the integrals and their partial derivatives order 1 and 2 for the gradient and Hessian
of the negative log-likelihood. The factor copulas are extensions of their Gaussian counterparts and are useful when
plots of normal scores data (after empirical transforms to N(0, 1)) show tail dependence or tail asymmetry in bivariate
scatterplots.

In classical factor analysis ([11]), factor scores or estimates of latent variables are considered after estimating
a loading matrix. The information on the latent variables may be used in subsequent analysis following the factor
analysis; for example, regression analysis incorporated the factor information. For factor copulas, these could be
obtained after fitting a parametric model. Factor copula models for practical use are considered when Gaussian factor
models are considered as first-order approximations, so that (transformed) factor scores could be considered as a
starting point. An approach to estimate the latent variables without the need to fit a parametric model by numerical
procedures in [12] and [13] is proposed, and more details will be illustrated in later sections.

The next section has proxies as estimates of latent variables based on conditional expectations given observed
variables.

3. Proxies for the latent variables

In the Gaussian factor models, factor scores are defined as the estimates of unobserved latent variables, see [11].
The form of factor scores that extend to factor copula models are the regression factor scores, which are conditional
expectations of latent variables given the observed variables.

For factor copula models, having reasonable estimates of latent variables is also of interest since these can lead
to simpler and more efficient numerical procedures for determining parametric bivariate linking copula families and
estimating their parameters. For factor copula models, we use the term ‘proxies’ for the estimates of latent variables,
as in [14].

The study of the conditional expectation of latent variables (W’s or V’s) given observed variables (Z’s or U’s) is
done in three stages for the models in Section 2.

A. The loading matrix is known or all of the bivariate linking copulas are known. In this case, the proxy variables
are defined as the conditional expectation of latent variables given the observed variables, and we refer to “conditional
expectation” proxies.

B1. Gaussian factor models with estimated loading matrix. Since the general Gaussian factor model is non-
identifiable in terms of rotation of the loading matrix, for a model with two or more factors, consistency of estimation
requires a structured loading matrix such as that of the bi-factor model or oblique factor model. In the models, the
proxies are defined in the same way as in case A but with an estimated loading matrix (in blocks), where parameter
estimates have a variance of order O(1/N) for sample size N.

B2. Factor copula models with known parametric families for each linking copula. In the models, the parameters
are estimated via sequential maximum likelihood with a variance of order O(1/N) for sample size N. The proxies are
defined in the same way as in case A with the estimated linking copulas.

C. Linking copula families are not known or specified in advance (the situation in practice). A sequential method
is used starting with unweighted averages as estimates in [14] or regression factor scores computed from an estimated
loading matrix after observed variables are transformed to have N(0, 1) margins. Then, the “conditional expectation”
proxies are constructed with the copula families and estimated parameters determined in the first stage.

In Sections 3.1 and 3.2, the conditional expectations (for case A) are given. The asymptotic properties of proxies
for case A and for cases B1, B2 are given in Section 4 and 5 respectively, and the sequential method of case C is in
Section 6.

3.1. Proxies in Gaussian factor models
In this section, we summarize E(W|ZD = zD) for 1-factor, bi-factor and oblique factor Gaussian models with

observed variables that are in N(0, 1). These are called (regression) factor scores in the factor analysis literature.
p-factor: Let (w0, zD) be a realization of (W, ZD). The proxy for W (or estimate of w0) given zD are:

w̃D = E(W|ZD = zD) = AD
T (AD AT

D +Ψ2
D)−1 zD = (Ip + AD

TΨ−2
D AD)−1 AT

DΨ
−2
D zD, (9)
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if (AD AT
D +Ψ2

D) is non-singular and ΨD has no zeros on diagonal. The above matrix equality follows from (8).
If ΨD has zeros on diagonal, then a linear combination of the latent variables is an observed variable. If (AD AT

D +

Ψ2
D) is singular, then a linear combination of observed variables is a constant. These unrealistic cases will not be

considered.
Bi-factor: Let (w0

0,w
0
1, . . . ,w

0
G, zD) be a realization of (W0,W1, . . . ,WG, ZD). The proxies (or estimates of w0,w0

1, . . . ,w
0
G)

given zD is:

w̃0 = E(W0|Z D = zD) = (a0)T (AD AT
D +Ψ2

D)−1 zD, (10)

w̃g(w̃0) = E(Wg|Z D = zD,W0 = w̃0) = (bT
g , 0)(Σg)−1(zT

g , w̃0)T , (11)

where a0 is the first column of the loading matrix, zg = (z1g, . . . , zdgg)T , b0g and bg are the dg × 1 global and local
loading vector for group g; let Bg = [b0g, bg] (matrix of size dg × 2). Let Σg be the correlation matrix of (ZT

g ,W0).

Then Σg =

[
BgBT

g +Ψ2
g b0g

bT
0g 1

]
for g ∈ {1, . . . ,G}. The proof that w̃g(w̃0) = E(Wg|Z D = zD) is given in the Appendix

A.1.
Oblique factor: Let (w0

1, . . . ,w
0
D, zD) be a realization of (W1, . . . ,WG, ZD). The proxies (or estimates of w0

1, . . . ,w
0
G)

given zD are:
w̃g = E(Wg|Zg = zg) = aT

g (agaT
g +Ψ2

g)−1 zg, (12)

where zg = (z1g, . . . , zdgg)T , Ψg is the g-th block diagonal of Ψ and ag is the dg × 1 loading vector for group g, for
g ∈ {1, . . . ,G}. This version, rather than E(Wg|Zh = zh, h ∈ {1, . . . ,G}), has a version for the oblique factor copula that
is numerically easier to handle.

3.2. Proxies in factor copula models

This subsection has the corresponding conditional expectations of latent variables given U(0, 1) distributed ob-
served variables for the 1-factor, bi-factor, and oblique factor copula models.
1-factor copula model with density cUD defined in (1). Then cVUD (v,uD) =

∏D
j=1 c jV (u j, v). Let (v0, u1, . . . , uD) be

one realization of (V,U1, . . . ,UD). Then the proxy, as an estimated of v0, is:

ṽD = ṽD(uD) = E(V |UD = uD) =

∫ 1
0 vcVUD (v,uD) dv

cUD (uD)
. (13)

Bi-factor copula model with density as defined in (2). Let (v0
0, {v

0
g}, {u jg}) be one realization of (V0, {Vg}, {U jg}).

Table 1 has densities involving the global latent variable V0 and group latent variables V1, . . . ,VG.

vector joint density

(UD,V0,V) cUD,V0,V(uD, v0, v) =

G∏
g=1

dg∏
j=1

{
cU jgV0 (u jg, v0) · cU jgVg;V0 (CU jg |V0 (u jg|v0), vg)

}
(UD,V0) cUD,V0 (u, v0) =

G∏
g=1

{ dg∏
j=1

cU jgV0 (u jg, v0) · fg(ug; v0)
}

fg(ug; v0) =

∫ 1

0

dg∏
j=1

cU jgVg;V0

(
CU jg |V0 (u jg|v0), vg

)
dvg, g ∈ {1, . . . ,G}

(Ug,V0,Vg) cUg,V0,Vg (ug, v0, vg) =

dg∏
j=1

{
cU jgV0 (u jg, v0) · cU jgVg;V0

(
CU jg |V0 (u jg|v0), vg

)}
Table 1: Densities in the bi-factor copula model (2).
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The convenient form of conditional expectations is as follows:

ṽ0D(uD) = E[V0|U jg = u jg, j ∈ {1, . . . , dg}, g ∈ {1, . . . ,G}] =

∫ 1
0 v0cUD,V0 (uD, v0)dv0∫ 1

0 cUD,V0 (uD, v0)dv0

. (14)

For g ∈ {1, . . . ,G},

ṽgD(ug, ṽ0D) = E[Vg|V0 = ṽ0D,U jg = u jg, j ∈ {1, . . . , dg}]

=

∫ 1
0 vgcUg,V0,Vg (ug, ṽ0D, vg) dvg∫ 1

0 cUg,V0,Vg (ug, ṽ0D, vg) dvg

. (15)

The proxies are ṽ0D(uD) and ṽgD(ug, ṽ0D) for g ∈ {1, . . . ,G}.
Oblique factor copula model with density in (3), for g ∈ {1, . . . ,G}. Then cUg,Vg (vg,ug) =

∏dg

j=1 cU jg,Vg (u jg, vg). Let
({v0

g}, {u jg}) be one realization of ({Vg}, {U jg}).

ṽgD(ug) = E[Vg|U jg = u jg, j ∈ {1, . . . , dg}] =

∫ 1
0 vgcUg,Vg (vg,ug) dvg

cUg (ug)
=

∫ 1
0 vgcUg,Vg (vg,ug) dvg∫ 1

0 cUg,Vg (vg,ug) dvg

. (16)

The proxy for v0
g is ṽgD(ug) for g ∈ {1, . . . ,G}.

4. Consistency of proxies and rate of convergence: model known

In this section, we obtain conditions so that the proxies defined in Section 3 are consistent as D→ ∞ for 1-factor
and dg → ∞ for all g for bi-factor or oblique factor models. More direct calculations are possible for Gaussian models
and these provide insights into behavior for factor copulas.

4.1. Conditional variance for Gaussian factor models

We start with the conditional variance of the latent variables given the observed variables. If the conditional
variance does not go to zero as D → ∞, then the latent variable cannot be consistently estimated; this can happen if
the overall dependence with the latent variable is weak, even as more variables are added. If the conditional variance
is 0 for a finite D or D, then the latent variable can be determined exactly (this can happen for the 1-factor model if
ψ j = 0 for some j). The practical case is when the dependence is moderate to strong, so that intuitively we have a
better idea of the value of the latent variable as D or D increases.

We summarize the expressions of the conditional variances in Gaussian factor models in Table 2. The 1-factor
model and bi-factor model are special cases of the p-factor model. For the bi-factor model, we decompose the
conditional variance of group latent variables into two parts; one part only depends on the within-group dependence,
and another part comes from the conditional variance of the global latent variable.

Details of the derivations for the decomposition formula in (17) of the conditional variance can be found in the
Appendix A.2. The expression of the conditional variance in the oblique factor model is slightly different from the
p-factor models, but the deviation procedures are similar so the details are omitted.
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model conditional variance
p-factor Cov(W|ZD = zD) = Ip − AT

D(AD AT
D +Ψ2

D)−1 AD

= Ip − (Ip + AT
DΨ
−2
D AD)−1 AT

DΨ
−2
D AD

bi-factor Var(W0|Z D = zD) = 1 − aT
0 (AD AT

D +Ψ2
D)−1a0

Var(Wg|Z D = zD) = (1+qg)−1+q̃2
g(1+qg)−2 Var(W0|Z D = zD)

(17)

oblique factor Cov(W|Z = zD) = ΣW−ΣW AT
D(ADΣW AT

D+Ψ2
D)−1 ADΣW

(18)

Table 2: Conditional variance of latent factors in general and structured Gaussian factor models; the matrix equality for p-factor follows from (8);
qg = bT

gΨ
−2
g bg, q̃g = bT

gΨ
−2
g b0g, bg, b0g are the dg × 1 local and global loading vector for group g.

Limit of covariance for p-factor In the (second) expression of conditional variance for the general p-factor
models, define QD = AT

DΨ
−2
D AD as a p × p matrix. Suppose Q̄D =: D−1QD → Q as D→ ∞. Note that if dependence

in the loading matrices is weak, then Q can be the zero matrix. In the boundary case with AD = 0, then Cov(W|ZD =

zD) = Ip, that is, ZD provides no information about W. If Q is a positive definite matrix, then

Ip − (Ip + AT
DΨ
−2
D AD)−1 AT

DΨ
−2
D AD ≈ Ip − (Ip + DQ)−1DQ = Ip − (D−1Q−1 + Ip)−1 = D−1Q−1 + o(D−1).

In the p-factor model, if the loading matrices in {AD} have full column rank, and the strength of dependence
between observed variables and the latent factors is strong enough such that the limiting matrix Q is invertible, then
the limit of conditional covariance for p-factor is O(D−1). The next theorem indicates what happens if the condition
of full column rank does not hold.

Theorem 1. Consider the p-factor model with p ≥ 2 with matrix representation (7).
(a) If AD does not have full column rank, then the latent variables in W are not identifiable.
(b) For the Gaussian bi-factor model as a special case of p-factor with p = G + 1, if AD does not have full column
rank, then the Gaussian bi-factor model can be rewritten as an oblique factor model with fewer parameters.

Proof. (a) Let a1, . . . , ap be the columns of AD. The columns of AD are linearly dependent. Without loss of generality,
assume a1 = t2a2 + · · · + tpap where (t2, . . . , tp) is a non-zero vector. Then, in (7),

ZD −ΨDεD =

p∑
j=2

t ja j ·W1 +

p∑
j=2

a jW j =

p∑
j=2

a j(t jW1 + W j).

Hence only some linear combinations of the latent variables can be identified.
(b) For bi-factor, let a0, a1, . . . , aG be the columns of AD, and let the latent variables be W0,W1, . . . ,WG. The above
implies that

ZD =

G∑
g=1

agW∗g +ΨDεD = A∗DW∗ +ΨDεD,

where W∗g = tgW0 + Wg for a non-zero vector (t1, . . . , tG) and A∗D = (a1, . . . , aG) is D × G. The identifiable latent
variables W∗g are dependent.

Remark 1. For the bi-factor model, if the global loading vector is roughly equal to a linear combination of the group
loading vectors, then the latent factors are close to non-identifiable, and the oblique factor model may be a good
approximation. A useful diagnostic tool is the condition number of QD = AT

DΨ
−2
D AD because QD is not of full rank if

AD is not of full column rank. If the condition number is small enough, then the bi-factor model is appropriate to use;
otherwise, oblique factor model can be a good fit.
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For the oblique factor model, with BD = ADΣ
1/2
W and using (8), the right-hand-side of (18) becomes:

ΣW − Σ
1/2
W BT

D(BDBT
D +Ψ2

D)−1BDΣ
1/2
W = ΣW − Σ

1/2
W (Ip + BT

DΨ
−2
D BD)−1BT

DΨ
−2
D BDΣ

1/2
W , (19)

and
BT

DΨ
−2
D BD = Σ

1/2
W AT

DΨ
−2
D ADΣ

1/2
W = Σ

1/2
W QDΣ

1/2
W .

After some algebraic calculations, this simplifies to ΣW − (Ip + D−1Q−1Σ−1
W )−1ΣW . The limit of conditional covariance

is O(D−1) if D−1QD → Q with Q being diagonal and non-singular.

Rate of convergence as a function of strength of dependence with latent variables.

• For 1-factor model, QD is 1×1 and can be denoted by the scalar qD. Assume that q̄D = D−1qD := D−1 ∑D
j=1 α

2
j/(1−

α2
j ) → q > 0, so that the dominating term of the conditional variance is D−1q−1. If one or several entries of

loadings increase, q−1 decreases; that is, the convergence will be faster.

• The bi-factor case with a full-rank AD loading matrix is more complicated. We consider several cases to
understand how the dependence affects the conditional variance, and all the claims are inferred from conditional
variance decomposition formula (17) shown in Table 2 and numerical experiments.

case a) If the global loadings are constant, then the group with stronger dependence has a smaller conditional
variance, thus a faster convergence rate. From (17), the conditional variance of local latent factors will be most
affected by the first term because in the second term, the conditional variance of W0 is fixed for all groups, and
the ratio q̃2

g/(1 + qg)2 will not differ much.

case b) Suppose AD is a well-conditioned matrix under small perturbations. If the global loadings are fixed,
and the local loadings for one group, for example, g′ increase a little. From the numerical experiments, the
conditional variance for Wg, g = 0 or g , g′ could increase or decrease a little, but Var(Wg′ |Z D) will decrease.
The argument can also be inferred from (17): as bg′ increases, the first term decreases, and it dominates the
change of conditional variance.

case c) Suppose AD is a well-conditioned matrix under small perturbations. If the global loadings increase a
little but the local loadings remain the same, Var(W0|Z D) will decrease according to the numerical results.

• In the oblique factor model, assuming that the groups are similar in size and increase to infinity, with no group
dominating, the conditional variance of the latent variables is dominated by the term D−1Q−1, where Q is
diagonal and (g, g) entry being the limit of D−1 ∑dg

j=1 α
2
jg/ψ

2
jg as D → ∞. Therefore, the conditional covariance

of latent variables is closely related to the strength of within-group dependence. The proxy variable in the group
with relatively strong dependence will have smaller conditional variance.

Suppose the conditional variance of a latent variable given the observed variables does not go to 0 as D → ∞,
then one cannot expect the corresponding proxy estimates in Section 2 to be consistent. For factor copula models,
the conditional variances of the latent variables do not have closed forms. The results in this section for Gaussian
factor models provide insights into conditions for consistency of proxy estimates in factor copula models as well as
the connection between the rate of convergence and strength of dependence with the latent variables. Under some
regularity conditions on the bivariate linking copulas, it can be shown that the limit of the conditional variance in
factor copula models is also O(D−1).

4.2. Consistency in Gaussian factor models
In this subsection, mild conditions are obtained for consistency of proxy estimates via conditional expectations in

Section 3. The cases that are covered in the theorems have moderate to strong dependence, without loading parameters
going to ±1 as D → ∞. In the latter case, with even stronger dependence with latent variables, there is consistency,
but the proofs would be different because identity (8) would not hold in the limit. The conditions in the theorems
match practical uses of factor models — one might have idea of latent factors that affect dependence within groups of
variables; there is at least moderate dependence among observed variables and dependence is not so strong that one
variable could be considered as a proxy for the latent variable.
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Theorem 2. (Asymptotic properties of factor scores in 1-factor Gaussian model) For (4), suppose there is a realized
infinite sequence of observed variables z1, z2, . . . and a realized infinite sequence of disturbance terms e1, e2, . . . with
realized latent variable w0 (independent of dimension D) from the 1-factor model. For the truncated sequence to the
first D variables, let zD = (z1, . . . , zD)T , eD = (e1, . . . , eD)T , and let the loading matrix or vector be (α1, . . . , αD)T .
Assume

−1 < lim inf
j→∞

α j < lim sup
j→∞

α j < 1, lim
D→∞

D−1
D∑

j=1

|α j| → const, const , 0.

Then for the factor scores defined in equation (9), w̃D − w0 = Op(D−1/2) as D→ ∞.

Remark 2. The proof is given in the Appendix B.1. The assumption on α j uniformly bounded away from ±1 ensures
that the proxies are well-defined in two equivalent forms in (9). The second assumption about the averaged absolute
loadings ensures that the dependence is strong enough, because from Section 4.1, consistency does not hold in the
case of sufficiently weak dependence.

Corollary 3. (Asymptotic properties of factor scores in oblique Gaussian model). Suppose there are realized infinite
sequences of observed variables zT

1 = (z1,1, z2,1, . . .), . . . , zT
G = (z1,G, z2,G, . . .) and realized sequences of disturbance

terms eT
1 = (e1,1, e2,1, . . .), . . . , eT

G = (e1,G, e2,G, . . .), with latent variables w0 = (w0
1, . . . ,w

0
G) from the oblique factor

model with fixed G groups defined in (6). Truncate the sequences to the first dg variables zg,dg for g ∈ {1, . . . ,G} with
no dg dominating others. Let zD = (zT

1,d1
, zT

2,d2
, . . . , zT

G,dG
)T , eD = (eT

1,d1
, eT

2,d2
, . . . , eT

G,dG
). Assume d−1

g ‖ag‖1 6→ 0 as
dg → ∞ for g ∈ {1, 2, . . . ,G}. Let w̃D = (w̃1, . . . , w̃G) be the factor scores defined in (12). Then

w̃g − w0
g = Op(D−1/2), g ∈ {1, . . . ,G}.

The consistency of proxies in the oblique factor model is a straightforward corollary of Theorem 2. Similar to the
1-factor model, the assumptions on the strength of dependence in the model suggests the with-in group dependence is
not weak.

Theorem 4. (Asymptotic properties of factor scores in bi-factor Gaussian model). Suppose there are realized infinite
sequences of observed variables zT

1 = (z1,1, z2,1, . . .), . . . , zT
G = (z1,G, z2,G, . . .) and realized sequences of disturbance

terms eT
1 = (e1,1, e2,1, . . .), . . . , eT

G = (e1,G, e2,G, . . .), with latent variables w0 = (w0
0,w

0
1, . . . ,w

0
G) from the bi-factor

model with fixed G groups defined in (5). Truncate the sequences to the first dg variables zg,dg for g ∈ {1, . . . ,G},
with no dg dominating others. Let zD = (zT

1,d1
, zT

2,d2
, . . . , zT

G,dG
)T , eD = (eT

1,d1
, eT

2,d2
, . . . , eT

G,dG
) and assume that the

loading matrices AD = [a0, diag(a1, . . . , aG)] are of full rank, with bounded condition number over dg → ∞ for all g.
d−1

g ‖a j‖1 6→ 0 for g ∈ {0, 1, . . . ,G}. Let w̃D = (w̃0, . . . , w̃G) be the factor scores defined in (10) and (11). Then

w̃g − w0
g = Op(D−1/2), g ∈ {0, 1, 2, . . . ,G}.

4.3. Consistency in factor copula models
In this section, we state results with mild conditions for the consistency of the proxy variables in the factor copula

models with known parameters. The conditions and interpretation parallel those in the preceding Section 4.2.
We next state some assumptions that are assumed throughout this section.

Assumption 1. (a) The bivariate linking copulas have monotonic dependence, that is, the observed variables are
monotonically related to the latent variables.

(b) For any fixed dimension D, the log-likelihood function with latent variables considered as parameters to be
estimated, satisfy some standard regularity conditions, such as in [4]. For example, continuity of derivatives up
to third-order of the log-densities of the bivariate linking copulas with respect to v’s.

For the conditional expectations for factor copula models, the v’s are treated as parameters and the u’s are realization
of independent random variables when the latent variable are fixed. The proofs make use of the Laplace approximation
method.

Some results in [14] assume the observed variables are stochastically increasing in the latent variables, and this
implies observed variables are monotonically related. The above consists of a mild condition, because one would not
think of using factor models with variables are not monotonically related.
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Theorem 5. (Consistency of proxy in 1-factor copula model with known linking copulas) Suppose there is a realized
infinite sequence u1, u2, . . . , with latent variable v0 (independent of dimension D) from the 1-factor model in (1).
For the truncation to the first D variables, let uD = (u1, . . . , uD)T . Define the averaged negative log-likelihood in
parameter v as

L̄D(v) = −D−1
D∑

j=1

log c jV (u j, v).

Assume limD→∞ L̄D asymptotically has a global minimum and is strictly locally convex at the minimum. Also, assume
the likelihood function satisfies the usual regularity conditions. Consider the proxy defined in (13). As D → ∞, then
ṽD − v0 = Op(D−1/2) as D→ ∞.

Remark 3. The theorem shows that under certain regularity conditions, the latent variables can be approximately
recovered from the observed variables, assuming that the number of variables monotonically linked to the latent
variable is large enough and that the dependence is strong enough. If the overall dependence of the c jV is weak,
with many copulas approaching independence (c jV (u, v) ≈ u for many j), then it is possible that L̄D(v) is a constant
function in the limit. Our assumption on the limiting function of the averaged log-likelihood is mild; if all the bivariate
copulas are strictly stochastically increasing, it’s not hard to show the limiting function is locally convex around the
true realized value v0 and v0 is a global minimum of the function. If the U j are not monotonically related to the latent
variable, then it is possible for L̄D(v) to have more than one local minimum. An example consists of: C jV is the copula
of (U j,V) such that (i) (U j, 2V) follows the Gaussian copula with parameter ρ j > 0 if 1/2 ≤ V < 1 and (ii) (U j, 2V)
follows the Gaussian copula with parameter −ρ j < 0 if 0 < V < 1/2, and the {ρ j} is uniformly distributed in a bounded
interval such as [0.2, 0.8].

Oblique factor copula model with known linking copulas: In the oblique factor copula model, the variables in
one group are linked to the same latent variable and these variables satisfy a 1-factor copula model. Hence, the
assumptions and conclusion for the 1-factor copula model extend to the oblique factor model.

Corollary 6. (Consistency of proxies in oblique factor copula model with known linking copulas). Suppose there are
realized infinite sequences of observed variable values uT

1 ,u
T
2 , . . . ,u

T
G with latent variable values v0 = (v0

1, v
0
2, . . . , v

0
G)T

from the oblique factor model with G groups defined in equation (3). Truncate the sequences to the first dg variables
ug,dg for g ∈ {1, . . . ,G} with no dg dominating. Let uD = (uT

1,d1
,uT

2,d2
, . . . ,uT

G,dG
)T . With D =

∑G
g=1 dg, define the av-

eraged negative log-likelihood in group g as L̄(g)
D (vg) = −D−1 ∑dg

j=1 log cU jg,Vg (u jg, vg). Assume limdg→∞∀g L̄(g)
D asymp-

totically has a global minimum and is strictly locally convex at the minimum. Also assume these likelihood functions
satisfy the usual regularity conditions. Then, consider proxy variable defined in (16), as dg → ∞, ṽgD−v0

g = Op(D−1/2)
for g ∈ {1, 2, . . . ,G}.

Theorem 7. (Consistency of proxies in bi-factor copula model with known linking copulas). Suppose there are real-
ized infinite sequences of observed variable values uT

1 ,u
T
2 , . . . ,u

T
G with latent variables values v0 = (v0

0, v
0
1, v

0
2, . . . , v

0
G)T

from the bi-factor model with G groups defined in (2). Truncate the sequences to the first dg variables ug,dg for
g ∈ {1, . . . ,G}. Let uD = (uT

1,d1
, . . . ,uT

G,dG
)T . Let L0(v0; uD) = log cUD,V0 (uD, v0) be a log-likelihood function in v0

with observed variables uD. For g ∈ {1, . . . ,G}, let Lg(vg; v0,ug,dg ) = log cUg,V0,Vg (ug,dg , v0, vg) be a log-likelihood
function in vg with observed ug,dg and given v0. Define the averaged negative log-likelihood for marginalized density
of (UD,V0) as L̄0D(v0; uD) = −D−1L0(v0; uD) and the averaged negative log-likelihood for marginalized density of
(Ug,dg ,V0,Vg) as L̄gD(vg; v0,ug,dg ) = −D−1Lg(vg; v0,ug,dg ). Assume all the likelihood functions satisfy the usual reg-
ularity conditions. Assume limdg→∞ L̄gD asymptotically has a global minimum and is strictly locally convex at the
minimum. The same assumptions are applied to limD→∞ L̄0D. Then, ṽ0D defined in (14) and ṽgD (̃v0D) for g = 1, . . . ,G
defined in (15) are consistent for v0

0, v0
1, . . . , v

0
G respectively as dg → ∞ for all g.

5. Consistency of proxies with estimated parameters

With a parametric model for the loading matrix in the Gaussian factor models, and parametric bivariate linking
copulas in the factor copula models, the parameters can be estimated and then the proxies in Section 3 can be applied
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with the usual plug-in method. For factor copulas, numerical integration would be needed to evaluate the proxies for
a random sample of size N.

In this section, we prove the consistency of proxies with estimated parameters in two steps. For step 1, we prove
the equations for the proxy variables are locally Lipschitz in the parameters (even as number of parameters increase
as D increases). For step 2, under the assumption that the observed variables can be considered as a sample from a
super-population, all parameters can be estimated with O(N−1/2) accuracy.

The theoretical results of this section and the preceding section support the use of proxies as estimates of latent
variables for D large enough, and N large enough in factor models. The next Section 6 outlines a sequential method
for determining proxies for factor copulas.

5.1. Gaussian factor models

Lemma 8. In the p-factor model (7), let the loading matrix be AT = (a1, . . . , aD, . . .), ÂT = (â1, . . . , âD, . . .) (infinite
sequence) be the perturbation of AT , where â j and a j denotes the jth column of matrix ÂT and AT respectively,
j ∈ {1, 2, . . .}. Suppose there is one realization z = (z1, . . . , zD, . . .) from the factor model with loading matrix A. Let
AD be A truncated to D rows, and similarly define ÂD. Suppose the entries of Ψ2

D, Ψ̂
2
D are bounded away from 0.

Consider the factor scores vector in (9) as a function of the loading matrix: w̃D = w̃D(AD). Let QD = AT
DΨ
−2
D AD,

Q̂D = ÂT
DΨ̂
−2
D ÂD. Suppose D−1QD → Q, D−1Q̂D → Q̂ where Q, Q̂ are both positive definite and well-conditioned

matrices. Then ‖w̃D(ÂD) − w̃D(AD)‖ ≤ KD ·

√
D−1 ∑D

j=1 ‖̂a j − a j‖
2, where the constants KD are bounded as D→ ∞.

5.2. Parametric copula factor models

For parametric models we assume that there is parameter associated with each bivariate linking copula, so that
generically, the copulas of form cUs,V (u, v) in Section 2 are now written as cUs,V (u, v; θs).

Lemma 9. Consider a 1-factor copula model (1) with parametric linking copulas that have monotone dependence
and the bivariate linking copulas satisfy Assumption 1. Let the parameter vector of linking copulas be the infinite
sequence θ = (θ1, θ2, . . . , θD, . . .). Let θ̂ be a perturbation of θ. Assume the parameters of both θ, θ̂ all lie in a
bounded space such that all the linking copulas are bounded away from comonotonicity and countermonotonicity. Let
u = (u1, . . . , uD, . . .) be one realization generated from model with θ. Let θD (or θ̂D), uD be truncated to the first D
linking copulas and variables. Consider the proxy in (13) as a function of θD: ṽD = ṽD(θD). Suppose θ̂D ∈ B̄(θD, ρ)
(ball of sufficiently small radius ρ > 0). Assume for each j, the following partial derivatives of the log copula
densities exist: ∂k log c jV (u j, v; θ j)/∂vk, k ∈ {1, 2, 3}, and ∂k+1 log c jV (u j, v; θ j)/∂θ j∂vk for k ∈ {0, 1, 2}. Also, assume
the derivatives ∂k+1 log c jV (u j, v; θ j)/∂θ j∂vk are uniformly bounded for k ∈ {0, 1, 2} in B̄(θD, ρ). Then there exist a
constant BD which is bounded as D→ ∞ such that

‖̃vD(θ̂D) − ṽD(θD)‖ ≤ BD‖θ̂D − θD‖
∗

where ‖θ̂D − θD‖
∗ :=

√
D−1 ∑D

j=1 ‖θ̂ j − θ j‖
2
2.

Lemma 10. Consider a G-group bi-factor copula model (2) with parametric linking copulas that have monotone
dependence. Let the global linking copula densities be cU jg,V0 (u jg, v0; θ jg,0) in group g, j ∈ {1, 2, . . .}. Let θ(1)

g =

(θ1g,0, θ2g,0, . . .). Let the local linking copula densities be cU jgVg;V0 (CU jg |V0 (u jg|v0), vg; θ jg) in group g, j ∈ {1, 2, . . .}. Let
θ(2)

g = (θ1g, θ2g, . . .) be the vector of parameters for g ∈ {1, . . . ,G}. Let θ(1) = (θ(1)
1 , . . . , θ(1)

G ) and θ(2) = (θ(2)
1 , . . . , θ(2)

G )
with perturbations θ̂(1) and θ̂(2). Assume the parameters in these four vectors are all in a bounded space such that
all the linking copulas are bounded away from comonotonicity and countermonotonicty. Let D = (d1, . . . , dG) and
uT

D = (uT
1 ,u

T
2 , . . . ,u

T
G) be a truncation of infinite-dimensional realization from the model with parameters θD =

(θ(1)
D , θ

(2)
D ), where θ(1)

D ,θ(2)
D consist of θ(1), θ(2) truncated to the first dg in group g. Let θg,dg = (θ(1)

g,dg
, θ(2)

g,dg
), where

θ(1)
g,dg

,θ(2)
g,dg

consist of θ(1)
g , θ(2)

g truncated to the first dg in group g, for g ∈ {1, . . . ,G}. Similarly, define θ̂D, θ̂g,dg .

Let ṽ0D = ṽ0D(θD), ṽgD = ṽgD(θD) be the proxies defined in (14) and (15). Assume θ̂D ∈ B̄(θD, ρ) (ball of suf-
ficiently small radius ρ > 0). Assume for j ∈ {1, . . . , dg}, g ∈ {1, . . . ,G}, that the following partial derivatives
of log copula densities exist: ∂k log cUD,V0 (uD, v0, θD)/∂vk

0, ∂k log cUg,Vg;V0 (ug, vg; v0, θg,dg )/∂vk
g, for k ∈ {1, 2, 3} and
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∂k+1 log cUD,V0 (uD, v0, θD)/∂θ jg,0∂vk
0, ∂k+1 log cUD,V0 (uD, v0, θD)/∂θ jg∂vk

0, ∂k+1 log cUg,Vg;V0 (ug, vg; v0, θg,dg )/∂θ jg∂vk
g,

∂k+1 log cUg,Vg;V0 (ug, vg; v0, θg,dg )/∂θ jg,0∂vk
g, for k ∈ {0, 1, 2}. Also, assume the partial derivatives ∂k+1 log cUD,V0 (uD, v0, θD)/∂θ jg,0∂vk

0,
∂k+1 log cUD,V0 (uD, v0, θD)/∂θ jg∂vk

0, ∂k+1 log cUg,Vg;V0 (ug, vg; v0, θg,dg )/∂θ jg∂vk
g, ∂k+1 log cUg,Vg;V0 (ug, vg; v0, θg,dg )/∂θ jg,0∂vk

g

are uniformly bounded for k ∈ {0, 1, 2} in B̄(θD, ρ). Then there exists constants BD and B∗D that are bounded as dg → ∞

for all g, such that:

‖̃v0D(θ̂D) − ṽ0D(θD)‖ ≤ BD‖θ̂D − θD‖
∗

‖̃vgD(θ̂D) − ṽgD(θD)‖ ≤ B∗D‖θ̂g,dg − θg,dg‖
∗, g ∈ {1, . . . ,G},

where ‖θ̂D − θD‖
∗ :=

√
(2D)−1 ∑G

g=1
∑dg

j=1 ‖θ̂ jg − θ jg‖
2
2 + ‖θ̂ jg,0 − θ jg,0‖

2
2, and

‖θ̂g,dg − θg,dg‖
∗ :=

√
(2dg)−1 ∑dg

j=1 ‖θ̂ jg − θ jg‖
2
2 + ‖θ̂ jg,0 − θ jg,0‖

2
2.

5.3. Estimation of parameters in blocks
Since the general Gaussian factor model is non-identifiable in terms of orthogonal rotation of the loading matrix,

for a model with two or more factors, consistency of proxy variables requires a structured loading matrix such as that
of the bi-factor model or oblique factor model.

In order to have consistent estimates of parameters, an assumption is needed on the behavior as the number of
variables increase to∞. A realistic assumption is that the observed variables (or their correlations, partial correlations,
linking copulas) are sampled from a super-population. Then block estimation of parameters is possible, with a finite
number of parameters in each block. In the structured factor copula models with known parametric family for each
linking copula, the parameters are estimated via sequential maximum likelihood with variance of order O(1/N) for
sample size N. The next lemma summarizes the procedures for block estimation in the Gaussian and copula factor
models. We unify the notation of observed variables to be X; in Gaussian models, X = Z, and in copula models,
X = U. Assume that the data from a random sample with D variables are {Xi : i = 1, . . . ,N}.

The idea behind block estimation is that, with the super-population assumption, the factor models are closed under
margins (the same latent variables apply to different margins), and parameters can be estimated from appropriate
subsets or blocks. Standard maximum likelihood theory for a finite number of parameters can be applied, and there is
no need to develop theory for simultaneous estimates of all parameters with the number of parameters increasing to
∞.

Lemma 11. (Block estimation procedure for 1-factor, bi-factor and oblique factor model). The observed variables
are split into several blocks and each block is a marginal factor model linking to the same latent variables. Estimates
of parameters in different blocks are concatenated. In the Gaussian case, the maximum likelihood (ML) estimates of
factor loadings are unique up to signs, the signs of the estimates in each block can be adjusted appropriately.

1. (1-factor model): For j ∈ 1, 2, . . . ,D, split D variables into K blocks of approximate size B > 5 in a sequential
way, the partition B = {B1,B2, . . . ,BK} where the cardinality of Bk is Bk ≈ B for k ∈ {1, . . . ,K} . This leads
to K marginal 1-factor models with the same latent variable. For the convenience of determining the signs of
estimated parameters (or positive or negative dependence in the linking copulas), add the first variable X1 in
block B2, . . . ,BK . The estimates of the parameter associated with X1 can be averaged over the blocks. The
estimated parameters are (θ̂B1 , θ̂B2 , · · · , θ̂BK ) after adjusting the signs of estimated parameters in each block.

2. (Oblique factor model): Under the assumption of oblique factor model, there are G groups with dg dependent
variables in the gth group. For each group, split dg variables into K blocks of approximate size d(k)

g dependent
variables for k ∈ {1, . . . ,K}. Keep the ratio of size of G groups invariant in each block when splitting, that
is d(k)

g /d(k)
h ≈ dg/dh for g , h, g, h ∈ {1, 2, . . . ,G} in block k. The partition gives K blocks, for block k,

{Xi j∈Bk , : j ∈ {B(1)
k , . . . ,B

(g)
k , . . . ,B(G)

k }; i ∈ {1, 2, . . . ,N}} where B(g)
k denotes the kth block in the gth group.

For the convenience of determining the signs (or positive or negative dependence in the linking copulas), add
G auxiliary variables which are the first variable in G groups for block B1 to groups in blocks B2, . . . ,BK .
Suppose the estimates of parameters involving the variables in block k of each group are θ̂(1)

Bk
, θ̂(2)
Bk
, . . . , θ̂(G)

Bk
, for

k ∈ {1, . . . ,K}. For parameters that are estimated over different blocks, such as ΣW , an average could be taken
over the different blocks.
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3. (Bi-factor model) The block method to estimate parameters in bi-factor model is similar as that used in oblique
factor model. The auxiliary variables that help to determine the signs of parameters are now the first variable
X1 and G − 1 variables which are the first variable in group g, g ∈ {2, . . . ,G} for block B1. The variables are
added to G groups in blocks B2, . . . ,BK .

Lemma 12. (Asymptotic properties of estimated parameters in 1-factor model, bi-factor model, oblique factor model).
Suppose there is a sample of size N. For the 1-factor model in (1) and (4), bi-factor model in (2) and (5) and oblique
factor model in (3) and (6), for any fixed dimension D, let θD be the parameter vector in the factor models and
θ̂D be the corresponding estimates of the parameters, using the block estimation method. Suppose parameters from
the linking copulas behave like a sample from a super-population (bounded parameter space, bounded away from
comonotonicity/countermonotonicity), then

θ̂ j − θ j = Op(N−1/2), uniformly for j ∈ {1, . . . ,D}.

Proof. For all factor models in Section 2, the block method in Lemma 11 gives a partition of variables into several
blocks. In each block, they are marginal factor models. In the Gaussian models, the results of maximum likelihood
estimation ([1]) could be applied in each block. In the copula factor models, asymptotic maximum likelihood theory
could be applied under standard regularity conditions. The super-population and other regularity assumptions imply
that the expected Fisher information matrices (and standard errors) can be uniformly bounded over different block
sizes.

Combined the previous results in this section, we show the consistency of proxy variables with N,D → ∞. Due
to the consistency of proxy variable with the known parameters, with the Lipschitz inequalities, the consistency still
hold when the parameters are estimated, as both N,D → ∞. The results in Gaussian and factor copula models are
similar, so the results are only stated in the copula case.

Theorem 13. (Consistency of proxies in 1-factor, bi-factor and oblique factor copula models). Suppose the 1-factor,
bi-factor and oblique factor copula models satisfy the Assumption 1 and the regularity conditions in Theorem 5,
Theorem 7, and Corollary 6 respectively. Let the parameters θ be (θ1, θ2, . . . , θD, . . .), suppose θ̂ j is a estimate of θ j.
Assume the factor models are identifiable with respect to parameters, and ‖θ̂ j − θ j‖ = Op(N−1/2) for all j. Let θD be θ
truncated to the first D random variables u j’s, then as D→ ∞, the following hold.

(1) For 1-factor copula model, let (Ui1,Ui2, . . . ,UiD, . . . ,Vi) be a random infinite sequence for i ∈ {1, . . . ,N}. With
ṼD(θ̂D) being the proxy random variable, ‖ṼiD(θ̂D) − Vi‖ = op(1).

(2) For bi-factor copula model with G groups, let (UT
i1, . . . ,U

T
ig, . . . ,U

T
iG,Vi0,Vi1, . . . ,ViG) be a random infinite

sequence for i ∈ {1, . . . ,N}, where UT
ig = (Ui1g,Ui2g, . . . ,Uidgg). With Ṽ0D(θ̂D), Ṽ1D(θ̂D), . . . , ṼG D(θ̂D) for the proxy

variables, then ‖Ṽig,D(θ̂D) − Vig‖ = op(1) for g ∈ {0, 1, . . . ,G}.
(3) For oblique factor model with G groups, let (UT

i1, . . . ,U
T
ig, . . . ,U

T
iG,Vi1, . . . ,ViG) be a random infinite sequence

for i ∈ {1, . . . ,N}, where UT
ig = (Ui1g,Ui2g, . . . ,Uidgg). With Ṽ1D(θ̂D), . . . , ṼG D(θ̂D) for the proxy variables, then

‖Ṽig,D(θ̂D) − Vig‖ = op(1), g ∈ {1, . . . ,G}.

Proof. (1) For 1-factor copula model, based on triangle inequality,

‖ṼiD(θ̂D) − Vi‖ = ‖ṼiD(θ̂D) − ṼiD(θD) + ṼiD(θD) − Vi‖

≤ ‖ṼiD(θ̂D) − ṼiD(θD)‖ + ‖ṼiD(θD) − Vi‖

For the first term in the right-hand side, Lemma 9 implies that it has the same order as Op(
√

D−1 ∑D
j=1 ‖θ̂ j − θ j‖

2) =

Op(N−1/2). By Theorem 5, the second term is of order Op(D−1/2) , then ‖ṼiD(θ̂D) − Vi‖ = op(1) as D,N → ∞. For
cases (2) and (3), the same proof technique can be applied in bi-factor and oblique factor model and we omit details
here.

Remark 4. In the proof for consistency of the proxy variables, we assume univariate margins are known. For Gaussian
factor models with margins, we assume µ’s and σ’s are known or estimated before transforming to standard normal.

14



For Gaussian factor dependence models and non-Gaussian margins, we assume univariate CDFs are known or have
been estimated before transforming to standard normal. For factor copulas models, we assume univariate CDFs are
known or have been estimated before transforming to U(0,1). In practice, proxies are estimated after the estimation of
univariate margins, and there is one more source of variability beyond what we studied in this paper. But consistency
and convergence rates are not affected because univariate distributions can be estimated well with a large sample size.

6. Sequential estimation for parametric factor copula models

In this section, sequential methods are suggested for estimating the latent variables and the parameters of the link-
ing copulas, allowing for choice among several candidate families for each observed variable. Preliminary diagnostic
plots can help to check for deviations for the Gaussian copula in terms of tail dependence or tail asymmetry ([12];
Chapter 1 of [9]).

For high-dimensional multivariate data for which initial data analysis and the correlation matrix of normal scores
suggest a copula dependence structure of 1-factor, bi-factor or oblique factor, a sequential procedure is presented to
estimate the latent variables with proxies, decide on suitable families of linking copulas, and estimate parameters of
the linking copulas without numerical integration. Suppose the parametric linking copula families are not known or
specified in advance (the situation in practice), the sequential method starts with unweighted averages estimates in
[14] or factor scores computed from an estimated loading matrix after observed variables are transformed to have
N(0, 1) margins. Then, the “conditional expectation” proxies are constructed and are used to estimate the parameters
by optimizing the approximate (complete) log-likelihood with the latent variables assumed observe at the values of
the proxy variables. The copula density which includes latent variables does not require the integrals in Section 2.
More details are illustrated below.

Suppose there is sample of size N from the model, in the 1-factor model, we denote the i-th sample as ui =

(ui1, . . . , uiD) and in the bi-factor or oblique factor, we denote the samples as ui = (uT
i,1, . . . ,u

T
i,G) (the dependence on

dg in uig,dg is suppressed for simplicity.)
1-factor copula model. If the latent variable is assumed observed, then the complete log-likelihood is

N∑
i=1

log cU1:D,V (ui1, . . . , uiD, vi; θD) =

N∑
i=1

D∑
j=1

log c jV (ui j, vi; θ j). (20)

• Stage 1: Define the “unweighted average” proxy variable as U0 = PU
D(D−1 ∑D

j=1 U j), where PU
D is the cdf

of ŪD := D−1 ∑D
j=1 U j. With enough dependence, ŪD does not converge in probability to a constant. For

each sample i, ūi = D−1 ∑D
j=1 ui j and ui,0 = [rank(ūi) − 0.5]/N; rank(ūi) is defined as the rank of ūi based on

ū1, . . . , ūN . Substitute vi = ui,0 in the log-likelihood (20), and obtain the first-stage estimates of the parameters
in θ from the approximate log-likelihood. This is the method of [14].

• Stage 2: Construct the conditional expectations proxies based on (13) with the first-stage estimated parameters
of θ. One-dimensional Gauss-Legendre quadrature can be used. Denote the proxies as Ũ0. Substitute vi =

ũi,0 in the log-likelihood (20), obtain the second-stage estimates of the parameters from the approximate log-
likelihood.

Bi-factor copula model. If the latent variables are assumed observed, then the complete log-likelihood can be
expressed as

N∑
i=1

log cU1:D,V0,Vg (uT
i,1, . . . ,u

T
i,G, vi,0, vi,g; θ) =

N∑
i=1

G∑
g=1

dg∑
i=1

log cU jg,V0 (ui, jg, vi,0; θ jg,0)

+ log cU jg,Vg;V0 (CU jg |V0 (ui, jg|vi,0), vi,g; θ jg). (21)

Suppose the bi-factor structure is known, i.e., the number of groups and the number of variables in each group,
estimation can be performed in two stages.
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• Stage 1: Assume the variables are monotonically related and that the Gaussian copula is reasonable as a first-
order model. Convert data into normal scores and fit a Gaussian model with bi-factor structure. Compute the
factor scores in (10) and (11), and denote as w̃i0, w̃i1, . . . , w̃iG. The first-stage proxy variable are defined as
Ṽ (1)

0 = PU
D,0(W̃0), Ṽ (1)

g = PU
dg,g

(W̃g), g ∈ {1, . . . ,G}; where PU
D,0 is the cdf of W̃0, and PU

dg,g
is the cdf of W̃g,

g ∈ {1, . . . ,G}. Letting vi,0 = ṽ(1)
i,0 , vi,g = ṽ(1)

i,g in log-likelihood (21), obtain the first-stage estimates of the
parameters from the approximate log-likelihood.

• Stage 2: Construct the conditional expectation proxies based on equation (14) and (15) with first-stage estimates
plugged in. Nested 1-dimensional Gauss-Legendre quadrature can be used. Denote the conditional expectation
proxies as Ṽ (2)

0 , Ṽ (2)
g , g ∈ {1, . . . ,G}. Letting vi,0 = ṽ(2)

i,0 , vi,g = ṽ(2)
i,g in log-likelihood (21), obtain the second-stage

estimates of the parameters from the approximate log-likelihood.

Oblique factor copula model. Similar to the bi-factor copula model, assume the group structure of the model is
known. If the latent variables are assumed observed, the complete log-likelihood is

N∑
i=1

log coblique,U1:D,V1:G (uT
i,1, . . . ,u

T
i,G, vi,1, . . . , vi,G; θ) =

N∑
i=1

G∑
g=1

dg∑
j=1

log cU jg,Vg (ui, jg, vi,g; θ jg)

+ log cV(vi,1, . . . , vi,G; θV), (22)

where θ = (θT
d1,1
, . . . , θT

dG ,G
, θT

V ), and cV is the copula density of the latent variables.

• Stage 1: For g ∈ {1, . . . ,G}, let Ūg = PU
dg,g

(d−1
g

∑dg

j=1 U jg), where PU
dg,g

is the cdf of Ūg := d−1
g

∑dg

j=1 U jg. For each

sample, ūi,g = d−1
g

∑dg

j=1 ui, jg and ui,g = [rank(ūi,g) − 0.5)]/N, where rank(ūi,g) is defined as the rank of ūi,g based
on ū1,g, . . . , ūN,g. Let vi,g = ui,g in log-likelihood (22) to get the first-stage estimates of the parameters from the
approximate log-likelihood. This is the method of [14].

• Stage 2: Construct the conditional expectations proxies based on (16) with the first-stage estimated parameters.
This requires 1-dimensional numerical integration. Denote the proxies as Ũg. Substitute vi,g = ũi,g in the
log-likelihood (22), and obtain the second-stage estimates of the parameters.

For 1-factor and oblique factor models, unweighted averages can be consistent under some mild conditions [14],
but the above methods based on conditional expectations perform better from the simulation results shown in the next
section. The estimation of proxies and copula parameters could be iterated further if desired stage 2 estimates differ a
lot from stage 1 estimates.

For optimizing the above approximate log-likelihoods using proxies for the latent variables, we adopt a modified
Newton-Raphson algorithm with analytic derivatives; see [13] for details of the numerical implementation.

7. Simulation experiments

This section has some simulation results to support and explain ideas in previous sections. In all the following
settings, the parameters on the linking copulas are designed to be generated uniformly from a bounded subset of the
parameter space; this is an example of sampling from some super-population. Many different scenarios were assessed
and some representative summaries are given in three subsections for the 1-factor, bi-factor and oblique factor copula
models.

The sequential approach of Section 6 is compared with the “exact” method from the implementation of [12][13]
with R front-end and FORTRAN 90 back-end for minimizing the negative log-likelihood with a modified Newton-
Raphson algorithm; the “exact” method is indicated with the superscript m = 0. The proxy approach in [14] for
1-factor and oblique factor, as summarized in Section 6 is indicated with the superscript m = 1. The stage 2 estimates
for all three copula models is indicated with the superscript m = 2. When the linking copula families are assumed
known, differences of copula parameter estimates are summarized in the Kendall’s tau scale. If linking copula families
are decided based on a few parametric choices that cover a range of tail asymmetry and strength of dependence in
joint tails, additional summaries are based on the tail-weighted dependence measures defined in [15]. This is because
different bivariate copula families can have members that are similar in tail properties.
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7.1. One-factor copula model

Two settings are summarized in Table 3 to illustrate the performance of the sequential approach. The sample size
is N and there are D variables with bivariate linking copulas C jV (·, ·; θ j), j ∈ {1, · · · ,D}, to the latent variable. The
parameters θ = (θ1, . . . , θD) are independent U(θL, θU), where, θL and θU are chosen so that the Kendall’s taus of the
bivariate copulas range between 0.4 and 0.8 for moderate to strong dependence. The simulation size is 1000.

N D linking families [θL, θU]
setting1 500 (20,40,60,80) Frank [4.2.18.5]
setting2 500 (30,45,60,90) Gumbel, t, Frank {(1.67, 5), (4.2, 18.5), (0.59, 0.95)}

Table 3: Two simulation settings for the 1-factor copula model; in setting2, the number of linking copulas in different families are approximately
D/3, and the ν parameter of Student-t copulas is fixed at 5. The parameters are chosen to let the Kendall’s tau be in [0.4,0.8].

In setting1, the main summary is the mean absolute error (MAE) of estimated parameters for three different meth-
ods (m = 0, 1, 2 as indicated above): θ̂m

MAE = (ND)−1 ∑N
i=1

∑D
j=1 |θ̂

m
i j − θi j|, where θi j is the parameter of C j,0 generated

at the ith simulation and θ̂m
i j is the corresponding estimate using the different approaches. An additional summary is

the MAE of the differences between the estimates obtained from the proxy methods and the exact approach, as well
as the differences of corresponding Kendall’s taus (function of the estimated bivariate linking copula):

θ̂m
|diff| =

1
ND

N∑
i=1

D∑
j=1

|θ̂m
i j − θ̂

0
i j|, τ̂m

|diff| =
1

ND

N∑
i=1

D∑
j=1

|τ̂m
i j − τ̂

0
i j|, m = 1, 2. (23)

In setting2, summaries include the averaged differences of the dependence measures between the true and fitted
models over the D bivariate linking copulas:

[M̂diff]m
mean =

1
D

D∑
j=1

|[M̂model] j − [Mtrue] j|, m = 1, 2, (24)

where the measure M can be Kendall’s tau, and tail-weighted upper/lower tail dependence as defined in [15]. Denote
them as M = τ, ζα,U(20), ζα,L(20) respectively.

To compare the proxies as estimated latent variables, a summary is the RMSE of the proxies of the two methods:

v̂m
RMSE =

{ 1
KN

K∑
k=1

N∑
i=1

(
v̂m

ki − vki
)2
}1/2

, m = 1, 2, (25)

where vki is the latent variable for the ith observation vector in the kth simulation.

D θ̂0
MAE θ̂1

MAE θ̂2
MAE θ̂1

|diff| θ̂2
|diff| |τ̂diff|1mean |τ̂diff|2mean v̂m=1

RMSE v̂m=2
RMSE

20 0.493 0.680 0.750 0.545 0.578 0.010 0.008 0.041 0.032
40 0.474 0.582 0.552 0.374 0.283 0.006 0.004 0.032 0.025
60 0.472 0.565 0.505 0.320 0.184 0.005 0.002 0.028 0.023
80 0.471 0.544 0.485 0.270 0.138 0.004 0.002 0.026 0.016

Table 4: 1-factor copula models with all Frank linking copulas; simulation size 1000, sample size N = 500, θ uniform in (θL, θU ) as specified
in Table 3. Summaries from (23), (24) and (25) for 3 approaches — superscript m = 0: exact; superscript m = 1: unweighted average proxy;
superscript m = 2: sequential.
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D [τ̂diff]m
mean [ζ̂diff

α,U]m
mean [ζ̂diff

α,L]m
mean v̂m=1

RMSE v̂m=2
RMSE

30 0.017/0.015 0.028/0.025 0.026/0.019 0.041 0.027
45 0.016/0.014 0.024/0.021 0.021/0.016 0.035 0.022
60 0.015/0.013 0.022/0.019 0.019/0.014 0.032 0.019
90 0.014/0.012 0.020/0.017 0.017/0.014 0.028 0.017

Table 5: 1-factor copula model with linking copulas from Gumbel, t and Frank families; Simulation size 1000, sample size N = 500. In each
simulation θ is uniform in (θL, θU ) as specified in Table 3. The summaries are for (24) and (25) and are shown in order m = 1/m = 2 respectively
in columns 2 to 4.

From Table 4, the two proxy approaches can give accurate parameter estimates comparable to those obtained from
the exact likelihood when D ≥ 40. The sequential approach performs better than the “unweighted average” approach.
The differences in dependence measures between the two proxy approaches and the exact approach decrease with
the increasing dimension. The sequential approach gives the parameter estimates closer to the exact approach than
that in [14]. In addition, the conditional expectation proxies are closer to the true realized latent variables. Similar
observations can be seen in Table 5. In setting2, the proxy approach can identify the correct copula families in most
cases, though sometimes the method selects BB1 copulas with similar tail behavior to the true linking Gumbel copulas.

7.2. Bi-factor copula model

Two settings are summarized in Table 6 to illustrate the sequential approach. The sample size is N and there are D
variables and 2D linking copulas. The number of groups G = 3 and the size of each group is approximately D/3. The
parameters of the D copulas linking the observed variables and the global latent variable are generated uniformly in
(θL, θU) so that there is a wide range for the dependence between the observed variables and the global latent variable.
For the D bivariate copulas for conditional dependence, the parameters are generated uniformly from (θLL, θUU) so
that the within-group dependence is strong. Also, the parameter setting ensures the condition number (in Remark 1)
of the QD, obtained from fitted bi-factor Gaussian factor structure on the data transformed to N(0, 1) scales, is small
enough for a reasonable convergence rate. In both setting, the simulation size is 1000.

N D linking families [θL, θU] (τ) [θLL, θUU] (τ)

setting1 1200 (30,60,90,120) Frank/Frank [1.87,8] (0.2,0.6) [4.2,11.5] (0.4,0.7)
setting2 2000 (30,60,90) BB1/Frank [0.3, 1] × [1.1, 2.5] (0.2,0.7) [8.5,18.5] (0.6,0.8)

Table 6: Two simulation settings for the bi-factor copula model; In setting2, the D global linking copulas are in the BB1 family and the D local
linking copulas are in the Frank family. For the comparison in setting2, D = 120 would take too much computational time for the exact approach.
The range of Kendall’s tau corresponds to the range of parameters are included after the parameter interval. The condition number of Q matrix is
around 50 in setting1 and 70 in setting2.

As in the previous subsection, summaries are MAE of estimated parameters in the global and local linking copulas.
Also summarized are differences in estimated parameters and corresponding Kendall’s tau between the proxy method
and the exact method. For setting2, the sequential approach is applied in two cases: (a) assuming the linking copula
families are known; (b) assuming the linking copula families are to be decided. In setting1, the linking copula families
are assumed known. In setting2 with case (b), summaries are as in (24). The simulation results are summarized in
Table 7 and Table 8.
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D Global linking copulas Local linking copulas RMSEproxy

Frank θ̂m
glob:MAE θ̂m=2

glob:|diff| τ̂m=2
glob:|diff| θ̂m

loc:MAE θ̂m=2
loc:|diff| τ̂m=2

loc:|diff| v̂0/v̂g

30 0.160/0.352 0.306 0.020 0.260/1.000 0.959 0.029 0.073/0.100
60 0.145/0.256 0.201 0.012 0.239/0.461 0.377 0.012 0.054/0.073
90 0.139/0.234 0.180 0.010 0.230/0.320 0.201 0.007 0.045/0.061
120 0.135/0.233 0.183 0.010 0.227/0.283 0.159 0.006 0.040/0.053

Table 7: Bi-factor copula model with all linking copulas in the Frank family; Simulation size 1000, sample size N = 1200, number of variables
in each group equal and set to be dg = 10, 20, 30, 40, g = 1, 2, 3. The parameters are generated as specified in Table 6. For D global/local linking
copulas, summaries of θ̂MAE, θ̂diff, τ̂diff for approaches superscript m = 0: exact; superscript m = 2: sequential are shown; For MAE, the results are
shown for m=0/m=2 respectively.

From Table 7, the proxy method can give parameter estimates close to that of exact approach when dg ≥ 20. The
differences in the estimates between the proxy and exact methods decrease as the dimension becomes large. Also,
the sequential conditional expectation proxies are getting closer to the realizations of latent variables as dg increases.
The global latent variables can be estimated more accurately than the local ones since all the observed variables are
used for estimation. A similar observation can be found in Table 8 in the case where copula families are not specified.
From the results in the second part of Table 8, the dependence measures of the estimated linking copulas are close
to those of the actual linking copulas. The method will also select t, Gumbel copula, or survival BB1 copula for
the global linking copulas, and the selected copulas have similar tail behaviors to the actual ones. The RMSE of the
proxies indicates that the latent variables can be estimated well even though some of the linking copula families are
misspecified.

D Global linking copulas Local linking copulas RMSEproxy

case (a) θ̂m
glob:MAE θ̂m=2

glob:|diff| τ̂m=2
glob:|diff| θ̂m

loc:MAE θ̂m=2
loc:|diff| τ̂m=2

loc:|diff| v̂0/v̂g

30 0.032/0.145 0.142 0.013 0.377/1.290 0.965 0.013 0.042/0.075
60 0.030/0.144 0.141 0.008 0.278/0.440 0.349 0.008 0.030/0.059
90 0.029/0.140 0.139 0.010 0.265/0.416 0.358 0.009 0.027/0.053

case (b) [τ̂diff]m=2
mean [ζ̂diff

α,U ]m=2
mean [ζ̂diff

α,L]m=2
mean [τ̂diff]m

mean [ζ̂diff
α,U ]m=2

mean [ζ̂diff
α,L]m=2

mean v̂0/v̂g

30 0.013 0.024 0.037 0.015 0.018 0.018 0.042/0.075
60 0.012 0.023 0.028 0.007 0.008 0.008 0.031/0.058
90 0.013 0.025 0.022 0.008 0.009 0.009 0.027/0.053

Table 8: Bi-factor copula model with BB1 global linking copulas and Frank local linking copulas; Simulation size 1000, sample size N = 2000,
number of variables in each group equal and set to be dg = 10, 20, 30, g = 1, 2, 3. For D global/local linking copulas, θ̂MAE, θ̂diff, τ̂diff for
approaches superscript m = 0: exact; superscript m = 2: sequential are shown. For MAE, the results are shown for m=0/m=2 respectively; In case
(b), [τ̂diff]mean, [ζ̂diff

α,U ]mean, [ζ̂diff
α,L]mean are the averaged differences in the dependence measures between true and fitted models over D global/local

linking copulas. The results are only shown for the sequential method.

7.3. Oblique factor model

A simulation setting consists of K = 1000 replications of sample size N = 1000 from a (nested) oblique copula
model in (3) with G = 3 groups of equal group size dg; dg = 10, 15, 20, 30. The density cV is assumed to have a
one-factor structure with Frank linking copula, because this is the nested copula in [13] for which only 2-dimensional
quadrature is needed instead of G-dimensional. The parameters in cV are generated uniformly in (θL, θU) = (3, 6) such
that the Kendall’s tau is between 0.3 to 0.5. The bivariate linking copulas in three groups are in the Gumbel, Frank and
t families respectively. For each group, the parameters for the linking copulas are generated uniformly in (θLL, θUU),
for Gumbel, BB1 and student-t copulas, with (θLL, θUU) in (1.67, 5), (0.25, 2) × (1.5, 2.5), (0.59, 0.95) respectively.
The ν parameter of Student-t copulas is fixed at 5. The Kendall’s taus for linking copulas in each group are between
0.4 and 0.8. Proxy variables are used to decide on the families for the linking copulas in each group. The simulation
results are summarized in the Table 9.
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D Global linking copulas Local linking copulas RMSEproxy

θ̂RMSE [τ̂diff]m
mean [τ̂diff]m

mean [ζ̂diff
U,α]m

mean [ζ̂diff
L,α]m

mean

30 0.514/0.489 0.028/0.025 0.022/0.029 0.029/0.023 0.024/0.019 0.067/0.056
45 0.488/0.475 0.026/0.024 0.016/0.021 0.025/0.018 0.022/0.016 0.056/0.045
60 0.471/0.460 0.025/0.023 0.014/0.017 0.022/0.016 0.020/0.015 0.049/0.039
90 0.479/0.478 0.025/0.024 0.012/0.014 0.019/0.015 0.018/0.013 0.040/0.031

Table 9: Oblique factor copula model with G = 3 groups of equal group size dg; dg = 10, 15, 20, 30; Sample size N = 1000; Simulation size is
1000. Summaries from (24) and (25) for 2 approaches — superscript m = 1: unweighted proxy; superscript m = 2: sequential. The results are

shown for m = 1/m = 2 respectively. θ̂m
RMSE =

√
1

NG
∑N

i=1
∑G

g=1 |θ̂
m
ig − θig |2, where θig is the parameter of the copula linking the gth group-specific

latent variable with the latent variable at the ith simulation.

From Table 9, the differences in Kendall’s tau, and empirical dependency measures are decreasing as the dimension
becomes large. The two proxy methods can perform well when dg ≥ 20 provided the within-group dependence is
strong. From the results in local linking copulas, the unweighted average proxy approach has slightly smaller averaged
differences in Kendall’s tau while the sequential approach has smaller averaged differences in the empirical upper and
lower dependence measures, as defined in (24). In addition, the conditional expectation proxies have smaller RMSEs
and are closer to the true realized latent variables.

8. Factor models with residual dependence

It is important that we can show that proxy estimates for latent variables can be adequate for some factor models
when the sample size is large enough and there are enough observed variables linked to each latent variable. However,
as the number of variables increase, it is unlikely that factor models with conditional independence given latent
variable continue to hold exactly. [14] have a partial study of their simple proxies in the case of weak conditional
dependence of observed variables given the latent variables. This is called weak residual dependence; see also [10]
and references therein.

For the proxies in Section 3, we have obtained conditions for weak residual dependence for which these proxies
(derived based on assumption of conditional independence) are still consistent. We indicate a result in this section
for the Gaussian 1-factor model. There are analogous conditions for the 1-factor, bi-factor and oblique factor copula
models.

With the linear representation as the Gaussian 1-factor model defined in (4), the residual dependence indicates that
ε j are not independent. Let ΩD be the correlation matrix of εD = (ε1, . . . , εD)T , ΓD = ΨDΩDΨD, and Ψ2

D is a diagonal
matrix with diagonal entries of ΓD. The factor scores are defined as w̃D = (I + AT

DΨ
−2
D AD)−1 AT

DΨ
−2
D zD.

Suppose the maximum eigenvalue of matrixΩD is bounded as D→ ∞, the model is an approximate factor model
from the definition in [6]. This assumption is sufficient for the defined proxy to be asymptotically consistent. An
equivalent assumption, which is easier to check, is given below. Similar assumptions are presented in [3].

Assumption 8.1. Let ΩD = (ωs,t)1≤s,t≤D be the correlation matrix of εD. Let S D =
∑D

j=1 ε j and ε̄D = S D/D, then
E(S 2

D) =
∑D

s=1
∑D

t=1 ωs,t. Assume

0 < lim inf
D→∞

E(S 2
D)

D
< lim sup

D→∞

E(S 2
D)

D
< M

where M is a positive constant.

The above Assumption implies Var(ε̄D) = O(D−1), the same order as the case of iid. Under the Assumption 8.1
and the assumption on the loadings in Theorem 2, it is shown in B.2 that w̃D − w0 = Op(D−1/2) as D → ∞. That is,
if the residual dependence is weak, the consistency of the proxy variable defined from a slightly misspecified model
still holds with the same convergence rate.
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Remark 5. The assumptions indicate the summation of entries in matrix residual correlation matrix ΩD is of O(D).
Let ωs+ =

∑D
t=1 ωst. If ωs+ is O(1) as D → ∞ for all s, then Assumption is satisfied; e.g., ε’s are indexed to have

ante-dependence of order 1: 0 < r1 < ω j, j+1 < r2 < 1 for all j, and ω jk =
∏k−1

i= j ωi,i+1 for k − j ≥ 2. If ωs+ is O(D)
as D → ∞ for all s, then Assumption is not satisfied; e.g., ε1 is dominating: 0 < r1 < ω1, j < r2 < 1 for all j, and
ω jk = ω1 j · ω1,k.

In the 1-factor copula model with weak residual dependence, with the same notations and assumptions in Theorem
5, there are similar sufficient conditions. If the copula for residual dependence is multivariate Gaussian, a sufficient
condition is:

D∑
j=1

D∑
k=1

Cor
(
CU j |V (U j|V = v0),CUk |V (Uk |V = v0)

)
= O(D) ∀ 0 < v0 < 1. (26)

Similar ideas extend to residual dependence for bi-factor and oblique factor copulas.

9. Discussion and further research

This paper proposes the conditional expectation proxies of the latent variables in some factor copula models and
shows the consistency of proxy variables under some mild conditions. For high-dimensional factor copula models with
a large sample size (large N, large D), simulation studies show that the sequential estimation approach can efficiently
estimate the latent variables and select the families of linking copulas as well as estimate the copula parameters.

There are other recent methods for factor copula models that use Bayesian computing methods. For 1-factor copula
model, [17] use reversible jump MCMC to select the bivariate copula links during the sampling process and to make
inferences of the model parameters and latent variables. [16] utilize a Bayesian variational inference algorithm to
make inferences for structured factor models but they make a strong assumption on the form of posterior distributions.
Compared to their approaches, our inference method is more intuitive and does not need to fix a factor structure. The
sequential procedures fit better with the use of Gaussian factor models as a started point to consider different factor
structures that fit the data.

Our sequential proxy methods improve on the approach in [14] for 1-factor and oblique factor models, and can
handle bi-factor copula models under some conditions. The sequential proxy procedures require numerical integration
to compute second-stage proxies but not for maximum likelihood iterations for copula parameters, and hence the
computation effort is reduced at lot. The simulation studies show the conditional expectation proxies are usually
closer to the realized latent variables, leading to more accurate estimates of the parameters than that obtained from the
“unweighted average” proxy approach in [14] in the 1-factor or oblique factor models.

Applications of factor copula models making use of the theory in this paper will be developed separately. Topics
of further research and applications include the following.

(a) If the 1-factor structure is not adequate and group structure of observed variables cannot be determined from
context, then a p-factor structure with varimax rotation can be fit to observed variables in the normal scores scale to
check if an interpretable loading matrix with many zeros, corresponding to variables in overlapping groups, can be
found. If so, for the factor copula counterpart, the sequential approach for the bi-factor copula can be extended. If
the number p of latent variables is three of more, the exact copula likelihood would require p-dimensional Gaussian
quadrature and we would not be able to compare estimation of copula parameters via proxies and via the exact
likelihood. However the theory and examples in this paper suggest that the proxy approach will work if the number
of variables linked to each latent variable is large enough.

(b) If one latent variable can explain much of the dependence but any p-factor loading matrix (with p ≥ 2) is
not interpretable, one could consider a 1-factor model with weak or moderate residual dependence. Starting with
a preliminary 1-factor copula with residual dependence, one can iterate as in Section 6 and get proxies from the
conditional expectation of the latent variable given the observed variables, from which to get better choices for the
bivariate linking copulas to the latent variable. At most 1-dimensional Gaussian quadrature would be be needed for
likelihood estimation and computations of proxies.
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Appendices

A. Derivations: non-theorems

A.1. Bi-factor Gaussian model: Equivalence of two-stage factor scores defined in (10) and (11) and regression factor
scores

Proof. Suppose there are G groups, and let zD = (zT
1 , zT

2 , . . . , zT
G)T , where z1, . . . , zG are the realization of observed

variables Z1, . . . , ZG. Let ŵ0 = E(W0|Z D = zD). For proxies of local latent factors, let ŵ1 = E(W1|Z D = zD).
w̃0, w̃1(w̃0) are defined in (10) and (11). Let w̃1 = w̃1(w̃0) for notation simplicity. With loss of generality, it suffices
to prove that w̃0 = ŵ0, w̃1 = ŵ1, as all indices of local latent factors could be permuted to be in the first group. Let
D = (d1, d2, . . . , dG), d =

∑G
j=1 dg, dr =

∑G
j=2 d2, zD = (zT

1 , zT
r )T . Then the loading matrix

A = [a0, a1, . . . , ap] =


b01 b1 0 . . . 0
b02 0 b2 . . . 0
...

...
...

...
b0G 0 . . . 0 bG

 =

[
b01 b1 0
b0r 0 Br

]
. (27)

The partition of A leads to a 2 × 2 block matrix, where b0r = (bT
02, . . . , b

T
0G)T , Br = diag(b2, . . . , bG). Also,

partition Ψ2 = diag(Ψ2
1, . . . ,Ψ

2
G) = diag(Ψ2

1,Ψ
2
r ) correspondingly.

Let ΣD = Cor(Z D) =

[
Σ11 Σ12
Σ21 Σ22

]
=

[
b01bT

01 + b1bT
1 +Ψ2

1 b01bT
0r

b0r bT
01 b0r bT

0r+Br BT
r +Ψ2

r

]
, M = Σ−1

D =:
[
M11 M12
M21 M22

]
. Then the

sizes of matrices M11, M12, M21, M22 are d1×d1, d1×dr, dr×d1, dr×dr respectively, and the corresponding blocks inΣD

have the same size. Let Σ1 be the correlation matrix of (ZT
1 ,W0). Then Σ1 =

[
b01bT

01 + b1bT
1 +Ψ2

1 b01
bT

01 1

]
=:

[
Σ11 Σ12
Σ21 Σ22

]
,

and N = Σ−1
1 =

[
N11 N12
N21 N22

]
. The sizes of the matrices N11,N12,N21 are d1 × d1, d1 × 1, 1 × d1 respectively, and N22

is a scalar. Let zD = (zT
1 , zT

r )T , the regression factor scores defined in (9) are: ŵ0 = aT
0Σ
−1
D zD = aT

0 MzD, ŵ1 =

aT
1Σ
−1
D zD = aT

1 MzD. Hence, by (27)

ŵ0 = (bT
01, b

T
0r)

[
M11 M12
M21 M22

] (
z1
zr

)
= (bT

01 M11 + bT
0r M21)z1 + (bT

01 M12 + bT
0r M22)zr, (28)

ŵ1 = (bT
1 , 0r)

[
M11 M12
M21 M22

] (
z1
zr

)
= bT

1 M11 z1 + bT
1 M12 zr. (29)

The expressions of w̃0 and ŵ0 equal aT
0 MzD, so they are the same. After some algebraic calculations in (11), w̃1 =

bT
1 N11 z1 + bT

1 N12w̃0. Substituting ŵ0 = w̃0 from (28) into w̃1 leads to

w̃1 = [bT
1 N11 + bT

1 N12(bT
01 M11 + bT

0r M21)]z1 + bT
1 N12(bT

01 M12 + bT
0r M22)zr. (30)

To conclude, it suffices to show that w̃1 in (30) and ŵ1 in (29) are equivalent, or that
(a) N11 + N12(bT

01 M11 + bT
0r M21) = M11, and (b) N12(bT

01 M12 + bT
0r M22) = M12.

Let ∆1 = (b1bT
1 + Ψ2

1), ∆1 is positive definite and ∆1 + b01bT
01 = Σ11. Multiply ∆−1

1 on the left and Σ−1
11 on the

right to get (c) ∆−1
1 b01bT

01Σ
−1
11 − ∆−1

1 = −Σ−1
11 . From ΣD M = I, we have (d) M11 = Σ−1

11 − Σ
−1
11 b01bT

0r M21 and (e)
M12 = −Σ−1

11 b01bT
0r M22. From NΣ1 = I, we have (f) N11Σ11 + N12bT

01 = N11(∆1 + b01bT
01) + N12bT

01 = I and (g)
N11b01 + N12 = 0. In (g), multiply both sides by bT

01 to get (h) N11b01bT
01 + N12bT

01 = 0. Then (f) and (h) together
imply (i) N11∆1 = I. Hence, from (g) and (i), N12 = −N11b01 = −∆−1

1 b01, and from (f), N11 = Σ−1
11 − N12bT

01Σ
−1
11 =

Σ−1
11 + ∆−1

1 b01bT
01Σ

−1
11 . Substitute these expressions of N11 and N12 in the left-hand side of equation (a) to get:

N11 + N12bT
01 M11 + N12bT

0r M21 = Σ−1
11 +

{
∆−1

1 b01bT
01Σ

−1
11 − ∆−1

1 b01bT
01 M11 − ∆−1

1 b01bT
0r M21

}
.
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For the right-hand side of the above, substitute M11 from (d) and then −Σ−1
11 in (c), so that the sum of the last three

terms in braces becomes

∆−1
1 b01bT

01Σ
−1
11 − ∆−1

1 b01bT
01(Σ−1

11 − Σ
−1
11 b01bT

0r M21) − ∆−1
1 b01bT

0r M21

= ∆−1
1 b01bT

01Σ
−1
11 b01bT

0r M21 − ∆−1
1 b01bT

0r M21

= (∆−1
1 b01bT

01Σ
−1
11 − ∆−1

1 )b01bT
0r M21 = −Σ−1

11 b01bT
0r M21.

Thus, (a) is verified as N11 + N12bT
01 M11 + N12bT

0r M21 = Σ−1
11 − Σ

−1
11 b01bT

0r M21 = M11 via (d). Next, substitute N12 in
(g) and M12 in (e) in the left-hand side of (b), so that (b) is verified as

N12(bT
01 M12 + bT

0r M22) = ∆−1
1 b01bT

01Σ
−1
11 b01bT

0r M22 − ∆−1
1 b01bT

0r M22

= (∆−1
1 b01bT

01Σ
−1
11 − ∆−1

1 )b01bT
0r M22 = −Σ−1

11 b01bT
0r M22 = M12,

via (c) and then (e).

A.2. Proof for (17) in Table 2
In the bi-factor model (5), recall the notations bg, b0g,Σg defined in Section 3.1, and qg, q̃g defined in the caption of

Table 2. Let rg = (bT
g , 0)Σ−1

g be a vector of length dg + 1. Let r be the last entry of vector rg. Define Σgg = BgBT
g +Ψ2

g.
Let the last column of Σ−1

g be [sT
12, s22]T . From ΣgΣ

−1
g = I, two equations are obtained. (a) Σggs12 + b0gs22 = 0 and (b)

bT
0gs12 + s22 = 1. Multiply both sides of (b) by b0g to get (c) b0gbT

0gs12 + b0gs22 = b0g. Then (a) and (c) together implies

(b0gbT
0g − Σgg)s12 = b0g. Hence, s12 = (b0gbT

0g − Σgg)−1b0g. Since rg = (bT
g , 0)Σ−1

g = (bT
g , 0)

[
∗, s12
∗, s22

]
= [∗, bT

g s12], the

last entry of rg is r = bT
g s12.

In the definition of factor scores in (11), E(Wg|Z D,W0) = rg(ZT
g ,W0)T = h(Zg) + rW0, where h(Zg) is a linear

function of Zg. Then Var[E(Wg|Z D,W0)|ZD] = r2 Var(W0|ZD). From the conditional variance decomposition formula,

Var(Wg|Z D) = E[Var(Wg|Z D,W0)|Z D] + Var[E(Wg|Z D,W0)|Z D]

= [1 − bT
g (bgbT

g +Ψ2
g)−1bg]︸                          ︷︷                          ︸

term1

+ r2 Var(W0|Z D)︸            ︷︷            ︸
term2

, (31)

where r = bT
g s12 = −bT

g (Σgg − b0gbT
0g)−1b0g = −bT

g (bgbT
g +Ψ2

g)−1b0g.
Since Zg independent of Z’s in other groups given W0, Var(Wg|Z D,W0) = Var(Wg|Zg; W0). The term1 in (31)

follows because the joint distribution of (ZT
g ,Wg)T given W0 is multivariate normal with zero mean and covariance

matrix
[
bgbT

g +Ψ2
g bg

bT
g 1

]
. From assuming ψ jg > 0 for all j, g, applying (8) with AD = bg and ΨD = Ψg, term1

simplifies into (1 + bT
gΨ
−2
g bg)−1 = (1 + qg)−1. As for term2 in (31), in the expression of r, applying equation (8) as

above, r = −q̃g(1 + qg)−1. Combine the expression of two terms, the decomposition (17) is obtained.

B. Main Proofs in Sections 4 and 8

B.1. Proof of Theorem 2
Proof. In 1-factor model (p = 1), the loading matrix AD is D×1, so we use notation AD instead. Due to assumption on
α j uniformly bounded away from ±1,Ψ−1

D is well-defined for all D. Thus the regression factor scores can be expressed
in two equivalent forms. In the expression (9), let qD = AT

DΨ
−2
D AD (a positive real number). Since D−1 ∑D

j=1 |α j| ≤

(D−1 ∑D
j=1 α

2
j )

1/2 ≤ (D−1 ∑D
j=1 |α j|)1/2 and limD→∞ D−1 ∑D

j=1 |α j| → const , 0, then q̄D := D−1qD = D−1 ∑D
j=1 α

2
j/ψ

2
j →

q > 0 (with the limit existing assuming sampling from a super-population). Since

w̃D = (1 + qD)−1 AD
TΨ−2

D (ADw0 +ΨDeD)

= (1 + qD)−1 AD
TΨ−1

D eD + (1 + q−1
D )−1w0, (32)
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then w̃D−w0 = (1 + qD)−1 AD
TΨ−1

D eD+O(D−1). Next, D−1/2 AT
DΨ
−1
D eD is a realization of D−1/2 AT

DΨ
−1
D εD = D−1/2 ∑D

j=1 α jε j/ψ j

which converges to N(0, q) in distribution by the Continuity theorem, so it can be consider as Op(1). Hence,

(w̃D − w0) = D−1/2(D−1 + q̄D)−1(D−1/2 AT
DΨ
−1
D eD) + O(D−1)

is asymptotically Op(D−1/2).

B.2. Extension to weak residual dependence
An outline of the proof of consistency based on Assumption 8.1 is as follows.
Let eD = (e1, . . . , eD) be one realization of εD. Let qD = AD

TΨ−2
D AD > 0, and suppose D−1qD → q > 0. Then,

as in (32) w̃D − w0 = (1 + qD)−1 AD
TΨ−1

D eD + (1 + q−1
D )−1w0 − w0. Note that Y = D−1/2 AT

DΨ
−1
D eD is a realization

of D−1/2 AT
DΨ
−1
D εD = D−1/2 ∑D

j=1 α jε j/ψ j with variance D−1 ∑D
j=1

∑D
k=1 α jαkω jk/[ψ jψk]. By Assumption 8.1 and with

loadings that are bounded away from ±1, this variance is O(1) so that Y can be considered as Op(1). Then w̃D − w0 =

D−1/2(D−1 + q̄D)−1(D−1/2 AT
DΨ
−1
D εD) + O(D−1) is asymptotically Op(D−1/2).

B.3. Proof of Theorem: 4
Proof. Using the technique in the proof of Theorem 2, let QD = AT

DΨ
−2
D AD,

Then

w̃D − w0 = (Ip + QD)−1 AT
DΨ
−1
D eD + (Ip + Q−1

D )−1w0 − w0

Since AD is of full rank and the entries of Ψg for g = 1, 2, . . . ,G are uniformly bounded away from 0. Then Q̄D =

D−1 AT
DΨ
−2
D AD is positive definite for any fixed D, and Q := limD→∞ Q̄D must be a semi positive definite matrix,

with the limit existing assuming sampling from a super-population. Since D−1‖a j‖1 6→ 0, then Q is a positive definite
matrix. Since εD ∼ N(0, ID), then D−1/2 AT

DΨ
−1
D εD → N(0,Q). Since D−1/2 AT

DΨ
−1
D eD is one realization, it can

considered as Op(1). Hence,

w̃D − w0 = D−1/2(D−1Ip + Q̄D)−1D−1/2 AT
DΨ
−1
D εD + O(D−1)

is asymptotically Op(D−1/2) by noticing that (D−1Ip + Q̄D)−1 → Q−1.

B.4. Proof of consistency for proxies: Theorem 5, Theorem 7
For the conditional expectations for 1-factor and bi-factor copulas, the v’s should be treated as parameters, and

the u’s are the realization of independent random variables when the latent variables are fixed. The proof techniques
of Theorem 5 and Theorem 7 are similar. Both rely on the Laplace approximation for integrals (see [5]), and the
asymptotic properties of maximum likelihood (ML) estimator for parameters. In our setting, the results in [4] are
used for the asymptotics of a log-likelihood for a sample X j ∼ fX j from independent but not identically distributed
observations with common parameters over the { fX j }.

The proof of Theorem 5 is given below.

Proof. In 1-factor copula model (1), there is a realized value v0 for the latent variable. Then (U1, . . . ,UD, . . .) is an
infinite sequence of independent random variables with U j ∼ c jV (·, v0). If the value of v0 is to be estimated based on
the realized D-vector (u1, . . . , uD), then the averaged negative log-likelihood in v is

gD(v) = −D−1
D∑

j=1

log c jV (u j, v).

The maximum likelihood estimate v∗D satisfies v∗D = v0 +Op(D−1/2) from results in [4]. Now apply the Laplace approx-
imation. The numerator and denominator denoted as I1D and I2D in the expression of ṽD in (9) can be approximated
respectively by

I1D =

∫ 1

0
v exp{−D × gD(v)}dv = v∗D exp{−D × g(v∗D)}

√
2π

D|g′′ (v∗D)|
{
1 + O(D−1)

}
,

I2D =

∫ 1

0
exp{−D × gD(v)}dv = exp{−D × gD(v∗D)}

√
2π

D|g′′ (v∗D)|
{1 + O(D−1)}.
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Hence ṽD − v∗D = I1D/I2D − v∗D = O(D−1) and ṽD − v0 = Op(D−1/2).

The proof of Theorem 7 for bi-factor copula model is given next.

Proof. There are realized value v0
0, v

0
1, . . . , v

0
G for the latent variables. Then (U1g, . . . ,Udgg, . . .) is an infinite sequence

of dependent random variables for each g = 1, . . . ,G, and the G sequences are mutually independent given latent
variables. For the bi-factor copula model, from Algorithm 24 in Joe (2014), the cdf of U jg is CU jg |Vg;V0

(
CU jg |V0 (·|v0

0), v0
g
)

and its density is
cU jgV0 (·, v0

0) · cU jg,Vg;V0

(
CU jg |V0 (·|v0

0), v0
g
)
.

If the values of v0, v0
1, . . . , v

0
G are to be estimated based on the realized dg-vector ug,dg = (u1g, . . . , udgg) for g ∈

{1, . . . ,G}, then the integrated log-likelihood in v0 is

L0(v0) = log cUD,V0 (uD, v0),

where log cUD,V0 (uD, v0) is defined in Table 1. Take the partial derivative with respect to v0 leads the first inference
function Ψ0,D(v0; uD).

Ψ0,D(v0; uD) := ∂ log cUD,V0 (uD, v0)/∂v0 = Ψ01,D(v0; uD) + Ψ02,D(v0; uD)

=

G∑
g=1

dg∑
j=1

∂ log cU jg,V0 (u jg, v0)/∂v0 +

G∑
g=1

∂ log fg(ug; v0)/∂v0.

Let v∗0,D be the maximum likelihood estimate and assume it is the unique solution of Ψ̄0,D = D−1Ψ0,D. Note that
assuming regularity assumptions include the exchange of integration and the partial differentiation,

∂ log fg(ug; v0)
∂v0

=
1

fg(ug; v0)

∫ 1

0

(
∂ exp

{ dg∑
j=1

log cU jg,Vg;V0 (CU jg |V0 (u jg|v0), vg)
} /

∂v0

)
dvg

=

dg∑
j=1

∫ 1

0

cUg,Vg;V0 (ug, vg; v0)
fg(ug; v0)

∂ log cU jgVg;V0 (CU jg |V0 (u jg|v0), vg)
∂v0

dvg.

The derivatives of Ψ̄0,D can be written as ∂Ψ̄0,D(v0)/∂v0 := ∂Ψ̄01,D(v0)/∂v0 + ∂Ψ̄02,D(v0)/∂v0. From the laws of
large numbers in page 174 of [7], under regularity conditions of the log-likelihood and assuming sampling from a
super-population,

lim
D→∞

Ψ̄01,D(v0,uD) = lim
D→∞

D−1
G∑

g=1

dg∑
j=1

∂ log cU jg,V0 (u jg, v0)/∂v0,

lim
D→∞

Ψ̄02,D(v0,uD) = lim
D→∞

D−1
G∑

g=1

dg∑
j=1

∫ 1

0

cUg,Vg;V0 (ug, vg; v0)
fg(ug; v0)

∂ log cU jgVg;V0 (CU jg |V0 (u jg|v0), vg)
∂v0

dvg

exist. With enough dependence on the latent variable, the derivative of Ψ̄0,D(v0,uD) is bounded away from 0. Then as
dg → ∞ for all g, v∗0,D = v0

0 + op(1).
Furthermore, the profile log-likelihood in vg given v0 is (from Table 1):

Lg(vg; ug,dg , v0) = log cUg,V0,Vg (ug,dg , v0, vg) =

dg∑
j=1

log
{
cU jgV0 (u jg, v0) + log cU jg |Vg;V0

(
CU jg |V0 (u jg|v0), vg

)}
.

The partial derivative of Lg with respect to vg leads to the inference function Ψg,D(vg; ug,dg , v0). For v0 in a neighbor-
hood of v∗0,D, let v∗g,dg

(v0) be maximum profile likelihood estimate and assume it is the unique solution of Ψ̄g,D(vg; ug,dg , v0) :=
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d−1
g Ψg,D(vg; ug,dg , v0). From the weak laws of large numbers, and the super-population assumption,

lim
dg→∞

Ψ̄g,D(vg; ug,dg , v
∗
0,D) = lim

dg→∞
d−1

g

dg∑
j=1

∂ log cU jg |Vg;V0

(
CU jg |V0 (u jg|v∗0,D)

∣∣∣∣∣vg
)

∂vg

exists. As dg → ∞ for all g, v∗g,dg
(v∗0,D) = v0

g + op(1).
For the proxy defined in (14),

ṽ0D(uD) =

∫ 1
0 v0 exp{−D · L̄0D(v0; uD)}dv0∫ 1

0 exp{−D · L̄0D(v0; uD)}dv0

. (33)

Since L̄0D attains the global minimum at v∗0,D, then from the Laplace approximation, when D → ∞, the numerator
and denominator in (33) can be approximated by

v∗0,D exp{−D × L̄0D(v∗0,D)}

√√√√ 2π

D
∣∣∣∣∣[∂Ψ̄0,D/∂v0]|v∗0,D

∣∣∣∣∣ + O(D−1),

exp{−D × L̄0D(v∗0,D)}

√√√√ 2π

D
∣∣∣∣∣[∂Ψ̄0,D/∂v0]|v∗0,D

∣∣∣∣∣ + O(D−1)

respectively. Then, ṽ0D(uD) = v∗0,D+O(D−1). Similarly for (15), from the Laplace approximation, ṽgD(ug,dg ; ṽ0D) =v∗g,dg
(v∗0,D)+

O(D−1) for all g. Thus, the proxies ṽ0D and ṽgD for g = 1, . . . ,G are consistent.

B.5. Proof of Theorem 8 (Lipschitz continuity of factor scores in Gaussian factor model)
Proof. The difference between w̃D(ÂD) and w̃D(AD) can be written as

(Ip + Q̂D)−1 ÂT
DΨ̂
−2
D zD − (Ip + QD)−1 AT

DΨ
−2
D zD (34)

= (Ip + Q̂D)−1 ÂT
DΨ̂
−2
D zD − (Ip + QD)−1 ÂT

DΨ̂
−2
D zD︸                                                         ︷︷                                                         ︸

term1

+ (Ip + QD)−1 ÂT
DΨ̂
−2
D zD − (Ip + QD)−1 AT

DΨ
−2
D zD︸                                                         ︷︷                                                         ︸

term2

.

Let Q̄D = D−1QD, ¯̂QD = D−1Q̂D and recall we assume Q̄D → Q, ¯̂QD → Q̂ as D→ ∞ where Q, Q̂ are positive definite
matrix. Note (Ip + QD)−1 = O(D−1), (Ip +

¯̂QD)−1 = O(D−1). Let HD = D · (Ip + QD)−1, HD = O(1). Since Q̄D and
¯̂QD are both positive definite and well-conditioned, then there is bound on the condition numbers of Q̄D and ¯̂QD for
all large D, and

||
¯̂Q
−1

D − Q̄−1
D || = O(|| ¯̂QD − Q̄D||).

Then, term 1 in (34) has the order of ( ¯̂Q
−1

D − Q̄−1
D ) · D−1 · ÂT

DΨ̂
−2
D zD.

For simplicity, we suppress the subscript of Q̄D, ¯̂QD, AD and ΨD in the below derivation,

¯̂Q − Q̄ = D−1(ÂT Ψ̂−2 Â − ATΨ−2 A)

= D−1
(
(ÂT − AT + AT )Ψ̂−2(Â − A + A) − ATΨ−2 A

)
= D−1

AT Ψ̂−2(Â − A)︸             ︷︷             ︸
term1

+(ÂT − AT )Ψ̂−2 A︸              ︷︷              ︸
term2

+ (ÂT − AT )Ψ̂−2(Â − A)︸                        ︷︷                        ︸
term3

+ AT (Ψ̂−2 −Ψ−2)A︸                ︷︷                ︸
term4

 . (35)
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Since term3 is negligible compared to other terms, we only look at the order of the other three terms in the right-hand
side of (35). For term1, term2, term4, multiplied by D−1, the Cauchy-Schwartz inequality leads to:

‖D−1 AT Ψ̂−2(Â − A)‖ =

∥∥∥∥∥D−1
D∑

j=1

a j(â j − a j)T

ψ̂2
j

∥∥∥∥∥ ≤ (
D−1

D∑
j=1

‖a j‖
2

ψ̂2
j

)1/2
·

(
D−1

D∑
j=1

‖â j − a j‖
2

ψ̂2
j

)1/2
,

‖D−1 AT (Ψ̂−2 −Ψ−2)A‖ =

∥∥∥∥∥D−1
D∑

j=1

a jaT
j (ψ̂−2

j − ψ
−2
j ))

∥∥∥∥∥ ≤ (
D−1

D∑
j=1

‖a j‖
4
)1/2
·

(
D−1

D∑
j=1

(ψ̂−2
j − ψ

−2
j )2

)1/2
.

For all j, ‖a j‖ < 1, ψ j is bounded from zero, term1 and term2 in (35) multiplied by D−1 are all O
(√

D−1 ∑D
j=1 ‖â j − a j‖

2/ψ̂2
j

)
.

The term4 in (35) multiplied by D−1 is O
(√

D−1 ∑D
j=1(ψ̂−2

j − ψ
−2
j )2

)
. Also note

‖D−1 ÂT
DΨ̂
−2
D zD‖ =

∥∥∥∥∥D−1
D∑

j=1

â jz j

ψ̂2
j

∥∥∥∥∥ ≤
√√√

D−1
D∑

j=1

‖â j‖
2

ψ̂4
j

√√√
D−1

D∑
j=1

p · z2
j . (36)

Since the bound of (36) is Op(1), then term 1 in (34) is order Op

(√
D−1 ∑D

j=1 ‖â j − a j‖
2/ψ̂2

j

)
+Op

(√
D−1 ∑D

j=1(ψ̂−2
j − ψ

−2
j )2

)
.

For term 2 in (34),

HD · D−1 ·
(
(AT

D + ÂT
D − AT

D)(Ψ−2
D + Ψ̂−2

D −Ψ
−2
D )zD − AT

DΨ
−2
D zD

)
(37)

= HD · D−1 ·

AT
D(Ψ̂−2

D −Ψ
−2
D )zD︸                  ︷︷                  ︸

term1

+ (ÂT
D − AT

D)Ψ−2
D zD︸                 ︷︷                 ︸

term2

+ (ÂT
D − AT

D)(Ψ̂−2
D −Ψ

−2
D )zD︸                            ︷︷                            ︸

term3

 .
Since term3 in (37) is negligible in comparison, we only look at the first two terms. From the Cauchy-Schwartz
inequality, for term1 and term2 in (37) multiplied by D−1,

D−1 · term1 = Op


√√√

D−1
D∑

j=1

(ψ̂−2
j − ψ

−2
j )2

 , D−1 · term2=Op


√√√

D−1
D∑

j=1

‖â j − a j‖
2

 .
Recall HD = O(1), then the term2 in (34) has the same order as term1 in (34). Also, due to ψ j being bounded away

from 0 and ψ2
j = 1 − ‖a j‖

2, then ‖w̃D(ÂD) − w̃D(AD)‖ = Op

(√
D−1 ∑D

j=1 ‖â j − a j‖
2
)
.

B.6. Proof of Lemma 9

Proof. Let γ : [0, 1]→ B̄(θD, ρ) be the path γ(t) = tθ̂D + (1 − t)θD from θD to θ̂D in B̄(θD, ρ). For simplicity, suppress
the subscript for ṽD in below equation. Then

‖̃v(θ̂D) − ṽ(θD)‖ = ‖̃v(γ(1)) − ṽ(γ(0))‖ = ‖

∫ 1

0

d̃v(γ(t))
dt

dt‖

=
∥∥∥∥∫ 1

0
Oṽ(γ(t)) · (θ̂D − θD) dt

∥∥∥∥ ≤ ‖θ̂D − θD‖

∫ 1

0
‖Oṽ(γ(t))‖ dt < KD‖θ̂D − θD‖,

where KD := sup{‖Oṽ(θ)‖ : θ ∈ B̄(θD, ρ)}, and the norm are all l2 norms. Next we derive order of the Lipschitz
constant.
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Let fD(v, θD) = cVUD (u1:D, v; θD) = exp{
∑D

j=1 log c jV (u j, v; θ j)} be the density function of 1-factor copula model
defined in (1), the jth element of the gradient vector is

∂̃v(θD)
∂θ j

=

∫ 1
0 (v∂ fD(v, θD)/∂θ j)dv ·

∫ 1
0 fD(v, θD)dv −

∫ 1
0 (∂ fD(v, θD)/∂θ j)dv ·

∫ 1
0 v fD(v, θD)dv

(
∫ 1

0 fD(v, θD)dv)2

=

{ (∫ 1

0
fD(v, θD)dv

)−1 [∫ 1

0
(v∂ fD(v, θD)/∂θ j)dv − ṽD(θD) ×

∫ 1

0
(∂ fD(v, θD)/∂θ j)dv

] }
(38)

=

(∫ 1

0
fD(v, θD)dv

)−1 (∫ 1

0
[v − ṽD(θD)] × (∂ fD(v, θD)/∂θ j)dv

)
.

In (38), ṽD = ṽD(θD) is the proxy variable (13) defined in 1-factor copula model (1). Also since ∂ fD(v, θD)/∂θ j =

fD(v, θD)
(
∂ log c jV (u j, v; θ j)/∂θ j

)
, then

∂̃v(θD)
∂θ j

=

∫ 1
0 (v − ṽD) fD(v, θD) · (∂ log c jV (u j, v; θ j)/∂θ j) dv∫ 1

0 fD(v, θD)dv
.

It has the same order as ∫ 1
0 (v − ṽD) · |(∂ log c jV (u j, v; θ j)/∂θ j)| fD(v, θD) dv∫ 1

0 fD(v, θD)dv
. (39)

In (39), let m j(v) = ∂ log c jV (u j, v; θ j)/∂θ j, h(v) = L̄D(v) = −D−1 log fD(v, θD). Let v∗D = arg min h(v). Let t(v) =

(v − ṽD) |m j(v)|, t
′

(v) = |m j(v)| + (v − ṽD) (∂|m j(v)|/∂v) and t
′′

(v) = 2(∂|m j(v)|/∂v) + (v − ṽD) (∂2|m j(v)|/∂v2). From
equation (2.6) in [18], equation (39) becomes

(v∗D − ṽD) |m j(v∗D)| + (2D)−1 [h′′(v∗D)]−1 t′′(v∗D) − (2D)−1[h′′(v∗D)]−2 t′(v∗D) h′′′(v∗D) + O(D−2).

Under the assumptions on the bounded derivatives, together with the proof in Section B.4, ∂̃v(θD)/∂θ j = O(D−1).

Then, the norm of derivatives ‖Oṽ(θ)‖ equals to
√∑D

j=1 |∂̃v(θD)/∂θ j|
2 = O(D−1/2) and |̃v(θ̂D)−̃v(θD)| = O

(√
D−1 ∑D

j=1 ‖θ̂ j − θ j‖
2
2

)
.

B.7. Proof of Lemma 10
Proof. The proof technique is similar to that used in the 1-factor copula case. Let f (1)

D (v0, θD) = cUD,V0 (uD, v0; θD) be
the marginal density function defined in Table 1. Then the components of the gradient of the global proxy ṽ0D with
respect to the parameter vector θ(1)

D consists of

∂̃v0,D(θD)/∂θ jg,0 =

∫ 1
0 (v0∂ f (1)

D (v0, θD)/∂θ jg,0) dv0 ·
∫ 1

0 f (1)
D (v0, θD) dv0

(
∫ 1

0 f (1)
D (v0, θD) dv0)2

−

∫ 1
0 (∂ f (1)

D (v0, θD)/∂θ jg,0) dv0
∫ 1

0 v0 f (1)
D (v0, θD) dv0

(
∫ 1

0 f (1)
D (v0, θD) dv0)2

=

(∫ 1

0
f (1)
D (v0, θD) dv0

)−1 (∫ 1

0
(v0 − ṽ0,D(θD)) × (∂ f (1)

D (v0, θD)/∂θ jg,0) dv0

)
. (40)

As ∂ f (1)
D (v0, θD)/∂θ jg,0 = f (1)

D (v0, θD) ·
(
∂ log cU,V0 (uD, v0, θD)/∂θ jg,0

)
, then (40) has the same order with∫ 1

0 (v0 − ṽ0,D(θD)) · |∂ log cU,V0 (uD, v0, θD)/∂θ jg,0| · f (1)
D (v0, θD) dv0∫ 1

0 f (1)
D (v0, θD) dv0

. (41)

28



Let m jg(v0) = ∂ log cU,V0 (uD, v0, θD)/∂θ jg,0, h(v0) = L̄0D(v0) = −D−1 log f (1)
D (v0, θD). Let v∗0,D = arg min h(v0).

With ṽ0,D = ṽ0,D(θD), let t(v0) = (v0 − ṽ0,D) |m jg(v0)|, t′(v0) = (v0 − ṽ0,D) (∂|m jg(v0)|/∂v0) + |m jg(v0)|), t′′(v0) =

2(∂|m jg(v0)|/∂v0) + (v0 − ṽ0,D) (∂2|m jg(v0)|/∂v2
0).

Then from equation (2.6) in [18], equation (41) becomes

(v∗0,D − ṽ0,D) |m jg(v∗0,D)| + (2D)−1[h′′(v∗0,D)]−1 t′′(v∗0,D) − (2D)−1[h′′(v∗0,D)]−2 t′(v∗0,D) h′′′(v∗0,D) + O(D−2).

Under the assumptions on the bounded partial derivatives, together with the proof in Section B.4, ∂̃v0,D(θD)/∂θ jg,0 =

O(D−1).
The same logic could be also applies to ∂̃v0D(θD)/∂θ jg, ∂̃vg,D(θD)/∂θ jg,0 and ∂̃vg,D(θD)/∂θ jg . From the above

derivation, we conclude that

‖̃v0D(θ̂D) − ṽ0D(θD)‖ = O


√√√√

(2D)−1
G∑

g=1

dg∑
j=1

{
‖θ̂ jg,0 − θ jg,0‖

2
2 + ‖θ̂ jg − θ jg‖

2
2

} 
and

‖̃vgD(θ̂D) − ṽgD(θD)‖ = O


√√√√

(2dg)−1
dg∑
j=1

{
‖θ̂ jg,0 − θ jg,0‖

2
2 + ‖θ̂ jg − θ jg‖

2
2

}  , g ∈ {1, . . . ,G}.
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