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DESINGULARIZATION OF 3D STEADY EULER EQUATIONS WITH
HELICAL SYMMETRY

DAOMIN CAO, JIE WAN

ABSTRACT. In this paper, we study desingularization of steady solutions of 3D incom-
pressible Euler equation with helical symmetry in a general helical domain. We construct
a family of steady Euler flows with helical symmetry, such that the associated vorticities
tend asymptotically to a helical vortex filament. The solutions are obtained by solving
a semilinear elliptic problem in divergence form with a parameter. By using the stream-
function method, we show the existence and asymptotic behavior of ground state solutions
concentrating near a single point as the parameter ¢ — 0. Qualitative properties of those
solutions are also discussed.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. The movement of incompressible Euler flow confined in a three-dimensional
domain D without external force is governed by the following system

v+ (v-V)v=-VP, Dx(0,T),

V.v=0, D x (0,7), L)
VN = v, oD x (0,7),

v(z,0) = vo(x), D,

where D C R3 is a domain with C* boundary, v = (v1,v9,v3) is the velocity field, P is
the scalar pressure, n is the outward unit normal of 9D and vy is the initial velocity. v, is
a function defined on 9D satisfying compatibility condition

/ vpdo =0,
oD

where ¢ is the area unit on 9D. The third equation of (1) means that the net flux
of velocity across the boundary is zero. When v, = 0, it is the impermeable boundary

condition, which means that the normal component of velocity on the boundary is zero.
1
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The vorticity vector field associated with v is w = (wy, we, w3) = curlv = V X v, which
describes the rotation of the fluid. Then w satisfies the vorticity equations

ow+ (v-V)w=(w-V)v, Dx(0,T),
V-v=0, D x (0,7),
Vn = v, oD x (0,7T),
w(z,0) =V x vo(z), D.

(1.2)

For background of the 3D incompressible Euler equation, see the classical literature [21],22].

In this paper, we are devoted to Euler equations (ILT]) with helical symmetry. Let us first
define helical symmetric solutions and simplify the vorticity equations (L2), see [9} 12, [13].
Let k > 0. Define a one-parameter group Gy = {H, : R* — R3}, where

H, (21,29, 23)" = (z1 cos p + xysin p, —x1 sin p + x4 cos p, 3 + kp)*.

Here A" is the transposition of a matrix A. So H, is a superposition of a rotation in x; O,
cosp sinp 0
plane and a translation in x3 axis. Let R, = | —sinp cosp 0| be the rotation with
0 0 1
respect to zz-axis. Then H,(x) = R,(z)+ kp(0,0,1). From a geometric point of view, 2k7
corresponds to the pitch of helices.

Define a vector field .

C = (x2> —Zy, k)t
Then Z) is the field of tangents of symmetry lines of Gy.

To show what the helical solutions are, we first define helical domains. A domain D € R3
is called a helical domain, if H,(D) = D for any p. So D is invariant under the group
Gr. Let Q = DN{x | x5 = 0} be the section of D over x;0x5 plane. Then D can be
generated by (2 by letting D = U,er H,(€2). Throughout this paper, we always assume that
Q2 is a simply-connected bounded domain with C'*° boundary and D is a helical domain
generated by €.

Now we give the definition of helical functions and vector fields. A scalar function h is
called a helical function, if

h(H,(x)) = h(z) (1.3)

for any p € R,z € D. By direct computations it is easy to see that a C! function h is
helical if and only if

¢ Vh=o.
A vector field h = (hy, ha, h3) is called a helical field, if
h(H,(x)) = R,h(z) (1.49)
for any p € R,z € D. Direct computation shows that a C! vector field h is helical if and
only if
7 .Vh=TRh,
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0 10
where R = | =1 0 0] (see [13]). Helical solutions of (IT]) are then defined as follows.
0 00

Definition 1.1. A function pair (v, P) is called a helical solution pair of (L)), if (v, P)
satisfies (LT and both vector field v and scalar function P are helical.

Throughout this paper, helical solutions also need to satisfy the orthogonality condition:
%
v ( =0, (1.5)

%
that is, the velocity field and ( are orthogonal.
Under the condition (L), one can check that the vorticity field w satisfies (see [13])

W=7, (1.6)

where w := w3y = 0;,v9 — 0,1, the third component of vorticity field w, is a helical
function. Moreover, the first equation of the vorticity equations (2] is equivalent to

1
ow+ (v-V)w + EwRV =0.
As a consequence, w satisfies

dw + (v-V)w = 0. (1.7)

From (L7)) we deduce that, w satisfies a transport equation, which is very similar to the

case of 2D Euler equations (see Yudovich [26]). Moreover, for a solution w of (L), the
vorticity field w is determined by (L.G).

We now introduce a stream function and reduce the system (L2) to a 2D problem.

Since v is a helical vector field, we have Z) - Vv = Rv, which implies that
90y, V3 — T10,,V3 + kOp,v3 = 0. (1.8)
The orthogonal condition shows that
ToUy — 21Uy + kvs = 0. (1.9)

It follows from the incompressible condition, (L8) and (9] that
L1

x
0 :8961211 + 0:,;21)2 + 0x31)3 = @clvl + 8962212 — ?205011)3 + k‘ 8962’113
x x
:(9951’111 + 81,21)2 — k—;axl(—l'gvl + ZL’l’Ug) + k—;ﬁxz(—zgvl + 1’11)2)
1 1
:ﬁaml [(1{52 + x%)vl — .flflLUQUQ] + @8962[(14:2 + .CL’%)’UQ — Ill’gvl].
Since (2 is simply-connected, we can define a stream function ¢ : 2 — R such that 0,,¢ =
(K 4 23)v1 — 21290), 05y = — 5 [(K* + 2% )va — z12901], that is,

O\ _ 1 — X1 K2+ 22\ (v
O] — K2\ —(K*+23) x129 vy )’
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or equivalently,
vy _ 1 L122 —k* — I% O, P . (1.10)
vy K24 a3+ ad \K*+23  —mxy ) \Onyp
By the definition of w and (ILI0), we get

w :8901’02 - 8902’01 = (_85527 8901) (Zl)
2

—(~0,,,0,) (_; < ;171@2 —k? _l’%) <3x180))
’ k2 + a2 + 22 \k*+25  —1129 Onyp (1.11)
(0, .0,) ( 1 <k2 + 3 —2x1x22) (&Blgo))
TR+ 2?4+ 22\ —mre K+ a7) \One
=L,
where Ly = —div(Kg(z1, 22)Ve) is a second order elliptic operator of divergence type

with the coefficient matrix

K, a5) = ——— (

= 1.12
k% + 23 + 23 (1.12)

k? + x% —X1T9
2 2] -
—I1T9 k +.§L’1

Clearly from the definition of the matrix Ky, Ky is a positive definite matrix satisfying

(K1). Ky is smooth, i.e., (Kg(-)); € C*(Q) for i,j =1,2.

(K2). Ly is strictly elliptic. Indeed, two eigenvalues of Ky are A\ = 1, \y = —Mﬁx‘g. So
one has,
K 2 2 2
- < (K < 4 Q R=.
L2 + |I‘2|C| = ( H(I)C|C) = |C| ) Sy C €

From (L), (I9) and (LI0), one has

0 =0,w + V10, W + V20, W + V30, w

1 1
=0,w + V10, W + V20w + E(—xm + 2103) - E(_x28x1w + 210, w)

B 1 k? + 23 —xi29 0w
_atw _'_ ﬁ(vl7 U2) ( —T1%9 k,2 _I_ l.% al‘zw
B 1 T1T9 k2 + :L'% k2 + x% —T1T2 al‘lw
—at’w - k‘2(/€2 T ZE% T :L'%) (axﬁpa a’cz(p) (_k2 _ :L'% — 1T —T1Z9 k2 + I% (‘9x2w

0 1\ (0.
=0yw — (Or,p, Or,p) <_1 0) (&g z)

=0yw + Oy POy, W — Oy POy, W
=0,w + Vw - VLgo,

(1.13)

where L denotes the clockwise rotation through /2.



DESINGULARIZATION OF 3D STEADY EULER EQUATION WITH HELICAL SYMMETRY 5

As for the boundary condition of ¢, from the fact that v is a helical vector field and
the domain D is helical, v, is a helical function defined on 9D. So v, can be generated by
Un]aq. Moreover, it follows from v - n = v, on 9D that (see (2.66), [13])

Un|aQ =V Il|aQ
x x x x
=v1n1 + Va9 + (——21)1 + —1’112)(——2711 + —lng)

k k k k
o 1 k‘2 + ZL’% —T1T2 nq
_ﬁ(vljlb) (-l’ll’g ]{72 +.§C% No )
Combining this with (LI0), one has

- 1 T1T2 k’2 + ZL’% k’2 + ZL’% —X1T2 ny
Un|8Q - kz(kQ T l’% + Zlﬁ'%) (896190’ 01,290) (_k2 o l’% — T %9 — 21T k,2 + l’% Ng

s (% D) (1)

=V+yp - v

(1.14)

Here v = (ny,ny) is the two-dimensional vector of the first two component of n on 0f2.
Note that v is an outward normal of 0€2.
Thus, the 2D vorticity equations of 3D Euler equations with helical symmetry is as
follows
Oyw + Vw - V4t =0,
w= Ly, (1.15)
Vo - vlan = vnlog-
Indeed for a solution pair (w, ) of the 2D vorticity equation (L[IH), one can recover the
helical velocity field v and vorticity field w of 3D Euler equations (LIl by using (LI0),
(C3), (L), (L3) and (L5).
When considering the case v, = 0, which corresponds to the impermeable boundary
condition, (LI4]) implies that ¢ is a constant on 9. Thus one can choose ¢ such that
@ =0 on 0f). The associated vorticity equations then become

Oyw + Vw - V4t =0,
w=Lyp, (1.16)
ploa = 0.

The research of 3D Euler equations with helical symmetry has received much attention
in recent years. [13] first proved the global well-posedness of L' N L> weak solutions of the
Euler equation with helical symmetry without vorticity stretching (see (I.I0)). Note that
this result corresponds to the classical Yudovich’s result [26], since the structure of vorticity
equation (LI6) is similar to that of 2D Euler flows. [I0] considered travelling-rotating
invariant Euler flows with helical symmetry concentrating near a single helical filament in
the whole space R3. As for the steady solution of 3D Euler equations with helical symmetry,
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nonlinear stability for stationary smooth Euler flows with helical symmetry is considered
in [2] by using the direct method of Lyapunov. More results of the existence and regularity
of Euler equation with helical symmetry can be found in [I} 4], 12} [19] for instance.

In this paper we are interested in vortex desingularization problem of steady 3D Euler
equations with helical symmetry. Here the vortex desingularization problem means that
we want to construct a family of “true” solutions of Euler equations, such that the corre-
sponding vorticity has a small cross-section and concentrates near a vortex filament. The
research of this problem can be traced back to Helmholtz [15], who first studied the mo-
tion of the travelling vortex rings whose vorticities are supported in toroidal regions with a
small cross-section. Then, many articles considered the problem. As for the vortex being
a tube with a small cross-section whose centerline is a straight line and a circle, which
can be reduced to 2D Euler equation and 3D axisymmetric Euler equation respectively,
results can be found in [3], [5, [6] @, 11 14], 24] and reference therein. For the case of Euler
equations with helical symmetry, results seem to be few. Davila et al. [10] constructed
rotational-invariant Euler flows with helical symmetry in the whole space by considering

2
—div(Ky(z)Vu) :fa(u—a|ln5|%) in R?

where f.(t) = £2¢!. Using the Lyapunov-Schmidt reduction method, the authors proved
that solutions will concentrate near a helix in the distributional sense, which satisfies the
vortex filament conjecture, see [I7, [I§]. Desingularization of rotational-invariant helical
solutions in helical domains with bounded cross section was proved in [8]. However for the
problem of desingularization of steady Euler equations with helical symmetry, few results
give us a positive answer.

Our goal in this article is to solve vortex desingularization problem of steady Euler
equations with helical symmetry in general helical domains. We will construct steady
solutions of vorticity equations (LIH) and (LI€]), such that the associated vorticities have
small cross-sections and concentrate near a single point as parameter changes. Accordingly,
the vorticity field will concentrate near a one-dimensional helical filament. Note that both
the case of v,, = 0 and that of v,, # 0 are considered. To get these results, we solve solutions
of a semilinear elliptic equation in divergence form (see (Z1])). By studying the associated
variational structure and using stream function method, we get the existence and limiting
behavior of ground states of these equations.

It should be noted that, Euler equations with helical symmetry can be regarded as the
general case of 2D and 3D axisymmetric Euler equations. The cases k — +oo and k =0
correspond to the 2D Euler equations and 3D axisymmetric Euler equations, respectively.
The case k € (0,+00) is considered in this paper. In contrast to the 2D and 3D axisymmet-
ric problem, the associated operator Ly in vorticity equations ([LIH]) is a general elliptic
operator in divergence form, which can bring essential difficulty in studying existence and
asymptotic behavior of solutions. It seems impossible to reduce the second-order operator
Ly to the standard Laplace operator by means of a single change of coordinates. We
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will give rigorous justification of the relation between the coefficient matrix Ky and limit-
ing location, energy and the concentration diameter of the ground states, which is totally
different from the 2D and 3D axisymmetric cases.
To state our results, we need to introduce some notations first. Let s(w) = [, w(z)dz be
the circulation of the vorticity w. For two sets A, B, we define dist(A, B) = mingea yep |7 —
y| the distance between sets A and B and diam(A) the diameter of the set A.
We first consider desingularization of steady solutions of 3D Euler equations with helical
symmetry with impermeable boundary condition v, = 0. Since (w, ) is a steady solution,
that is, the distribution of w, ¢ is independent of ¢, by (LI0), (w, ) satisfies the steady
vorticity equations
Vw - Vip =0,
w=Lyp, (1.17)
¢lag = 0.

Formally, if

1
Lup=w= g—gf(so — 1),  @loaa =0,

for some function f and constants ¢, y, then ([LI7) automatically holds. To conclude, it
suffices to look for solutions of the semilinear elliptic equations in divergence form

{Emp(x) = —div- (Ku(2)Ve(x)) = Sflp(@) —p), z€Q,

o(x) =0, x € 0. (1.18)

Our first result is as follows.

Theorem 1.2. For every k > 0,m > 0,0 < e < 1, there exists a family of helical solution
pairs (v, P.)(z,t) € CY(DxRT) of Euler equations (L)) such that the support set of curlv.
is a topological helical tube and the associated vorticity-stream function pair (we, p:) is a
solution of steady vorticity equations (LIT). Moreover, there holds

(1) v.-m=0 on 0D.

(2) The support set of w. is simply-connected and

In diam(supp(w,))

lim =1.
0 Ine

As a consequence, lin% diam(supp(w.)) = 0.
e—
(3) lin% dist(supp(w.), z*) = 0, where x* € § satisfies |x*| = max |x|.
E— Q

: _ 2kmm
(4) ll_r)% K(we) = N
The solution is constructed by studying the existence and asymptotic behavior of the
ground state solutions ¢, of equations (LIR) with f(¢) = ¢ for p > 1, p =mIn? for some
prescribed constant m > 0.

Remark 1.3. In [I0], Dévila et al. constructed rotational-invariant solutions of vorticity
equations with angular velocity a|lne| in R?. However, because of the choice of f., the
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support set of vorticity is still the whole plane. Our result shows the existence of a family
of steady solutions of (LTI@) in a general bounded domain, such that the corresponding
vorticity has non-vanishing circulation with small cross-section and shrinks to a helical
filament as ¢ — 0.

Remark 1.4. By the physical meaning of k, the sign of k& determines two different helical
structure. The cases kK > 0 and £ < 0 correspond to the left-handed helical structure
and right-handed helical structure, respectively. For the case k < 0, one can similarly get
solutions of (LI8]) concentrating near a single point.

Our second result is on the desingularization of steady solutions of vorticity equations
when the boundary is penetrable. Assume that v-n = v, ln% for some helical function
v, Z 0. By ([LI3), steady solution pairs (w, ¢) satisfy

Vw - Vip =0,
w=Lyp, (1.19)
V4o v]on = vploaIn L.

Suppose that ¢ € C%(Q) N C(Q) satisfies

ﬁqu =0, (1.20)
V=q- V|6Q = _'Un|8Q~

Note that for a solution ¢ of ([L20), ¢ + C' is also a solution for any constant C'. Thus one
can always assume that ming g > 0. Let u = ¢ +¢ln % Then u satisfies

Vuw - V*H(u—qlni) =0,
w = Lyu, (1.21)
V4iu - v]pg = 0.

So if

1 1
Lhu=w=—=flu—qln=), ulpg =0,
5 5

for some function f and constants €, i, then (L2I) automatically holds. And the solution

pairs (w, ) of [LI9) can be obtained by letting w = Lyu and ¢ = u— ¢In 1.
Let det(Kp) denote the determinant of K. Our second result is as follows.

Theorem 1.5. Let k > 0, ¢ > 0 satisfy Lyq = 0 and v, be a helical function defined on 0D
with v,|oq = —V1q-v]sq. Then for every 0 < e < 1, there exists a family of helical solution
pairs (ve, P.)(z,t) € CY(DxRT) of Euler equations (1)) such that the support set of curlv,
is a topological helical tube and the associated vorticity-stream function pair (we, p:) is a
solution of steady vorticity equations (LI9). Moreover, the following conclusions hold

(1) v.-n=wv,Int on dD.

(2) The support set of w is simply-connected and

In diam(supp(w,))

lim

=1.
0 Ine
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(3) lin% dist(supp(w.), z*) = 0, where * € Q is a minimum point of ¢*\/det(Ky), that
E—r

; q(z)?/det(Ky(z%)) = m_ﬂinq2 det(Kpy).

(4) lin% Jo we(z)dzx = 2mq(a*)\/det (K (z*)).
e—
(5) Moreover, if x* € Q, then there exist Ry, Ry > 0 satisfying
Rye < diam(supp(w.)) < Rae.

We now give some comments of the proof of Theorem [L.5l The strategy is to consider the
existence and limiting behavior of ground state solutions of a semilinear elliptic equation in
divergence form, see (2.1)) in section 2. First, using the critical point theory the existence
of mountain pass solutions u. of (ZI]) with critical value ¢, of the corresponding variational
functional is proved. Then by choosing proper test functions, we get the upper bound of
¢, from which we get the connectness of the vortex core. Since Ky is not —A, one can
not use the classical test functions to get accurate upper bounded of ¢.. The boundedness
of the energy of the vortex core is then obtained. Finally based on the classical estimates
of capacity (see, e.g., [3, [I1], 24]), we prove the lower bound of ¢. and the limiting location
of the core. The key of proof is to show that the concentration point of ground states u.
is a minimum point of ¢?y/det(Kp). To this end, the optimal upper and lower bounds of
¢. must be obtained.

Remark 1.6. The results of Theorem can be regarded as a general result of the desin-
gularization of classical planar vortex case (see [20, 24]) and the vortex ring case (see [11]).
Note that the cases of planar vortices and vortex rings correspond to the coefficient matrix
Ky (z) = Id and 11d, respectively. In [IT], by considering solutions of
. —1
{ —div (%Vu) = E%b (u —qln %)i ,  x€f)

u =0, x € 01,

where b is a scalar function and ¢ is a positive function satisfying —diV(%Vq) = 0, the
authors constructed a family of C'! solutions u. with nonvanishing circulation concentrating
near a minimizer of ¢*/b as ¢ — 0. Indeed, if we choose Ky(z) = $Id in Theorem [LF]
then solutions will concentrate near minimizers of ¢*+/det(Kg) = ¢*/b, which coincides
with the results in [I1].

Remark 1.7. Indeed, the existence of solutions of general elliptic equations in divergence
form has been studied by [23], who considered a singularly perturbed elliptic problem:

—?div(K (2)Vu) + V(z)u =u?, xR, (1.22)
where K (z) is strictly positive definite, n > 3, p € (1,2£2) and V € C'(R") is positive.

+1
The authors constructed solutions concentrating near minimizers of V (z)1 /det(K ()

by the penalization technique. However, it seems that the method in [23] can not be used
in our situation since it depends on the positiveness of V.
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Remark 1.8. Recently, [8] considered desingularization of rotational-invariant solutions of
3D incompressible Euler equation with helical symmetry in an infinite pipe. Using prop-
erties of Green’s function of a general uniformly elliptic operator, [§] proved the existence
of mountain pass solutions of Euler equation with helical symmetry, the associated vortic-
ities of which are rotational-invariant and concentrate near a helix. While in this paper,
instead of using properties of Green’s function, we use the estimates of capacity to improve
estimates of the diameter of the vortex core and the energy of ground states in [§].

This paper is organized as follows. In section 2, we introduce the associated variational
structure and prove the existence of mountain pass solutions of ([21I) for every ¢ € (0,1).
Some fundamental properties which will be used in section 3 are also proved. In section 3
we prove the limiting behavior of u.. The proof of Theorem and Theorem will be

given in section 4.

2. VARIATIONAL PROBLEM

We now consider the following equations

e/ 4+

Lyu = —div(Ky(2)Vu) = % (u—qln l)p x € €, (2.1)
u =0, x € 09, '

]{?2 + .flf% —T1T2

o Rtetred \ —aiwg B2+ ad

where p > 1, Q C R?is bounded, Ky () = o ( ) and ¢ is a function

defined in  satisfying
(Q1). ¢ € C*(Q) NCHQ) and ¢ > 0 in Q.
(Q2). ¢ is a Ly — harmonic function, i.e., Lgq = —div(Ky(z)Vq) = 0.
Let (Ky(z)alb) = 327 (Kpy)i;(x)asb; for two vectors a, b. Define

H(Q) = {u e HY(Q) | /Q(KH(x)vuwu)dx < +oo}

with the norm

|||y == (/Q(KH(x)VuNu)dx)

Since Ky is a positive definite matrix with two positive eigenvalues A\; = 1 and A\ =
%, two norms || - [|3q) and || - |[g1(q) are equivalent.
Define the associated energy functional of (2.1])
1 1 1"
I.(u) = 3 /Q(KH(:z)VMVu)d:E — W/Q (u —qln E)Jr dr, Yu e H(Q). (2.2)

By the definition of H, I. is a well-defined C* functional on H.
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Define the Nehari manifold
Nz ={u e H(Q)\ {0} | (Il(u),u) =0}

— {u € H(2)\ {0} | /Q(KH(x)Vu|Vu)dx = 51—2/0 <u —qln é)iudw} o (@3

2.1. Existence of solutions. First, using the classical critical point theory, we get ground
state solutions of (ZTI).

Since the nonlinearity f(¢,2) = 5((t — ¢(z)In é)i for p > 1, I.(u) has a mountain pass
geometry. Thus we can define the mountain pass value

— inf L(~(t
ce = inf max (7(1)),

where
P ={y € C([0,1], H()) | 7(0) = 0, I(v(1)) < 0}.
Clearly, ¢. > 0. We have the following characterization of N, and the mountain pass value

ce, see [7, [16].

Lemma 2.1 ([7], Theorem 1.3.7). For anyu € N, u. Z 0. For anyu € H(Q) with u, # 0,
there exists a unique t(u) > 0 such that t(u)u € N.. The value of t(u) is characterized by
the identity

L. (t(uw)u) = max{I.(tu),t > 0}. (2.4)
Moreover, there holds

ce < wzo,glefﬂ(ﬂ) g L(tw) = wié“f«s Le(w).

Finally, if the mountain pass value c. is a critical value for I, then c. = in{[ I.(w) is the

>

least nontrivial critical value.

Using the mountain pass theorem, we get the existence of mountain pass solutions of I.
with c..

Proposition 2.2. I. has a mountain pass solution with mountain pass value c.. Namely,
one can find u. € H(QY) satisfying

I(u:) = cey, Il(u:) =0. (2.5)
As a consequence, there holds c. =  inf  max I (tw) = inf I.(w).
wEOwEH(Q) >0 weN:

Proof. By standard mountain pass theory (see, e.g., §1.4 in [25]), we can prove that there
exists u. such that I’(u.) = 0 and I.(u.) = ¢.. So by Lemma 1] ¢. = inj{/ I.(w).
weENe

O
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2.2. Basic properties. First, we give some basic properties of . and the operator Ly as

follows.
Lemma 2.3. For any u € H(Q2),
11 , 1
(5 57 ) il < L) = 5 (2w ) (26)
Proof. 1t follows from the definition of /. and I that
1
I(u) — ——(I!
(1) = (L))

1, 1 1\ 1 ) 1 / 1\?
== - —gqln=) dr—|— - —qln=) udx
e = N G M e e e = N T I
11 )
> (5 - m) |l 3
Lemma 2.4. For any u € H(S),

/Q (K () V| Va)da = /Q 7 (KH(:)J)V (%) v (%)) da. (2.7)

Proof. We first claim that

(KH(x)vq\v (%2)) = (Ky(2)Vu|Vu) — ¢* (KH(:C)V (%) v (g)) L (29

Indeed, we have

(Ki)u(01u)’—¢*(Ku)un (81 (g))Z = (Kn)n (%u@lualq - Z—j(aﬂﬁz) = (Ku)101q0 (%2) :
(Kmhz + (Kp)21)0hudsu — ¢*((Kp )z + (K )a1)O (g) s (g)

2
:Q(KH)H%(alqaZU + 02qO1u) — Q(KH)H%&lq&%]
2

2
=(Kp)120190, (%) + (K )2102q01 (%) )

and
2

w\\” 21 u u?
(KH)22(82U)2_Q2(KH)22 (82 <5)) = (KH)22 (;@Uazq - ?(82@2) = (KH)2282C182 (;) .
Adding up the above inequalities, we get (2.8]).
Since Lyq = 0 and “72 € Hj(Q), we have [, (KH(x)Vq|V (%2)) dz = 0. Integrating

both sides of (Z8) over Q, we get (21).
0J
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cosblz; sinf;

— _ N . - 2 *_ _
For any & = (|z| cos bz, |Z|sin ;) € R?, denote R; <_ sinf, cosf,

) the rotational

transformation matrix through 6;. Then we have

Lemma 2.5. For any T € R?, there holds

KH(R:?:?/) = R:EKH(?/)RE

xT)

Yy € R2

Proof. Note that for any y = (y1,2)", Rzy = (y1 cos Oz + yo sin O, y cos Oz — 41 sin ;)¢ and
|Rzy| = |y|. By the definition of Ky, we get

Ky R:@
Y2 cos 0 — 1 sin 0;)° —(y1 cos B + yo sin ;) (yo cos 0; — yy sin ;)
EESE + |y|2 —(y1 cos 9 + y2 sin 0z ) (2 cos 0z — y1 sin 0z) k% + (yy cos Oz + yo sin 0;)?
cosfz sinb; K +ys  —vyys cos bz —sin0O;
TR [y |y|2 —sinf; cost; —y1y2 k*+yi) \sinf; cosb;
=R;Ky(y)RL.
O

A direct consequence of Lemma is the rotational invariance of the problem (.II),
which will be used in the proof of Theorem in section 4. Define Q; := {R;z | z € Q}
the region of ) rotated clockwise by 6z. For a function u € H(£2), we define

So uz € H (). Define ¢z(7) := q(R_zx) for any = € Q5. Then we get

Lemma 2.6. [Rotational invariance] v is a solution of 211 if and only if uz € H()
satisfies

p
— div( Ky (x)Vug) = 6—12 (ux — ¢z In é) , o in Q. (2.9)
+

Proof. For any = € €, let y = R_zx. It is not hard to check that for any function ¢ and
vector field F = (f1, f2)!, there holds

V.9(R_zx) = RsV,9(y),

and
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So by using Lemma [2.5], we get

—div(Ky(2)Vuz(z)) = = V. - (Kp(x)Veu(R_zx))
= Vo - (K (2)(Rs Vyu) (R-s))
— V. (ReKp(R_z2)RL(R:V u)(R_zx))
=—Vy- (R_z 7‘KH(y>Vyu(y))
==V, (Ku(y)V,u)(y)
281—2 <U(y) —q(y)In 1)
-2 (o) - oy 2)

3. ASYMPTOTIC BEHAVIOR OF .
Now, we give the asymptotic behavior of mountain pass solutions u. of (Z1I). We first
consider the asymptotic behavior of u. under an extra assumption of ¢ and Kpy:
(A;). There exist minimum points of ¢2y/det(Ky) over Q which is on the z;-axis.

Indeed, this additional assumption is not essential. Under this assumption, it is convenient
to give an optimal upper bound of ¢,, see Proposition Bl The proof of asymptotic behavior
of u. without the assumption (A;) will be given in section 4.

Let ¥ € QN {x = (x1,22) | 72 = 0} be such that

(%) \/det(Kg(x*)) = min ¢*(z)\/det(Kg(x)).

€N
Let 0 < e < 1.

3.1. Upper bound of c.. First, we compute the upper bound of ¢.. By choosing proper
competitors, we can get the following upper bound of c..

Proposition 3.1. There holds
lim sup 10_51 < mg?/det(Ky)(2*) = mmin ¢*\/det (K )(x).
e—0 nz

€S

Moreover, if x* € Q, then

c. < wming®/det(Kp)( ln +O(1).

e

Proof. Let U(x) be a C* radially symmetric function such that

U(z) >0, x € By(0),
U(x) =1n ﬁ, x € B1(0)°.
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For any z € QN {xs = 0}, we choose ¢ > 0 sufficiently small and a truncation s €
C°(B2s(0)) such that

0 S gbg S 1 in Bg(g(O); gbg =1 in B(g(O)

For any constants [1,ls > 0 (which will be determined later), define

ﬁ(I1,$2):U ﬂ,@ .
I s

— b

xT

So the support set of U, is the ellipse {(xl,xg) |
A = {(26‘1,.]72) ‘ (%,%) c A} Let (,05(:171,.1’2 = ©s

ps =1 on By.
We define for any 7 > 0 a test function

o7 = q(x) (U (x_‘c) —l—lng) Gs(x — F) = {qln§+q<0 (x;x) +1n7‘)} Gs(x — ).

£

+
l—l ) Then supp(ps) = Bos and

<1 } For any set A, define

H l\JT\'}|wa

/—\HN

Then v € H}(Q). Define

1 1 1 1\”
9:-(1) = — (LL(v]),v]) = — </ (Kg(2) VoI |Vl )de — — (vg —qln —) vgdaj) .
Q € Ja €/ 4

hlg hlg

We now prove that there exists 7. > 0 such that g.(7.) = 0, that is, v € N.. By Lemma
2.4

/Q( (2) VT [VoT ) dz — (KH(x ( )|v<qT)>dx

:/B%m (KH< ( ) ( ))dx
s ™o ) (0% (5) 19 () )

:Al + A2 + A3.

By the definition of v}, we have

A1§C<1+|ln§|>, (3.1)
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where C' is independent of 7. Since ¢ sufficiently small, we can assume that ¢ < 9, which
implies that

e G () () (e () 2

_ / ey +2)(Kn(ey + 1) VO ()| VT (y))dy

B1(0)

S ¢ (2)(Ku(2)VU(y)[VU(y))dy as e — 0.
' (3.2)

The convergence is uniformly about 7.
As for As, we have

b (o () ()
B5(2)\B: () q q

g ) (it 290 (£)190 (2))

Note that for any vector a = (ay, az),
(Kn(z)ala) = (Kp)n(w)ai + (Ko + (Kn)a)(2)araz + (K)o (w)as.

Hence we have

N N
A2 :/ q2(KH)11(SL’ + i’)&lU — 81U — ) dx
Bs(0)\ B (0) (a) ( )
+ / C(Kg)he + (K)o (x+ 7)o U (
B5(0)\B:(0)

i /3;(0)\35(0) ¢ (Ku)a(z + 2)0U (9 %0 @) -
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Note that VU(:cl, To) = (—l% o —l% 2 ) on B, (0)¢. Hence direct calculation yields
1 1 2

1472 2 71_*.72
T3 >t 3
T i1

/B(;(o)\BE(o) C(Kp)u(x +2)0U (g) oU <§) dx

:/ A C_IQ(KH)M(»SZE+:Z')81U(x)010(x)dx

Bg(o)\fh(o)

1 2
:l_4/ *(Ki)n(ez + 7) - L dx

1 JB; (0\Bi(0) (9;_21 +f—22>

1

: () a(e(lar, o) + )y
=7 q H X, T)———————dx

1 ms 0B 0 PR @ )2

[ 72
:_2/ (@*(Km)n(@) + eV(@* (Ku)n) (@) - (b, bre) + O(€2|$\2))27122d:c

v JBs 0)\B1(0) (21 + 3)

[ )
:fﬂ'qz(KH)ll(i’) lng + O(l),

(3.3)

where we used Ky, q € C? and Taylor expansion.
Similarly, we can get

. . l 5
[  PA(K)w(z+ 1)U (f) a0 (f) dr = g (Kp)a(@) In S +O(1).  (3.4)
B;(0)\B: (0) € € l £

Since Z is on the x; axis, we get (Kp)12(Z) = (Kpg)21(Z) = 0, which implies that

2 o o
/35(0)\35(0) 1 ((KH>12 + (KH)21>(QU + Sl?)alU (E) O, U (g) dx

2

N i T I (3.5)
/B (0)\31(0)q (Kehz + (Km)a)( )(x2+ 2)2d +O(1)

s 17T T3
=0(1).
So by [B3), (34) and ([B.5) we have

l 1 1 1
Ay = l—27Tq2(KH)11(f) In -+ l—lﬂqz(KH)m(f) In - +0(1), (3.6)
1 2

where O(1) is some bounded quantity independent of 7.
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Choosing ; 12 = Egg 2(z) and by B1), (32) and ([B.0), we get

| anla) vz 9001 ds =2 o (@) n - + O(1) + Cling

=2mq*\/det(Kp)( ln +0(1)+C|In7|,

(3.7)

from which we deduce that

lim — / (Kt (2) Vol |V )dar = 2mq?/det (o) () (3.9)

e—0 ln

uniformly in any compact set of 7 > 0.
On the other hand, note that

1 1\? 1 1\"*! 1 1\ 1
— (vg —qln —) vidr = — (vg —qln —) de + — (v; —qln —) gln —dx.
e? Jq e) . € e) . 5 e). €

By the definition of v, for ¢ sufficiently small and every x € €2, we have

(vg(x) _ (@) %)+ — 4(a) (U (x . ‘C) + ln7)+.

1 p+1 )
S (rmamd) ar= [ e+ mery
Q 3-(0)

Hence we get

2
c + (3.9)
=" (z) / (U(y) + )2 dy,
+(0)
and
L/ o — gt gl tdr = P+1(x)/ (O(y) +Inr)d (3.10)
8211’1% Q c g £ +q 19 1 BT(O) y + Y- '

The convergences are uniformly in any compact set of 7. By ([3.9) and ([BI0), we get

1 1\” .
lim 7/ <U€T —qln —) vide = ¢z )/ (U(y) +In7)8 dy. (3.11)
Q € B, (0)

e=0 2 ]n 1 N
It follows from B.8) and (Bjj]) that for any 7 > O lim. 0 9¢-(7) = g(7), where g is
defined by g(7) = 2n¢*\/det(Ky)(Z) — ¢"H(Z) [, B 0 (U(y)+1n 7)% dy, and the convergence
is uniformly in any compact set of 7. Now it is not hard to prove that there exist two
numbers 71,72 > 0 such that g(m) < 0 < g(m2). So for € sufficiently small, we have

ge(11) < 0 < gc(m2), from which we deduce that, there exists 7. € (71, 72) satisfying
ge(7-) = 0. Then v € N..
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Now by B8), BII) and 7. € (71, 72), we can compute that

lim —— I (07 ) = lim —— /(K (2) Vo Vo) d — lim ————— / )
im — I (v") =1 PV Vo ) de — li o 1
a—>01né ¢ a—)Oang Q i € € 50 (p—|—1)521n% 0 € q ),

=7nq*\/det(Ky)(T).

Taking the infimum over £ € QN {zy = 0} and using the assumption that z* is on the x4
axis, we get limsup ¢ < 7¢*(2*)/det(Kpg(v*)) = 7 min ¢*\/det(Kp)(x).
e—0 ne =)
If x* € Q, we can improve the above estimate as follows. Indeed, choosing z = x*, and
using (B7) and ([B9) again, we can get

1 1 1\ P+
- < L(T) =5 / N N / (v;—qlng)Jr d

g\ det(R) (x) 1n§ +0(1),

where we used the fact that 7. € (7, 72) and the limit in (3.9)) is uniform on compact sets
of 7. The proof is thus complete.
O

3.2. Diameter and connectness of the vortex core. We now prove the connectness
and estimate the diameter of the vortex core. To this end, we define A, the vortex core of
solution wu,, that is,

A = {xGQ | o) >q(:v)ln%}.

Clearly by the classical regularity theory of elliptic equations, u. € C**(Q) for any a €
(0,1) and A, is an open subset of .

Define diam(A.) = max |z —y|. We can prove the connectness and estimate the
z,yEsupp(Ae)

diameter of A, as follows.

Proposition 3.2. For everye > 0 sufficiently small, A, is connected and simply connected.
Moreover
. diam(A.)
lim ——
e—0 dist( Az, 09)

As a consequence, diam(A.) tends to 0 as € — 0.

= 0.

Proof. Assume that A. has two components A;, A;. We denote ¢; = (u5 —qln é) X4, €
H}(Q). Let np > 0 to be determined later. Define w.(s) = u. + sy — snotbe. Then
w.(s) € HY(Q) for s > 0 sufficiently small. By Proposition 22 #; is a maximum point of
I.(tw,) if and only if

1 1\?
tO/(KH(:L’)Vﬁ)€|V1I)€)dx = —2/ (tmbe —qln —) w.dx.
Q € Ja €/ 4

dx
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Let D(s,t) =t [(Kp(x)Vi| V. )de — % [, (twe — qIn 2)5d.dz. Then D(0,1) = 0. By
g > 0, we have

aD(0, 1)
ot

p—1
~ [ (Fu(o)Vuivude - 2 [ (ue—qln ) 2
t=1 +
1 1 p 1 p—1
=— <u€—qln—> ue—p<u€—qln—> u? | dz < 0.
£ Ja €/ €],

Hence by the implicit function theorem, there is a function ¢t = ¢(s) in the neighborhood of
s = 0 such that t(0) = 1 and D(s,t(s)) = 0, which implies that, ¢(s)w. € N.. Note that

1 1\”
D,(0,1) =2 /Q(KH(:E)VUJV(% — 1oe))dx — ?/Q (ua —qln 5)+ (Y1 — notpe)dx
1 1\
— D (ue — qln - ue(wl - n0¢2)dx
0 5

:_i Q<u€_q1n§) ) (( — Du. +gln )(% no2)dx

If we choose

= Jo (u- — gIn %)1:1 ((p — Due + qIn ) ¢yda -
0 — — )
Jo (ue — qIn %)i ! ((p— Due + gln L) ghoda

then by the chain rule, ¢'(0) = ID) EO 13 = 0, which implies that for s small #(s) = 1+0O(s?).

We calculate I (t(s)w.). Since supp(i1) N supp(iy) = &, we obtain

/Q (K () Vi, | Vi, )
= / (K (2)Vu:|Vu.)dx + s> / (K (2)Vi, |V dx + i s /Q (K (2)Vihs|Viy)da

1 p
+ 25—/ (ue —qln- ) Yrde — 237}0—/ (Ue —qln— ) Pod.
+
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Since t(s) = 1+ O(s?), we have

e
— $)w. — qln — x
(p+1)e? Jq €],

1 1 1 1\?
:m /Q (i&(s)u€ —qln g)TldI + = /Q(t(s)u5 —qln g) (st — mosipy)dx

_l’_

1\ .
+ 2—82 (t(s)u5 —qln g) (sh1 — nosiba)*dx + O(s*1)

_l’_

= ! / (t( ) | 1)p+1d + 1 / ( | 1)1’ (st y)d.
R — s)us —qln = T+ — Ue — qln — sy — Mos x
(p+1)e? Jq e) . €2 Jq e), Lo

1\
+ ﬁ (u —qln g) (s*¢7 +mys*v3)da + O(s**7),
+

for some o > 0. So by Proposition 2.2 we get

Sz

ce <I(

1 1 p+1
vw5|vw5) — W/g; (t(s)wa — QIII g) dx

+

1 1 p+1
VUE|VUE) — W/ (t(S)UE — qln g) dx

+
p—1
+%[/ Ky (z)Vi Vi) dx——/(ue—qln ) Yide
Q

_l’_

+ 0 /(K (x)Vhs|Vh )dx—£/ <u —qln1>p_1¢2dx }—FO(S%—U)
0 0 H 2 2 82 o 5 - . 2 .

Note that

t(s)?

_l’_

Direct calculation shows that

1\*!
[ (e V) - ;% / (u —qlng) P

+
p 1™
Aq e Ja, €/ +
1

__r- /Al(wl)wdx <0,

c2

1 1 p+1
5 /Q(KH(ZE)VU£|VUE)dZL' — W/Q (t(s)u6 —qln g) dr < max I (tu,).

21
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Here we have used Lq = 0. Similarly, [, (Kpg(x)V|Vis)dz—2% [, (u- — ¢In %)Tl Yadr <
0. Thus ¢. < max I.(tu.) = I.(u.) = c., which is clearly a contradiction. So we conclude

that A, is connected.

Moreover, we can prove that A, is simply connected. Let U be the connected component
of 2\ A, such that 9Q C U. Note that Q\ U is open and £ (u- — ¢In1) > 0in Q\ U and
Ue — qln% > 0 on 0(Q2\ U). By the strong maximum principle, u. — qln% >0in Q\ U.

Thus A, is simply connected.
Finally, by the definition of capacity and u. > ¢ ln% on A., we have
u
v (i)
qln -

1\? U U 1\?
In — K < £ dr > (In=) inf(¢*\ /
(ng) /Q\Asq ( H(@)V <qln§)‘v (qln%)) x_<n5) 1?2 (72) Q\Ae

1\ 2
>C (lng) Aocap(Ag, ),

2
dx

where \y(z) = #Txlz is the smaller eigenvalue of Kp. Since R? \ Q is connected and
unbounded, by the classical estimates of capacity (see [L1], 24]), we have
2
cap(Ac, ) > TR
16 (1+ 2o

By Lemmas 2.3] 2.4] and Proposition B.1]
(0)? for. @ (Kn(@)V (qf) v (qf)) dz

o Ku(z)Vu|Vu,)dx

Q(If’jll)le(ug) <cln é

IA A

Combining all these inequalities, we get lim._, %ﬁ%) =0

O

Define the energy of the vortex core E.(¢) = [, (Ky(2)V (u- — ¢Ind) |V (u: — ¢Inl)) dz.
We will show that E.(¢) is uniformly bounded with respect to .

Lemma 3.3. There holds for some C' independent of €

/AE (KH(:I:)V (uE —qln%) v (ue —qln%)) dr < C.

Proof. Direct calculation yields that

1 1 1 1\
/ Ky()V | ue —qln— | [V {u. —gqln— | | do = e —qln— dzr, (3.12)
A, 3 3 3 A. 3

and
A(KH(x)vue|vu€)dx - / (KH(:C)V (u gl é) v <u gl é)) d

Inl 1\”
=— / u: —qln—| qdz.
€ A, €
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By [B12), (K2) and the classical Gagliardo-Nirenberg inequality, we get

/ (KH(x)V (u5 —qln é) Y (u€ —qln é)) dx
* p 1 2
§0—2 <u5 — qlnl) dx (/ \V4 <u5 —qln —) dx)
e* Ja. € Ae €
cr 1\” 1 1 3
| — — - K e 1 - e l - d )
S e /6 <u5 qlng) dx </5 ( n(2)V <u q ng) Y (u q ng)) :c)

which implies that

/5 (KH(:c)V (u —qlné) v (ue—qlné)) dz < C (gi /A (ue—qlné)pd:c)2.

By (BI3) and Proposition B, we get

D=

1 1\? C c
e? J,, (“ ko g) dr <7 (K@) Vol Ve)ds < g 5pl(ue) <
Thus we get
1 ]_ 1 1 p+1
/ Ku(@)V {ue —gln - J[V (v —qln - ) Jdo= 5 | (=gl ] de<C
- c € €% JA. €

O

Using Lemma B.3] we can get the lower bound of the diameter of the vortex core A, as
follows.

Lemma 3.4. There exists a constant Ry > 0 independent of € such that
diam(A;) > Rye.
Proof. By (B12]) and the Sobolev inequality, we have

1 1 1 1"
/ Ky(x)V {u.—qln— | |V (u. —qln— dx:—z/ Ue —qln - dx
) £ £ €2 Ja. £
2\ %
LGl </ v (1 -an?) dz)
3 A, 3
p+1

SLﬂl Ky (x)V us—qln1 |V ue—qln1 dx : ,
. P+
(info Ay) 2 €2 . € 3

from which we deduce that

—p+1

([ (o (s enD)o)
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By Lemma [3.3] we conclude that |A.| > Ce% Thus we complete the proof by using the
isoperimetric inequality |A.| < wdiam(A.)?/4.
[

3.3. Asymptotic location of A.. It follows from Proposition that lim._oA. = 0,
that is, the vortex core of u. will shrink to a single point z as ¢ —+ 0. We now prove that
the limiting location of A, is a minimum point of ¢*+/det(Ky), by choosing test functions
suitably and using the classical stream-function method.

Proposition 3.5. There holds
lim dist(A.,z) =0,

e—0
where 3 is a minimizer of ¢°>+/det(Ky). As a consequence, there holds
lim C—al = mmin ¢*\/det(Ky). (3.14)
e—0 ]n Q

Proof. Tt follows from (3.13) that

h;f /A (us—qlné)pqdaj
:/Q(KH(:L’)VU€|Vu5)dx—/E <KH(:c)V (ue—qln )\v< —qlné))dm

p—l 1p+1
=2I.(u.) — ———— - —qln— )
- g [, (w-om)

Hence by Lemma B3] we get

p
1 (ua—qln%> qdr = — 2¢ +O< ! ) < C. (3.15)
Ae

g2 Ini Indi =

gln 2

ue—qln L
For any 0 < 7 < 0 < 1, define w?" := min{% 1} € H}(Q) and A7 :=

{z € Q| u.(z) > g(x)InL}. Then one computes directly that w?™ = 1 on AT and supp(w?™) =
V3
We claim that for every e < 7,

P
lng/(ﬁ(KH( IVwZ ™| Vw?™)d ——/( —qln— ) qdz. (3.16)
Q

+
Indeed, multiplying both sides of (ZI) by ¢ = w?7q € Hi(2) and using integration by

parts, we get
1 1\"
(Ku(7)Vu|V(wl7q))dz = — ue —qln— | wl7qdx.
Q € Ja €/ 4
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Direct computations show that

1 1\" 1 1\”

- (u5 —qln —) rqdr = — (u€ —qln —) qdx

e Ja €/ 4 £ Ja /4
and

[u@ v = [ (Ku09 (w2} 1900z) do

—In g /Q (Kp(2)V (o™ q) |V (wS™q))d + /Q (KH(x)V (u . qln% —In gwg’Tq) |V(w§’7q)) d
[ (Kula)V(wz )V wza)de + | ; (#u2)¥ (w2 = a1 ) 9a) do

B / (Kp )V (wi7q)|V(wI7q))da
Q

=7 / ¢*(Kp(x)VwlT|VwlT)de
Q

where we have used the assumption £yq = 0 and Lemma 2.4l Thus we get (B.16]).
By the definition of capacity, (315) and ([B.14]), we get

1 C
1,712 1,7 1,7
cap(A / Vul e < / (Kle) Pl [Vl < o
Using the capacity estimates in [I1] again, we get
2
i S cap(Az, Q).
lIl 16 (1 + W(Z;’))
from which we deduce that,
2 C
27;' t(AZ,00) . Inlt (3.17)
1S Z-—v n-=
In 16 <1 + W) T

So there exist constants C',Cy > 0 independent of €, 7, such that for any 0 < 7 < 1 and
e <,
diam(A7) < 7.
We now claim that for any ¢ > 0, there exist p > 0 and 0 < ¢y < p, such that for any
e €(0,e0) and z,y € A?,
q(x)” < q(y)*(1 +9), (3.18)
and
(Ku(2)CI0) < (1 +0)(Kn(y)C|0), ¥ ¢ e R (3.19)
Indeed, since infg ¢ > 0 and ¢ € C*(Q) N CL(Q), it is easy to get BIF). By (K2) and the
regularity of Ky, one can also get (319).
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Thus taking o = p, 7 = ¢ in (B16]), we get for any z. € A, C A?

1 1 ! 2 P p q2(l.€)

- — — — € € > PyE pP€
82ln§/9<u€ qln€)+qu /Qq (Kg(x)Vw?s|Vwt®)de > 110) /Q(KH(SL’e)Vwe |Vwt®)dx
(3.20)

Define a linear transformation matrix 7. : R? — R? satisfying
T.Ky(z)T! = Id.

Then |det(T.)| = |det(Ky)(x.)| 2. Let Q' = T.(Q), AL = T.(A.). For any y = T.(z) € €,
define w<(y) = wP(x) = wl*(T-(y)). Since w?* =1 on AL and w?¢ € H}(), using
the capacity estimates again we have

/

—\/det(Kg)(z.) | |Var<|2dy
Ql

det(Kp)(z.) - cap(AL, Q)

> \/det(Kp) () - 2m

In 16 (1 i 7%;;&;“(’23‘)”)

> \/det (Ko (x.) 2n

In16 (1 + 7004&(,45,@9)) ’

/(KH(xg)Vw§’€|Vw§’€)d:c :/ (T. Ky (2 )TN 0P |Vl |det (T | dy
Q

v

(3.21)

diam(A¢)
for some C > 0 independent of e. Thus by (3:20) and [B.21]), we get

det(Kn)(z.) < (27:;? In16 (1 C"jiiztrg‘?zjg)) ((}2 /Q (u _gln %)p qu).

+
(3.22)
Taking the limit superior in both sides of (3.22]), using (3.15) and Proposition B.1] we
obtain that for any § > 0 and z. € A,,
16 (1 n Codist(Ae,00)

1 2 iam(Ac
limsup ¢*\/det (Kp)(x.) < (Qﬂlimsup j ) >~27T min ¢*\/det (K ) (x)

e—0 7T e—0 In c z€Q

By Lemma B4 and dist(A., 02) < diam(£2), we get

16 (1 X cod;st(As,aQ)>

diam(A¢) In 16 (]_ + %)

14
€

=1.

lim sup 5 < lim sup
e—0 In . e—0 In

Hence we have
lim sup ¢*/det(Kg)(z.) < (14 96) migq2 det(Ky)(z).
€n

e—0

By the arbitrariness of 6 > 0, we conclude that for any z. € A., . tends to &, where  is

a minimizer of ¢>\/det(Kpy).
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Taking the limit inferior in both sides of (3.22)), using (3.I3]), and by the the arbitrariness

of 0 > 0, we have
lim inf lc_gl > 7w min ¢*\/det(Kp).
l'lg Q

e—0

Combining this with Proposition Bl we get (8.14]). The proof is thus complete.

O
We can then get estimates of the diameter of A. as follows.
Lemma 3.6. There holds
dist(A:,0Q)
. diam(Ae)
}:1_13(1) 7111% =1 (3.23)
Proof. On the one hand, by Lemma [3.4], we have
ln dlSt(Ag,aQ) Q
lim sup dlainims) <limsup — = 1.
e—=0 In z e—0 In =

On the other hand, taking the limit inferior in both sides of ([3.22]) and using (B.15) and
Proposition Bl we get

16 (1 4 Codist (A ,09)

1 2 iam(Ae
ﬂliminf dlam( ) )-27rminq2\/det(KH)(x)

2r =0 In 2 2€Q

> lim iéaf ¢/ det(Ky)(x.)
£—

— min g* /det ().
Q

which implies that

. 16 (1 Cogela=t0) In dt(4-.00)
< lim inf = lim inf ————~
(146)2 e—0 In 2 e—0 In 2
dist(Ac,09)
By the arbitrariness of § > 0, we have lim iéaf — 2572 > 1. The proof is thus complete.
e— ne

O

Remark 3.7. A direct consequence of Lemmas B.6] and B4 is that for any « € (0, 1), there
exists C1, Cy > 0 such that
Cie < diam(A;) < Coe”.

When the limiting location Z of A, is on the boundary of €2, such an estimate is optimal.
Similar results have been found for 2D Euler equations and 3D axisymmetric equations,
see [111, 20} 24] for example. However when Z € 2, we can improve estimates of A..
By Proposition 3.5, we show that the limiting location of A, is z*, where ¢*+/det(Ky)(z*) =
min ¢?\/det(Kp). Note that x(w.) = % [, (ue —¢ln %)‘i dx is the circulation of w. =
9

% (u- —¢In %)‘i . The limit of x(w.) can be obtained as follows.
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Lemma 3.8. There holds

lir% k(w.) = 2mgr/det(Ky)(x¥).

E—
Proof. It follows from ([B13), (B12) and the definition of ¢, that

1 P

In 1 1 1

5 / (u€ —qln —) qdx :/(KHVUE|Vu5)dx — / (KHV (u6 —qln —) Y (u6 —qln —)) dx
g A £ Q . £ g

-1 1 p+1
=2c. — LQ/ U — qln — dx.
(p+1)e? Ja. €

1 1 p+1
— (ue—qln—) dr < C.
A

(3.24)

£

So & In (ue — qIn 1)’ qda = ici +0 (mll ) By Proposition B.5 and the fact that A, — 2%,

€

1 1\? 2c¢.
1ir% r(we) = q(z*) " lim — / (ua —qln E) qdr = q(z*)" " lim lil = 2mq(x")\/det(Kg(z*)).
Ae

e—0n =
1>

O

3.4. Further analysis when the limiting location of A. is in 2. When the limiting
location of A, is in €2, we can improve the results in Proposition and Lemma by
giving more accurate estimates of lower bound of ¢. and upper bound of the diameter of
A.. Indeed, we have

Proposition 3.9. If for any x. € A., lim._,gx. = 2* € (), then

1
ce = I.(u.) = 7min ¢*\/det(Kp) In . + O(1). (3.25)
Q
Moreover, there exist Ry, Ry > 0 such that
R1€ S dzam(AE) S RQE.
Proof. By [B1I7), we get for any 0 < 7 < 1 and ¢ < 7,

2w C
2dist(A7,00) < Int’
ll’l 16 <1 + W(Z‘g)) T

So there exist Cy, ag > 0 such that %@’fﬁ)) > ST%, which implies that diam(AZ) < Cy70
for some Cy > 0. That is, for any x,y € A7, |[v —y| < Cy70.
By ¢ € C*(Q) N CYHQ), (Ku)ij € C=(Q) for i,j = 1,2, infq g > 0 and (K2), similarly to

the proof of (BI8) and [BI9), we can get that ¢*Kp is Dini-continuous uniformly in €,
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which means that, there exists a non-negative function ~(s), such that [;° 7(3 ds < 400
for some sy > 0 and

¢*(2)(Kr(2)Cl¢) < (L +v(lz —yD)* ) (Eu)Cle), YayeQ (R (3.26)
Thus by [B.I6) and ([B.26), we get for any 0 <7 <o <1,e <7 and z. € A. C AZ,

1 1\
— (ue —qln— ) gdr =In — / ¢ (Ky(2)Vw? | Vw?™)dx
Q Q

3
€ +
o

>1In 2(2.)(Kg(2) Vw2 Vw7 )dr,
>t s [ ) () Tus Tue)ds

which implies that

p
(mg>a/q(%ﬂKﬁ@JVM”HMﬂUdr<h1(1+7«10))E/FG%—qml)<ﬂx
T Q 15 Q 9 +

(3.27)
Taking e =71 < 01 =T <0y =73 < -+ < 0p = p, and summing ([B.27) over {j =
1,2,--+ ,k}, we get for any x. € A,

k P
P2 9 . . p o o;i\ 1 1
(m g) /Q ¢ (2.) (K (2.) Vars | V<) de < (1“2 + ;:ljy(clo—joﬂn?;) = /Q (u ~qlnZ) odo
By taking the limit of Riemann sums in the above inequality, we have

2 p Qo 1 1 p
(111 B) / ¢ (2) (K g (z.) Ve | Vw?<)de < <ln L +/ MCZU) —2/ <u€ —qln —) qdzx.
£ O 9 c g £ Q 9

+

Since

P @Q Cipo !
/VWW)@:/ (qw_ﬁﬁwd:i/ W@wk+m
€ €0

g ge0 Qo @0 Jcyemo o

we get

1 C 1 1\?
2 pse p.e < - | = . —qln— 2
/Qq () (Kp(xe) Ve | Vwl®)de < (1115 + (ln3)2> = /Q <u q n€)+qu’ (3.28)

which is the refined version of ([B.20). So repeating the proof of Proposition B.5 we have

In16 (1 4 ColstCle.09) p
det(Kp)(x.) < ( dom ) ) 1p + ¢ 5 <i2/ <u€ —qln 1) qu) ,
2m In £ (ln g) e Ja €) .
(3.29)

which improves ([3.22).



30 DAOMIN CAO, JIE WAN
Thus, taking (313) into ([3.29) and using Proposition Bl we obtain
16 (1 4 cod;st(As,aQ)>
. 1 diam(A¢) 1 C
2
Vdet(Ky)ln— <
Ir%nq et(Kn) he= 27 (ln§+(1n£

€

)2> (2. + O(1))

In16 (1 4 Codist(A:,00)
diam(A¢) 1 C . 2 1
< In 2 + ( 27Tm§1nq det(Kg) lng+0(1) .

2 In B) 2
15
Direct computation shows that

Codist(A., 00) 1
> ln — 1
diam(A.) — . € +0(),

which implies that diam(A.) < Rye for some Ry > 0.
Finally, by taking diam(A.) > Rie (see Lemma B.4) into (3:29) and using (3.13)), we get
1 1 1
c. >mmin ¢*/det(Ky) . In-+0(1)
Q 16 (1 X ng}st(Ag,(’)Q)) L o €
diam(A¢) @ + (lnﬁ)z

27Trr1_inq2\/det(KH)l 10 ! lné—l—O(l)
Q l’lg < )

1
>7 min ¢*\/det(Ky) In B +O(1).
Q

Combining this with Proposition Bl we get (8:25). The proof is thus complete.

4. PROOF OF THEOREM AND

4.1. Proof of Theorem In subsections 3.1 to 3.4, we prove the existence and as-
ymptotic behavior of solutions of (2.I]) under the additional assumption that there exist
minimum points of ¢*y/det(Ky) on the rj-axis.

Now we give proof of Theorem [[L5 in the case that all minimum points of ¢?\/det(Kg)
is not on the z;-axis. Let 2 = (|#|cos;, || sinf;) be a minimizer of ¢*y/det(Ky) on €.

Let Q; = {R;x | x € Q}. For any function u € H(Q), let uz(x) = u(R_zx) for any
€ Q. Souz € H(Q). Let ¢z(z) = q(R_zx) for any x € Q;. Then by Lemma 2.6, we get
that w is a solution of (2Z1]) if and only if u; is a solution of

{ —div(Ky(2)Vv) = & (v — ¢z In %)i, in ;. (41)

v =0, on 0€);.
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For equations (1)), we claim that there exist minimum points of ¢2y/det(Kg) on the
x1-axis. Indeed, we can prove that (|z|,0) = R;Z € €); and

20D - 25
ST (i) = —allsd) K(®) e ST in g2 /del(Ka),
VE2 4 Rea|2 K2+ |2]? Q 0,

which implies that (|#],0) is a minimizer of ¢2+/det(Kpy).

Hence we can repeat the proof in subsections 2.1 and 3.1-3.4 to show that there exist
a family of solutions v. of (4] concentrating near minimum points of ¢2+/det(Kz). De-
fine u.(x) = v.(Rzx) for any x € Q. Then {u.} is a family of solutions of (2.I)) which
concentrates near a minimizer of ¢*y/det(Kp) as € — 0.

Let w, = Lyu., . = u. — qln é Then (w,, ¢.) is the desired solution pair of Theorem

4.2. Proof of Theorem [1.2] Based on results in Theorem [L.3] we now give the proof of
Theorem Let g(x) = m for every m > 0. Then ¢ satisfies Lyq = 0. So by Theorem
[LH, there exist solutions u. of (LI8) with f(¢) =t} and g = mIn < concentrating near z*,

which is a minimizer of ¢*+/det(Ky). Since

¢\ AH ) (z) = m? (’“—)

k% + |z|?

we get that o* € () satisfies |2*| = max|z|. Let w. = Lyu.. By Lemma B8, the limit of
0

circulation is

NI

2kmm

To conclude, (w., u.) is the desired solution pair and the proof of Theorem [[L2is complete.

. ) - k2
ll_r)r(l) r(we) = 2mq(x*)\/det(Kg(xz*)) = 2mm - <k:2 m |:£*|2> =

Remark 4.1. From the proof of Theorem [[.2] we see that the limiting location x* of w.
satisfies |z*| = max |z|. So x* must be on the boundary of Q. This implies that results
Q

in subsection 3.4 can not hold. In this case, the optimal estimates of diameter of A, is
Lemma [3.6], rather than Proposition

Acknowledgments: D. Cao was supported by NNSF of China (grant No. 11831009) and
Chinese Academy of Sciences by grant QYZDJ-SSW-SYS021. J. Wan was supported by
NNSF of China (grant No. 12101045) and Beijing Institute of Technology Research Fund
Program for Young Scholars (No0.3170011182016).

REFERENCES

[1] H. Abidi and S. Sakrani, Global well-posedness of helicoidal Euler equations, J. Funct. Anal., 271
(2016), no. 8, 2177-2214.

[2] M. Benvenutti, Nonlinear stability for stationary helical vortices, NoDEA Nonlinear Differential Equa-
tions Appl., 27 (2020), no. 2, Paper No. 15, 20 pp.



32

3]

DAOMIN CAO, JIE WAN

M.S. Berger and L.E. Fraenkel, Nonlinear desingularization in certain free-boundary problems, Comm.
Math. Phys., 77(1980), 149-172.

A.C. Bronzi, M.C. Lopes Filho and H.J. Nussenzveig Lopes, Global existence of a weak solution of
the incompressible Euler equations with helical symmetry and LP vorticity, Indiana Univ. Math. J.,
64(2015), no. 1, 309-341.

D. Cao, Z. Liu and J. Wei, Regularization of point vortices for the Euler equation in dimension two,
Arch. Ration. Mech. Anal., 212(2014), 179-217.

D. Cao, S. Peng and S. Yan, Planar vortex patch problem in incompressible steady flow, Adv. Math.,
270(2015), 263-301.

D. Cao, S. Peng and S. Yan, Singularly Perturbed Methods for Nonlinear Elliptic Problems, Cambridge
University Press, Cambridge studies in advanced mathematics 191, 2021.

D. Cao and J. Wan, Desingularization of rotational-invariant solutions to 3D Euler equation with
helical symmetry, Preprint.

J. Davila, M. del Pino, M. Musso and J. Wei, Gluing methods for vortex dynamics in Euler flows,
Arch. Ration. Mech. Anal., 235(3)(2020), 1467-1530.

J. Dévila, M. del Pino, M. Musso and J. Wei, Travelling helices and the vortex filament conjecture in
the incompressible Euler equations, to appear in CVPDE.

S. de Valeriola and J. Van Schaftingen, Desingularization of vortex rings and shallow water vortices
by semilinear elliptic problem, Arch. Ration. Mech. Anal., 210(2)(2013), 409-450.

A. Dutrifoy, Existence globale en temps de solutions hélicoidales des équations d’Euler, C. R. Acad.
Sci. Paris Sér. I Math., 329(1999), no. 7, 653-656.

B. Ettinger and E.S. Titi, Global existence and uniqueness of weak solutions of three-dimensional
Euler equations with helical symmetry in the absence of vorticity stretching, SIAM J. Math. Anal.,
41(2009), no. 1, 269-296.

L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid, Acta Math.,
132(1974), 13-51.

H. Helmholtz, On integrals of the hydrodynamics equations which express vortex motion, J. Reine
Angew. Math., 55(1858), 25-55.

L. Jeanjean and K. Tanaka, A remark on least energy solutions in RY, Proc. Amer. Math. Soc.,
131(2003), no. 8, 2399—2408.

R.L. Jerrard and C. Seis, On the vortex filament conjecture for Euler flows, Arch. Ration. Mech.
Anal., 224(2017), no. 1, 135-172.

R.L. Jerrard and D. Smets, On the motion of a curve by its binormal curvature, J. Fur. Math. Soc.
(JEMS), 17(2015), no. 6, 1487-1515.

Q. Jiu, J. Li and D. Niu, Global existence of weak solutions to the three-dimensional Euler equations
with helical symmetry, J. Differential Equations, 262 (2017), no. 10, 5179—5205.

G. Li, S. Yan and J. Yang, An elliptic problem related to planar vortex pairs, SIAM J. Math. Anal.,
36(2005), 1444-1460.

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cam-
bridge, 2002.

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer-
Verlag, 1994.

A. Pomponio and S. Secchi, On a class of singularly perturbed elliptic equations in divergence form:
existence and multiplicity results, J. Differential Equations, 207(2004), no. 2, 229-266.

D. Smets and J. Van Schaftingen, Desingularization of vortices for the Fuler equation, Arch. Ration.
Mech. Anal., 198(3)(2010), 869-925.

M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications,
Vol. 24. Birkhauser Boston Inc., Boston, 1996.



DESINGULARIZATION OF 3D STEADY EULER EQUATION WITH HELICAL SYMMETRY 33

[26] V.I. Yudovich, Non-stationary flow of an ideal incompressible fluid, USSR Comp. Math. Math. Phys.,
3(1963), 1407-1456.

INSTITUTE OF APPLIED MATHEMATICS, CHINESE ACADEMY OF SCIENCES, BEIJING 100190, AND
UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, BEIJING 100049, P.R. CHINA
Email address: dmcao®@amt.ac.cn

SCHOOL OF MATHEMATICS AND STATISTICS, BELJING INSTITUTE OF TECHNOLOGY, BELJING 100081,
P.R. CHINA

Email address: wanjie@bit.edu.cn



	1. Introduction and main results
	1.1. Introduction

	2. Variational problem
	2.1. Existence of solutions
	2.2. Basic properties

	3. Asymptotic behavior of  u
	3.1. Upper bound of  c 
	3.2. Diameter and connectness of the vortex core
	3.3. Asymptotic location of  A
	3.4. Further analysis when the limiting location of  A is in  

	4. Proof of Theorem 1.5 and 1.2
	4.1. Proof of Theorem 1.5
	4.2. Proof of Theorem 1.2
	Acknowledgments:

	References

