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DESINGULARIZATION OF 3D STEADY EULER EQUATIONS WITH

HELICAL SYMMETRY

DAOMIN CAO, JIE WAN

Abstract. In this paper, we study desingularization of steady solutions of 3D incom-
pressible Euler equation with helical symmetry in a general helical domain. We construct
a family of steady Euler flows with helical symmetry, such that the associated vorticities
tend asymptotically to a helical vortex filament. The solutions are obtained by solving
a semilinear elliptic problem in divergence form with a parameter. By using the stream-
function method, we show the existence and asymptotic behavior of ground state solutions
concentrating near a single point as the parameter ε → 0. Qualitative properties of those
solutions are also discussed.

Keywords: Desingularization; Steady Euler equations; Helical symmetry; Variational
method.

1. Introduction and main results

1.1. Introduction. The movement of incompressible Euler flow confined in a three-dimensional
domain D without external force is governed by the following system



















∂tv + (v · ∇)v = −∇P, D × (0, T ),

∇ · v = 0, D × (0, T ),

v · n = vn, ∂D × (0, T ),

v(x, 0) = v0(x), D,

(1.1)

where D ⊆ R
3 is a domain with C∞ boundary, v = (v1, v2, v3) is the velocity field, P is

the scalar pressure, n is the outward unit normal of ∂D and v0 is the initial velocity. vn is
a function defined on ∂D satisfying compatibility condition

∫

∂D

vndσ = 0,

where σ is the area unit on ∂D. The third equation of (1.1) means that the net flux
of velocity across the boundary is zero. When vn ≡ 0, it is the impermeable boundary
condition, which means that the normal component of velocity on the boundary is zero.
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The vorticity vector field associated with v is w = (w1, w2, w3) = curlv = ∇× v, which
describes the rotation of the fluid. Then w satisfies the vorticity equations



















∂tw + (v · ∇)w = (w · ∇)v, D × (0, T ),

∇ · v = 0, D × (0, T ),

v · n = vn, ∂D × (0, T ),

w(x, 0) = ∇× v0(x), D.

(1.2)

For background of the 3D incompressible Euler equation, see the classical literature [21, 22].
In this paper, we are devoted to Euler equations (1.1) with helical symmetry. Let us first

define helical symmetric solutions and simplify the vorticity equations (1.2), see [9, 12, 13].
Let k > 0. Define a one-parameter group Gk = {Hρ : R

3 → R
3}, where

Hρ(x1, x2, x3)
t = (x1 cos ρ+ x2 sin ρ,−x1 sin ρ+ x2 cos ρ, x3 + kρ)t.

Here At is the transposition of a matrix A. So Hρ is a superposition of a rotation in x1Ox2

plane and a translation in x3 axis. Let Rρ =





cos ρ sin ρ 0
− sin ρ cos ρ 0

0 0 1



 be the rotation with

respect to x3-axis. Then Hρ(x) = Rρ(x)+ kρ(0, 0, 1). From a geometric point of view, 2kπ
corresponds to the pitch of helices.

Define a vector field −→
ζ = (x2,−x1, k)t.

Then
−→
ζ is the field of tangents of symmetry lines of Gk.

To show what the helical solutions are, we first define helical domains. A domain D ∈ R
3

is called a helical domain, if Hρ(D) = D for any ρ. So D is invariant under the group
Gk. Let Ω = D ∩ {x | x3 = 0} be the section of D over x1Ox2 plane. Then D can be
generated by Ω by letting D = ∪ρ∈RHρ(Ω). Throughout this paper, we always assume that
Ω is a simply-connected bounded domain with C∞ boundary and D is a helical domain
generated by Ω.

Now we give the definition of helical functions and vector fields. A scalar function h is
called a helical function, if

h(Hρ(x)) = h(x) (1.3)

for any ρ ∈ R, x ∈ D. By direct computations it is easy to see that a C1 function h is
helical if and only if

−→
ζ · ∇h = 0.

A vector field h = (h1, h2, h3) is called a helical field, if

h(Hρ(x)) = Rρh(x) (1.4)

for any ρ ∈ R, x ∈ D. Direct computation shows that a C1 vector field h is helical if and
only if

−→
ζ · ∇h = Rh,
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where R =





0 1 0
−1 0 0
0 0 0



 (see [13]). Helical solutions of (1.1) are then defined as follows.

Definition 1.1. A function pair (v, P ) is called a helical solution pair of (1.1), if (v, P )
satisfies (1.1) and both vector field v and scalar function P are helical.

Throughout this paper, helical solutions also need to satisfy the orthogonality condition:

v · −→ζ = 0, (1.5)

that is, the velocity field and
−→
ζ are orthogonal.

Under the condition (1.5), one can check that the vorticity field w satisfies (see [13])

w =
w

k

−→
ζ , (1.6)

where w := w3 = ∂x1v2 − ∂x2v1, the third component of vorticity field w, is a helical
function. Moreover, the first equation of the vorticity equations (1.2) is equivalent to

∂tw + (v · ∇)w +
1

k
wRv = 0.

As a consequence, w satisfies

∂tw + (v · ∇)w = 0. (1.7)

From (1.7) we deduce that, w satisfies a transport equation, which is very similar to the
case of 2D Euler equations (see Yudovich [26]). Moreover, for a solution w of (1.7), the
vorticity field w is determined by (1.6).

We now introduce a stream function and reduce the system (1.2) to a 2D problem.

Since v is a helical vector field, we have
−→
ζ · ∇v = Rv, which implies that

x2∂x1v3 − x1∂x2v3 + k∂x3v3 = 0. (1.8)

The orthogonal condition shows that

x2v1 − x1v2 + kv3 = 0. (1.9)

It follows from the incompressible condition, (1.8) and (1.9) that

0 =∂x1v1 + ∂x2v2 + ∂x3v3 = ∂x1v1 + ∂x2v2 −
x2
k
∂x1v3 +

x1
k
∂x2v3

=∂x1v1 + ∂x2v2 −
x2
k2
∂x1(−x2v1 + x1v2) +

x1
k2
∂x2(−x2v1 + x1v2)

=
1

k2
∂x1 [(k

2 + x22)v1 − x1x2v2] +
1

k2
∂x2 [(k

2 + x21)v2 − x1x2v1].

Since Ω is simply-connected, we can define a stream function ϕ : Ω → R such that ∂x2ϕ =
1
k2
[(k2 + x22)v1 − x1x2v2], ∂x1ϕ = − 1

k2
[(k2 + x21)v2 − x1x2v1], that is,

(

∂x1ϕ
∂x2ϕ

)

= − 1

k2

(

−x1x2 k2 + x21
−(k2 + x22) x1x2

)(

v1
v2

)

,
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or equivalently,
(

v1
v2

)

= − 1

k2 + x21 + x22

(

x1x2 −k2 − x21
k2 + x22 −x1x2

)(

∂x1ϕ
∂x2ϕ

)

. (1.10)

By the definition of w and (1.10), we get

w =∂x1v2 − ∂x2v1 = (−∂x2 , ∂x1)

(

v1
v2

)

=(−∂x2 , ∂x1)

(

− 1

k2 + x21 + x22

(

x1x2 −k2 − x21
k2 + x22 −x1x2

)(

∂x1ϕ
∂x2ϕ

))

=− (∂x1 , ∂x2)

(

1

k2 + x21 + x22

(

k2 + x22 −x1x2
−x1x2 k2 + x21

)(

∂x1ϕ
∂x2ϕ

))

=LHϕ,

(1.11)

where LHϕ = −div(KH(x1, x2)∇ϕ) is a second order elliptic operator of divergence type
with the coefficient matrix

KH(x1, x2) =
1

k2 + x21 + x22

(

k2 + x22 −x1x2
−x1x2 k2 + x21

)

. (1.12)

Clearly from the definition of the matrix KH , KH is a positive definite matrix satisfying

(K1). KH is smooth, i.e., (KH(·))ij ∈ C∞(Ω) for i, j = 1, 2.

(K2). LH is strictly elliptic. Indeed, two eigenvalues of KH are λ1 = 1, λ2 = k2

k2+|x|2 . So

one has,

k2

k2 + |x|2 |ζ |
2 ≤ (KH(x)ζ |ζ) ≤ |ζ |2, ∀ x ∈ Ω, ζ ∈ R

2.

From (1.7), (1.9) and (1.10), one has

0 =∂tw + v1∂x1w + v2∂x2w + v3∂x3w

=∂tw + v1∂x1w + v2∂x2w +
1

k
(−x2v1 + x1v2) ·

1

k
(−x2∂x1w + x1∂x2w)

=∂tw +
1

k2
(v1, v2)

(

k2 + x22 −x1x2
−x1x2 k2 + x21

)(

∂x1w
∂x2w

)

=∂tw − 1

k2(k2 + x21 + x22)
(∂x1ϕ, ∂x2ϕ)

(

x1x2 k2 + x22
−k2 − x21 −x1x2

)(

k2 + x22 −x1x2
−x1x2 k2 + x21

)(

∂x1w
∂x2w

)

=∂tw − (∂x1ϕ, ∂x2ϕ)

(

0 1
−1 0

)(

∂x1w
∂x2w

)

=∂tw + ∂x2ϕ∂x1w − ∂x1ϕ∂x2w

=∂tw +∇w · ∇⊥ϕ,
(1.13)

where ⊥ denotes the clockwise rotation through π/2.
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As for the boundary condition of ϕ, from the fact that v is a helical vector field and
the domain D is helical, vn is a helical function defined on ∂D. So vn can be generated by
vn|∂Ω. Moreover, it follows from v · n = vn on ∂D that (see (2.66), [13])

vn|∂Ω =v · n|∂Ω
=v1n1 + v2n2 + (−x2

k
v1 +

x1
k
v2)(−

x2
k
n1 +

x1
k
n2)

=
1

k2
(v1, v2)

(

k2 + x22 −x1x2
−x1x2 k2 + x21

)(

n1

n2

)

.

Combining this with (1.10), one has

vn|∂Ω =− 1

k2(k2 + x21 + x22)
(∂x1ϕ, ∂x2ϕ)

(

x1x2 k2 + x22
−k2 − x21 −x1x2

)(

k2 + x22 −x1x2
−x1x2 k2 + x21

)(

n1

n2

)

=− (∂x1ϕ, ∂x2ϕ)

(

0 1
−1 0

)(

n1

n2

)

=∇⊥ϕ · ν.
(1.14)

Here ν = (n1, n2) is the two-dimensional vector of the first two component of n on ∂Ω.
Note that ν is an outward normal of ∂Ω.

Thus, the 2D vorticity equations of 3D Euler equations with helical symmetry is as
follows











∂tw +∇w · ∇⊥ϕ = 0,

w = LHϕ,

∇⊥ϕ · ν|∂Ω = vn|∂Ω.
(1.15)

Indeed for a solution pair (w, ϕ) of the 2D vorticity equation (1.15), one can recover the
helical velocity field v and vorticity field w of 3D Euler equations (1.1) by using (1.10),
(1.9), (1.4), (1.3) and (1.6).

When considering the case vn ≡ 0, which corresponds to the impermeable boundary
condition, (1.14) implies that ϕ is a constant on ∂Ω. Thus one can choose ϕ such that
ϕ ≡ 0 on ∂Ω. The associated vorticity equations then become











∂tw +∇w · ∇⊥ϕ = 0,

w = LHϕ,

ϕ|∂Ω = 0.

(1.16)

The research of 3D Euler equations with helical symmetry has received much attention
in recent years. [13] first proved the global well-posedness of L1∩L∞ weak solutions of the
Euler equation with helical symmetry without vorticity stretching (see (1.16)). Note that
this result corresponds to the classical Yudovich’s result [26], since the structure of vorticity
equation (1.16) is similar to that of 2D Euler flows. [10] considered travelling-rotating
invariant Euler flows with helical symmetry concentrating near a single helical filament in
the whole space R3. As for the steady solution of 3D Euler equations with helical symmetry,
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nonlinear stability for stationary smooth Euler flows with helical symmetry is considered
in [2] by using the direct method of Lyapunov. More results of the existence and regularity
of Euler equation with helical symmetry can be found in [1, 4, 12, 19] for instance.

In this paper we are interested in vortex desingularization problem of steady 3D Euler
equations with helical symmetry. Here the vortex desingularization problem means that
we want to construct a family of “true” solutions of Euler equations, such that the corre-
sponding vorticity has a small cross-section and concentrates near a vortex filament. The
research of this problem can be traced back to Helmholtz [15], who first studied the mo-
tion of the travelling vortex rings whose vorticities are supported in toroidal regions with a
small cross-section. Then, many articles considered the problem. As for the vortex being
a tube with a small cross-section whose centerline is a straight line and a circle, which
can be reduced to 2D Euler equation and 3D axisymmetric Euler equation respectively,
results can be found in [3, 5, 6, 9, 11, 14, 24] and reference therein. For the case of Euler
equations with helical symmetry, results seem to be few. Dávila et al. [10] constructed
rotational-invariant Euler flows with helical symmetry in the whole space by considering

−div(KH(x)∇u) = fε(u− α| ln ε| |x|
2

2
) in R

2,

where fε(t) = ε2et. Using the Lyapunov-Schmidt reduction method, the authors proved
that solutions will concentrate near a helix in the distributional sense, which satisfies the
vortex filament conjecture, see [17, 18]. Desingularization of rotational-invariant helical
solutions in helical domains with bounded cross section was proved in [8]. However for the
problem of desingularization of steady Euler equations with helical symmetry, few results
give us a positive answer.

Our goal in this article is to solve vortex desingularization problem of steady Euler
equations with helical symmetry in general helical domains. We will construct steady
solutions of vorticity equations (1.15) and (1.16), such that the associated vorticities have
small cross-sections and concentrate near a single point as parameter changes. Accordingly,
the vorticity field will concentrate near a one-dimensional helical filament. Note that both
the case of vn ≡ 0 and that of vn 6≡ 0 are considered. To get these results, we solve solutions
of a semilinear elliptic equation in divergence form (see (2.1)). By studying the associated
variational structure and using stream function method, we get the existence and limiting
behavior of ground states of these equations.

It should be noted that, Euler equations with helical symmetry can be regarded as the
general case of 2D and 3D axisymmetric Euler equations. The cases k → +∞ and k = 0
correspond to the 2D Euler equations and 3D axisymmetric Euler equations, respectively.
The case k ∈ (0,+∞) is considered in this paper. In contrast to the 2D and 3D axisymmet-
ric problem, the associated operator LH in vorticity equations (1.15) is a general elliptic
operator in divergence form, which can bring essential difficulty in studying existence and
asymptotic behavior of solutions. It seems impossible to reduce the second-order operator
LH to the standard Laplace operator by means of a single change of coordinates. We
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will give rigorous justification of the relation between the coefficient matrix KH and limit-
ing location, energy and the concentration diameter of the ground states, which is totally
different from the 2D and 3D axisymmetric cases.

To state our results, we need to introduce some notations first. Let κ(w) =
∫

Ω
w(x)dx be

the circulation of the vorticity w. For two sets A,B, we define dist(A,B) = minx∈A,y∈B |x−
y| the distance between sets A and B and diam(A) the diameter of the set A.

We first consider desingularization of steady solutions of 3D Euler equations with helical
symmetry with impermeable boundary condition vn ≡ 0. Since (w, ϕ) is a steady solution,
that is, the distribution of w, ϕ is independent of t, by (1.16), (w, ϕ) satisfies the steady
vorticity equations











∇w · ∇⊥ϕ = 0,

w = LHϕ,

ϕ|∂Ω = 0.

(1.17)

Formally, if

LHϕ = w =
1

ε2
f(ϕ− µ), ϕ|∂Ω = 0,

for some function f and constants ε, µ, then (1.17) automatically holds. To conclude, it
suffices to look for solutions of the semilinear elliptic equations in divergence form

{

LHϕ(x) = −div · (KH(x)∇ϕ(x)) = 1
ε2
f(ϕ(x)− µ), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω.
(1.18)

Our first result is as follows.

Theorem 1.2. For every k > 0, m > 0, 0 < ε < 1, there exists a family of helical solution
pairs (vε, Pε)(x, t) ∈ C1(D×R

+) of Euler equations (1.1) such that the support set of curlvε

is a topological helical tube and the associated vorticity-stream function pair (wε, ϕε) is a
solution of steady vorticity equations (1.17). Moreover, there holds

(1) vε · n = 0 on ∂D.
(2) The support set of wε is simply-connected and

lim
ε→0

ln diam(supp(wε))

ln ε
= 1.

As a consequence, lim
ε→0

diam(supp(wε)) = 0.

(3) lim
ε→0

dist(supp(wε), x
∗) = 0, where x∗ ∈ Ω satisfies |x∗| = max

Ω
|x|.

(4) lim
ε→0

κ(wε) =
2kπm√
k2+|x∗|2

.

The solution is constructed by studying the existence and asymptotic behavior of the
ground state solutions ϕε of equations (1.18) with f(t) = tp+ for p > 1, µ = m ln 1

ε
for some

prescribed constant m > 0.

Remark 1.3. In [10], Dávila et al. constructed rotational-invariant solutions of vorticity
equations with angular velocity α| ln ε| in R

2. However, because of the choice of fε, the
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support set of vorticity is still the whole plane. Our result shows the existence of a family
of steady solutions of (1.16) in a general bounded domain, such that the corresponding
vorticity has non-vanishing circulation with small cross-section and shrinks to a helical
filament as ε → 0.

Remark 1.4. By the physical meaning of k, the sign of k determines two different helical
structure. The cases k > 0 and k < 0 correspond to the left-handed helical structure
and right-handed helical structure, respectively. For the case k < 0, one can similarly get
solutions of (1.18) concentrating near a single point.

Our second result is on the desingularization of steady solutions of vorticity equations
when the boundary is penetrable. Assume that v · n = vn ln

1
ε
for some helical function

vn 6≡ 0. By (1.15), steady solution pairs (w, ϕ) satisfy










∇w · ∇⊥ϕ = 0,

w = LHϕ,

∇⊥ϕ · ν|∂Ω = vn|∂Ω ln 1
ε
.

(1.19)

Suppose that q ∈ C2(Ω) ∩ C1(Ω) satisfies
{

LHq = 0,

∇⊥q · ν|∂Ω = −vn|∂Ω.
(1.20)

Note that for a solution q of (1.20), q + C is also a solution for any constant C. Thus one
can always assume that minΩ q > 0. Let u = ϕ+ q ln 1

ε
. Then u satisfies











∇w · ∇⊥(u− q ln 1
ε
) = 0,

w = LHu,

∇⊥u · ν|∂Ω = 0.

(1.21)

So if

LHu = w =
1

ε2
f(u− q ln

1

ε
), u|∂Ω = 0,

for some function f and constants ε, µ, then (1.21) automatically holds. And the solution
pairs (w, ϕ) of (1.19) can be obtained by letting w = LHu and ϕ = u− q ln 1

ε
.

Let det(KH) denote the determinant of KH . Our second result is as follows.

Theorem 1.5. Let k > 0, q > 0 satisfy LHq = 0 and vn be a helical function defined on ∂D
with vn|∂Ω = −∇⊥q ·ν|∂Ω. Then for every 0 < ε < 1, there exists a family of helical solution
pairs (vε, Pε)(x, t) ∈ C1(D×R

+) of Euler equations (1.1) such that the support set of curlvε

is a topological helical tube and the associated vorticity-stream function pair (wε, ϕε) is a
solution of steady vorticity equations (1.19). Moreover, the following conclusions hold

(1) vε · n = vn ln
1
ε
on ∂D.

(2) The support set of wε is simply-connected and

lim
ε→0

ln diam(supp(wε))

ln ε
= 1.
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(3) lim
ε→0

dist(supp(wε), x
∗) = 0, where x∗ ∈ Ω is a minimum point of q2

√

det(KH), that

is,

q(x∗)2
√

det(KH(x∗)) = min
Ω
q2
√

det(KH).

(4) lim
ε→0

∫

Ω
wε(x)dx = 2πq(x∗)

√

det(KH(x∗)).

(5) Moreover, if x∗ ∈ Ω, then there exist R1, R2 > 0 satisfying

R1ε ≤ diam(supp(wε)) ≤ R2ε.

We now give some comments of the proof of Theorem 1.5. The strategy is to consider the
existence and limiting behavior of ground state solutions of a semilinear elliptic equation in
divergence form, see (2.1) in section 2. First, using the critical point theory the existence
of mountain pass solutions uε of (2.1) with critical value cε of the corresponding variational
functional is proved. Then by choosing proper test functions, we get the upper bound of
cε, from which we get the connectness of the vortex core. Since KH is not −∆, one can
not use the classical test functions to get accurate upper bounded of cε. The boundedness
of the energy of the vortex core is then obtained. Finally based on the classical estimates
of capacity (see, e.g., [3, 11, 24]), we prove the lower bound of cε and the limiting location
of the core. The key of proof is to show that the concentration point of ground states uε
is a minimum point of q2

√

det(KH). To this end, the optimal upper and lower bounds of
cε must be obtained.

Remark 1.6. The results of Theorem 1.5 can be regarded as a general result of the desin-
gularization of classical planar vortex case (see [20, 24]) and the vortex ring case (see [11]).
Note that the cases of planar vortices and vortex rings correspond to the coefficient matrix
KH(x) = Id and 1

r
Id, respectively. In [11], by considering solutions of
{

−div
(

1
b
∇u
)

= 1
ε2
b
(

u− q ln 1
ε

)p−1

+
, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where b is a scalar function and q is a positive function satisfying −div(1
b
∇q) = 0, the

authors constructed a family of C1 solutions uε with nonvanishing circulation concentrating
near a minimizer of q2/b as ε → 0. Indeed, if we choose KH(x) = 1

b
Id in Theorem 1.5,

then solutions will concentrate near minimizers of q2
√

det(KH) = q2/b, which coincides
with the results in [11].

Remark 1.7. Indeed, the existence of solutions of general elliptic equations in divergence
form has been studied by [23], who considered a singularly perturbed elliptic problem:

−ε2div(K(x)∇u) + V (x)u = up, x ∈ R
n, (1.22)

where K(x) is strictly positive definite, n ≥ 3, p ∈ (1, n+2
n−2

) and V ∈ C1(Rn) is positive.

The authors constructed solutions concentrating near minimizers of V (x)
p+1
p−1

√

det(K(x))
by the penalization technique. However, it seems that the method in [23] can not be used
in our situation since it depends on the positiveness of V .



10 DAOMIN CAO, JIE WAN

Remark 1.8. Recently, [8] considered desingularization of rotational-invariant solutions of
3D incompressible Euler equation with helical symmetry in an infinite pipe. Using prop-
erties of Green’s function of a general uniformly elliptic operator, [8] proved the existence
of mountain pass solutions of Euler equation with helical symmetry, the associated vortic-
ities of which are rotational-invariant and concentrate near a helix. While in this paper,
instead of using properties of Green’s function, we use the estimates of capacity to improve
estimates of the diameter of the vortex core and the energy of ground states in [8].

This paper is organized as follows. In section 2, we introduce the associated variational
structure and prove the existence of mountain pass solutions of (2.1) for every ε ∈ (0, 1).
Some fundamental properties which will be used in section 3 are also proved. In section 3
we prove the limiting behavior of uε. The proof of Theorem 1.5 and Theorem 1.2 will be
given in section 4.

2. Variational problem

We now consider the following equations
{

LHu = −div(KH(x)∇u) = 1
ε2

(

u− q ln 1
ε

)p

+
, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.1)

where p > 1, Ω ⊆ R
2 is bounded, KH(x) =

1
k2+x2

1+x2
2

(

k2 + x22 −x1x2
−x1x2 k2 + x21

)

and q is a function

defined in Ω satisfying

(Q1). q ∈ C2(Ω) ∩ C1(Ω) and q > 0 in Ω.
(Q2). q is a LH − harmonic function, i.e., LHq = −div(KH(x)∇q) = 0.

Let (KH(x)a|b) =
∑2

i,j=1(KH)i,j(x)aibj for two vectors a,b. Define

H(Ω) =

{

u ∈ H1
0 (Ω) |

∫

Ω

(KH(x)∇u|∇u)dx < +∞
}

with the norm

||u||H(Ω) :=

(
∫

Ω

(KH(x)∇u|∇u)dx
)

1
2

.

Since KH is a positive definite matrix with two positive eigenvalues λ1 = 1 and λ2 =
k2

k2+x2
1+x2

2
, two norms || · ||H(Ω) and || · ||H1

0 (Ω) are equivalent.

Define the associated energy functional of (2.1)

Iε(u) =
1

2

∫

Ω

(KH(x)∇u|∇u)dx−
1

(p+ 1)ε2

∫

Ω

(

u− q ln
1

ε

)p+1

+

dx, ∀u ∈ H(Ω). (2.2)

By the definition of H, Iε is a well-defined C1 functional on H.
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Define the Nehari manifold

Nε ={u ∈ H(Ω) \ {0} | 〈I ′ε(u), u〉 = 0}

=

{

u ∈ H(Ω) \ {0} |
∫

Ω

(KH(x)∇u|∇u)dx =
1

ε2

∫

Ω

(

u− q ln
1

ε

)p

+

udx

}

.
(2.3)

2.1. Existence of solutions. First, using the classical critical point theory, we get ground
state solutions of (2.1).

Since the nonlinearity f(t, x) = 1
ε2
(
(

t− q(x) ln 1
ε

)p

+
for p > 1, Iε(u) has a mountain pass

geometry. Thus we can define the mountain pass value

cε = inf
γ∈Pε

max
t∈[0,1]

Iε(γ(t)),

where

Pε = {γ ∈ C([0, 1],H(Ω)) | γ(0) = 0, Iε(γ(1)) < 0}.
Clearly, cε > 0. We have the following characterization of Nε and the mountain pass value
cε, see [7, 16].

Lemma 2.1 ([7], Theorem 1.3.7). For any u ∈ Nε, u+ 6≡ 0. For any u ∈ H(Ω) with u+ 6≡ 0,
there exists a unique t(u) > 0 such that t(u)u ∈ Nε. The value of t(u) is characterized by
the identity

Iε(t(u)u) = max{Iε(tu), t > 0}. (2.4)

Moreover, there holds

cε ≤ inf
w 6≡0,w∈H(Ω)

max
t≥0

Iε(tw) = inf
w∈Nε

Iε(w).

Finally, if the mountain pass value cε is a critical value for Iε, then cε = inf
w∈Nε

Iε(w) is the

least nontrivial critical value.

Using the mountain pass theorem, we get the existence of mountain pass solutions of Iε
with cε.

Proposition 2.2. Iε has a mountain pass solution with mountain pass value cε. Namely,
one can find uε ∈ H(Ω) satisfying

Iε(uε) = cε, I ′ε(uε) = 0. (2.5)

As a consequence, there holds cε = inf
w 6≡0,w∈H(Ω)

max
t≥0

Iε(tw) = inf
w∈Nε

Iε(w).

Proof. By standard mountain pass theory (see, e.g., §1.4 in [25]), we can prove that there
exists uε such that I ′ε(uε) = 0 and Iε(uε) = cε. So by Lemma 2.1, cε = inf

w∈Nε

Iε(w).

�
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2.2. Basic properties. First, we give some basic properties of Iε and the operator LH as
follows.

Lemma 2.3. For any u ∈ H(Ω),
(

1

2
− 1

p+ 1

)

||u||2H(Ω) ≤ Iε(u)−
1

p+ 1
〈I ′ε(u), u〉. (2.6)

Proof. It follows from the definition of Iε and I
′
ε that

Iε(u)−
1

p+ 1
〈I ′ε(u), u〉

=
1

2
||u||2H(Ω) −

1

(p+ 1)ε2

∫

Ω

(

u− q ln
1

ε

)p+1

+

dx−
(

1

p+ 1
||u||2H(Ω) −

1

(p+ 1)ε2

∫

Ω

(

u− q ln
1

ε

)p

+

udx

)

≥
(

1

2
− 1

p+ 1

)

||u||2H(Ω).

�

Lemma 2.4. For any u ∈ H(Ω),
∫

Ω

(KH(x)∇u|∇u)dx =

∫

Ω

q2
(

KH(x)∇
(

u

q

)

|∇
(

u

q

))

dx. (2.7)

Proof. We first claim that
(

KH(x)∇q|∇
(

u2

q

))

= (KH(x)∇u|∇u)− q2
(

KH(x)∇
(

u

q

)

|∇
(

u

q

))

. (2.8)

Indeed, we have

(KH)11(∂1u)
2−q2(KH)11

(

∂1

(

u

q

))2

= (KH)11

(

2u

q
∂1u∂1q −

u2

q2
(∂1q)

2

)

= (KH)11∂1q∂1

(

u2

q

)

,

((KH)12 + (KH)21)∂1u∂2u− q2((KH)12 + (KH)21)∂1

(

u

q

)

∂2

(

u

q

)

=2(KH)12
u

q
(∂1q∂2u+ ∂2q∂1u)− 2(KH)12

u2

q2
∂1q∂2q

=(KH)12∂1q∂2

(

u2

q

)

+ (KH)21∂2q∂1

(

u2

q

)

,

and

(KH)22(∂2u)
2−q2(KH)22

(

∂2

(

u

q

))2

= (KH)22

(

2u

q
∂2u∂2q −

u2

q2
(∂2q)

2

)

= (KH)22∂2q∂2

(

u2

q

)

.

Adding up the above inequalities, we get (2.8).

Since LHq = 0 and u2

q
∈ H1

0 (Ω), we have
∫

Ω

(

KH(x)∇q|∇
(

u2

q

))

dx = 0. Integrating

both sides of (2.8) over Ω, we get (2.7).
�
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For any x̄ = (|x̄| cos θx̄, |x̄| sin θx̄) ∈ R
2, denote R̄x̄ =

(

cos θx̄ sin θx̄
− sin θx̄ cos θx̄

)

the rotational

transformation matrix through θx̄. Then we have

Lemma 2.5. For any x̄ ∈ R
2, there holds

KH(R̄x̄y) = R̄x̄KH(y)R̄
t
x̄, ∀y ∈ R

2.

Proof. Note that for any y = (y1, y2)
t, R̄x̄y = (y1 cos θx̄ + y2 sin θx̄, y2 cos θx̄ − y1 sin θx̄)

t and
|R̄x̄y| = |y|. By the definition of KH , we get

KH(R̄x̄y)

=
1

k2 + |y|2
(

k2 + (y2 cos θx̄ − y1 sin θx̄)
2 −(y1 cos θx̄ + y2 sin θx̄)(y2 cos θx̄ − y1 sin θx̄)

−(y1 cos θx̄ + y2 sin θx̄)(y2 cos θx̄ − y1 sin θx̄) k2 + (y1 cos θx̄ + y2 sin θx̄)
2

)

=
1

k2 + |y|2
(

cos θx̄ sin θx̄
− sin θx̄ cos θx̄

)(

k2 + y22 −y1y2
−y1y2 k2 + y21

)(

cos θx̄ − sin θx̄
sin θx̄ cos θx̄

)

=R̄x̄KH(y)R̄
t
x̄.

�

A direct consequence of Lemma 2.5 is the rotational invariance of the problem (2.1),
which will be used in the proof of Theorem 1.5 in section 4. Define Ωx̄ := {R̄x̄x | x ∈ Ω}
the region of Ω rotated clockwise by θx̄. For a function u ∈ H(Ω), we define

ux̄(x) := u(R̄−x̄x) ∀x ∈ Ωx̄.

So ux̄ ∈ H(Ωx̄). Define qx̄(x) := q(R̄−x̄x) for any x ∈ Ωx̄. Then we get

Lemma 2.6. [Rotational invariance] u is a solution of (2.1) if and only if ux̄ ∈ H(Ωx̄)
satisfies

− div(KH(x)∇ux̄) =
1

ε2

(

ux̄ − qx̄ ln
1

ε

)p

+

, in Ωx̄. (2.9)

Proof. For any x ∈ Ωx̄, let y = R̄−x̄x. It is not hard to check that for any function g and
vector field F = (f1, f2)

t, there holds

∇xg(R̄−x̄x) = R̄x̄∇yg(y),

and

∇x · F(R̄−x̄x) = ∇y · (R̄−x̄F)(y).
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So by using Lemma 2.5, we get

−div(KH(x)∇ux̄(x)) =−∇x · (KH(x)∇xu(R̄−x̄x))

=−∇x · (KH(x)(R̄x̄∇yu)(R̄−x̄x))

=−∇x · (R̄x̄KH(R̄−x̄x)R̄
t
x̄(R̄x̄∇yu)(R̄−x̄x))

=−∇y · (R̄−x̄R̄x̄KH(y)∇yu(y))

=−∇y · (KH(y)∇yu)(y)

=
1

ε2

(

u(y)− q(y) ln
1

ε

)p

+

=
1

ε2

(

ux̄(x)− qx̄(x) ln
1

ε

)p

+

.

�

3. Asymptotic behavior of uε

Now, we give the asymptotic behavior of mountain pass solutions uε of (2.1). We first
consider the asymptotic behavior of uε under an extra assumption of q and KH :

(A1). There exist minimum points of q2
√

det(KH) over Ω which is on the x1-axis.

Indeed, this additional assumption is not essential. Under this assumption, it is convenient
to give an optimal upper bound of cε, see Proposition 3.1. The proof of asymptotic behavior
of uε without the assumption (A1) will be given in section 4.

Let x∗ ∈ Ω ∩ {x = (x1, x2) | x2 = 0} be such that

q2(x∗)
√

det(KH(x∗)) = min
x∈Ω

q2(x)
√

det(KH(x)).

Let 0 < ε < 1.

3.1. Upper bound of cε. First, we compute the upper bound of cε. By choosing proper
competitors, we can get the following upper bound of cε.

Proposition 3.1. There holds

lim sup
ε→0

cε
ln 1

ε

≤ πq2
√

det(KH)(x
∗) = πmin

x∈Ω
q2
√

det(KH)(x).

Moreover, if x∗ ∈ Ω, then

cε ≤ πmin
x∈Ω

q2
√

det(KH)(x) ln
1

ε
+O(1).

Proof. Let U(x) be a C∞ radially symmetric function such that
{

U(x) ≥ 0, x ∈ B1(0),

U(x) = ln 1
|x|
, x ∈ B1(0)

c.
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For any x̄ ∈ Ω ∩ {x2 = 0}, we choose δ > 0 sufficiently small and a truncation ϕδ ∈
C∞

c (B2δ(0)) such that

0 ≤ φδ ≤ 1 in B2δ(0); φδ = 1 in Bδ(0).

For any constants l1, l2 > 0 (which will be determined later), define

Û(x1, x2) = U

(

x1
l1
,
x2
l2

)

.

So the support set of Û+ is the ellipse
{

(x1, x2) | x2
1

l21
+

x2
2

l22
≤ 1
}

. For any set A, define

Â =
{

(x1, x2) |
(

x1

l1
, x2

l2

)

∈ A
}

. Let ϕ̂δ(x1, x2) = ϕδ

(

x1

l1
, x2

l2

)

. Then supp(ϕ̂δ) = B̂2δ and

ϕ̂δ ≡ 1 on B̂δ.
We define for any τ > 0 a test function

vτε = q(x)

(

Û

(

x− x̄

ε

)

+ ln
τ

ε

)

ϕ̂δ(x− x̄) =

[

q ln
1

ε
+ q

(

Û

(

x− x̄

ε

)

+ ln τ

)]

ϕ̂δ(x− x̄).

Then vτε ∈ H1
0 (Ω). Define

gε(τ) :=
1

ln 1
ε

〈I ′ε(vτε ), vτε 〉 =
1

ln 1
ε

(
∫

Ω

(KH(x)∇vτε |∇vτε )dx−
1

ε2

∫

Ω

(

vτε − q ln
1

ε

)p

+

vτεdx

)

.

We now prove that there exists τε > 0 such that gε(τε) = 0, that is, vτεε ∈ Nε. By Lemma
2.4,

∫

Ω

(KH(x)∇vτε |∇vτε )dx =

∫

Ω

q2
(

KH(x)∇
(

vτε
q

)

|∇
(

vτε
q

))

dx

=

∫

B̂2δ(x̄)

q2
(

KH(x)∇
(

vτε
q

)

|∇
(

vτε
q

))

dx

=

(
∫

B̂2δ(x̄)/B̂δ(x̄)

+

∫

B̂δ(x̄)/B̂ε(x̄)

+

∫

B̂ε(x̄)

)

q2
(

KH(x)∇
(

vτε
q

)

|∇
(

vτε
q

))

dx

=A1 + A2 + A3.

By the definition of vτε , we have

A1 ≤ C
(

1 + | ln τ
δ
|
)

, (3.1)
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where C is independent of τ. Since ε sufficiently small, we can assume that ε < δ, which
implies that

A3 =

∫

B̂ε(x̄)

q2
(

KH(x)∇
(

vτε
q

)

|∇
(

vτε
q

))

dx =

∫

B̂ε(x̄)

q2
(

KH(x)∇Û
(

x− x̄

ε

)

|∇Û
(

x− x̄

ε

))

dx

=

∫

B̂1(0)

q2(εy + x̄)(KH(εy + x̄)∇Û(y)|∇Û(y))dy

⇒

∫

B̂1(0)

q2(x̄)(KH(x̄)∇Û(y)|∇Û(y))dy as ε→ 0.

(3.2)

The convergence is uniformly about τ.
As for A2, we have

A2 =

∫

B̂δ(x̄)\B̂ε(x̄)

q2
(

KH(x)∇
(

vτε
q

)

|∇
(

vτε
q

))

dx

=

∫

B̂δ(0)\B̂ε(0)

q2(x+ x̄)
(

KH(x+ x̄)∇Û
(x

ε

)

|∇Û
(x

ε

))

dx.

Note that for any vector a = (a1, a2),

(KH(x)a|a) = (KH)11(x)a
2
1 + ((KH)12 + (KH)21)(x)a1a2 + (KH)22(x)a

2
2.

Hence we have

A2 =

∫

B̂δ(0)\B̂ε(0)

q2(KH)11(x+ x̄)∂1Û
(x

ε

)

∂1Û
(x

ε

)

dx

+

∫

B̂δ(0)\B̂ε(0)

q2((KH)12 + (KH)21)(x+ x̄)∂1Û
(x

ε

)

∂2Û
(x

ε

)

dx

+

∫

B̂δ(0)\B̂ε(0)

q2(KH)22(x+ x̄)∂2Û
(x

ε

)

∂2Û
(x

ε

)

dx.
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Note that ∇Û(x1, x2) =
(

− 1
l21

x1
x2
1

l2
1
+

x2
2

l2
2

,− 1
l22

x2
x2
1

l2
1
+

x2
2

l2
2

)

on B̂1(0)
c. Hence direct calculation yields

∫

B̂δ(0)\B̂ε(0)

q2(KH)11(x+ x̄)∂1Û
(x

ε

)

∂1Û
(x

ε

)

dx

=

∫

B̂ δ
ε
(0)\B̂1(0)

q2(KH)11(εx+ x̄)∂1Û(x)∂1Û(x)dx

=
1

l41

∫

B̂ δ
ε
(0)\B̂1(0)

q2(KH)11(εx+ x̄)
x21

(

x2
1

l21
+

x2
2

l22

)2dx

=
l2
l1

∫

B δ
ε
(0)\B1(0)

q2(KH)11(ε(l1x1, l2x2) + x̄)
x21

(x21 + x22)
2
dx

=
l2
l1

∫

B δ
ε
(0)\B1(0)

(q2(KH)11(x̄) + ε∇(q2(KH)11)(x̄) · (l1x1, l2x2) +O(ε2|x|2)) x21
(x21 + x22)

2
dx

=
l2
l1
πq2(KH)11(x̄) ln

δ

ε
+O(1),

(3.3)

where we used KH , q ∈ C2 and Taylor expansion.
Similarly, we can get

∫

B̂δ(0)\B̂ε(0)

q2(KH)22(x+ x̄)∂2Û
(x

ε

)

∂2Û
(x

ε

)

dx =
l1
l2
πq2(KH)22(x̄) ln

δ

ε
+O(1). (3.4)

Since x̄ is on the x1 axis, we get (KH)12(x̄) = (KH)21(x̄) = 0, which implies that

∫

B̂δ(0)\B̂ε(0)

q2((KH)12 + (KH)21)(x+ x̄)∂1Û
(x

ε

)

∂2Û
(x

ε

)

dx

=

∫

B δ
ε
(0)\B1(0)

q2((KH)12 + (KH)21)(x̄)
x21

(x21 + x22)
2
dx+O(1)

=O(1).

(3.5)

So by (3.3), (3.4) and (3.5) we have

A2 =
l2
l1
πq2(KH)11(x̄) ln

1

ε
+
l1
l2
πq2(KH)22(x̄) ln

1

ε
+O(1), (3.6)

where O(1) is some bounded quantity independent of τ.
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Choosing l2
l1
=
√

(KH )22
(KH )11

(x̄) and by (3.1), (3.2) and (3.6), we get

∫

Ω

(KH(x)∇vτε |∇vτε )dx =2πq2
√

(KH)11(KH)22(x̄) ln
1

ε
+O(1) + C| ln τ |

=2πq2
√

det(KH)(x̄) ln
1

ε
+O(1) + C| ln τ |,

(3.7)

from which we deduce that

lim
ε→0

1

ln 1
ε

∫

Ω

(KH(x)∇vτε |∇vτε )dx = 2πq2
√

det(KH)(x̄) (3.8)

uniformly in any compact set of τ > 0.
On the other hand, note that

1

ε2

∫

Ω

(

vτε − q ln
1

ε

)p

+

vτεdx =
1

ε2

∫

Ω

(

vτε − q ln
1

ε

)p+1

+

dx+
1

ε2

∫

Ω

(

vτε − q ln
1

ε

)p

+

q ln
1

ε
dx.

By the definition of vτε , for ε sufficiently small and every x ∈ Ω, we have
(

vτε (x)− q(x) ln
1

ε

)

+

= q(x)

(

Û

(

x− x̄

ε

)

+ ln τ

)

+

.

Hence we get

1

ε2

∫

Ω

(

vτε − q ln
1

ε

)p+1

+

dx =

∫

B̂τ (0)

qp+1(x̄+ εy)(Û(y) + ln τ)p+1
+ dy

⇒qp+1(x̄)

∫

B̂τ (0)

(Û(y) + ln τ)p+1
+ dy,

(3.9)

and

1

ε2 ln 1
ε

∫

Ω

(

vτε − q ln
1

ε

)p

+

q ln
1

ε
dx⇒ qp+1(x̄)

∫

B̂τ (0)

(Û(y) + ln τ)p+dy. (3.10)

The convergences are uniformly in any compact set of τ . By (3.9) and (3.10), we get

lim
ε→0

1

ε2 ln 1
ε

∫

Ω

(

vτε − q ln
1

ε

)p

+

vτεdx = qp+1(x̄)

∫

B̂τ (0)

(Û(y) + ln τ)p+dy. (3.11)

It follows from (3.8) and (3.11) that for any τ > 0, limε→0 gε(τ) = g(τ), where g is

defined by g(τ) = 2πq2
√

det(KH)(x̄)−qp+1(x̄)
∫

B̂τ (0)
(Û(y)+ ln τ)p+dy, and the convergence

is uniformly in any compact set of τ . Now it is not hard to prove that there exist two
numbers τ1, τ2 > 0 such that g(τ1) < 0 < g(τ2). So for ε sufficiently small, we have
gε(τ1) < 0 < gε(τ2), from which we deduce that, there exists τε ∈ (τ1, τ2) satisfying
gε(τε) = 0. Then vτεε ∈ Nε.
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Now by (3.8), (3.11) and τε ∈ (τ1, τ2), we can compute that

lim
ε→0

1

ln 1
ε

Iε(v
τε
ε ) = lim

ε→0

1

2 ln 1
ε

∫

Ω

(KH(x)∇vτεε |∇vτεε )dx− lim
ε→0

1

(p+ 1)ε2 ln 1
ε

∫

Ω

(

vτεε − q ln
1

ε

)p+1

+

dx

=πq2
√

det(KH)(x̄).

Taking the infimum over x̄ ∈ Ω ∩ {x2 = 0} and using the assumption that x∗ is on the x1
axis, we get lim sup

ε→0

cε
ln 1

ε

≤ πq2(x∗)
√

det(KH(x∗)) = πmin
x∈Ω

q2
√

det(KH)(x).

If x∗ ∈ Ω, we can improve the above estimate as follows. Indeed, choosing x̄ = x∗, and
using (3.7) and (3.9) again, we can get

cε ≤ Iε(v
τε
ε ) =

1

2

∫

Ω

(KH(x)∇vτεε |∇vτεε )dx− 1

(p+ 1)ε2

∫

Ω

(

vτεε − q ln
1

ε

)p+1

+

dx

=πq2
√

det(KH)(x
∗) ln

1

ε
+O(1),

where we used the fact that τε ∈ (τ1, τ2) and the limit in (3.9) is uniform on compact sets
of τ. The proof is thus complete.

�

3.2. Diameter and connectness of the vortex core. We now prove the connectness
and estimate the diameter of the vortex core. To this end, we define Aε the vortex core of
solution uε, that is,

Aε =

{

x ∈ Ω | uε(x) > q(x) ln
1

ε

}

.

Clearly by the classical regularity theory of elliptic equations, uε ∈ C2,α(Ω) for any α ∈
(0, 1) and Aε is an open subset of Ω.

Define diam(Aε) = max
x,y∈supp(Aε)

|x − y|. We can prove the connectness and estimate the

diameter of Aε as follows.

Proposition 3.2. For every ε > 0 sufficiently small, Aε is connected and simply connected.
Moreover

lim
ε→0

diam(Aε)

dist(Aε, ∂Ω)
= 0.

As a consequence, diam(Aε) tends to 0 as ε→ 0.

Proof. Assume that Aε has two components A1, A2. We denote ψi =
(

uε − q ln 1
ε

)

χAi
∈

H1
0 (Ω). Let η0 > 0 to be determined later. Define w̃ε(s) = uε + sψ1 − sη0ψ2. Then

w̃ε(s) ∈ H1
0 (Ω) for s ≥ 0 sufficiently small. By Proposition 2.2, t0 is a maximum point of

Iε(tw̃ε) if and only if

t0

∫

Ω

(KH(x)∇w̃ε|∇w̃ε)dx =
1

ε2

∫

Ω

(

t0w̃ε − q ln
1

ε

)p

+

w̃εdx.
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Let D(s, t) = t
∫

Ω
(KH(x)∇w̃ε|∇w̃ε)dx− 1

ε2

∫

Ω
(tw̃ε − q ln 1

ε
)p+w̃εdx. Then D(0, 1) = 0. By

q > 0, we have

∂D(0, t)

∂t

∣

∣

∣

∣

t=1

=

∫

Ω

(KH(x)∇uε|∇uε)dx−
p

ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

u2εdx

=
1

ε2

∫

Ω

(

(

uε − q ln
1

ε

)p

+

uε − p

(

uε − q ln
1

ε

)p−1

+

u2ε

)

dx < 0.

Hence by the implicit function theorem, there is a function t = t(s) in the neighborhood of
s = 0 such that t(0) = 1 and D(s, t(s)) = 0 , which implies that, t(s)w̃ε ∈ Nε. Note that

Ds(0, 1) =2

∫

Ω

(KH(x)∇uε|∇(ψ1 − η0ψ2))dx−
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

(ψ1 − η0ψ2)dx

− 1

ε2

∫

Ω

p

(

uε − q ln
1

ε

)p−1

+

uε(ψ1 − η0ψ2)dx

=− 1

ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

(

(p− 1)uε + q ln
1

ε

)

(ψ1 − η0ψ2)dx.

If we choose

η0 =

∫

Ω

(

uε − q ln 1
ε

)p−1

+

(

(p− 1)uε + q ln 1
ε

)

ψ1dx
∫

Ω

(

uε − q ln 1
ε

)p−1

+

(

(p− 1)uε + q ln 1
ε

)

ψ2dx
> 0,

then by the chain rule, t′(0) = −Ds(0,1)
Dt(0,1)

= 0, which implies that for s small t(s) = 1+O(s2).

We calculate Iε(t(s)w̃ε). Since supp(ψ1) ∩ supp(ψ2) = ∅, we obtain

∫

Ω

(KH(x)∇w̃ε|∇w̃ε)dx

=

∫

Ω

(KH(x)∇uε|∇uε)dx+ s2
∫

Ω

(KH(x)∇ψ1|∇ψ1)dx+ η20s
2

∫

Ω

(KH(x)∇ψ2|∇ψ2)dx

+ 2s
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

ψ1dx− 2sη0
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

ψ2dx.
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Since t(s) = 1 +O(s2), we have

1

(p+ 1)ε2

∫

Ω

(

t(s)w̃ε − q ln
1

ε

)p+1

+

dx

=
1

(p+ 1)ε2

∫

Ω

(

t(s)uε − q ln
1

ε
)p+1
+ dx+

1

ε2

∫

Ω

(t(s)uε − q ln
1

ε

)p

+

(sψ1 − η0sψ2)dx

+
p

2ε2

∫

Ω

(

t(s)uε − q ln
1

ε

)p−1

+

(sψ1 − η0sψ2)
2dx+O(s2+σ)

=
1

(p+ 1)ε2

∫

Ω

(

t(s)uε − q ln
1

ε

)p+1

+

dx+
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

(sψ1 − η0sψ2)dx

+
p

2ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

(s2ψ2
1 + η20s

2ψ2
2)dx+O(s2+σ),

for some σ > 0. So by Proposition 2.2, we get

cε ≤Iε(t(s)w̃ε)

=
t(s)2

2

∫

Ω

(KH(x)∇w̃ε|∇w̃ε)dx−
1

(p+ 1)ε2

∫

Ω

(

t(s)w̃ε − q ln
1

ε

)p+1

+

dx

=
t(s)2

2

∫

Ω

(KH(x)∇uε|∇uε)dx−
1

(p+ 1)ε2

∫

Ω

(

t(s)uε − q ln
1

ε

)p+1

+

dx

+
s2

2

[
∫

Ω

(KH(x)∇ψ1|∇ψ1)dx−
p

ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

ψ2
1dx

+ η20

(

∫

Ω

(KH(x)∇ψ2|∇ψ2)dx−
p

ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

ψ2
2dx

)

]

+O(s2+σ).

Note that

t(s)2

2

∫

Ω

(KH(x)∇uε|∇uε)dx−
1

(p+ 1)ε2

∫

Ω

(

t(s)uε − q ln
1

ε

)p+1

+

dx ≤ max
t≥0

Iε(tuε).

Direct calculation shows that

∫

Ω

(KH(x)∇ψ1|∇ψ1)dx−
p

ε2

∫

Ω

(

uε − q ln
1

ε

)p−1

+

ψ2
1dx

=

∫

A1

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇ψ1

)

dx− p

ε2

∫

A1

(

uε − q ln
1

ε

)p−1

+

ψ2
1dx

=− p− 1

ε2

∫

A1

(ψ1)
p+1dx < 0.
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Here we have used Lq = 0. Similarly,
∫

Ω
(KH(x)∇ψ2|∇ψ2)dx− p

ε2

∫

Ω

(

uε − q ln 1
ε

)p−1

+
ψ2
2dx <

0. Thus cε < max
t≥0

Iε(tuε) = Iε(uε) = cε, which is clearly a contradiction. So we conclude

that Aε is connected.
Moreover, we can prove that Aε is simply connected. Let U be the connected component

of Ω \Aε such that ∂Ω ⊆ U . Note that Ω \U is open and L
(

uε − q ln 1
ε

)

≥ 0 in Ω \U and

uε − q ln 1
ε
≥ 0 on ∂(Ω \ U). By the strong maximum principle, uε − q ln 1

ε
> 0 in Ω \ U.

Thus Aλ is simply connected.
Finally, by the definition of capacity and uε ≥ q ln 1

ε
on Aε, we have

(

ln
1

ε

)2 ∫

Ω\Aε

q2
(

KH(x)∇
(

uε
q ln 1

ε

)

|∇
(

uε
q ln 1

ε

))

dx ≥
(

ln
1

ε

)2

inf
Ω
(q2λ2)

∫

Ω\Aε

∣

∣

∣

∣

∇
(

uε
q ln 1

ε

) ∣

∣

∣

∣

2

dx

≥C
(

ln
1

ε

)2

λ2cap(Aε,Ω),

where λ2(x) = k2

k2+|x|2
is the smaller eigenvalue of KH . Since R

2 \ Ω is connected and

unbounded, by the classical estimates of capacity (see [11, 24]), we have

cap(Aε,Ω) ≥
2π

ln 16
(

1 + 2dist(Aε,∂Ω)
diam(Aε)

) .

By Lemmas 2.3, 2.4 and Proposition 3.1,
(

ln 1
ε

)2 ∫

Ω\Aε
q2
(

KH(x)∇
(

uε

q ln 1
ε

)

|∇
(

uε

q ln 1
ε

))

dx ≤
∫

Ω
(KH(x)∇uε|∇uε)dx

≤ 2(p+1)
p−1

Iε(uε) ≤ c ln 1
ε
.

Combining all these inequalities, we get limε→0
diam(Aε)

dist(Aε,∂Ω)
= 0.

�

Define the energy of the vortex core Ec(ε) =
∫

Aε

(

KH(x)∇
(

uε − q ln 1
ε

)

|∇
(

uε − q ln 1
ε

))

dx.

We will show that Ec(ε) is uniformly bounded with respect to ε.

Lemma 3.3. There holds for some C independent of ε
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx ≤ C.

Proof. Direct calculation yields that
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx =
1

ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx, (3.12)

and
∫

Ω

(KH(x)∇uε|∇uε)dx−
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

∣

∣∇
(

uε − q ln
1

ε

))

dx

=
ln 1

ε

ε2

∫

Aε

(

uε − q ln
1

ε

)p

qdx.

(3.13)
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By (3.12), (K2) and the classical Gagliardo-Nirenberg inequality, we get
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

≤C
∗

ε2

∫

Aε

(

uε − q ln
1

ε

)p

dx

(

∫

Aε

∣

∣

∣

∣

∇
(

uε − q ln
1

ε

) ∣

∣

∣

∣

2

dx

) 1
2

≤ C∗

√
infΩ λ2ε2

∫

Aε

(

uε − q ln
1

ε

)p

dx

(∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

)
1
2

,

which implies that
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx ≤ C

(

1

ε2

∫

Aε

(

uε − q ln
1

ε

)p

dx

)2

.

By (3.13) and Proposition 3.1, we get

1

ε2

∫

Aε

(

uε − q ln
1

ε

)p

dx ≤ C

ln 1
ε

∫

Ω

(KH(x)∇uε|∇uε)dx ≤ C

ln 1
ε

Iε(uε) ≤ C.

Thus we get
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx =
1

ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx ≤ C.

�

Using Lemma 3.3, we can get the lower bound of the diameter of the vortex core Aε as
follows.

Lemma 3.4. There exists a constant R1 > 0 independent of ε such that

diam(Aε) ≥ R1ε.

Proof. By (3.12) and the Sobolev inequality, we have
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx =
1

ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx

≤C∗|Aε|
ε2

(

∫

Aε

∣

∣

∣

∣

∇
(

uε − q ln
1

ε

) ∣

∣

∣

∣

2

dx

)
p+1
2

≤ C∗|Aε|
(infΩ λ2)

p+1
2 ε2

(
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

)
p+1
2

,

from which we deduce that

|Aε|
ε2

≥ C

(
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

)
−p+1

2

.
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By Lemma 3.3, we conclude that |Aε| ≥ Cε2. Thus we complete the proof by using the
isoperimetric inequality |Aε| ≤ πdiam(Aε)

2/4.
�

3.3. Asymptotic location of Aε. It follows from Proposition 3.2 that limε→0Aε = 0,
that is, the vortex core of uε will shrink to a single point x̂ as ε → 0. We now prove that
the limiting location of Aε is a minimum point of q2

√

det(KH), by choosing test functions
suitably and using the classical stream-function method.

Proposition 3.5. There holds

lim
ε→0

dist(Aε, x̂) = 0,

where x̂ is a minimizer of q2
√

det(KH). As a consequence, there holds

lim
ε→0

cε
ln 1

ε

= πmin
Ω
q2
√

det(KH). (3.14)

Proof. It follows from (3.13) that

ln 1
ε

ε2

∫

Aε

(

uε − q ln
1

ε

)p

qdx

=

∫

Ω

(KH(x)∇uε|∇uε)dx−
∫

Aε

(

KH(x)∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

=2Iε(uε)−
p− 1

(p+ 1)ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx.

Hence by Lemma 3.3, we get

1

ε2

∫

Aε

(

uε − q ln
1

ε

)p

qdx =
2cε
ln 1

ε

+O

(

1

ln 1
ε

)

≤ C. (3.15)

For any 0 < τ < σ ≤ 1, define wσ,τ
ε := min

{

(uε−q ln 1
σ)+

q ln σ
τ

, 1

}

∈ H1
0 (Ω) and Aσ

ε :=
{

x ∈ Ω | uε(x) > q(x) ln 1
σ

}

. Then one computes directly that wσ,τ
ε ≡ 1 onAτ

ε and supp(w
σ,τ
ε ) =

Aσ
ε .
We claim that for every ε ≤ τ ,

ln
σ

τ

∫

Ω

q2(KH(x)∇wσ,τ
ε |∇wσ,τ

ε )dx =
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx. (3.16)

Indeed, multiplying both sides of (2.1) by φ = wσ,τ
ε q ∈ H1

0 (Ω) and using integration by
parts, we get

∫

Ω

(KH(x)∇uε|∇(wσ,τ
ε q))dx =

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

wσ,τ
ε qdx.
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Direct computations show that

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

wσ,τ
ε qdx =

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx

and
∫

Ω

(KH(x)∇uε|∇(wσ,τ
ε q))dx =

∫

Ω

(

KH(x)∇
(

uε − q ln
1

σ

)

|∇(wσ,τ
ε q)

)

dx

= ln
σ

τ

∫

Ω

(KH(x)∇(wσ,τ
ε q)|∇(wσ,τ

ε q))dx+

∫

Ω

(

KH(x)∇
(

uε − q ln
1

σ
− ln

σ

τ
wσ,τ

ε q

)

|∇(wσ,τ
ε q)

)

dx

= ln
σ

τ

∫

Ω

(KH(x)∇(wσ,τ
ε q)|∇(wσ,τ

ε q))dx+

∫

Aτ
ε

(

KH(x)∇
(

uε − q ln
1

τ

)

|∇q
)

dx

= ln
σ

τ

∫

Ω

(KH(x)∇(wσ,τ
ε q)|∇(wσ,τ

ε q))dx

= ln
σ

τ

∫

Ω

q2(KH(x)∇wσ,τ
ε |∇wσ,τ

ε )dx,

where we have used the assumption LHq = 0 and Lemma 2.4. Thus we get (3.16).
By the definition of capacity, (3.15) and (3.16), we get

cap(Aτ
ε ,Ω) ≤

∫

Ω

|∇w1,τ
ε |2dx ≤ 1

infΩ q2λ2

∫

Ω

q2(KH(x)∇w1,τ
ε |∇w1,τ

ε )dx ≤ C

ln 1
τ

.

Using the capacity estimates in [11] again, we get

2π

ln 16
(

1 + 2dist(Aτ
ε ,∂Ω)

diam(Aτ
ε )

) ≤ cap(Aτ
ε ,Ω),

from which we deduce that,

2π

ln 16
(

1 + 2dist(Aτ
ε ,∂Ω)

diam(Aτ
ε )

) ≤ C

ln 1
τ

. (3.17)

So there exist constants C1, C2 > 0 independent of ε, τ , such that for any 0 < τ < 1 and
ε ≤ τ ,

diam(Aτ
ε) ≤ C1τ

C2 .

We now claim that for any δ > 0, there exist ρ > 0 and 0 < ε0 < ρ, such that for any
ε ∈ (0, ε0) and x, y ∈ Aρ

ε ,

q(x)2 ≤ q(y)2(1 + δ), (3.18)

and

(KH(x)ζ |ζ) ≤ (1 + δ)(KH(y)ζ |ζ), ∀ ζ ∈ R
2. (3.19)

Indeed, since infΩ q > 0 and q ∈ C2(Ω) ∩ C1(Ω), it is easy to get (3.18). By (K2) and the
regularity of KH , one can also get (3.19).
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Thus taking σ = ρ, τ = ε in (3.16), we get for any xε ∈ Aε ⊆ Aρ
ε

1

ε2 ln ρ
ε

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx =

∫

Ω

q2(KH(x)∇wρ,ε
ε |∇wρ,ε

ε )dx ≥ q2(xε)

(1 + δ)2

∫

Ω

(KH(xε)∇wρ,ε
ε |∇wρ,ε

ε )dx.

(3.20)

Define a linear transformation matrix Tε : R
2 → R

2 satisfying

TεKH(xε)T
t
ε = Id.

Then |det(Tε)| = |det(KH)(xε)|−
1
2 . Let Ω′ = Tε(Ω), A

′
ε = Tε(Aε). For any y = Tε(x) ∈ Ω′,

define w̄ρ,ε
ε (y) = wρ,ε

ε (x) = wρ,ε
ε (T−1

ε (y)). Since w̄ρ,ε
ε ≡ 1 on A′

ε and w̄ρ,ε
ε ∈ H1

0 (Ω
′), using

the capacity estimates again we have
∫

Ω

(KH(xε)∇wρ,ε
ε |∇wρ,ε

ε )dx =

∫

Ω′

(TεKH(xε)T
t
ε∇w̄ρ,ε

ε |∇w̄ρ,ε
ε )|det(T−1

ε )|dy

=
√

det(KH)(xε)

∫

Ω′

|∇w̄ρ,ε
ε |2dy

≥
√

det(KH)(xε) · cap(A′
ε,Ω

′)

≥
√

det(KH)(xε) ·
2π

ln 16
(

1 + 2dist(A′

ε,∂Ω
′)

diam(A′

ε)

)

≥
√

det(KH)(xε) ·
2π

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

) ,

(3.21)

for some C0 > 0 independent of ε. Thus by (3.20) and (3.21), we get

q2
√

det(KH)(xε) ≤
(1 + δ)2

2π ln ρ
ε

ln 16

(

1 +
C0dist(Aε, ∂Ω)

diam(Aε)

)(

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx

)

.

(3.22)
Taking the limit superior in both sides of (3.22), using (3.15) and Proposition 3.1, we
obtain that for any δ > 0 and xε ∈ Aε,

lim sup
ε→0

q2
√

det(KH)(xε) ≤
(1 + δ)2

2π
lim sup

ε→0

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

ln ρ
ε

·2πmin
x∈Ω

q2
√

det(KH)(x).

By Lemma 3.4 and dist(Aε, ∂Ω) ≤ diam(Ω), we get

lim sup
ε→0

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

ln ρ
ε

≤ lim sup
ε→0

ln 16
(

1 + C
ε

)

ln ρ
ε

= 1.

Hence we have

lim sup
ε→0

q2
√

det(KH)(xε) ≤ (1 + δ)2min
x∈Ω

q2
√

det(KH)(x).

By the arbitrariness of δ > 0, we conclude that for any xε ∈ Aε, xε tends to x̂, where x̂ is
a minimizer of q2

√

det(KH).
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Taking the limit inferior in both sides of (3.22), using (3.15), and by the the arbitrariness
of δ > 0, we have

lim inf
ε→0

cε
ln 1

ε

≥ πmin
Ω
q2
√

det(KH).

Combining this with Proposition 3.1, we get (3.14). The proof is thus complete.
�

We can then get estimates of the diameter of Aε as follows.

Lemma 3.6. There holds

lim
ε→0

ln dist(Aε,∂Ω)
diam(Aε)

ln 1
ε

= 1. (3.23)

Proof. On the one hand, by Lemma 3.4, we have

lim sup
ε→0

ln dist(Aε,∂Ω)
diam(Aε)

ln 1
ε

≤ lim sup
ε→0

ln C
ε

ln 1
ε

= 1.

On the other hand, taking the limit inferior in both sides of (3.22) and using (3.15) and
Proposition 3.1, we get

(1 + δ)2

2π
lim inf
ε→0

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

ln ρ
ε

· 2πmin
x∈Ω

q2
√

det(KH)(x)

≥ lim inf
ε→0

q2
√

det(KH)(xε)

=min
Ω
q2
√

det(KH),

which implies that

1

(1 + δ)2
≤ lim inf

ε→0

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

ln ρ
ε

= lim inf
ε→0

ln dist(Aε,∂Ω)
diam(Aε)

ln 1
ε

.

By the arbitrariness of δ > 0, we have lim inf
ε→0

ln dist(Aε,∂Ω)
diam(Aε)

ln 1
ε

≥ 1. The proof is thus complete.

�

Remark 3.7. A direct consequence of Lemmas 3.6 and 3.4 is that for any α ∈ (0, 1), there
exists C1, C2 > 0 such that

C1ε ≤ diam(Aε) ≤ C2ε
α.

When the limiting location x̄ of Aε is on the boundary of Ω, such an estimate is optimal.
Similar results have been found for 2D Euler equations and 3D axisymmetric equations,
see [11, 20, 24] for example. However when x̄ ∈ Ω, we can improve estimates of Aε.

By Proposition 3.5, we show that the limiting location of Aε is x
∗, where q2

√

det(KH)(x
∗) =

min
Ω
q2
√

det(KH). Note that κ(wε) = 1
ε2

∫

Ω

(

uε − q ln 1
ε

)p

+
dx is the circulation of wε =

1
ε2

(

uε − q ln 1
ε

)p

+
. The limit of κ(wε) can be obtained as follows.
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Lemma 3.8. There holds

lim
ε→0

κ(wε) = 2πq
√

det(KH)(x
∗).

Proof. It follows from (3.13), (3.12) and the definition of cε that

ln 1
ε

ε2

∫

Aε

(

uε − q ln
1

ε

)p

qdx =

∫

Ω

(KH∇uε|∇uε)dx−
∫

Aε

(

KH∇
(

uε − q ln
1

ε

)

|∇
(

uε − q ln
1

ε

))

dx

=2cε −
p− 1

(p+ 1)ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx.

(3.24)

By Lemma 3.3, we have

1

ε2

∫

Aε

(

uε − q ln
1

ε

)p+1

dx ≤ C.

So 1
ε2

∫

Aε

(

uε − q ln 1
ε

)p
qdx = 2cε

ln 1
ε

+O
(

1
ln 1

ε

)

. By Proposition 3.5 and the fact that Aε → x∗,

we get

lim
ε→0

κ(wε) = q(x∗)−1 lim
ε→0

1

ε2

∫

Aε

(

uε − q ln
1

ε

)p

qdx = q(x∗)−1 lim
ε→0

2cε
ln 1

ε

= 2πq(x∗)
√

det(KH(x∗)).

�

3.4. Further analysis when the limiting location of Aε is in Ω. When the limiting
location of Aε is in Ω, we can improve the results in Proposition 3.5 and Lemma 3.6 by
giving more accurate estimates of lower bound of cε and upper bound of the diameter of
Aε. Indeed, we have

Proposition 3.9. If for any xε ∈ Aε, limε→0 xε = x∗ ∈ Ω, then

cε = Iε(uε) = πmin
Ω
q2
√

det(KH) ln
1

ε
+O(1). (3.25)

Moreover, there exist R1, R2 > 0 such that

R1ε ≤ diam(Aε) ≤ R2ε.

Proof. By (3.17), we get for any 0 < τ < 1 and ε ≤ τ ,

2π

ln 16
(

1 + 2dist(Aτ
ε ,∂Ω)

diam(Aτ
ε )

) ≤ C

ln 1
τ

.

So there exist C0, α0 > 0 such that dist(Aτ
ε ,∂Ω)

diam(Aτ
ε )

≥ C0

τα0
, which implies that diam(Aτ

ε) ≤ C1τ
α0

for some C1 > 0. That is, for any x, y ∈ Aτ
ε , |x− y| ≤ C1τ

α0 .
By q ∈ C2(Ω) ∩C1(Ω), (KH)ij ∈ C∞(Ω) for i, j = 1, 2, infΩ q > 0 and (K2), similarly to

the proof of (3.18) and (3.19), we can get that q2KH is Dini-continuous uniformly in Ω,
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which means that, there exists a non-negative function γ(s), such that
∫ s0
0

γ(s)
s
ds < +∞

for some s0 > 0 and

q2(x)(KH(x)ζ |ζ) ≤ (1 + γ(|x− y|))q2(y)(KH(y)ζ |ζ), ∀ x, y ∈ Ω, ζ ∈ R
2. (3.26)

Thus by (3.16) and (3.26), we get for any 0 < τ < σ < 1, ε ≤ τ and xε ∈ Aε ⊆ Aσ
ε ,

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx = ln
σ

τ

∫

Ω

q2(KH(x)∇wσ,τ
ε |∇wσ,τ

ε )dx

≥ ln
σ

τ

1

1 + γ(C1σα0)

∫

Ω

q2(xε)(KH(xε)∇wσ,τ
ε |∇wσ,τ

ε )dx,

which implies that

(

ln
σ

τ

)2
∫

Ω

q2(xε)(KH(xε)∇wσ,τ
ε |∇wσ,τ

ε )dx ≤ ln
σ

τ
(1 + γ(C1σ

α0))
1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx.

(3.27)
Taking ε = τ1 < σ1 = τ2 < σ2 = τ3 < · · · < σk = ρ, and summing (3.27) over {j =
1, 2, · · · , k}, we get for any xε ∈ Aε

(

ln
ρ

ε

)2
∫

Ω

q2(xε)(KH(xε)∇wρ,ε
ε |∇wρ,ε

ε )dx ≤
(

ln
ρ

ε
+

k
∑

j=1

γ(C1σ
α0
j ) ln

σj
τj

)

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx.

By taking the limit of Riemann sums in the above inequality, we have

(

ln
ρ

ε

)2
∫

Ω

q2(xε)(KH(xε)∇wρ,ε
ε |∇wρ,ε

ε )dx ≤
(

ln
ρ

ε
+

∫ ρ

ε

γ(C1σ
α0)

σ
dσ

)

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx.

Since
∫ ρ

ε

γ(C1σ
α0)

σ
dσ =

∫ ρα0

εα0

γ(C1σ
′)

σ
′ 1
α0

1

α0

σ
′ 1
α0

−1
dσ′ =

1

α0

∫ C1ρα0

C1εα0

γ(σ′)

σ′
dσ′ < +∞,

we get

∫

Ω

q2(xε)(KH(xε)∇wρ,ε
ε |∇wρ,ε

ε )dx ≤
(

1

ln ρ
ε

+
C

(

ln ρ
ε

)2

)

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx, (3.28)

which is the refined version of (3.20). So repeating the proof of Proposition 3.5, we have

q2
√

det(KH)(xε) ≤
ln 16

(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

2π

(

1

ln ρ
ε

+
C

(

ln ρ
ε

)2

)

(

1

ε2

∫

Ω

(

uε − q ln
1

ε

)p

+

qdx

)

,

(3.29)
which improves (3.22).
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Thus, taking (3.15) into (3.29) and using Proposition 3.1, we obtain

min
Ω
q2
√

det(KH) ln
1

ε
≤
ln 16

(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

2π

(

1

ln ρ
ε

+
C

(

ln ρ
ε

)2

)

(2cε +O(1))

≤
ln 16

(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

2π

(

1

ln ρ
ε

+
C

(

ln ρ
ε

)2

)

(

2πmin
Ω
q2
√

det(KH) ln
1

ε
+O(1)

)

.

Direct computation shows that

ln
C0dist(Aε, ∂Ω)

diam(Aε)
≥ ln

1

ε
+O(1),

which implies that diam(Aε) ≤ R2ε for some R2 > 0.
Finally, by taking diam(Aε) ≥ R1ε (see Lemma 3.4) into (3.29) and using (3.15), we get

cε ≥πmin
Ω
q2
√

det(KH)
1

ln 16
(

1 + C0dist(Aε,∂Ω)
diam(Aε)

)

1
(

1
ln ρ

ε

+ C

(ln ρ
ε )

2

) ln
1

ε
+O(1)

≥πmin
Ω
q2
√

det(KH)
1

ln C
ε

1
(

1
ln ρ

ε

+ C

(ln ρ
ε )

2

) ln
1

ε
+O(1)

≥πmin
Ω
q2
√

det(KH) ln
1

ε
+O(1).

Combining this with Proposition 3.1, we get (3.25). The proof is thus complete.
�

4. Proof of Theorem 1.5 and 1.2

4.1. Proof of Theorem 1.5. In subsections 3.1 to 3.4, we prove the existence and as-
ymptotic behavior of solutions of (2.1) under the additional assumption that there exist

minimum points of q2
√

det(KH) on the x1-axis.

Now we give proof of Theorem 1.5 in the case that all minimum points of q2
√

det(KH)

is not on the x1-axis. Let x̂ = (|x̂| cos θx̂, |x̂| sin θx̂) be a minimizer of q2
√

det(KH) on Ω.
Let Ωx̂ = {R̄x̂x | x ∈ Ω}. For any function u ∈ H(Ω), let ux̂(x) = u(R̄−x̂x) for any

x ∈ Ωx̂. So ux̂ ∈ H(Ωx̂). Let qx̂(x) = q(R̄−x̂x) for any x ∈ Ωx̂. Then by Lemma 2.6, we get
that u is a solution of (2.1) if and only if ux̂ is a solution of

{

−div(KH(x)∇v) = 1
ε2

(

v − qx̂ ln
1
ε

)p

+
, in Ωx̂.

v = 0, on ∂Ωx̂.
(4.1)
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For equations (4.1), we claim that there exist minimum points of q2x̂
√

det(KH) on the

x1-axis. Indeed, we can prove that (|x̂|, 0) = R̄x̂x̂ ∈ Ωx̂ and

q2x̂
√

det(KH)(R̄x̂x̂) =
kq2x̂(R̄x̂x̂)

√

k2 + |R̄x̂x̂|2
=

kq2(x̂)
√

k2 + |x̂|2
= min

Ω
q2
√

det(KH) = min
Ωx̂

q2x̂
√

det(KH),

which implies that (|x̂|, 0) is a minimizer of q2x̂
√

det(KH).
Hence we can repeat the proof in subsections 2.1 and 3.1-3.4 to show that there exist

a family of solutions vε of (4.1) concentrating near minimum points of q2x̂
√

det(KH). De-
fine uε(x) = vε(R̄x̂x) for any x ∈ Ω. Then {uε} is a family of solutions of (2.1) which

concentrates near a minimizer of q2
√

det(KH) as ε → 0.
Let wε = LHuε, ϕε = uε − q ln 1

ε
. Then (wε, ϕε) is the desired solution pair of Theorem

1.5.

4.2. Proof of Theorem 1.2. Based on results in Theorem 1.5, we now give the proof of
Theorem 1.2. Let q(x) = m for every m > 0. Then q satisfies LHq = 0. So by Theorem
1.5, there exist solutions uε of (1.18) with f(t) = tp+ and µ = m ln 1

ε
concentrating near x∗,

which is a minimizer of q2
√

det(KH). Since

q2
√

det(KH)(x) = m2

(

k2

k2 + |x|2
)

1
2

,

we get that x∗ ∈ Ω satisfies |x∗| = max
Ω

|x|. Let wε = LHuε. By Lemma 3.8, the limit of

circulation is

lim
ε→0

κ(wε) = 2πq(x∗)
√

det(KH(x∗)) = 2πm ·
(

k2

k2 + |x∗|2
)

1
2

=
2kπm

√

k2 + |x∗|2
.

To conclude, (wε, uε) is the desired solution pair and the proof of Theorem 1.2 is complete.

Remark 4.1. From the proof of Theorem 1.2, we see that the limiting location x∗ of wε

satisfies |x∗| = max
Ω

|x|. So x∗ must be on the boundary of Ω. This implies that results

in subsection 3.4 can not hold. In this case, the optimal estimates of diameter of Aε is
Lemma 3.6, rather than Proposition 3.9.
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