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Improved Successive Branch Reduction for
Stochastic Distribution Network Reconfiguration

Wanjun Huang, Changhong Zhao, Senior Member, IEEE

Abstract—We propose an improved successive branch reduc-
tion (SBR) method to solve stochastic distribution network
reconfiguration (SDNR), a mixed-integer program that is known
to be computationally challenging. First, for a special distribution
network with a single redundant branch, we propose an improved
design for a one-stage SBR algorithm in the literature to
incorporate uncertain renewable generations and loads. Based
on solving stochastic optimal power flow, the improved algorithm
identifies and searches through a small set of candidate branches,
from which it determines the optimal branch to open and obtains
a radial network with the minimum expected operational cost.
Then, for a general network with multiple redundant branches,
we design a heuristic two-stage SBR algorithm based on a close-
and-open procedure that iteratively runs the proposed one-stage
SBR algorithm. Numerical results on the IEEE 33-bus and 123-
bus distribution network models verify the proposed method in
terms of optimality and computational efficiency.

Index Terms—Stochastic distribution network reconfiguration,
successive branch reduction, optimal power flow.

NOMENCLATURE

Sets
N The set of buses in a network, including substa-

tion buses Ns and non-substation buses Nd.
E The set of branches e = ij = (i, j) ∈ E .
W The set of scenarios w ∈ W for uncertain

renewable generations and loads.
A The set of feasible switch status vectors α ∈ A

that lead to radial networks.
P The set of branches that form a loop.
K The set of candidate branches to open.

Variables
pwi , qwi The active and reactive power injections at bus

i in scenario w.
p̂wri, q̂

w
ri The active and reactive renewable power gener-

ations at bus i in scenario w.
p̂wdi, q̂

w
di The active and reactive power loads at bus i in

scenario w.
pwij , qwij The active and reactive power flows on branch

ij in scenario w.
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vwi The squared voltage magnitude at bus i in
scenario w.

lwij The squared current magnitude on branch ij in
scenario w.

x The continuous decision variables:

x = (xw,∀w ∈ W)

= (pwi , q
w
i ,∀i ∈ Ns; v

w
i ,∀i ∈ N ;

pwij , q
w
ij , l

w
ij ,∀ij ∈ E ; ∀w ∈ W

)
.

p̃ij The expected active power flow on branch ij.
p̃Pi The expected active power injection from bus i

into loop P .
p̃0(e) The objective value of SDNR attained by open-

ing a single redundant branch e.
αij The binary variable indicating the switch status

on branch ij, collected in α = (αij ,∀ij ∈ E).
G(α) The network under switch status α.

Parameters
π The probability distribution π = (πw,∀w ∈ W)

of the uncertainty scenarios.
L The number of redundant branches (chordless

loops) in a network.
nr The number of active power-injecting buses in

a loop considered by the proposed algorithm.
rij , xij The resistance and reactance of branch ij.

I. INTRODUCTION

Distribution network reconfiguration (DNR) is an important
technology to improve the energy efficiency of distribution
networks without extra equipment investment [1]. It mainly
aims to minimize the network operational cost (e.g., power
loss) by changing the open/closed status of the switches on
the branches (power lines). Mathematically, DNR is a mixed-
integer nonlinear program that is difficult to solve due to the
nonconvex power flow constraints and binary switching actions
subject to the requirement for a radial (tree) topology [2], [3].

The existing methods for DNR mostly fall into three
categories: mathematical programming, heuristics or meta-
heuristics, and machine learning [4], [5]. Various mathematical
programming techniques have been developed to improve
the computational efficiency of DNR, including Benders
decomposition [6], column-and-constraint generation [7], [8],
linearization into a mixed-integer linear program [9], and
convex relaxation into a mixed-integer quadratic, quadratically
constrained, or conic program [4], [10], [11]. However, the

ar
X

iv
:2

20
6.

00
32

7v
1 

 [
m

at
h.

O
C

] 
 1

 J
un

 2
02

2



2

computation process of mathematical programming can be time-
consuming for large systems [4]. Common tricks to alleviate
computational burdens, such as linearization, often sacrifice
the accuracy and optimality of solutions.

As the second category of DNR methods, heuristic algo-
rithms exploit the topological features of a network to solve
the DNR problem at lower computational complexity. The
commonly used algorithms include iterative branch exchange
[12], successive branch reduction (SBR) [13], and switch
opening and exchange [14]. The advantage of those heuristic
algorithms is that their solutions are generally feasible in terms
of the physical laws and operational limits of the network.
Starting from a radial topology, the iterative branch exchange
algorithm opens a closed switch and closes an open switch in
each iteration, until the solution cannot be further improved
[12]. It is sensitive to the initialization and may take many
iterations to converge. The SBR algorithm assumes all the
switches are initially closed and then opens them sequentially
based on a certain rule until a radial topology is obtained
[13]. It thus only needs a trivial initialization and a number
of iterations bounded by the number of redundant branches.
Based on convex relaxation of optimal power flow (OPF),
a heuristic algorithm was developed in [15] to improve the
computational efficiency of SBR. The switch opening and
exchange algorithm combines the iterative branch exchange
and SBR methods to provide a more accurate solution given that
a higher computational overhead is affordable [14]. Compared
to the heuristic algorithms above, metaheuristics such as
genetic algorithms [16] and particle swarm optimization [17]
are problem-independent and more general. Nevertheless,
they suffer heavier computational burdens from their random
selection processes and often end up with inconsistent solutions
from different runs. Moreover, their performance relies heavily
on parameter tuning, and they may have difficulty in satisfying
the radiality condition. Reference [4] provided a detailed review
of the methods above and their pros and cons.

Different from the categories above, machine learning
methods extract optimal operational knowledge from historical
data without needing an accurate physical model of the
network. There are mainly two types of machine learning
methods: supervised learning and unsupervised learning (e.g.,
reinforcement learning). A supervised learning approach may
apply deep neural networks to learn the relationship between
the system state and the optimal topology [18], [19], which
requires a large data set. The reinforcement learning approach
learns the optimal control policy by directly interacting with
the real or a simulated physical environment [20], [21]. Its
performance is largely dependent on the hyper-parameters
selected from experience. In the machine learning methods,
the online training process may contain safety risks, while the
offline training may not provide accurate solutions. Another
major concern about the machine learning methods is that the
feasibility of the solution may not be guaranteed.

The basic, deterministic version of DNR assumes generations
and loads are fixed. The more complicated robust DNR [7],
[22] and stochastic DNR (SDNR) [14], [23] are formulated to
deal with the uncertainty in renewable generations (e.g., solar
and wind) and loads. The robust DNR aims to minimize the

operational cost in the worst-case scenario of the uncertain
quantities. Therefore, the solution of robust DNR may be
too conservative to be economically efficient. The SDNR
considers the statistical properties of the uncertain quantities
and minimizes the expected cost over all the possible scenarios,
thus being less conservative and more economical than the
robust formulation. The main challenge to SDNR lies in its
computational complexity under a large number of scenarios.

To overcome this challenge, we develop an improved SBR
method. The proposed method is inspired by a baseline SBR
algorithm in [15], which has low computational complexity,
small optimality loss, and no need for parameter tuning and
special initialization. However, the algorithm in [15] only
applies to deterministic DNR with fixed positive loads. Our
method improves the one in [15] in the following aspects:

• For a network with a single redundant branch (compared to
a radial network), an improved one-stage SBR algorithm
is developed to determine the optimal branch to open
in an SDNR problem. The proposed algorithm is built
on solving the second-order cone relaxation of stochastic
OPF problems. Compared to the algorithm in [15] that
is applicable to deterministic DNR with positive loads
only, the improved algorithm can incorporate uncertain
renewable generations and loads while retaining the
optimality of the solution under certain conditions.

• For a network with multiple redundant branches, a two-
stage SBR algorithm is developed based on the one-stage
algorithm above. In the first stage, from an initial condition
where all the branches are closed, a set of redundant
branches are selected to open, leading to a radial network.
In the second stage, each of the branches opened in the
first stage is iteratively closed to create a network with a
single redundant branch. In each iteration, the one-stage
algorithm is used to find the optimal branch to open. The
objective values are compared over all such iterations to
determine the ultimate radial network with the minimum
expected operational cost.

The proposed two-stage algorithm needs to solve only
one stochastic OPF in its first stage and check a small set
of candidate branches in each iteration of the second stage.
The stochastic OPF can be further decomposed into multiple
deterministic OPF problems solved in parallel. Therefore, it
is computationally more efficient than the switch opening and
exchange method [14] that solves a number of stochastic OPF
problems, each corresponding to a different topology. The
optimality and computational efficiency of the proposed method
is verified via numerical simulations of the IEEE 33-bus and
123-bus distribution networks, under varying penetration levels
of renewable generations and numbers of uncertainty scenarios.

The remainder of the paper is organized as follows. Section
II introduces the model and problem formulation of SDNR.
Our one-stage and two-stage SBR algorithms are elaborated
in Section III. The numerical case studies are presented in
Section IV. Section V provides our conclusion.
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II. MODEL AND PROBLEM FORMULATION

A. Stochastic Distribution Network Reconfiguration

Due to the concern for the lifetime of switches, it is
impractical to change the switch status as frequently as
the fast fluctuations of renewable generations and loads,
especially those of the growing solar photovoltaic generations
in distribution networks. To address this concern, the stochastic
distribution network reconfiguration (SDNR) aims to determine
an optimal radial topology of the network to achieve the
minimum expected operational cost over the possible scenarios
of uncertain generations and loads.

Consider a distribution network with a set of buses N and
a set of branches E . Each branch is arbitrarily assigned a
reference direction, say from bus i to bus j, and is represented
as ij ∈ E or (i, j) interchangeably. The bus set N is divided
into substation buses Ns and non-substation buses Nd. The
substation buses are connected to the main grid outside the
distribution network concerned, while the non-substation buses
are connected to loads and renewable energy sources. Without
loss of generality, assume all the branches ij ∈ E are switchable.
A binary variable αij indicates the open (αij = 0) and
closed (αij = 1) status of the switch on branch ij. The
uncertain renewable generations and loads are modeled as
random variables measured by a joint probability distribution
π = (πw,∀w ∈ W) over a finite set of scenarios W .

We adapt some widely accepted DNR problem formulations,
e.g., those in [15], [24], to the following SDNR problem:

SDNR : min
α,x

∑
w∈W

πw
∑
i∈Ns

pwi (1a)

over α := (αij ,∀ij ∈ E) ∈ A,
x := (xw,∀w ∈ W)

= (pwi , q
w
i ,∀i ∈ Ns; v

w
i ,∀i ∈ N ;

pwij , q
w
ij , l

w
ij ,∀ij ∈ E ; ∀w ∈ W

)
s.t. ∀w ∈ W :∑

ij∈E

(
pwij − rij lwij

)
+ pwj =

∑
jk∈E

pwjk, ∀j ∈ N (1b)∑
ij∈E

(
qwij − xij lwij

)
+ qwj =

∑
jk∈E

qwjk, ∀j ∈ N (1c)

vwi − vwj ≥ 2(rijpwij + xijqwij)− (r2ij + x2ij)l
w
ij

−M(1− αij), ∀ij ∈ E (1d)
vwi − vwj ≤ 2(rijpwij + xijq

w
ij)− (r2ij + x2ij)l

w
ij

+M(1− αij), ∀ij ∈ E (1e)
lwijv

w
i = (pwij)

2 + (qwij)
2, ∀ij ∈ E (1f)

(V min
i )2 ≤ vwi ≤ (V max

i )2, ∀i ∈ N (1g)
pmin
i ≤ pwi ≤ pmax

i , qmin
i ≤ qwi ≤ qmax

i , ∀i ∈ Ns (1h)
(pwij)

2 + (qwij)
2 ≤ (smax

ij )2, ∀ij ∈ E (1i)
−αijp

max
ij ≤ pwij ≤ αijp

max
ij , ∀ij ∈ E (1j)

−αijq
max
ij ≤ qwij ≤ αijq

max
ij , ∀ij ∈ E (1k)

0 ≤ lwij ≤ αij(I
max
ij )2, ∀ij ∈ E . (1l)

The notation in (1) is consistent with that in the classical
Dist-Flow model [1] and can be found in the Nomenclature,
and is thus not repeated here. Specifically, the objective (1a)

minimizes the expected total active power injection (i.e., power
supply from the main grid outside of the distribution network)
into all the substation buses. Let G(α) denote the network
under switch status α = (αij ,∀ij ∈ E). The feasible set of α
is defined as [15]:

A := {α | G(α) has no loop; and each bus in Nd

is connected to a single bus in Ns.}

We refer to a network satisfying the condition in A as a
radial network. Equations (1b)(1c) enforce the active and
reactive power balance at each bus. With big positive constant
M , inequalities (1d)(1e) become the voltage drop equation
across branch ij when αij = 1, and otherwise decouple the
voltages at buses i and j. The quadratic equation (1f) introduces
continuous nonconvexity to the SNDR problem, which will be
addressed later with relaxation. Inequalities (1g)–(1l) impose
the operational limits for voltage magnitudes, substation power
injections, branch power flows and current magnitudes.

The decision variables in (1) include power injections
(pwi , q

w
i ) to substation buses i ∈ Ns only, while for non-

substation buses i ∈ Nd, the power injections are given as:

pwi = p̂wri − p̂wdi, qwi = q̂wri − q̂wdi, ∀i ∈ Nd

where (p̂wri, q̂
w
ri) are the active and reactive power generations

of the aggregate renewable energy source, and (p̂wdi, q̂
w
di) are the

active and reactive power consumptions of the aggregate load,
at bus i. As mentioned before, they are uncertain quantities
subject to probability distribution π over scenarios w ∈ W .

The SDNR problem (1) is a typical mixed-integer nonlinear
program, which is solvable by an off-the-shelf solver such as
Gurobi. However, the numerical results in Section IV for such
a solver reveal a substantial room for improvement in terms of
optimality and computational efficiency. This is actually what
motivated our development of the SDNR method in this paper.

B. SOC Relaxation of OPF

For each given and fixed switch status α, the SDNR problem
(1) is specified as a stochastic optimal power flow (OPF)
problem, which is nonconvex due to the quadratic equation (1f).
We adopt the widely used second-order cone (SOC) relaxation
[25] to convexify (1f) as:

lwijv
w
i ≥ (pwij)

2 + (qwij)
2, ∀ij ∈ E (2)

which leads to an SOC-relaxed stochastic OPF problem:

SOPF-R(α) : min
x

∑
w∈W

πw
∑
i∈Ns

pwi

s.t. (1b)–(1e), (1g)–(1l), (2), ∀w ∈ W.

Noticing SOPF-R is decoupled across scenarios w ∈ W , we
can solve it as |W| deterministic problems, each corresponding
to one scenario w ∈ W:

OPF-R(α, w) : min
xw

∑
i∈Ns

pwi

s.t. (1b)–(1e), (1g)–(1l), (2).
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Fig. 1. The two substations in (a) can be merged into one substation in (b)
without changing the applicability of our method. In (b), buses 0 and 3 inject
active power into loop P and divide P into two sub-paths P1 and P2.

We assume the technical conditions in [25], [26] are satisfied
to make the SOC relaxation exact: the optimal solution of OPF-
R attains equality in (2), i.e., it satisfies (1f). The SOPF-R and
OPF-R problems introduced here will need to be solved in the
proposed method below for SDNR.

III. IMPROVED SUCCESSIVE BRANCH REDUCTION

A. Improved One-Stage SBR: Open One Redundant Branch

We first consider a simple special network that has a single
redundant branch compared to a radial network. According to
[15], this includes two cases as shown in Figure 1: (a) two
substations, no loop; and (b) one substation, one loop. Indeed,
merging two (or multiple) substations into one does not change
the applicability of our method. Therefore, we only consider
case (b) when introducing our improved one-stage successive
branch reduction (SBR) algorithm below.

Let P denote the single loop (more precisely the set of
branches forming that loop) in the network with a single
redundant branch. For an arbitrary branch e = ij ∈ P , let
edown denote its adjacent branch incident to node j (i.e., the
downstream branch), and eup denote its adjacent branch incident
to node i (i.e., the upstream branch), both in loop P . The
expectation of the active power flow on branch ij with respect
to probability distribution π over scenarios W is denoted as

p̃ij := Eπ [pij ] =
∑
w∈W

πwp
w
ij .

Based on this expectation, we define a set of candidate branches
that will be used in the improved one-stage SBR algorithm:

K(e) :=


{e, edown}, if p̃ij > 0 and edown exists;

{e, eup}, if p̃ij < 0 and eup exists;

{e}, otherwise.

(3)

Further, let NP denote the set of buses on loop P . For any
bus i ∈ NP , define

p̃Pi := Eπ

 ∑
k/∈NP
ki∈E

(pki − rkilki) + pi −
∑

j /∈NP
ij∈E

pij

 (4)

which is the expected active power injection from bus i into
loop P . Since the total active power loss on all the branches
in P must be supplied by at least one source, there are nr ≥ 1
buses i ∈ NP that satisfy p̃Pi > 0. They divide loop P into
nr sub-paths (Pm, m = 1, ..., nr). Figure 1(b) demonstrates
an example where nr = 2, and buses 0 and 3 divide loop
P into two sub-paths P1 and P2. In particular, active power
is injected into loop P from the main grid (outside of the

Algorithm 1: Improved one-stage SBR

1 Initialize switch status as αE := (αij = 1,∀ij ∈ E).
2 Solve OPF-R(αE , w) to obtain the optimal solution
xw
E for all scenarios w ∈ W .

3 Calculate p̃Pi by (4) for each bus i ∈ NP . Buses with
p̃Pi > 0 divide loop P into sub-paths {P1, ...,Pnr

}.
4 for m = 1 to nr do
5 êm ← arg mine∈Pm Eπ [|pe(xE)|]
6 end
7 for e ∈ ∪nr

m=1K(êm) do
8 Solve SOPF-R(αE\{e}) and denote its optimal

objective value as p̃0(e).
9 end

10 e∗ ← arg mine∈∪nr
m=1K(êm) p̃0(e)

11 return α∗ = αE\{e∗}.

distribution network) at the substation bus 0, and from the
renewable energy source at bus 3.

Inspired by the baseline SBR algorithm in [15] for determinis-
tic DNR with positive loads only, we propose an improved one-
stage SBR algorithm, Algorithm 1, for SDNR with renewable
power generations. Lines 1–2 in Algorithm 1 solve the
SOC-relaxed stochastic OPF problem SOPF-R(αE) as |W|
deterministic problems OPF-R(αE , w), each corresponding to
a scenario w ∈ W , under switch status αE that closes all
the branches (including the single redundant branch). At their
optimal solutions, Line 3 calculates the expected active power
injections p̃Pi for all i ∈ NP , to divide loop P into sub-paths
accordingly. Using pe(xE) to denote the active power flow on
branch e at the optimal solution xE = (xw

E ,∀w ∈ W), Lines
4–6 find the branch êm that carries the minimum expected
absolute value of active power flow within each sub-path Pm.
The union of K(êm) defined in (3) over all the sub-paths
m = 1, ..., nr is taken as the set of candidate branches to open.
For each such candidate branch e, Lines 7–9 solve the SOC-
relaxed stochastic problem SOPF-R under switch status αE\{e}
that opens e only and closes all other branches. Among all such
SOPF-R problems solved, the one that attains the minimum
optimal objective value determines the optimal branch e∗ to
be opened by Algorithm 1 (Lines 10–11).

B. Rationale behind Algorithm 1

The rationale behind Algorithm 1 is to generalize the baseline
SBR algorithm in [15]. Indeed, Algorithm 1 is equivalent to
the one in [15] in the following idealized special case:

1) The network has one redundant branch and two substation
buses, as shown in Figure 1(a) for instance. Note that
we introduced Algorithm 1 for a network like Figure
1(b) that has one substation in a single loop P . When
the substation is split in two, the loop P becomes a path
P between the two substations, on which Algorithm 1
is still applicable.

2) A deterministic DNR problem is considered, which can
be formulated as a special SDNR problem (1) with only
one scenario W = {w} of probability one.

3) At the optimal solution of SOPF-R(αE), the active
power injection p̃Pi into path P is positive if bus i is one
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of the two substation buses and negative if bus i is a non-
substation bus in NP . Therefore, Line 3 of Algorithm 1
generates only one (trivial) sub-path P1 = P .

4) Other technical conditions: constant bus voltage magni-
tudes, small angle differences across branches, compact-
ness of the feasible set of SOPF-R(αE), and exactness
of the SOC relaxation, as elaborated in [15].

In this paper, we generalize the special case above in the
following two aspects.

First, in setting 3) above we allow p̃Pi > 0 for non-substation
buses i ∈ NP to incorporate active power injections by
renewable energy sources. These power-injecting buses divide
P into multiple sub-paths {Pm, m = 1, ..., nr}. The same
procedure as in [15] can prove that the optimal branch to
open within each sub-path Pm must come from the candidate
set K(êm). Therefore, by searching through K(êm) for all
m = 1, ..., nr in Lines 7–10, Algorithm 1 determines the
optimal branch to open for the network.

Second, we generalize 2) from a single scenario (i.e., a
deterministic DNR problem) to multiple (yet a finite number
of) scenarios in W . The optimality proof in [15] for the set
of variables in the single scenario can be applied in a similar
way to their expectations (i.e., finite linear combinations).

Generalizing 2) and 3) as above and keeping 1) and 4)
unchanged, one can prove that Algorithm 1 finds the optimal
solution to the SDNR problem (1). The detailed proof is skipped
due to its similarity to the proof in [15]. We admit that the
technical conditions in 4) are highly idealized and that relaxing
them would make the optimality proof much harder. That being
said, we hope this discussion may provide some insight and
confidence for the application of the proposed algorithm.

We have to point out that the generalizations above take
extra computational efforts associated with the number nr of
active power-injecting buses and the number |W| of uncertainty
scenarios. Numerical results in Section IV will show that such
increased computations are acceptable given that they produce
a satisfactory solution to the difficult SDNR problem with
renewable generations.

C. Two-stage SBR: Open Multiple Redundant Branches

We now consider a general network with L > 1 redundant
branches that form L chordless loops P l, l = 1, ..., L. Without
loss of generality, we still assume the network has a single
substation bus (that may merge multiple substations). To solve
the SDNR problem in such a network, we propose a heuristic
two-stage SBR algorithm, Algorithm 2, which iteratively calls
Algorithm 1 as will be elaborated below.

The first stage of Algorithm 2 starts from switch status αE
that closes all the branches, including L redundant branches
(Line 2). Line 3 solves the SOC-relaxed stochastic OPF problem
SOPF-R(αE) as |W| deterministic problems OPF-R(αE , w),
each corresponding to a scenario w ∈ W , under the initial
switch status αE . Lines 4–5 find the branch eol that carries
the minimum expected absolute value of active power flow
pe(xE) at the optimal solution xE , within each loop P l. Line
6 opens that branch eol . If branch eol simultaneously lies in two
loops including P l, opening eol will also change the other loop,

Algorithm 2: Two-stage SBR

1 First stage:
2 Initialize switch status as αE := (αij = 1,∀ij ∈ E).
3 Solve OPF-R(αE , w) to obtain the optimal solution
xw
E for all scenarios w ∈ W .

4 for l = 1 to L do
5 eol ← arg mine∈Pl Eπ [|pe(xE)|]
6 Open branch eol .
7 if eol is a common branch of P l and Pk then
8 Update loop Pk with eol open.
9 end

10 end
11 Eo ← {eol , l = 1, ..., L}
12 Second stage:
13 for l = 1 to L do
14 Define a set of open branches E lo := Eo\{eol }.
15 Run Algorithm 1 with initial switch status αE\Elo ,

to obtain an optimal branch e∗l to open; denote the
corresponding optimal objective value as p̃0(e∗l ).

16 end
17 lmin ← arg minl=1,...,L p̃0(e

∗
l )

18 return α∗ = αE\(Elmin
o ∪{e∗lmin

})

Load

1 2 3 4

5

6

7

0

8

9

10 11

12

(a)

10

1 2 3 4

5

6

7

0

8

9

11

12

(b)

1 2 3 4

5

6

7

0

8

9

10 11

12

(c)

1 2 3 4

5

6

7

0

8

9

10 11

12

(d)

10

1 2 3 4

5

6

7

0

8

9

11

12

(e)

10

1 2 3 4

5

6

7

0

8

9

11

12

(f)

Renewable generation

Fig. 2. Illustration of the two-stage SBR (Algorithm 2). First stage: (a)
the initial network with two loops; (b) open branches Eo = {eo1, eo2} =
{(3, 7), (6, 8)}. Second stage: (c) close branch eo1 = (3, 7) to form loop
P(1), which is divided into only one sub-path P(1)

1 by active power-injecting
bus 4; (d) run Algorithm 1 to open branch e∗1 = (3, 7); (e) close branch
eo2 = (6, 8) to form loop P(2), which is divided into three sub-paths P(2)

m ,
m = 1, 2, 3 by active power-injecting buses 2, 4, 8; (f) run Algorithm 1 to
open branch e∗2 = (5, 6). Radial networks (d) and (f) need to be compared,
and the one that attains the lower optimal objective value in Algorithm 1 is
the final output of Algorithm 2.

say Pk (Lines 7–9). The open branches {eol , l = 1, ..., L} are
collected in a set Eo (Line 11), which serves as the basis for
the second stage of Algorithm 2.

For illustration, Figure 2(a) shows an example with L = 2,
where loop P1 = {(2, 3), (3, 7), (7, 8), (2, 5), (5, 6), (6, 8)}
and P2 = {(3, 4), (4, 9), (3, 7), (7, 9)}. Branch (3, 7) is a
common branch of the two loops. In the first stage of Algorithm
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Fig. 3. IEEE 33-bus distribution network with five initial redundant branches
(red dashed lines).

2, branch eo1 = (3, 7) is first opened in loop P1, which causes
loop P2 to change into a larger loop; then branch eo2 = (6, 8)
is opened in the updated loop P2, leading to the radial network
in Figure 2(b). The set of open branches obtained in the first
stage is Eo = {eo1, eo2} = {(3, 7), (6, 8)}.

The second stage of Algorithm 2 runs L iterations. In each
iteration l = 1, ..., L, all the branches in Eo (obtained in the first
stage) except eol are open, while all other branches including
eol are closed (Lines 13–14). This switch status, denoted as
αE\Elo , has only one redundant line, and thus Algorithm 1 can
be applied to it to obtain an optimal switch e∗l to open (Line
15). Note that e∗l may or may not be the same branch as eol .
In this way, each of the L iterations leads to a radial network.
Among the L radial networks obtained, the one whose optimal
objective value in Algorithm 1 attains the minimum, denoted
as the lmin-th one, decides the ultimate switch status to be
returned by Algorithm 2 (Lines 17–18).

In Figure 2, the second stage of Algorithm 2 is run for two
iterations l = 1, 2. In the first iteration, branch eo1 = (3, 7) is
closed to form a single loop P(1) in Figure 2(c); then Algorithm
1 returns an optimal branch e∗1 = (3, 7) to open, as Figure 2(d)
shows. In the second iteration, branch eo2 = (6, 8) is closed
to form a single loop P(2) in Figure 2(e); then Algorithm
1 returns an optimal branch e∗2 = (5, 6) to open, as Figure
2(f) shows. Finally, the optimal objective values attained by
Algorithm 1 need to be compared between 2(d) and 2(f), and
the lower one decides the optimal switch status α∗.

Both Algorithm 2 and the heuristic [15, Algorithm 3]
are designed for a general network with multiple redundant
branches. Besides the stochastic setting and the active renewable
power injections handled in Algorithm 2 as discussed before,
their major difference lies in the iterative close-and-open
procedure in Lines 13–16 of Algorithm 2, which further
improves the optimality of SDNR solution compared to [15,
Algorithm 3] as shown numerically in Section IV. We propose
Algorithm 2 as an experimentally effective and research-wise
insightful heuristic. Its formal performance proof appears to
be much harder and is left beyond this work.

IV. CASE STUDIES

A. Experimental Setup

To validate the proposed method, we conduct numerical
experiments with the IEEE 33-bus and 123-bus distribution
network models. As shown in Figures 3 and 4, each network
has one substation bus and five redundant branches. Each non-
substation bus connects to either a load or a pair of renewable
energy sources (a small wind turbine and a solar panel). We
use the load, wind and solar generation data in Germany from
April to June 2020 in hourly resolution [27], scale them to fit
the IEEE network capacities, and cluster them into a certain
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Fig. 4. IEEE 123-bus distribution network with five initial redundant branches
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Fig. 5. Relative errors in minimum expected total power losses, in the IEEE
33-bus network with initial redundant branch (12, 22). The proposed algorithm
refers to Algorithm 1, the improved one-stage SBR.

number of scenarios (depending on the test case) using k-
medoids [18]. After getting the active power of loads and
renewable generations, we determine their reactive power by
fixed power factors [14].

The experiments are run on a 64-bit MacBook with Apple
M1 Pro Chip, 8-core CPU, and 32GB RAM. In the proposed
method, we can solve the SOC-relaxed problems SOPF-R and
OPF-R using a convex solver as currently written in Algorithms
1 and 2, or solve the OPF problems without relaxation using
MATPOWER. In these experiments, we choose the latter.

The proposed method is compared with the following two
methods in terms of optimality and computational efficiency.

Method 1: Mathematical programming. We use the commer-
cial mixed-integer nonlinear solver Gurobi to solve SDNR in
its original form (1) except that (1f) is replaced by its SOC
relaxation (2) to reduce computational burden to some extent.

Method 2: Stochastic versions of the baseline algorithms,
i.e., [15, Algorithm 1] to open a single redundant branch and
[15, Algorithm 3] to open multiple redundant branches. The
deterministic active power flows in the baseline algorithms are
replaced by their expectations. Particularly, compared to the
proposed method, [15, Algorithm 1] did not divide the loop
into sub-paths at the active power-injecting buses, and [15,
Algorithm 3] did not apply the close-and-open procedure in
Lines 13–16, Algorithm 2.

Other methods, such as the switch opening and exchange [14]
and genetic algorithm [16], are not compared in our experiments
because of their obviously more complicated implementations
and heavier computational burdens than the proposed method.
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TABLE I
RELATIVE ERRORS IN MINIMUM EXPECTED TOTAL POWER LOSSES (IEEE

33-BUS NETWORK WITH A SINGLE REDUNDANT BRANCH)

Initial
redundant branch

Algorithm 1 (proposed)
vs. Method 1

Method 2
vs. Method 1

mean max min mean max min
(%) (%) (%) (%) (%) (%)

(8, 21) 0.04 0.29 -0.05 0.04 0.29 -0.05
(9, 15) -0.02 0.16 -0.06 -0.02 0.16 -0.06
(12, 22) -0.11 0 -0.82 0.30 0.83 -0.31
(18, 33) -0.21 0 -1.17 -0.21 0 -1.17
(2, 29) 0 0 0 0 0 0

TABLE II
RELATIVE ERRORS IN MINIMUM EXPECTED TOTAL POWER LOSSES UNDER

DIFFERENT RENEWABLE PENETRATION LEVELS (FIVE REDUNDANT
BRANCHES)

kr Method
33-bus network 123-bus network

mean max min mean max min
(%) (%) (%) (%) (%) (%)

0.5
Proposed -1.22 0 -5.89 -4.25 -0.92 -8.62
Method 2 -0.49 1.28 -4.70 -4.04 -0.70 -8.42

1.0
Proposed -1.17 0.21 -4.06 -4.52 -1.43 -8.59
Method 2 0.51 6.88 -3.60 -3.40 0.26 -8.39

2.0
Proposed -1.80 0.93 -4.86 -5.11 -0.51 -9.40
Method 2 16.78 69.49 -2.83 -4.16 1.90 -7.67

3.0
Proposed -0.84 6.08 -4.58 -3.89 0.18 -8.99
Method 2 12.27 23.84 1.04 5.50 23.42 -8.80

B. Optimality of Algorithm 1: One-Stage SBR

We first experiment with the improved one-stage SBR
algorithm, Algorithm 1, in the IEEE 33-bus network. Each of
the five redundant branches in Figure 3 is closed to create a
network with a single (initial) redundant branch. On each of
the five networks created, we show in Table I the relative errors
in minimum expected total power losses between Algorithm
1 (the proposed) and Method 1 in columns 1–3, and between
Method 2 and Method 1 in columns 4–6. Here Method 1,
i.e., mathematical programming with Gurobi, is used as a
trustworthy benchmark to define the relative errors for other
methods. The mean, maximum, and minimum records over the
24 hourly SDNR problems in a day are listed in the table.

It is observed from Table I that the relative errors in
minimum expected total power losses of Algorithm 1 are mostly
negligible, with the largest error just around 1%. Actually,
Algorithm 1 and Method 2 find the same SDNR solutions in
each of the five networks except the one with initial redundant
branch (12, 22); for (12, 22), Algorithm 1 finds the same or
better solutions than Method 2 over 24 hours, as shown in
Figure 5. In general, the optimality of Algorithm 1 is as
competitive as its peers.

C. Optimality of Algorithm 2: Two-Stage SBR

We now show the performance of the proposed two-stage
SBR algorithm, Algorithm 2, in the IEEE 33-bus and 123-bus
networks, each having five redundant branches.

The first group of results, collected in Table II, are the
relative errors (compared to Method 1) in minimum expected
total power losses, under different renewable penetration levels.
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Fig. 6. (a) The minimum expected total power losses and (b) the relative
errors in minimum expected total power losses, obtained by different methods
in the IEEE 33-bus network. Renewable penetration kr = 3. The proposed
algorithm refers to Algorithm 2, the two-stage SBR.
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Fig. 7. (a) The minimum expected total power losses and (b) the relative
errors in minimum expected total power losses, obtained by different methods
in the IEEE 123-bus network. Renewable penetration kr = 3. The proposed
algorithm refers to Algorithm 2, the two-stage SBR.

The renewable penetration level is represented by coefficient kr,
which scales the renewable generation capacities in the IEEE
33-bus and 123-bus networks. An immediate observation is
that the proposed algorithm (Algorithm 2) attains lower (better)
objective values in the larger 123-bus network than the 33-
bus network. Furthermore, we see that the proposed algorithm
attains better objective values than Methods 1 and 2 under low
renewable penetration levels kr. As kr increases, the optimality
of Method 2 severely degrades, while the proposed algorithm
still finds better solutions than Method 1 in most cases. For a
clearer comparison, we display (a) the minimum expected total
power losses and (b) the relative errors in minimum expected
total power losses, over 24 hours under a high renewable
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TABLE III
RELATIVE ERRORS IN MINIMUM EXPECTED TOTAL POWER LOSSES UNDER

DIFFERENT NUMBERS OF SCENARIOS (33-BUS WITH FIVE REDUNDANT
BRANCHES)

|W| Method mean (%) max (%) min (%)

5
Proposed -1.17 0.21 -4.06
Method 2 0.51 6.88 -3.60

20
Proposed -2.93 -0.50 -8.13
Method 2 -2.59 -0.14 -7.71

40
Proposed -11.03 -1.77 -30.19
Method 2 -10.71 -1.77 -29.83

2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

(a)        

0.01

0.02

0.03

0.04

P
o
w

er
 l

o
ss

 (
p
.u

.) Method 1 Method 2 Proposed

2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

(b)        

-30

-20

-10

0

10

R
el

at
iv

e 
er

ro
r 

(%
) Method 2 Proposed

Fig. 8. (a) The minimum expected total power losses and (b) the relative
errors in minimum expected total power losses, obtained by different methods
in the IEEE 33-bus network. The number of uncertainty scenarios |W| = 40.
The proposed algorithm refers to Algorithm 2, the two-stage SBR.

penetration level kr = 3, in Figures 6 and 7 for the 33-bus
and 123-bus networks, respectively. These figures validate
our conclusion from Table II that the proposed algorithm
outperforms Method 2 in optimality under high renewable
penetration levels.

The second group of results, collected in Table III, are the
relative errors (compared to Method 1) in minimum expected
total power losses, under different numbers |W| of the scenarios
of uncertain renewable generations and loads. As |W| increases,
both Algorithm 2 (the proposed) and Method 2 find higher-
quality solutions. This is also verified by Figure 8 showing (a)
the minimum expected total power losses and (b) the relative
errors in minimum expected total power losses, over 24 hours
under the number of uncertainty scenarios |W| = 40.

A general observation so far is that the proposed SBR
method finds better solutions as the network size, the number
of redundant lines, and the number of uncertainty scenarios
increase. Our conjecture is that the increasing numbers of
constraints and decision variables (especially the binary switch
variables) make the mixed-integer nonlinear SDNR problem
more challenging to solve, thus making the superiority of the
proposed method more obvious in terms of optimality.
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Fig. 9. Computation time for SDNR using two methods, in the IEEE 33-bus
network under different numbers of uncertainty scenarios.
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Fig. 10. Computation time for SDNR using two methods, in the IEEE
123-bus network under different renewable penetration levels.

D. Computational Efficiency

Figure 9 plots the computation time (the median, the 25th
and 75th percentiles, and a few outliers from the 24 samples in a
day) for Method 1 and the proposed two-stage SBR algorithm
(Algorithm 2) in the IEEE 33-bus network under different
numbers of scenarios |W|. Noticing the drastic difference
between the vertical axes of the two methods, we see the
proposed algorithm is computationally more efficient than
Method 1 that uses Gurobi.

The advantage of the proposed algorithm in computational
efficiency is also shown in Figure 10, which compares its
computation time with Method 1 in the IEEE 123-bus network
under varying renewable penetration levels kr.

V. CONCLUSION

This paper proposed an improved successive branch re-
duction (SBR) method to solve stochastic distribution net-
work reconfiguration (SDNR) considering uncertain renewable
generations and loads. First, for a simple special network
with a single redundant branch, we developed an improved
one-stage SBR algorithm to incorporate uncertain renewable
power generations. Then, for a general network with multiple
redundant branches, we proposed a two-stage SBR algorithm
featuring an iterative close-and-open procedure that runs
the one-stage SBR algorithm in each iteration. Numerical
experiments on the IEEE 33-bus and 123-bus network models
validated the improved optimality and computational efficiency
of the proposed method compared to a common mixed-integer
nonlinear solver and a baseline SBR method from the literature.

In the future, we plan to formally analyze the optimality
of the proposed two-stage SBR algorithm (which is currently
a heuristic), hoping to provide some insight for an improved
SDNR algorithm design with performance guarantees. Another
direction of our ongoing work is to develop an efficient robust
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DNR algorithm incorporating other important considerations
such as the small-signal or short-term voltage stability.
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