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The slope filtration of Euclidean lattices was introduced in works by Stuhler in
the late 1970s, extended by Grayson a few years later, as a new tool for reduction
theory and its applications to the study of arithmetic groups. Lattices with trivial
filtration are called semistable, in keeping with a classical terminology. In 1997,
Bost conjectured that the tensor product of semistable lattices should be semistable
itself. Our aim in this work is to study these questions for the restricted class of
isodual lattices. Such lattices appear in a wide range of contexts, and it is rather
natural to study their slope filtration. We exhibit specific properties in this case,
which allow, in turn, to prove some new particular cases of Bost’s conjecture.

1 Introduction

The notions of stability and slope appear in a wide range of mathematical contexts, often by
analogy with the original geometric setting in which they were developed, namely the study
of moduli spaces of vector bundles over curves (see e.g. [Mumé63| NS65]). In these various
theories, one can define a canonical filtration of an object by semistable ones, a property brought
to light by Harder and Narasinham in the case of vector bundles on curves [HN75]. A canonical
polygon is associated with this filtration, together with the sequence of slopes of its boundary.

This formalism applies in particular to Euclidean lattices, as observed by Stuhler [Stu76|
Stu77]. The relevant notions are the height and reduced height, which in the case of an ordi-
nary Euclidean lattice L are defined as

H(L) = covol(L) = vol(RL/L) and H,(L) = H(L)!/dimL,

Alternatively, in keeping with the classical terminology for vector bundles over curves, one
can define the degree and slope of L as

degL = —log(H(L))

and degl
_ _ dJdeg
H(L) = ~log(H,(L)) = S5~

These quantities are also defined for sublattices and quotients. The slopes (resp. reduced
heights) of the successive quotients in the canonical filtration make up a strictly decreasing
(resp. increasing) sequence of real numbers. The first term of this sequence is thus called the
maximal slope 4y (resp. the minimal reduced height H,,;,,) of L.

Grayson [Gra84), |Gra86] studied this formalism in the more general context of Ok-lattices,
Ok being the ring of integers of a number field K. An Arakelov version of these questions
was introduced by Bost in the 1990s, in terms of Hermitian vector bundles over Spec Okx. More
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recently, Gaudron and Rémond developed a more arithmetic approach in [GR17], valid over
any algebraic extension of Q, in terms of rigid adelic spaces and heights thereof. The three points
of view — Ok-lattices, Hermitian vector bundles, rigid adelic spaces — are equivalent when K
is a number field, and the above definition of (reduced) height carry over in a natural way,
see section[2l The recent text [Gau21], from which we borrow the approach and terminology,
gives a very comprehensive account of this theory.

The slope filtration exhibits remarkable properties with respect to most of the usual alge-
braic operations : sum, quotient, duality. The case of tensor product is much more elusive.
Formal properties of the height function, and strong analogies with similar notions in various
contexts (see [And09, And11} BC13]) suggested to Bost the following conjecture :

Conjecture 1 (Bost [Bos97]). The minimal height of the tensor product of two rigid analytic spaces E
and F over a number field K is equal to the product of their respective minimal heights :

Hmin(E & F) = Hmin<E)Hmin<F)-

Such a property is known to hold in several contexts where a similar slope filtration is avail-
able (see e.g. [And09], where the term "tensor multiplicativity" is introduced). The proofs
are most often difficult, and no really unified approach has emerged. In the case of Hermi-
tian vector bundles, the conjecture has been proved for small ranks by Bost and Chen [BC13].
Particular cases, independent of the dimension, have also been established. For instance, the
conjecture is obviously true for unimodular Euclidean lattices. Recall that a Euclidean lattice L
is unimodular if it coincides with its dual L* := {y € RL, Vx € L, y- x € Z}, where "-" stands
for the Euclidean inner product on RL. In particular, the reduced height of a unimodular lat-
tice is 1, less than or equal to that of any of its sublattices. The same property holds obviously
for the tensor product of two unimodular lattices, since it is also unimodular. We will see in
section 4] another interpretation of this property, which is the key of the main results in this
paper.

In the light of this simple example, it seems natural to expect a special behaviour of the GS-
filtration of so-called isodual lattices, introduced by Conway and Sloane in [CS94] and studied
by different authors from a variety of perspectives (in particular, symplectic isodual lattices
play a significant role in the study of abelian varieties , see [BS94]).

After reviewing the essential facts about heights and slope filtration in section 2} we intro-
duce in section[3la general notion of isoduality. We observe in particular (Proposition[3.9) that
to prove Conjecture [I] one can restrict to isodual spaces. We then investigate in section M the
properties of the slope filtration of isodual rigid analytic spaces. The main observation, from
which we derive several results, is that the destabilizing subspace of an isodual rigid analytic
space is totally isotropic with respect to a naturally defined bilinear form. The aim of section]
is to further reduce the proof of Conjecture [I] to the case of semistable isodual rigid analytic
spaces. Finally, as a continuation of the recent works [CN20] and [Rém19], we examine in
sectionf] the influence of the automorphism group, and the associated representation, on the
slope filtration of an isodual rigid analytic space. This leads us to formulate a Conjecture [
— a special case of Conjecture [Il- which seems to be the correct "isodual" analogue of the re-
sult proved by Rémond for multiplicity free action of groups on rigid analytic spaces [RéEm19,
Théoreme 1.1].

2 Review of Hermitian bundles and semistability

Let K be a number field, V(K) = Vy U V4 its set of places - finite and infinite - and Ok its
ring of integers. Each place v is associated with a normalized absolute value | - |,, which
is the standard modulus at an Archimedean place, and is defined, at an ultrametric place v



associated to a prime ideal p, by |x|, = Np~ (), where Np = |Ok/p| is the norm of the
prime ideal p ; the completion of K with respect to this absolute value is denoted K.

If E is a finite dimensional K-vector space, its completion E ® K, at a place v is denoted E,.

A Hermitian vector bundle over Spec(Ok) ([Bos96]), or equivalently an Ok-lattice ([Gra84,
Gra86]), is the data (L, (hy)yev,, ) of a finitely generated projective Og-module L together with
a collection of positive definite symmetric (resp. Hermitian) forms h, on the completions E,
of the K-vector space E = L ®¢, K at real (resp. complex) Archimedean places, assumed to
be invariant under complex conjugation (see remark below). Hereafter, all Hermitian forms over
a complex vector space V are, by convention, antilinear in the first variable, and linear in the
second

V(A u) € C?, Y(x,y) € V%, h(Ax, uy) = Ah(x,y)u.

Remark 2.1. A complex Archimedean place v corresponds to a pair {7,7} of embeddings
K — C, conjugated to each other. Each of them allows to identify K, with C, giving rise
to two distinct realizations of E,, denoted E, := E ®, C and E7 = E ®- C, depending on
which embedding K < C is chosen. The "complex conjugation" is the canonical C-antilinear
isomorphism from E, onto E_ defined by

Vx € EVAEC, x®@,A:=x®_A 1)

The Hermitian form h, thus consists in the data of two Hermitian forms k., and h=, respectively
on E, and E_, satisfying the following invariance under complex conjugation :

V(x,y) € Ey X Ey, h3(X,Y) = hy(x,y).

Equivalently, these data define a rigid adelic space <E, (I llo)vev K)> , using the terminology
of [GR17], with local norms on each completion E, := E ® K, defined by

Vi ey, il = {«/hv(x,x) ifoe Vy )

inf {|af,, € Ky, x € aL} ifv € V.

It follows from the well-known classification of modules over Dedekind rings (see e.g. [O’M00,
Th. 81:3]) that the Ox-module L admits a pseudo-basis (a;, b;), <i<e»Whereay, ... ay are fractional
ideals, and {by, ..., b,} is a K-basis of E such that

14
L= @ Cll‘bl‘. (3)
i=1

By abuse of notation, we use the same letter E to denote a Hermitian vector bundle (resp. a
rigid adelic space) and its underlying K-vector space. If E # {0}, one defines its (normalized)
height as

I} 1/[K:Q]
H(E) = (N (H ai) [T det(ho(b;, bj))e”/2> 4)
i=1 v€Vo
where e, = 1 or 2 according to whether v is real or complex, and we set H({0}) = 1. This
corresponds, in the terminology of [Gra84], to the (normalized) volume of the Og-lattice L
defining the finite part of the rigid adelic structure, with respect with the Hermitian metrics at
infinite places (it does of course not depend on the choice of a pseudo-basis for L, see [O’M00,
81:8]). One can check that this definition is equivalent to that of [GR17].
If E # {0}, one also define its reduced height as

Hr(E) _ H(E)l/dimE'



If t is a positive real number, we obtain a new rigid analytic space E[t] by multiplying each
of the Archimedean local norms at infinite places by t. In view of (), the effect on the reduced
height is given by the relation

H,(E[t]) = tH,(E). (5)

Any subspace F of a rigid adelic space E inherits the structure of a rigid adelic space, by
restricting the local norms at all places. In the language of Hermitian bundles, it amounts to
replace the Ok-lattice L with L N F, and restrict to F the Hermitian forms at infinite places.
Consequently, one defines, for all positive integer k,

HY(E) = mi .
(E) = jmin_H,(F) (6)
dim F=k
and
H,,:,(E) = min H,(F). 7
(E) i, (F) )

Remark 2.2. Because of (5)), one has

vVt >0, Hmin(E[t]) = thin(E)' (8)

To any K-linear map ¢ : E — F between rigid adelic spaces one can associate a family of
localised maps 0, : E ® K, = F ® K, defined as usual by

Vx € EEVA €Ky, 0p(x @A) =0(x) @A )

and extended by bilinearity.

Remark 2.3. Ata complex place v, associated to a pair {7, 7} of complex embeddings, there are
two realizations ¢, and o5 of ¢, depending on the choice of the embedding of K in C (remark

).

Definition 2.4. An isometry between two rigid adelic spaces E and F over K is a K-linear map
o : E — F such that the localised maps ¢, : E ® K, — F ® K, preserve the local norms for all
veV.

The quotient E/F of a rigid adelic space by a subspace also inherits a canonical structure of
rigid adelic space, using quotient norms (see [GR17, §2]). To express it in terms of Hermitian
bundles, one has to consider the quotient Ok-lattice L /L N F, and use the identification E/F ®

K, ~ FvL " (orthogonal complement with respect to k) at infinite places to define Hermitian
structures, see [Gra84].

Similarly, the operator norms induce on the dual space EY = Homg(E, K) an adelic structure
which can also be viewed as the structure induced by the Ok-lattice LY = Homg, (L, Ok)
equipped with the Hermitian forms

v 2
B (YY) = su ly" (x)[5
oY) = SR )

at infinite places. Note in particular that

HV(EV) = Hr(E)il (10)
and
E[t]Y = EV[t™!] forall t > 0. (11)
As usual, the orthogonal in EV of a subspace F of E is defined as
Ft:= {9 €L’ |¢(F)=0}. (12)

As one might expects, the previous notions are related through the following property :



Proposition 2.5. [[GR17, Proposition 3.6] For any subspace F of a rigid analytic space E, one has
EV/Ft ~FV.

The direct product E x F of two adelic rigid spaces is equipped with the local norms

1/2 P
16 9) o = (Ilx[12 + [lvl[3) """ at infinite places,
’ max {|| x|, |ly||»} at finite places.

In terms of Hermitian bundles, it corresponds to the usual direct sum of Og-modules, en-
dowed, at each infinite place, with the orthogonal direct sum of the corresponding Hermitian
forms.

Finally, the tensor product of adelic spaces/Hermitian bundles is defined naturally with
either point of view, see loc. cit.

Remark 2.6. In the references [BC13|] and [Gau2l] on which we rely, the authors call Hermitian
direct sum E @ F of rigid adelic spaces what we just defined as their direct product E x F. The
reason why we chose to avoid the direct sum notation/terminology is that we think it can
occasionally be misleading : for instance, if F and F’ are subspaces of a given rigid adelic
space E intersecting trivially, the structure of adelic rigid spaces induced by E on the subspace
F & F' is not their Hermitian direct sum in general.

A key property of reduced height is that the set of subspaces of a given Hermitian bundle E
with minimal reduced height has a well-defined maximum E; with respect to inclusion, called
the destabilizing subspace of E (see see e.g. [Stu76), Satz 1] for a proof in the case of lattices and
[Gau21]] for the general case). In other words, any rigid analytic space E contains a unique
subspace E; characterized by the following two properties :

2. Any subspace F of E such that H,(F) = H,,;,(E) is contained in E;.

A rigid analytic space E is stable if H,(F) > H,(E) for all proper subspace {0} C F C E,
semistable if H,(F) > H,(E) for all subspace F, and unstable if it is not semistable. In particular,
E is semistable if and only if it coincides with its destabilizing subspace E;.

We denote by

{O}ZEQCE&C"'CEg,lCEg:E

the Grayson-Stuhler filtration of E ("GS-filtration of E" for short) , defined recursively as fol-
lows :

1. E; is the destabilizing subspace of E.
2. Fori > 2, E;/E,_; is the destabilizing subspace of E/E;_;.
An alternative characterization of this filtration is given by the following proposition :
Proposition 2.7. [Gra84] Corollary 1.30] The GS-filtration of E is the unique flag (E;)o<i<¢ such that
1. E;/E;_q is semistable forall 1 <i </,
2. If¢ > 1then H, (E;/E;_1) < H, (Ei11/E;) forall1 <i < /{—1.

Definition 2.8. The integer / is called the length of the GSfiltration of E. In particular, E is
semistable if and only if the length of its GS-filtration is equal to 1.



The uniqueness property entails two remarkable properties of the GS-filtration : it is invari-
ant under automorphisms (see section [6), and scalar extension (see e.g. [Gau2l| Proposition
19)).

We end this section with a useful lemma, well-known to the experts, about the behaviour of
H,,i, with respect to quotients and products.

Lemma 2.9.

1. For any two rigid analytic spaces {0} # F C E, one has

min(Hyin (F), Hyin(E/F)) < Hypin(E) < Hpin(F).
In particular, Hyin(E) = Hyin(F) if Hyin(F) < Hyin(E/F)).
2. The minimal reduced height of the direct product of two rigid analytic spaces is given by
Hyin(E x F) = min(H,yi (E), Hyin(F)).
Proof. A proof of the first assertion can be found in [CN20, Lemma 1.9]. The second assertion
is a direct consequence of the first one, using the exact sequences
0—+E—-ExF—-F—=0and0—+F —+ExXxF—E—Q0.

O

Regarding Conjecture[I] the first assertion of the previous lemma has the following conse-
quence :

Corollary 2.10. Let E and F be rigid analytic spaces. Suppose that F admits a filtration
{0} =RhCFHKHC---CF1CF=F

such that

(i) Hyin(E ® F;/Fi_1) = Hyin(E)Hyin(F;/Fi—1) forall1 <i<t,

(i1) Huyin(Fi/Fi—1) < Hyin(Fipa/EF) foralll <i <t-—1.
Then

Huin(E ® F) = Hypin(E)Hyin (F).

Proof. Recursion on t, using the first assertion of LemmaZ2.9] O
Remark 2.11. One noticeable consequence of the above Corollary is that Bost’s conjecture [l is

equivalent to the — apparently weaker — statement that the tensor product of semistable rigid
analytic spaces is itself semistable (see [BC13, p. 440], and [CN20] for a discussion of this point).

Another easy consequence of Lemma[2.9]and its corollary is the following :

Corollary 2.12. Let F be a rigid analytic space of rank 2 over a number field K, which is not stable.
Then for any rigid analytic space E over K, one has Hyiy (E ® F) = Hyin(E)Hypin(F).

Proof. 1f F is unstable, its destabilizing subspace F; is one-dimensional, as well as F/F;. Con-
sequently,
Hmin(E & Fl) = Hmin(E)Hmin(Fl) and Hmin<E & F/Fl) = Hmin<E)Hmin(F/Fl)/

and one can apply Corollary 210 to conclude that Hy,i,(E ® F) = Hyjin(E)Hyin (F). If F is un-
stable but semistable, one can "destabilize" it by an arbitrary small perturbation of the infinite
components of the metric, in which case the previous argument applies, whence the conclu-
sion since the equality Hy,iy (E ® F) = Hyjn(E)Hpin(F) is preserved under taking limits. O



3 lIsodual rigid adelic spaces

Recall that we have defined an isometry between two rigid adelic spaces E and F over K as a
K-linear map ¢ : E — F such that the localised maps 0, : E ® K, — F ® K, preserve the local
norms forallv € V.

If L and M are the Ok-lattices underpinning E and F, it is easy to see, due to the descrip-
tion of the local norms at finite places, that an isometry ¢ is simply a K-linear isomorphism
mapping L onto M and inducing Hermitian isometries at all infinite places.

More generally, one can define the notion of similarity as follows :

Definition 3.1. A similarity between two rigid adelic spaces E and F over K is a K-linear map
o : E — F such that the maps ¢, (v € V) are similarities with respect to the local norms, and
the similarity ratio is 1 at all but finitely many places.

Again, if L and M are the Ok-lattices underpinning E and F, one easily checks that a K-linear
map ¢ : E — F is a similarity if ¢, is a Hermitian similarity for every Archimedean place v,
and if there exists a fractional ideal a such that c(L) = aM .

This notion of similarity is relevant to our purpose, since it preserves the Grayson-Stuhler
filtration of a rigid adelic space, as shows the following lemma :

Lemma 3.2. Let E be a rigid adelic space, with GS-filtration
{0} =EgCE;C---CE; 1 CE,=E.
and o a similarity. Then the GS-filtration of E is
{0} =cEy CoE; C--- C0Ej 1 C0E;=0E.

Proof. Let A = (Ay)pey Where A, is the similarity ratio of o, i.e. [|op(x)|s = Asl/x||, for all
x € E, = E®k Ky, and set N(A) = [[,cy Av- Then

H,(e(F)) = N(W)VICUH, (F)

for every subspace F of E. The conclusion follows, as the scaling factor )N(A)/[KQ is inde-
pendent of F and its dimension. O

Definition 3.3. A rigid analytic space E is o-isodual, or simply isodual, if there exists a similarity
o : E — EV. To such a similarity, one associates a K-bilinear form b, : E X E — K defined by

V(x,y) € EXE, bs(x,y) =0c(x)(y). (13)

If K is a CM-field, with complex conjugation 7, it can be more natural to consider instead
the conjugate dual space EV, which is the ordinary dual EV (set of K-linear forms) equipped
with the twisted external law

axp:=ap, (k€K peEY).

It is consistent in this case to consider spaces admitting a similarity onto their conjugate dual
instead. This leads to the following extension of definition[3.3]:

Definition 3.4. A &gid analytic space E over a CM-field K is anti-isodual, if there exists a
similarity o : E — EV.

Note that in this situation, equation (I3) defines a sesquilinear form b, on E.



Definition 3.5. Let (E, o) be an isodual rigid adelic space over a number field K, or an anti
isodual space over a CM-field K. We say that E is

1. orthogonal if the bilinear form b, is symmetric,
2. symplectic if b, is alternate.
3. unitary if K is a CM-field, E is anti isodual and b, is Hermitian.

Note that in all three cases, b, is necessarily non-degenerate.

Remark 3.6. The previous definitions extend naturally the notion of isodual lattice mentioned in
the introduction, which we now recall in a slightly greater generality : suppose that K is either
a totally real or a CM-field, and E a K-vector space endowed with a totally positive definite
quadratic (resp. Hermitian) form #, i.e. h is a K-valued quadratic or Hermitian form on E such
that the extensions /i, of h to all completions E, at infinite places are positive definite. With ~
denoting either the complex conjugation if K is a CM-field, or the identity if K is totally real,
we get an isomorphism H between E and EV (= EY when K is totally real) given by

H: E— EV
x — h(x,-)

Any lattice L in E (=full-rank finitely generated projective Ox-submodule of E) induces a struc-
ture of rigid adelic space on E, the infinite part consisting of the extensions h, of h to the
completions E,, for v € V.. The preimage of LY = Hom(L, Ok) by H is

L*:={ye€E|h(Ly) C Ok}. (14)

We say that the lattice L is isodual if there exists a similarity T of the Hermitian space (E, h)
mapping L onto L*, which means that there exists « € K such that

V(x,y) € EXE, h(t(x),t(y)) = ah(x,y).

If so, the map o = H o T is a similarity of rigid analytic space between E and EV and the form
b, of (13) is given by

bo(x,y) = h(t(x),y)-
The ratio « of T is a totally positive element in K, the maximal totally real subfield of K. It
is then easily checked that, as a H o T-isodual (resp. anti isodual) rigid analytic space, E is
orthogonal (resp. unitary) if and only if 7> = aId and symplectic if and only if 7> = —ald.

The last remark highlights an important class of rigid adelic spaces, stemming from lat-
tices in quadratic (resp. Hermitian) spaces over a totally real (resp. CM) number field. This
motivates the following definition.

Definition 3.7. A rigid adelic space E over a number field K is K-rational if K is either a totally
real or a CM extension of Q, and the symmetric (resp. Hermitian) forms h, at Archimedean
places come from a K-valued symmetric (resp. Hermitian) form / on E by localization.

Remark 3.8. Every K-rational rigid adelic space E of dimension 2 over a totally real or a CM
extension of Q is isodual (resp anti-isodual). Indeed, if E is endowed with a totally posi-
tive definite quadratic (resp. Hermitian) form 5 over K which defines the local metrics at
Archimedean places by localization, while the metrics at finite places are determined by the
data of an Ok-lattice L = ae; @ Oke; in E, then the Gram matrix of & in the basis (e1, ;) has

the following shape :
a c\ a c
o p) esP s )



The Gram matrix of / in the dual basis (e], e; ), defined by the condition that i(e], e]-) = 0;, is

thus given by
1 b —c ros 1 b —c
ab—c2\—c a P b= lc)2\-¢ a )’

and the map xje1 + xze > x1€5 — xze] defines a K-linear similarity 7 of the Hermitian space
(F,h), which maps L onto aL*. Thus, (L, h) is (anti-)isodual as a rigid analytic space.

In connection with conjecture(l] it must be noted that the tensor product of two isodual rigid
adelic spaces (E,c) and (F, 7) is itself isodual, the tensor product ¢ ® T providing a similarity
from E ® F onto its dual (the same observation holds for anti-isodual spaces). Moreover, the
bilinear (or sesquilinear) form (13) satisfies the relation

ba@r = ba 02y b’l" (15)

If E is any rigid adelic space, the direct product E x E" is both an orthogonal and symplectic
isodual rigid adelic space. Indeed, the maps

0:EXEY — EY XE
(x,xV) — (x¥, x).

and
0:ExEY — EY xE
(x,xV) — (—=xY, x).

are both isometries from E x EV onto its dual, the former being orthogonal, and the latter
symplectic.
Similarly, if E a rigid analytic space over a CM field, the map

0”: ExEV— EVxE
(x,xV) — (x¥, x).

yields an isometry of E x EV onto its conjugate dual EV x E.
These observations leads to the following proposition :

Proposition 3.9. Let F be a rigid adelic space ever a number field K. The following are equivalent :
1. For all rigid adelic space E, one has Hyiy(E @ F) = Hyyin (E) Hypin (F).
2. For all isodual rigid adelic space E, one has Hyin(E @ F) = Hyin (E) Hyin (F).
3. For all orthogonal rigid adelic space E, one has Hyiy (E ® F) = Hyin (E)Hypin (F).
4. For all symplectic rigid adelic space E, one has Hyiy(E ® F) = Hyin(E) Hyin (F).
If K is a CM-field, this is also equivalent to :
5. For all unitary rigid adelic space E, one has Hyiy(E @ F) = Hyiy (E) Hypin (F).

Proof. We only have to prove that[8] = [[land 4 = [l as well as 5| = [I] when K is a CM field.
Let us check the first implication (the other ones are similar) : assume that Hy;,(E’' ® F) =
Hyin(E")Hpyin (F) holds for all orthogonal rigid adelic space E’, and let E be an arbitrary rigid
adelic space. We choose t > 0 such that H,,;,,(E[t]) = Hyin(E[t]Y), that is, thanks to (8),



Since E[t] x E[t]V is orthogonal we have

Hyin ((E[t] x E[t] )®F) Hyin (E[t] % E[t]") Hyin (F)
Hypin (E[t]) Hypin (F) from lemma2.9] since H,,;, (E[t]) = Hypin(E[t]")

(
- thm(E)Hmm F)
(16)
On the other hand

Hyin ((E[t] x E[t]Y) ® F) = Hyin(E[t] ® F X E[t]Y ® F)
= min (Hyin(E[t] ® F), Hyin(E[t]Y ® F)) from lemmalZ9 (17)
< Hypin(E[t] ® F) = tHyin(E ® F).

Comparing (16) and ([17) yields Hyin(E)Hyin(F) < Hpin(E ® F), whence equality, since the
reverse inequality is always satisfied. O

As a consequence, in order to prove conjecture[I] one can restrict to isodual (resp. orthogo-
nal, resp. symplectic) rigid adelic spaces. In the next sections, we investigate some peculiari-
ties of isodual rigid adelic spaces regarding stability and tensor multiplicativity.

4 The Grayson-Stuhler filtration of isodual rigid adelic spaces

The GS-filtration of an isodual adelic space has remarkable symmetry properties which rely
on the following lemma :

Lemma 4.1. Let E an rigid adelic space with GS-filtration
{0} =EpCE;C---CEy 1 CE,=E.

Then the GSfiltration of EV is :

{0} = (E»)" C (Epq)" C--- C(E1)" C (Eo)" =E".

Proof. This relies on equation (I0), the isometry between E;-,/E+ and (E;/E;_ 1)" and the
observation that E is semistable if and only if EV is. Together w1th proposition[2.7] this gives
the conclusion. O

This lemma has the following consequence for isodual spaces :

Proposition 4.2. Let (E,0) be an (anti-)isodual rigid adelic space over a number field K, either of
orthogonal, unitary or symplectic type, and let

{O}:E()CE]C"'CEZ,]CEZZE.
be its GS-filtration. Then :

1. for every 0 < i < {, one has 0E; = Ej-,

NIN

2. the subpace E; is totally isotropic with respect to b, if i < g and co-isotropic if i >

/
3. ifi < 5 the quotient E,_;/ E; is (anti-)isodual,

~

4. if0<i<j< > then Ej/E; X Ey_;/Ey_jis (anti-)isodual.

10



Proof.

Ep = {0}

1. From Lemma[3.2] the GS-filtration of ¢’E is
{0} =¢Ey C0Ey C--- C0Ey) 1 C0E; =0E.
The conclusion follows from Lemma (411

One has 0E; C Ef whenever 2i < fand ¢E; D Ef otherwise, whence the assertion.

For every 0 < i < L%J, the subspace E,_; is co-isotropic with respect to b, from the

previous assertion. Hence b, induces a non degenerate bilinear (resp. sesquilinear) form
on the quotient E,_;/E;, and consequently ¢ achieves an isometric isomorphism from
Ey_;/E; onto its (anti-)dual.

Likewise, in the orthogonal and symplectic case, ¢ induces an isometry from E;/E; onto
EL,{]./EZ{Z. ~ (Eg_i/Eg_]‘)v and from E,_;/E,_; onto El-l/E]-L ~ (Ej/Ei)v, and similarly
with duals replaced by conjugate duals in the unitary case. The conclusion follows.

O

The next corollary is an obvious consequence of the second point of the previous proposi-
tion, which we state separately because of its importance :

Corollary 4.3. If (E, o) is an (anti-)isodual rigid adelic space, either of orthogonal, unitary or sym-
plectic type, which is unstable, then its destabilizing subspace E; is totally isotropic with respect to b,.

1
In particular, dim E; < 5 dimE.

In view of (15), we thus see a connection between conjecture[Iland the description of totally
isotropic spaces of a tensor product of quadratic, resp. symplectic spaces.

Besides b, we may also consider a collection of local bilinear (resp. sesquilinear) forms b,
on E,, defined as follows :

If v is finite or real, we simply set b, (x,y) = 0,(x)(y), where ¢, : E, — E,/ is the map
defined by (9).

If v is a complex place associated to a pair {-y, 7} of complex embeddings , we make use
of the two corresponding realizations ¢, and o5 of 05, as follows : the map

E, x Es — c
(x@y A, y@zu) — 7(o(x)(y)Au

is left C-antilinear and right C-linear. Choosing a K-basis of E, we may identify the
complex vector spaces E, = E ®, C and E. = E®._Cwith C?, where d = dim E, and the

11



above formula induces a sesquilinear map b,;, on C¥ (changing the K-basis of E yields an
equivalent sesquilinear form on C¥).

e If Kis a CM field and E is anti-isodual via a similarity ¢ : E — EV, one obtains C-
sesquilinear forms b, at infinite places, directly by localizing the K-sesquilinear form b,,
as was done above at real places.

Note in particular that if (E, ) is an isodual rigid adelic space of orthogonal type, then b, is
symmetric if v is either finite or real, and Hermitian if v is complex. Clearly, the destabilizing
subspace of an unstable space E is also totally isotropic with respect to b, forallv € V(K). The
above corollary 4.3]and its local counterparts thus induce strict restrictions on the GS-filtration
of isodual rigid adelic spaces.

Recall that the signature s(h) (resp. s(b)) of a non degenerate hermitian or quadratic form
h (resp. of its polar form b) over an ordered field is the difference s*(h) — s~ (h) between the
number of positive and negative values taken by / on any orthogonal basis. It is related to
the Witt index i(h) (common dimension of the maximal totally isotropic subspaces) by the
formula

i(hy = XU = s (18)
Note also the tensor multiplicativity
s(h@h')y =s(h)s(h).

In the sequel, we will say that a non degenerate real quadratic form (resp. complex hermitian
form) h of rank n is definite if |s(h)| = n, and Lorentzian if |s(h)| = n — 2.

Theorem 4.4. Let (E, ) be either an isodual rigid adelic space of orthogonal type over a number field,
or an anti-isodual rigid adelic space of unitary type over a CM field. If (E, o) is unstable, then the
dimension of its destabilizing subspace is at most

% (dimE — max \s(b%)]> .

V€V
In particular, f there exists v € Vi, such that by, is definite, then E is semistable.
Proof. This is an immediate consequence of (18) and corollary O

Remark 4.5. Over Q, the rigid adelic spaces satisfying the condition of the above corollary
correspond to unimodular Euclidean lattices over Z, for which semistability is obvious (see e.g.
[And11]]). Indeed, from Remark [3.6] if L is a Euclidean lattice, with scalar product denoted
x -y, and T is an isometry from L to L* = {y € RL, Vx € L, y- x € Z}, then L is orthogonal if
and only if 72 = 1. Then it is easily seen that the bilinear form (x,y) — 7(x) - y on the space
E = RL cannot be positive definite unless 7 is the identity map.

In view of conjecturelI] the previous observations lead to the following result

Theorem 4.6. Let (E,c) and (F, T) be either isodual of orthogonal type over a number field, or anti-
isodual of unitary type over a CM field. Suppose there exists an Archimedean place v such that

|s(bg, )s(br,)| > rank Erank F — 8.
Then Hyin(E ® F) = Hyin(E)Hypin (F).

Proof. If E® F is semistable, the result is clear. If it is not, then, from Theorem [4.4] the rank
of its destabilizing subspace (E ® F); is at most 4. Then Theorem B in [BC13] implies that
H,((E® F)1) > Hpin(E)Hpin(F), whence the result. O

12



Examples 4.7. Let (E, o) and (F, T) be as in the previous theorem :

1. If there exists an Archimedean place v such that b,, and b, are definite, then, E, F and
E ® F are semistable. This extends the result on unimodular Euclidean lattices men-
tioned in the introduction.

2. Assume that rank E < 4 and that there exists a an Archimedean place v v such that b, is
definite and b, is Lorentzian. Then H,,;,(E ® F) = Hyjin(E)Hpin(F).

In the same vein as the previous examples, we get the following :

Theorem 4.8. Let (E, o) and (F, T) be either isodual of orthogonal type, or anti-isodual of unitary type
over a CM field. Suppose that there exists an Archimedean place v such that one of the following set of
conditions is fulfilled :

1. The forms by, and b, are definite.

2. The form by, is definite, the form b, is Lorentzian, and F is not stable.

3. The forms b,, and by, are Lorentzian, and neither E nor F is stable.
Then Hyin(E @ F) = Hyin(E) Hyin(F).

Proof. The first case is exampled.Alabove. As for the second case, we let v be an Archimedean
place at which b, is definite and b, is Lorentzian. If F is unstable, this implies that its desta-
bilizing subspace F; is one-dimensional, since it is totally isotropic at v. Denoting by ¢ the
length of the GS-filtration of F, we infer hat F/F,_; is also totally isotropic at v, whereas the
form induced by b, on Fy,_1/F; is definite. Clearly, Hy;y(E ® Fi) = Hyjn(E)Hyin(F1) and
Hyin(E® F/F;_1) = Hyin(E)Hyin(F/F;_1), since F; and F/F,_; are one-dimensional. Addi-
tionally H,,iy(E ® Fy_1/F1) = Hpin(E)Hpin(Fy_1/F;), thanks to Theorem 4.6l Consequently,
one can apply Corollary and conclude that H,;,(E ® F) = Hyin(E)Hyin (F). If F is not
stable but semistable, then the same density argument as in the proof of Corollary 2.12lapplies.
Finally, the third case is an easy combination of the second one with Corollary O

5 Reduction to semistable isodual rigid analytic spaces

In this section, we go one step further than Proposition[3.9] and show that the investigation of
Conjecture [Tlcan be reduced to the case of semistable isodual rigid analytic space.

Theorem 5.1. The following assertions are equivalent :
1. Conjecture[Dlis true.
2. Hyin(E® F) = Hyin(E)Hpyin(F) whenever E and F are semistable isodual rigid analytic spaces.

Proof. The second assertion is obviously implied by the first one, so we only have to prove the
reverse implication. We thus assume that the conjecture is proven for the tensor product of
two semistable isodual rigid analytic spaces and wish to prove that it is then true for the tensor
product of any two rigid analytic spaces E and F. Thanks to Proposition [3.9] it is enough to
establish the result when E and F are isodual.

We proceed in two steps.

Step 1. We prove the result when E and F are isodual and at least one the two, say F, is
moreover semistable. There is nothing to prove if E is also semistable, so we assume it is not,
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and let E; be its destabilizing space. Arguing as in the proof of Proposition[3.9] we can choose
t > 0 such that

Hyin(E1[t]) = Huin(E1[t]"),
sothat Eq[t] x E1[t]" is semistable and isodual. Due to our assumption, since F is also semistable
and isodual, we have

H,.in (<E1 [t] x Eq [t]v) X F) = Hmin(El [t] x Eq [t]v)Hmin<F)
= Hmin(El [t])Hmin (F)
= thin<E1)Hmin<F)- (19)
On the other hand,
Hypin ((Ex[t] X Eq[t]") ® F) = Hpyin (E1[t] ® F x E1[t]Y @ F)
= min (Hyin(E1[t] ® F), Hyin(E1[t]” ® F))
< Hy; <E1 [t] ® F) = thin<El ® F) < tHpin (El)Hmin<F) (20)
which together with (19) yields
Hmin(El)Hmin(F) = Hmin(El & P)'
Finally, we obtain
Hmin<E)Hmin<F) = Hmin (El)Hmin(F) = Hmin<E1 & F) < Hmin<E & F) < Hmin<E)Hmin(F)
and we conclude that H,,;,,(E)Hin (F) = Hpin(E ® F), as was to be shown.

Step 2. We now prove that the result remains true for the tensor product of any two isodual
rigid adelic spaces E and F. Assume, by way of contradiction, that it is not the case, and chose
two isodual rigid adelic spaces E and F such that

Hmin(E X F) < Hmin<E)Hmin<F)- (21)

From Step 1, we can also assume that neither E nor F is semistable, and we can moreover
suppose that dim E + dim F is minimal among pairs (E, F) satisfying these properties. Finally,
since the previous assumptions are invariant by scaling, we can assume, replacing F by F|t] for
a suitable t if necessary, that H,,;; (F) < 1 (the usefulness of this condition will appear below).
Then, denoting by / the length of the GS-filtration of F, we infer from Lemma that

Hmin(E & Fl) > Hmin<E & F(—l) > min (Hmin<E ®F1)/Hmin (E & (Ff—l/Fl))) . (22)

From the minimality assumption on dim E + dim F, and since F,_;/F; is isodual (Proposition
4.2), we claim that
Hyin(E @ Fy—1/F1) = Huin(E)Huin(Fr—1/ F1).

Moreover, the inequality Hy,in(E ® F1) < Hpin(E)Hpin(Fr) is always satisfied, and we know
from the definition of the GS-filtration that H,,;; (F1) < Hyin(Fr—1/F1). Altogether, we can
conclude that the right-hand side of 22) is equal to H,,;,, (E ® F;), so that

Hmin(E®F€—1) = Hmin<E®Fl)- (23)
Then, using the same argument, we see that

Hyin(E ® Fy—1) > Hyin(E @ F) > min(Hy,;u(E ® Fr—1), Hpin(E® (F/Fy—1)))
= min(Hyin(E ® F1), Hyin(E ® (F/F;—1))) because of 23)

:Hmm( ®(P XP/PZ l))
= Hyin(E® (F x FY/)) since F/F;_; ~ FV/F{- ~ F/
= min (Hmzn(E®Pl) mm(E®Pl )) (24)
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As in the previous step, we can choose t > 0 such that
Hyin(F1[t]) = Hypin (F1[t]")
so that Fi[t] x Fi[t] is isodual and semistable. From step 1, we thus infer that
Hyin(E ® (Fi[t] X Fi[t]")) = Hpin(E) Huin (F1[t] X F1[t]")
= tHin (E) Hyin(Fi) =t~ Hyin (E) Hyin (FY). (25)
On the other hand

Hyin(E ® (Fi[t] X Fi[t]Y)) = Huin(E@ R[] x EQ Fi[t]Y)
= min Hy;, (E ® Fi[t], E® Fi[t]")
< Hpjn(E @ Fi[t]) = tHpin(E ® Fi) < tHpyin(E)Hpin(F1)  (26)

and similarly
Hmin(E ® (Pl [t] X b [t]v)) < t_lein(E ® Flv) < t_1Hmin(E)Hmin(Plv)'
Together with (25), this implies that

Hmin(E)Hmin(Fl) = Hmin(E @ Pl)

and
Hypin(E)Hpin(F) = Hyin(E @ FY).

Consequently, (24) reads
Hmin(E & Ff—l) > Hmin(E & F) > Hmin<E) min<Hmin<F1)/ Hmm(Ff/))

As F; and its dual are semistable, H,,,;,(F1) = H,(F;) = Hy(F) ™! = Hyin(F)) ! and since we
have assumed that H,i, (F) = Hyin(F1) < 1, this implies that Hyin(F1) < Hpin (F)’).
The final reformulation of (24)) is thus

Hmin(E & FK—l) 2 Hmin(E & F) Z Hmin(E)Hmin<F1) = Hmin<E)Hmin<F)-

from which we conclude that Hy,;,(E ® F) = Hyin(E)Hpin(F). This contradicts our initial
hypothesis.
O

Remark 5.2. The theorem and its proof remain true with isodual replaced by orthogonal, sym-
plectic, or unitary (if K is a CM-field).

6 Isoduality and automorphisms

The role of automorphisms with respect to the GS-filtration and ConjectureIlhas been stressed
on by several authors ([Bos9%6],[GR13], [CN20], [RéEm19]). We wish to study more specifically
in this section its interplay with isoduality.

An automorphism of a rigid adelic space E is an isometry from E to itself, that is, an element of
GL(E) which preserves all local norms || - ||, v € V(K). If L is the underlying Ok-lattice of the
corresponding Hermitian bundle, an automorphism is thus an element of the (discrete) group
GL(L) which simultaneously belongs to the unitary group of every Archimedean completion.
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With this description, the set Aut E of such automorphisms is easily seen to be a finite group.
It also acts on the dual EY by transposition

§'(¢p):=¢og, g€ AutE g ek,

and one can identify Aut EV with the set {g",¢ € AutE}.
Remarkably, the automorphism group Aut E stabilizes the Grayson-Stuhler-filtration

Proposition 6.1 ([Bos96]]). Let {0} = Eg C E; C --- C E;—1 C Ey = E the GS-filtration of a rigid
analytic space E. Then, g(E;) = E; forall g € Gandall0 <1 <i<r.

The natural actions of G = AutE on E and E" described above correspond to faithful rep-
resentations p : G — GLk(E) and p" : G — GLg(EY):

p(g) =8 g€G 27)
p'(8) =(g7)"(¢) g€G. (28)
If (E,o) is an isodual rigid adelic space, there is an additional representation to consider,

stemming out from the action of ¢ : for every ¢ € AutE, the product g"c is an isometry from
E to EY, so that 0~ 1¢V ¢ is an isometry from E to itself. It follows that the map

g8 =0 l(g ) (29)
is an automorphism of G = Aut E, which gives rise to the "twisted" representation

07 (g) =p(g"), §€G. (30)

Bringing together[28] 29/and [B0] we infer that p” and p" are equivalent as representations of
G over K. Namely, o induces a K[G]-isomorphism from (E, 0”) onto (E, p"), which maps the
G-invariant subspaces of E onto those of EV bijectively :

E 25 EY
p”(g)l lpv(g) (31)
E—Z24 EY

The properties of these two representations allow to derive more consequences on the GS-
filtration. Suppose that the K[G]|-module E splits as

E= @iVi{l[

where the Vs are irreducible pairwise non-isomorphic K[G]-modules. If all irreducible compo-
nents are self-dual, i.e V; ~g(g V;" for all i, then clearly, (E, p) and (EY,p") are also equivalent
over K.

The following lemma shows that the above self-duality condition is always satisfied when
K is either a totally real or a CM extension of Q.

Lemma 6.2. Let (E,0) be a rigid adelic space over a number field K, G = AutE its automorphism
group. If K is a totally real or CM-field, then E and EV are isomorphic as K[G|-modules, i.e. the
representations p and p" are equivalent.

Proof. If E = ®;V" is the splitting of E into irreducible components, it is enough to show that
each V; carries a non-degenerate bilinear (resp. Hermitian) G-invariant form if K is a totally
real (resp. CM) number field.
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Let ™ stand for the complex conjugation if K is a CM-field, or the identity in the totally real
case. This extends uniquely to an involution on K, for each infinite place v, which we denote
likewise.

Letd = dim E. If we fix a K-basis B of E, and identify the elements of G with their matrices
with respect to it, viewed as elements in M;(K) — M;(K,), we can define

F(G):={H € My(K) | H=H"and gHg" = H forall g € G}.
and, for each v € V,,,
Fo(G) :={H € My(K,) | H=H" and 'y(g)H'y(g)ﬁ = H forall g € G},

where v : K — K, is an embedding associated to v. Clearly, F(G) is a finite dimensional
vector space over the fixed field K* of 7, and for all v € V,, one has

dimg (F»(G)) = dimg+ (F(G)).
Identifying R ®g K™ with @,cy,, R we hence get
Boev Fo(G) = R®q F(G),

so that 7(G) = Q ®q F(G) is dense in &,cvy, Fo(G). The Gram matrix H, of h, with respect
to BB belongs to F,(G) for all v € Vy, since G < Aut(L, h,). Consequently, in a small enough
neighborhood of (hy) ¢y, in ©yev, Fo(G), one can find a totally positive definite symmetric
(resp.Hermitian) matrix H belonging to F(G). The corresponding quadratic (resp. Hermitian)
form, when restricted to V;, is clearly G-invariant and non-degenerate. O

Proposition 6.3. Let (E, o) be an isodual rigid adelic space over K with GS-filtration
{0} =EgpCE,C---CEy1CE;=E,

and G = AutE its automorphism group. We assume that the representation p and p" are equivalent
over K (this is the case if K is either totally real or CM). Let V a K[G]-submodule of E;/E;_1. Then
Ey_i.1/Ey_; contains a K[G]-submodule isomorphic to V.

Proof. The isometry (E;/E;_1)" ~ Ej*,/E} is an isomorphism of K[G]-modules. On the other
hand, the isometry o maps bijectively E;/E; 1 ontoc(E;) /o (Ei—1) = l:ﬂj_i/Ej_iJrl and the latter
is K[G]-isomorphic to (E;_;1/E g_i)v. As the representations p, p¥ and p” are equivalent, we
can conclude that (Ey_;,1/ Eg,i)v and E;/E;_; are K[G]-isomorphic, whence the conclusion.

O

Corollary 6.4. Let (E, o) be an isodual rigid adelic space with automorphism group G. Assume that
1. E and EV are isomorphic as K[G]-modules.

2. The K|G]-module E splits as @!_,V;, where the Vjs are pairwise non isomorphic absolutely
irreducible K[G]-modules.

Then (E, o) is semistable.

Proof. The first hypothesis implies that the conditions of Proposition[6.3] are fulfilled. Conse-
quently, if the length ¢ of the filtration were 2 or more, then any irreducible component V' of the
destabilizing subspace E; should also appear as a component of E/E;_1, and the multiplicity
of V in E would consequently be at least 2. O
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Remark 6.5. For isodual lattices, in the sense of Remark [3.6] the self-duality condition for irre-
ducible components is automatically satisfied, as the restriction of the bilinear (resp. sesquilin-
ear) form & to any irreducible component is a nonzero G-invariant bilinear form.

When E is multiplicity-free as a K[G]-module, like in the above Corollary, then the tensor
multiplicativity Hyin,(E ® F) = Hyjin(E)Hyin(F) holds for any F, as was conjectured in [CN20]
and fully proven by Rémond [Rém19, Théoréme 1.1]. From Proposition[6.3]and its corollary,
this situation can hardly occur if E is isodual and unstable : if E is isodual, unstable, and
its irreducible components are K[G]-isomorphic to their duals, then at least one of those has
multiplicity 2 or more. Thus, a natural "isodual" counterpart of [REm19, Théoreme 1.1] should
be

Conjecture 2. Let (E, o) be an isodual rigid adelic space with automorphism group G. Assume that
1. E and EY are isomorphic as K|[G]-modules.

2. The K[G)-module E admits a decomposition E = &'_, V" into absolutely irreducible G-modules
with multiplicities a; < 2.

Then, for all rigid analytic space F, one has Hyin(E @ F) = Hyin(E)Hpyin (F).

Whether this conjecture is significantly easier than the original conjecture [1lis unclear. In-
deed, if true, this would in particular imply that, over a totally real or CM-field, conjecture[l]
is true whenever E has dimension 2, with no condition on F. Notice that the proof of [RéEm19,
Théoreme 1.1] relies heavily on the fact that, when E admits a multiplicity free decomposition
E = ®!_,V;, then, any G-invariant subspace of E ® F splits as @}_, V; ® F;, where the F;s are
subspaces of F (see [CN20, Proposition 2.1]). Such a description of the G-invariant subspaces
of E ® F fails to hold as soon as multiplicities occur.

We conclude with a result in the direction of Conjecture 2 under additional restrictive as-
sumptions.

Proposition 6.6. Let (E, ) be an isodual rigid adelic space with automorphism group G. Assume that
1. E and EV are isomorphic as K[G]-modules.

2. The K[G]-module E admits a decomposition E = &'_, V" into absolutely irreducible G-modules
with multiplicities a; < 2, and a; = 2 for at most one i.

3. E is not stable.
Then, for all rigid analytic space F, one has Hyin(E @ F) = Hyyin(E)Hpyin (F).

Proof. The proof is quite similar to that of Corollary We may assume that E is un-
stable, since the result will continue to hold if E is semistable and not stable, by the same
continuity argument we used before. Under this assumption, at least one irreducible com-
ponent has multiplicity greater than 1, because of Corollary [6.4) which implies that exactly
one, say V;,, has multiplicity exactly 2, because of the second assumption of the proposition.
Each absolutely irreducible representation occurring in the decomposition of the destabiliz-
ing subspace E; of E must also occur in that of E/E,_;, from which we can conclude that E;
is absolutely irreducible and isomorphic to V;,, and E/E;_; as well. In particular, thanks to
[Bos96, Proposition A.3], we infer that Hy,;,(E1 ® F) = Hyin(E1)Hpin (F) and Hyin(E/Ej—1 ®
F) = Hyin(E/E;_1)Hpin(F). Moreover, the quotient E, 1/E; is multiplicity free, so that
Hyin(Eg—1/E1 ® F) = Hyin(Ey—1/E1)Hpin(F), thanks to [Rém19, Théoreme 1.1]. Finally, we
can apply Corollary2.10land conclude that H,,;, (E ® F) = Hyjn(E)Hypin (F). O

18



References

[And09]
[And11]

[BC13]

[Bos96]

[Bos97]

[BS94]

[CN20]

[CS94]

[Gau21]

[GR13]

[GR17]

[Gra84]

[Gra86]

[HN75]

[Mumé63]

[NS65]

[O'MO0]

Yves André, Slope filtrations, Confluentes Math. 1 (2009), no. 1, 1-85.

Yves André, On nef and semistable Hermitian lattices, and their behaviour under tensor
product, Tohoku Math. J. (2) 63 (2011), no. 4, 629-649.

Jean-Benoit Bost and Huayi Chen, Concerning the semistability of tensor products in
Arakelov geometry, ]. Math. Pures Appl. (9) 99 (2013), no. 4, 436-488.

Jean-Benoit Bost, Périodes et isogenies des variétés abéliennes sur les corps de nombres
(d’apres D. Masser et G. Wiistholz), Astérisque (1996), no. 237, Séminaire Bourbaki,
Vol. 1994/95.

, Hermitian vector bundle and stability, lecture at the conference "Algebraische
Zahlentheorie", Oberwolfach, 1997.

P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus, Invent.
Math. 117 (1994), no. 1, 27-56, With an appendix by J. H. Conway and N. J. A.
Sloane.

Renaud Coulangeon and Gabriele Nebe, Slopes of Euclidean lattices, tensor product
and group actions, Israel . Math. 235 (2020), no. 1, 39-61.

J. H. Conway and N. J. A. Sloane, On lattices equivalent to their duals, ]. Number
Theory 48 (1994), no. 3, 373-382.

Eric Gaudron, Minima and slopes of rigid adelic spaces, Arakelov geometry and Dio-
phantine applications (Emmanuel Peyre and Gaél Rémond, eds.), Lecture Notes in
Mathematics, vol. 2276, Springer, Cham, 2021, pp. 37-76.

Eric Gaudron and Gaél Rémond, Minima, pentes et algébre tensorielle, Israel ]. Math.
195 (2013), no. 2, 565-591.

Eric Gaudron and Gaél Rémond, Corps de Siegel, ]. Reine Angew. Math. 726 (2017),
187-247. MR 3641657

Daniel R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59
(1984), no. 4, 600-634.

, Reduction theory using semistability. II, Comment. Math. Helv. 61 (1986), no. 4,
661-676.

G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector
bundles on curves, Math. Ann. 212 (1974/75), 215-248.

David Mumford, Projective invariants of projective structures and applications, Proc.
Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm,
1963, pp. 526-530.

M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact
Riemann surface, Ann. of Math. (2) 82 (1965), 540-567.

O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics,
Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition.

19



[Rém19] Gaél Rémond, Action de groupe et semi-stabilité du produit tensoriel, Confluentes Math.
11 (2019), no. 1, 53-57.

[Stu76]  Ulrich Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen, Arch.
Math. (Basel) 27 (1976), no. 6, 604—610.

[Stu77] , Zur Reduktionstheorie der positiven quadratischen Formen. 1I, Arch. Math.

(Basel) 28 (1977), no. 6, 611-619.

20



	1 Introduction
	2 Review of Hermitian bundles and semistability
	3 Isodual rigid adelic spaces
	4 The Grayson-Stuhler filtration of isodual rigid adelic spaces
	5 Reduction to semistable isodual rigid analytic spaces
	6 Isoduality and automorphisms

