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ERGODIC BEHAVIORS OF COMPOSITION OPERATORS ACTING

ON SPACE OF BOUNDED HOLOMORPHIC FUNCTIONS

HAMZEH KESHAVARZI, KARIM HEDAYATIAN

Abstract. We completely characterize the mean ergodic composition operators on
H

∞(Bn). In particular, we show that a composition operator acting on this space is
mean ergodic if and only if it is uniformly mean ergodic.
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1. Introduction and main results

The purpose of this paper is to prove the following theorem:

Theorem 1.1. Let ϕ be a holomorphic self-map of Bn. Then, the following statements

are equivalent.

(i) Cϕ is mean ergodic on H∞(Bn).
(ii) Cϕ is uniformly mean ergodic on H∞(Bn).
(iii) ϕ has a fixed point in Bn and there is a k ∈ N such that ‖ϕkj − ρϕ‖∞ → 0 as

j → ∞.

Where ρϕ is the holomorphic retraction associated with ϕ and is defined below. We
prove this theorem in two parts: Theorems 1.3 and 1.4. Moreover, Theorem 1.2 plays
a key role in our method. However, we believe that Theorem 1.2 has an independent
interest.

Throughout the paper, n is a fixed positive integer. Here is some notations:

• C: the complex plane.
• Bn = {z ∈ C

n : |z| < 1}: the unit ball of Cn.
• D = B1: the unit disk in C.
• H(Bn): the space of all holomorphic functions from Bn into C

• H∞(Bn): the subspace of all bounded functions in H(Bn).
• Hol(Bn,Bn): the set of all holomorphic self-maps of Bn

Consider ϕ ∈ Hol(Bn,Bn). The iterates of ϕ are the functions ϕk := ϕ◦ (k)... ◦ϕ. We
denote by ϕi, 1 ≤ i ≤ n the components of ϕ, that is, ϕ = (ϕ1, ...ϕn) where ϕi : Bn → C

are holomorphic functions. Moreover, the composition operator Cϕ on H(Bn) is defined
as Cϕf = f ◦ ϕ.

When we say that ρ ∈ Hol(Bn,Bn) is holomorphic retraction, it means that it is
an idempotent, that is, ρ2 = ρ. Clearly, if ϕ : Bn → Bn be holomorphic such that the
sequence of its iterates converges to a holomorphic function h : Bn → Bn. Then, h2 = h,
that is, h is a holomorphic retraction of Bn. For more details about the holomorphic
self-maps of the unit ball and their iterates see [1, Chapter 2].
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Let ϕ : Bn → Bn be holomorphic and have an interior fixed point. Then, from
[1, Theorem 2.1.29 and Proposition 2.2.30], there exist a unique submanifold Mϕ of
Bn and a unique holomorphic retraction ρϕ : Bn → Mϕ such that every limit point
h ∈ Hol(Bn,Bn) of {ϕj} is of the form h = γ ◦ ρϕ, where γ is an automorphism of Mϕ.
Moreover, even ρϕ is a limit point of the sequence {ϕj}. This implies that ρϕ◦ϕ = ϕ◦ρϕ.

Let {e1, ..., en} be the standard basis of Cn.

Theorem 1.2. Let ϕ be a holomorphic self-map of the unit ball with converging iterates

and ϕ(0) = 0. Then, there is an invertible matrix V so that:

V −1ϕjV =
(

(V −1ϕjV )1, ..., (V −1ϕjV )s
)

⊕ Pn−s,

where dimMϕ = n − s, the functions (V −1ϕjV )1,...,(V −1ϕjV )s are the components

of V −1ϕjV , and Pn−s is the orthogonal projection from C
n onto U = es+1 ⊕ ... ⊕ en.

Moreover, V −1ϕjV coverges to Pn−s uniformly on the compact subsets of V −1
Bn.

Let X be a Banach space and T : X → X be an operator. Then, We say that T is
mean ergodic if

Mj(T ) =
1

j

j
∑

i=1

T i.

converges to a bounded operator defined on X for the strong operator topology. Uni-
formly mean ergodicity will define in a same way with convergence in the operator
norm.

Lotz [13] proved that: If X is a Grothendieck Banach space with Dunford-Pettis
property (GDP space), and T ∈ L(X) satisfies ‖T n/n‖ → 0, then T is mean ergodic
if and only if it is uniformly mean ergodic. For the definition of GDP spaces see [13,
Pages 208-209].

For some work on the mean ergodicity of composition operators see [2, 3, 4, 6, 10, 11,
12]. The (uniformly) mean ergodicity of composition operators on H∞(D) have been
characterized in [4]. It is well-known that H∞(D) is a GDP space. Thus, a composition
operator, acting on H∞(D), is mean ergodic if and only if it is uniformly mean ergodic.
However, we do not know whether H∞(Bn) is a GDP space or not. In [12], the first
author has proved that if ϕ is a holomorphic self-map of the unit ball with converging
iterates and an interior fixed point, then the mean ergodicity and the uniformly mean
ergodicity of Cϕ are equivalent. In the following theorem, we give this equivalence for
all ϕ ∈ Hol(Bn,Bn) with an interior fixed point.

Theorem 1.3. Let ϕ be a holomorphic self-map of the unit ball with a fixed point in

Bn. Then, the following statements are equivalent.

(i) Cϕ is mean ergodic on H∞(Bn).
(ii) Cϕ is uniformly mean ergodic on H∞(Bn).
(iii) There is a k ∈ N such that ‖ϕkj − ρϕ‖∞ → 0, as j → ∞.

As the final result, we prove that every holomorphic self-map of Bn which has no
interior fixed point induces a composition that is not mean ergodic on H∞(Bn). This
theorem gives the answer to [12, Question 3.16].

Theorem 1.4. Let the holomorphic function ϕ : Bn → Bn has no interior fixed point.

Then, Cϕ is not mean ergodic on H∞(Bn).
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2. Basic results

Every automorphism ϕ of Bn is of the form ϕ = Uϕa = ϕbV , where U and V are
unitary matrices of Cn and

(2.1) ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉 , z ∈ Bn,

where a 6= 0, sa =
√

1− |a|2, Pa is the projection from C
n onto the subspace 〈a〉

spanned by a, and Qa is the projection from C
n onto C

n ⊖ 〈a〉. Clearly, ϕa(0) = a,
ϕa(a) = 0, and ϕa ◦ ϕa(z) = z. It is well-known that an automorphism ϕ of Bn is a
unitary matrix of Cn if and only if ϕ(0) = 0.

Let Ω be a strongly pseudoconvex bounded domain. The infinitesimal Kobayashi
metric FK : Ω× C

n → [0,∞) is defined as:

FK(z, w) = inf
{

C > 0 : ∃f ∈ H(D,Ω) with f(0) = z, f ′(0) =
w

C

}

,

where H(D,Ω) is the space of analytic functions from D to Ω. Let γ : [0, 1] → Ω be a
C1-curve. The Kobayashi length of γ is defined as:

LK(γ) =

∫ 1

0
FK(γ(t), γ′(t))dt.

For z, w ∈ Ω, the Kobayashi metric function is defined as:

kΩ(z, w) = inf
{

LK(γ); γ is C1 − curve with γ(0) = z and γ(1) = w
}

.

If Ω and Λ are two strongly pseudoconvex bounded domains and ϕ : Ω → Λ is a
holomorphic function, then from [1, Proposition 2.3.1], we have:

(2.2) kΛ(ϕ(z), ϕ(w)) ≤ kΩ(z, w), ∀z, w ∈ Ω.

Thus, kΩ is invariant under automorphisms, that is,

kΩ(ϕ(z), ϕ(w)) = kΩ(z, w),

for all z, w ∈ Bn and ϕ : Ω → Ω is an automorphism.
Let β from Bn × Bn to [0,∞) be the Bergman metric. From [1, Corollary 2.3.6], the

Kobayashi metric and the Bergman metric coincide on Bn. We have:

(2.3) β(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ Bn.

We shall denote by B(a, r) the Bergman ball centered at a ∈ Bn with radius r > 0, that
is,

B(a, r) = {z ∈ Bn : β(a, z) < r}.
It is well-known (see [1, page 134]) that B(a, r) is the ellipsoid

(2.4)
|Pa(ζ)− ar|2

R2s2
+

|Qa(ζ)|2
R2s

< 1,

where R = tanh r, ar =
1−R2

1−R2|a|2a and s = 1−|a|2

1−R2|a|2 .

Let Pk be the space homogeneous polynomial P : Bn → C of degree k. The Taylor
series expansions of functions in H∞(Bn) yield a direct sum decomposition of

H∞(Bn) = P0 ⊕ P1 ⊕ ...⊕ Pm ⊕Rm;
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where the remaining spaceRm consists of the functions h ∈ H∞(Bn) such that |h(z)|/‖z‖m
is bounded for z near 0. Similarly, f : Bn → C

n admits a homogeneous expansion:

f(z) =
∞
∑

k=0

Fk(z) = f(0) + f ′(0)z + ...,

where all n component functions of each Fk are homogeneous polynomial of degree k.
It should be noted that dzϕ = ϕ′(z). Note that dzϕ is a matrix:

dzϕ :=







∂ϕ1

∂z1
· · · ∂ϕ1

∂zn
· · · · · · · · ·
∂ϕn

∂z1
· · · ∂ϕn

∂zn






(z).

3. Proof of Theorem 1.2

Let n− s be the dimension of Mϕ.
If s = 0, then from [1, Proposition 2.2.14] and [12, Proposition 3.8], ϕ is a unitary

matrix. Since the iterates of ϕ are convergent, ϕ is the identity matrix. If s = n, then
from [1, Theorem 2.2.32], Mϕ = {0} and ρϕ ≡ 0. Therefore, for s = 0 or n, the result
is obtained by considering V as the identity matrix.

Thus, let 1 ≤ s ≤ n− 1. We give the proof in three steps:

Step 1. There is an invertible matrix V so that V −1d0ρV = Pn−s.

Proof. Recall that Pn−s is the orthogonal projection from C
n onto es+1 ⊕ ...⊕ en.

Let V be an invertible matrix so that V −1d0ρV be the Jordan canonical form of d0ρ.
Since, ρ2 = ρ and ρ(0) = 0, the matrix d0ρ is also an idempotent. Thus, the eigenvalues
of V −1d0ρV are in {0, 1}. Note that since ρ(Bn) = M and ρ is identity on M , it is
easy to show that 0 and 1 will be repeated s and n− s times as the eigenvalues of d0ρ,
respectively.

We have
V −1d0ρV = J1(0)⊕ ...⊕ Jk(0) ⊕ I1(1)⊕ ...⊕ Il(1),

where Ji(0) and Ii(1) are the blocks associated with the eigenvalues 0 and 1, respectively.
Now since d0ρ is an idempotent, the blocks Ji(0) and Ii(1) must be 1× 1. That is,

V −1d0ρV =

[

0 0
0 In−s

]

,

where In−s is the (n − s)× (n − s) identity matrix. Hence, V −1d0ρV = Pn−s. �

From [1, Theorem 2.1.21], we know that if f : Bn → Bn is holomorphic, f(0) = 0 and
d0f is identity, then so is f . In the next step, we want to show that if d0f = 0s ⊕ In−s,
then f = 0s ⊕ In−s.

Step 2. For the matrix V , obtained in step 1, we have V −1ρV = Pn−s.

Proof. Let V −1ρV 6= Pn−s. Consider the function ψ = V −1ρV −Pn−s : Bn → C
n. Since

d0ψ = V −1d0ρV − d0Pn−s = 0, ψ(0) = 0, but ψ 6= 0, we can write:

V −1ρV (z) = Pn−s(z) + Fk(z) +
∞
∑

j=k+1

Fj(z),
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where Fk is a homogeneous polynomial of degree k ≥ 2. In summation, Fj is zero or a
homogeneous polynomial of degree j.

Note that every component of a homogeneous polynomial of degree j is a summation
of polynomials

zm = zm1

1 ...zmn
n ,

where z = (z1, ..., zn), m = (m1, ...,mn) ∈ N
n, and m1 + ... +mn = j. Thus, for j ≥ k

if Fj = (F 1
j , ..., F

n
j ) is non-zero, then each component of Fj(V

−1ρV (z)) is a summation
of polynomials

(

Pn−s(z) + Fk(z) +
∞
∑

j=k+1

Fj(z)
)m

=
(

F 1
k (z) +

∞
∑

j=k+1

F 1
j (z)

)m1

...
(

F s
k (z) +

∞
∑

j=k+1

F s
j (z)

)ms

×
(

zs+1 + F s+1
k (z) +

∞
∑

j=k+1

F s+1
j (z)

)ms+1

...
(

zn + Fn
k (z) +

∞
∑

j=k+1

Fn
j (z)

)mn

Thus, from the above statement and the assumption 1 ≤ s ≤ n − 1, if Fj is non-zero
for j ≥ k, then each component of Fj(V

−1ρV (z)) is a polynomial with a degree greater
than or equal to:

km1 + ...+ kms +ms+1 + ...+mn.

On the other hand, since k ≥ 2, we have

km1 + ...+ kms +ms+1 + ...+mn >

n
∑

i=1

mi = j.

Thus,

V −1ρ2V (z) = Pn−s(z) + Pn−sFk(z) +

∞
∑

j=k+1

Gj(z),

where each Gj is zero or a homogeneous polynomial of degree j. Since ρ2 = ρ, we must
have Fk = Pn−sFk which contradicts the assumption that s 6= 0, n. �

Indeed, we proved the following result in steps 1 and 2 as well as the paragraph before
them:

Corollary 3.1. Every holomorphic retraction ρ on Bn which fixes the origin is a matrix.

Step 3. (V −1ϕjV )i(z1, ..., zn) = zi, for i = s+ 1, ..., n and j ∈ N.

Proof. From step 2,

(3.1) V −1(ρ ◦ ϕ)V = V −1 ◦ ρ ◦ V (V −1 ◦ ϕ ◦ V ) = 0s ⊕







(V −1ϕV )s+1(z)
...

(V −1ϕV )n(z)






.

Moreover, since ρ and ϕ ◦ ρ are the limit points of the convergent sequence {ϕj}, we
have:

(3.2) V −1ρ ◦ ϕV = V −1ϕ ◦ ρV = V −1ρV.
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Thus, 3.1, 3.2, and step 2 imply that






(V −1ϕV )s+1(z)
...

(V −1ϕV )n(z)






=







zs+1

...
zn






.

Again, by a similar argument, we can see that ρ ◦ ϕj = ϕj ◦ ρ = ρ. Thus,






(V −1ϕjV )s+1(z)
...

(V −1ϕjV )n(z)






=







zs+1

...
zn






.

The proof is complete. �

4. Proof of Theorem 1.3

If ϕ has an interior fixed point a ∈ B, then ψ := ϕa ◦ϕ◦ϕa is a holomorphic self-map
of Bn that ψ(0) = 0. Hence, without loss of generality, we assume that ϕ(0) = 0. (ii)⇒
(i) is obvious.

4.1. (iii)⇒ (ii). Since ϕkj → ρ, from Theorem (1.2), there is an invertible matrix V so
that

V −1ϕkjV =
(

(V −1ϕkjV )1, ..., (V −1ϕkjV )s
)

⊕ Pn−s,

and

V −1ρV =

[

0 0
0 In−s

]

= Pn−s.

From the continuity of V −1 and (iii), there is a C > 0 so that

lim
j→∞

sup
z∈V −1Bn

∣

∣

∣
((V −1ϕkjV )1, ..., (V −1ϕkjV )s)(z)

∣

∣

∣

= lim
j→∞

‖V −1(ϕkj − ρ)‖∞
≤ C lim

j→∞
‖ϕkj − ρ‖∞ = 0.(4.1)

It is easy to see that V −1
Bn is a taut manifold. Thus, from 2.2 we have:

sup
z∈Bn

β(ϕkj(z), ρ(z)) ≤ sup
z∈Bn

kV −1Bn
(V −1ϕkj(z), V

−1ρ(z))

= sup
z∈V −1Bn

kV −1Bn
(V −1ϕkjV (z), V −1ρV (z)).

Hence, from [12, Lemma 4.1] and Equation 4.1, we obtain:

sup
z∈Bn

β(ϕkj(z), ρ(z)) ≤ sup
z∈V −1Bn

ω(
∣

∣

∣
((V −1ϕkjV )1, ..., (V −1ϕkjV )s)(z)

∣

∣

∣
, 0)

=
1

2
sup

z∈V −1Bn

tanh−1(
∣

∣

∣
((V −1ϕkjV )1, ..., (V −1ϕkjV )s)(z)

∣

∣

∣
) → 0,

as j → ∞. Therefore, (ii) follows from [12, Theorem 3.6].
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4.2. (i)⇒ (iii). Before presenting the proof, we state some auxiliary results.
For k > 0 and ζ ∈ ∂Bn, we define the ellipsoid

E(k, ζ) = {z ∈ Bn : |1− 〈z, ζ〉|2 ≤ k(1− |z|2)}.
Let ρ be a holomorphic self-map of the unit ball and η > 0. Set

L(ρ, η) = {z ∈ Bn, β(z, ρ(z)) ≥ η}.
The following lemma is an extension of [12, Lemma 3.9]. Since the proof is the same,
we omit it.

Lemma 4.1. Let ϕ be a holomorphic self-map of the unit ball, ϕ(0) = 0, and ρ be the

holomorphic retraction associated with ϕ. If η > 0 be such that L(ρ, η) 6= ∅, then there

is some A > 1 such that

1− |ϕ(z)|
1− |z| > A, ∀z ∈ L(ρ, η).

Proposition 4.2. β(z, w) ≥ 1

2
|z −w|, for all z, w ∈ Bn.

Proof. The case z = w is clear. Let z 6= w. Then β(z, w) = r > 0. Note from (2.4) that
B(w, r) is the ellipsoid

|Pw(ζ)− wR|2
R2s2

+
|Qw(ζ)|2
R2s

< 1,

where

R = tanh r =
er − e−r

er + e−r
< 1,

wR = 1−R2

1−R2|w|2
w and s = 1−|w|2

1−R2|w|2
< 1. Thus,

|Pw(z)− wR|2
R2s2

+
|Qw(z)|2
R2s

= 1,

Since s < 1 and Qw(z) is orthogonal to Pw(z) and Pw(z) − wR, we obtain

|z − wR|2 = |Pw(z)− wR|2 + |Qw(z)|2

= R2s
( |Pw(z)− wR|2

R2s
+

|Qw(z)|2
R2s

)

< R2s
( |Pw(z)− wR|2

R2s2
+

|Qw(z)|2
R2s

)

= R2s.

From the mean value theorem, there is a 0 ≤ t ≤ r so that:

R = tanh r = rsech2t ≤ r.

Note that the last inequality comes from sech t = 2
et+e−t ≤ 1.

Combining the above estimates, we deduce that:

|z − w| ≤ |z − wR|+ |wR − w|

< R
√
s+R2

( 1− |w|2
1−R2|w|2

)

< 2R ≤ 2r = 2β(z, w).

The proof is complete. �
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Now we proceed to the proof of (i)⇒ (iii). From [12, Lemma 3.3], there is a positive
integer k so that ϕkj → ρ uniformly on the compact subsets of Bn and

(4.2) lim
j→∞

Mj(Cϕ) =
1

k

k−1
∑

i=0

Cρ◦ϕi
.

for the strong operator topology. Let (iii) not hold.

Claim 4.3. There is an ε > 0 so that ‖ϕkj − ρ‖∞ ≥ ε for all j.

Proof. Since (iii) does not hold, there is a sequence mj in N such that ‖ϕkmj
− ρ‖∞ ≥ ε

for all j. Consider an arbitrary positive integer j. Then, there is a j0 so that mj0 ≥ j.
Thus, from the fact that ρ ◦ ϕkl = ρ for all l ∈ N, we have:

ε ≤ ‖ϕkmj0
− ρ‖∞

= ‖ϕkj ◦ ϕk(mj0
−j) − ρ ◦ ϕk(mj0

−j)‖∞
= sup

z∈Bn

|(ϕkj − ρ)(ϕk(mj0
−j)(z))|

≤ ‖ϕkj − ρ‖∞.
The proof is complete. �

Claim 4.4. For every 0 < r < 1, we can find a ∈ Bn and m ∈ N such that:

|ϕ2km(a)− ρ(a)| ≥ ε, and |ϕkm(a)| > r.

Proof. If the claim do not hold, then there is an 0 < r < 1 so that

(4.3) sup{|ϕ2kj(z)− ρ(z)|; z ∈ Bn, |ϕkj(z)| > r} ≤ ε.

for all j ∈ N. On the other hand, there is a j0 so that

(4.4) sup{|ϕkj0(z)− ρ(z)|; z ∈ Bn, |z| ≤ r} ≤ ε.

We have:

‖ϕ2kj0 − ρ‖∞ = max
{

sup{|ϕ2kj(z)− ρ(z)|; z ∈ Bn, |ϕkj(z)| > r},

sup{|ϕ2kj(z) − ρ(z)|; z ∈ Bn, |ϕkj(z)| ≤ r}
}

.

From (4.3), the first supremum is less than or equal to ε. For the second one, from the
fact ρ = ρ ◦ ϕkj0 and (4.4), we have

sup{|ϕ2kj0(z) − ρ(z)|; z ∈ Bn, |ϕkj0(z)| ≤ r}
= sup{|ϕkj0 ◦ ϕkj0(z)− ρ ◦ ϕkj0(z)|; z ∈ Bn, |ϕkj(z)| ≤ r}
≤ sup{|ϕkj0(z)− ρ(z)|; z ∈ Bn, |z| ≤ r} ≤ ε

Therefore, ‖ϕ2kj0 − ρ‖∞ ≤ ε, which contradicts Claim (4.3). �

Claim 4.5. There are two sequences {mj} ⊆ N and {aj} ⊂ Bn and some f in H∞(Bn)
such that |ϕ2kmj

(aj)− ρ(aj)| ≥ ε for all j, and

f ◦ ρ ≡ 0, f(ϕl(aj)) = |ϕ2kmj
(aj)− ρ(aj)|2, 1 ≤ l ≤ kmj , ∀j ∈ N.
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Proof. From Lemma 4.1, there is a constant 0 < a < 1 such that if β(z, ρ(z)) ≥ ε/2,
then

(4.5)
1− |z|

1− |ϕ(z)| < a.

Let a1 in Bn be such that |ϕ2k(a1) − ρ(a1)| ≥ ε. Then, from Proposition (4.2), the
fact that ρ ◦ ϕkl = ρ and ρ ◦ ϕl = ϕl ◦ ρ for al l ∈ N, and inequality (2.2), we obtain:

ε

2
≤ β(ϕ2k(a1), ρ(a1)) = β(ϕ2k(a1), ρ ◦ ϕ2k(a1)) ≤ β(ϕi(a1), ρ ◦ ϕi(a1)).

for all 1 ≤ i ≤ 2k. Thus, from 4.5, we have

1− |ϕi(a1)|
1− |ϕi+1(a1)|

< a, 1 ≤ i ≤ k − 1.

Put m1 = 1. Using Claim 4.4, we can find a2 ∈ Bn and m2 ∈ N such that |ϕkm2
(a2)|

is large enough so that
|ϕ2km2

(a2)− ρ(a2)| ≥ ε,

and
1− |ϕkm2

(a2)|
1− |ϕ(a1)|

< a.

Again,
ε

2
≤ β(ϕ2km2

(a2), ρ(a2)) ≤ β(ϕi(a2), ρ ◦ ϕi(a2))

for all 0 ≤ i ≤ 2km2. Thus, from 4.5, we obtain:

1− |ϕi(a2)|
1− |ϕi+1(a2)|

< a, 1 ≤ i ≤ km2 − 1.

By repeating this process we will construct the sequence

x1 = ϕk(a1), x2 = ϕk−1(a1), ..., xkm1
= ϕ(a1)

xkm1+1 = ϕkm2
(a2), xkm1+2 = ϕkm2−1(a2), ..., xk(m2+m1) = ϕ(a2)

xk(m2+m1)+1 = ϕkm3
(a3), xk(m2+m1)+2 = ϕkm3−1(a3), ..., xk(m3+m2+m1) = ϕ(a3)

...
...

...
. . .

,

which satisfies condition (i) of [12, Lemma 3.11]. Thus, there are some M > 0 and a

sequence {fl,j}∞,kmj

j,l=1 ⊂ H∞(Bn) such that

(a) fl,j(ϕl(aj)) = 1, and fl,j(ϕr(as)) = 0 whenever l 6= r or j 6= s.

(b)
∑∞

j=1

∑kmj

l=1 |fl,j(z)| ≤M , for all z ∈ Bn.

Define

f(z) =
∞
∑

j=1

kmj
∑

l=1

〈ϕ2kmj−l(z)− ρ ◦ ϕ2kmj−l(z), ϕ2kmj
(aj)− ρ(aj)〉fl,j(z).

Hence, from the Lebesgue dominated convergence theorem, (a), (b), and the fact that
ρ ◦ ϕ = ϕ ◦ ρ, we deduce that f ∈ H∞(Bn), f(ρ) = 0, and

f(ϕl(aj)) = |ϕ2kmj
(aj)− ρ(aj)|2, 1 ≤ j <∞, 1 ≤ l ≤ kmj .

The proof is complete. �
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Using Claim 4.5, we have:

∥

∥

∥

1

mj

mj
∑

l=1

Cϕl
− 1

k

k−1
∑

i=0

Cρ◦ϕi

∥

∥

∥
≥ 1

‖f‖∞

∥

∥

∥

1

mj

mj
∑

l=1

Cϕl
f − 1

k

k−1
∑

i=0

Cρ◦ϕi
f
∥

∥

∥

∞

≥ 1

‖f‖∞

∣

∣

∣

1

mj

mj
∑

l=1

f(ϕl(aj))−
1

k

k−1
∑

i=0

f(ρ ◦ ϕi(aj)
∣

∣

∣

=
1

‖f‖∞
.
1

mj

mj
∑

l=1

|ϕ2kmj
(aj)− ρ(aj)|2 ≥

ε2

‖f‖∞
.

From the above estimate, we deduce that {Mj(Cϕ)}∞j=1 does not converge to
1
k

∑k−1
i=0 Cρ◦ϕi

for the strong operator topology, which contradicts 4.2. Thus, (iii) holds.

5. Proof of Theorem 1.4

First, we define the sequence of operators Tj : H
∞(D) → H∞(D) as follows

Tjf(z) := f ◦ ϕ1
j (z, 0, ..., 0),

where ϕ1
j is the first component of ϕj . Note that if we consider f ∈ H∞(D) as a function

in H∞(Bn), then Tjf = Cϕj
f . Thus, if Cϕ is mean ergodic on H∞(Bn), then

Nj(ϕ) :=
1

j

j
∑

i=1

Ti : H
∞(D) → H∞(D),

converges for the strong operator topology.
We give the proof in two steps. In the first step, we show that if Nj(ϕ) is SOT-

convergent, then it must converge in the norm operator. Then, in the second step, we
prove that Nj(ϕ) does not converge in the norm operator. Therefore, the proof will be
complete.

Step 1. From the ergodic theorem, Mj(ϕ) converges to a projection P so that PCϕ =
CϕP = P . Since Nj(ϕ) converges for the strong operator topology to P |H∞(D) and
H∞(D) is a GDP space, from [13, Theorem 2] the spectral radius of Nj(ϕ)−P converges
to 0 as j → ∞. That is, I −Nj(ϕ) + P is invertible for a large enough j.

Now, we show that I − T1 + P is bounded below. If not, then there is a sequence of
unit vectors {fl} in H∞(Bn) so that:

‖(I − T1 + P )fl‖∞ → 0 as j → ∞.

Since P = PT1 = P 2, we obtain

‖Pfl‖∞ = ‖P (I − T1 + P )fl‖∞ → 0 as j → ∞.

Thus,

‖(I − T1)fl‖∞ → 0 as j → ∞.
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Therefore,

(I −Nj(ϕ) + P )fl = (I −Mj(ϕ) + P )fl

=
1

n

j
∑

i=1

(I −Cϕi
)fl + Pfl

=
1

n

j
∑

i=1

(I +Cϕ + ...+ Cϕi−1
)(I − Cϕ)fl + Pfl

=
1

n

j
∑

i=1

(I + T1 + ...+ Ti−1)(I − T1)fl + Pfl → 0,

as l → ∞. This contradicts the invertibility of I −Nj(ϕ) + P .
Now, since I − T1 + P is bounded below, there is a bounded operator S on H∞(D)

so that S(I − T1 + P ) = I. Therefore,

(Nj(ϕ)− P ) = S(I − T1 + P )(Nj(ϕ)− P )

= S(I − Cϕ + P )(Mj(ϕ)− P )

=
1

j
S(Cϕ −Cϕj+1

) → 0,

as j → ∞.

Step 2. The proof of this step is similar to that of [4, Theorem 3.6] and also [12,
Theorem 3.14].

From [1, Theorem 2.2.31], there is a z0 ∈ ∂Bn such that ϕj → z0 uniformly on
the compact subsets of Bn. By a unitary equivalent, we can let z0 = e1. Thus, if
ϕj = (ϕ1

j , ..., ϕ
n
j ), then ϕ1

j → 1 and ϕi
j → 0 for 2 ≤ i ≤ n uniformly on the compact

subsets of Bn as j → ∞.
Thus, if Nj(ϕ) converges in operator norm, then Nj(ϕ) → K1 on

A(D) = H(D) ∩ {f : D → C, continuous},
where K1(f) = f(1) on A(D). The remaining of the proof is similar to that of [4,
Theorem 3.6], by considering g(z) = 1+z

2 ∈ A(Bn).
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