ERGODIC BEHAVIORS OF COMPOSITION OPERATORS ACTING ON SPACE OF BOUNDED HOLOMORPHIC FUNCTIONS

HAMZEH KESHAVARZI, KARIM HEDAYATIAN

ABSTRACT. We completely characterize the mean ergodic composition operators on $H^{\infty}(\mathbb{B}_n)$. In particular, we show that a composition operator acting on this space is mean ergodic if and only if it is uniformly mean ergodic.

MSC (2010): primary: 47B33, secondary: 32Axx; 47A35.

Keywords: composition operators, mean ergodic operators, space of bounded holomorphic functions.

1. INTRODUCTION AND MAIN RESULTS

The purpose of this paper is to prove the following theorem:

Theorem 1.1. Let φ be a holomorphic self-map of \mathbb{B}_n . Then, the following statements are equivalent.

- (i) C_{φ} is mean ergodic on $H^{\infty}(\mathbb{B}_n)$.
- (ii) C_{φ} is uniformly mean ergodic on $H^{\infty}(\mathbb{B}_n)$.
- (iii) φ has a fixed point in \mathbb{B}_n and there is a $k \in \mathbb{N}$ such that $\|\varphi_{kj} \rho_{\varphi}\|_{\infty} \to 0$ as $j \to \infty$.

Where ρ_{φ} is the holomorphic retraction associated with φ and is defined below. We prove this theorem in two parts: Theorems 1.3 and 1.4. Moreover, Theorem 1.2 plays a key role in our method. However, we believe that Theorem 1.2 has an independent interest.

Throughout the paper, n is a fixed positive integer. Here is some notations:

- C: the complex plane.
- $\mathbb{B}_n = \{z \in \mathbb{C}^n : |z| < 1\}$: the unit ball of \mathbb{C}^n .
- $\mathbb{D} = \mathbb{B}_1$: the unit disk in \mathbb{C} .
- $H(\mathbb{B}_n)$: the space of all holomorphic functions from \mathbb{B}_n into \mathbb{C}
- $H^{\infty}(\mathbb{B}_n)$: the subspace of all bounded functions in $H(\mathbb{B}_n)$.
- $Hol(\mathbb{B}_n, \mathbb{B}_n)$: the set of all holomorphic self-maps of \mathbb{B}_n

Consider $\varphi \in Hol(\mathbb{B}_n, \mathbb{B}_n)$. The iterates of φ are the functions $\varphi_k := \varphi \circ \stackrel{(k)}{\ldots} \circ \varphi$. We denote by $\varphi^i, 1 \leq i \leq n$ the components of φ , that is, $\varphi = (\varphi^1, \dots, \varphi^n)$ where $\varphi^i : \mathbb{B}_n \to \mathbb{C}$ are holomorphic functions. Moreover, the composition operator C_{φ} on $H(\mathbb{B}_n)$ is defined as $C_{\varphi}f = f \circ \varphi$.

When we say that $\rho \in Hol(\mathbb{B}_n, \mathbb{B}_n)$ is holomorphic retraction, it means that it is an idempotent, that is, $\rho_2 = \rho$. Clearly, if $\varphi : \mathbb{B}_n \to \mathbb{B}_n$ be holomorphic such that the sequence of its iterates converges to a holomorphic function $h : \mathbb{B}_n \to \mathbb{B}_n$. Then, $h_2 = h$, that is, h is a holomorphic retraction of \mathbb{B}_n . For more details about the holomorphic self-maps of the unit ball and their iterates see [1, Chapter 2].

Let $\varphi : \mathbb{B}_n \to \mathbb{B}_n$ be holomorphic and have an interior fixed point. Then, from [1, Theorem 2.1.29 and Proposition 2.2.30], there exist a unique submanifold M_{φ} of \mathbb{B}_n and a unique holomorphic retraction $\rho_{\varphi}: \mathbb{B}_n \to M_{\varphi}$ such that every limit point $h \in Hol(\mathbb{B}_n, \mathbb{B}_n)$ of $\{\varphi_j\}$ is of the form $h = \gamma \circ \rho_{\varphi}$, where γ is an automorphism of M_{φ} . Moreover, even ρ_{φ} is a limit point of the sequence $\{\varphi_j\}$. This implies that $\rho_{\varphi} \circ \varphi = \varphi \circ \rho_{\varphi}$. Let $\{e_1, ..., e_n\}$ be the standard basis of \mathbb{C}^n .

Theorem 1.2. Let φ be a holomorphic self-map of the unit ball with converging iterates and $\varphi(0) = 0$. Then, there is an invertible matrix V so that:

$$V^{-1}\varphi_j V = \left((V^{-1}\varphi_j V)^1, ..., (V^{-1}\varphi_j V)^s \right) \oplus P_{n-s}$$

where dim $M_{\varphi} = n - s$, the functions $(V^{-1}\varphi_i V)^1, \dots, (V^{-1}\varphi_i V)^s$ are the components of $V^{-1}\varphi_j V$, and P_{n-s} is the orthogonal projection from \mathbb{C}^n onto $U = e_{s+1} \oplus ... \oplus e_n$. Moreover, $V^{-1}\varphi_i V$ coverges to P_{n-s} uniformly on the compact subsets of $V^{-1}\mathbb{B}_n$.

Let X be a Banach space and $T: X \to X$ be an operator. Then, We say that T is mean ergodic if

$$M_j(T) = \frac{1}{j} \sum_{i=1}^j T^i.$$

converges to a bounded operator defined on X for the strong operator topology. Uniformly mean ergodicity will define in a same way with convergence in the operator norm.

Lotz [13] proved that: If X is a Grothendieck Banach space with Dunford-Pettis property (GDP space), and $T \in L(X)$ satisfies $||T^n/n|| \to 0$, then T is mean ergodic if and only if it is uniformly mean ergodic. For the definition of GDP spaces see [13, Pages 208-209]

For some work on the mean ergodicity of composition operators see [2, 3, 4, 6, 10, 11, 1]12]. The (uniformly) mean ergodicity of composition operators on $H^{\infty}(\mathbb{D})$ have been characterized in [4]. It is well-known that $H^{\infty}(\mathbb{D})$ is a GDP space. Thus, a composition operator, acting on $H^{\infty}(\mathbb{D})$, is mean ergodic if and only if it is uniformly mean ergodic. However, we do not know whether $H^{\infty}(\mathbb{B}_n)$ is a GDP space or not. In [12], the first author has proved that if φ is a holomorphic self-map of the unit ball with converging iterates and an interior fixed point, then the mean ergodicity and the uniformly mean ergodicity of C_{φ} are equivalent. In the following theorem, we give this equivalence for all $\varphi \in Hol(\mathbb{B}_n, \mathbb{B}_n)$ with an interior fixed point.

Theorem 1.3. Let φ be a holomorphic self-map of the unit ball with a fixed point in \mathbb{B}_n . Then, the following statements are equivalent.

- (i) C_φ is mean ergodic on H[∞](B_n).
 (ii) C_φ is uniformly mean ergodic on H[∞](B_n).
- (iii) There is a $k \in \mathbb{N}$ such that $\|\varphi_{kj} \rho_{\varphi}\|_{\infty} \to 0$, as $j \to \infty$.

As the final result, we prove that every holomorphic self-map of \mathbb{B}_n which has no interior fixed point induces a composition that is not mean ergodic on $H^{\infty}(\mathbb{B}_n)$. This theorem gives the answer to [12, Question 3.16].

Theorem 1.4. Let the holomorphic function $\varphi : \mathbb{B}_n \to \mathbb{B}_n$ has no interior fixed point. Then, C_{φ} is not mean ergodic on $H^{\infty}(\mathbb{B}_n)$.

2. Basic results

Every automorphism φ of \mathbb{B}_n is of the form $\varphi = U\varphi_a = \varphi_b V$, where U and V are unitary matrices of \mathbb{C}^n and

(2.1)
$$\varphi_a(z) = \frac{a - P_a(z) - s_a Q_a(z)}{1 - \langle z, a \rangle}, \qquad z \in \mathbb{B}_n,$$

where $a \neq 0$, $s_a = \sqrt{1 - |a|^2}$, P_a is the projection from \mathbb{C}^n onto the subspace $\langle a \rangle$ spanned by a, and Q_a is the projection from \mathbb{C}^n onto $\mathbb{C}^n \ominus \langle a \rangle$. Clearly, $\varphi_a(0) = a$, $\varphi_a(a) = 0$, and $\varphi_a \circ \varphi_a(z) = z$. It is well-known that an automorphism φ of \mathbb{B}_n is a unitary matrix of \mathbb{C}^n if and only if $\varphi(0) = 0$.

Let Ω be a strongly pseudoconvex bounded domain. The infinitesimal Kobayashi metric $F_K : \Omega \times \mathbb{C}^n \to [0, \infty)$ is defined as:

$$F_K(z,w) = \inf \left\{ C > 0 : \exists f \in H(\mathbb{D},\Omega) \text{ with } f(0) = z, f'(0) = \frac{w}{C} \right\},$$

where $H(\mathbb{D}, \Omega)$ is the space of analytic functions from \mathbb{D} to Ω . Let $\gamma : [0, 1] \to \Omega$ be a C^1 -curve. The Kobayashi length of γ is defined as:

$$L_K(\gamma) = \int_0^1 F_K(\gamma(t), \gamma'(t)) dt.$$

For $z, w \in \Omega$, the Kobayashi metric function is defined as:

$$k_{\Omega}(z,w) = \inf \left\{ L_K(\gamma); \ \gamma \ is \ C^1 - curve \ with \ \gamma(0) = z \ and \ \gamma(1) = w \right\}.$$

If Ω and Λ are two strongly pseudoconvex bounded domains and $\varphi : \Omega \to \Lambda$ is a holomorphic function, then from [1, Proposition 2.3.1], we have:

(2.2)
$$k_{\Lambda}(\varphi(z),\varphi(w)) \le k_{\Omega}(z,w), \quad \forall z,w \in \Omega$$

Thus, k_{Ω} is invariant under automorphisms, that is,

$$k_{\Omega}(\varphi(z),\varphi(w)) = k_{\Omega}(z,w),$$

for all $z, w \in \mathbb{B}_n$ and $\varphi : \Omega \to \Omega$ is an automorphism.

Let β from $\mathbb{B}_n \times \mathbb{B}_n$ to $[0, \infty)$ be the Bergman metric. From [1, Corollary 2.3.6], the Kobayashi metric and the Bergman metric coincide on \mathbb{B}_n . We have:

(2.3)
$$\beta(z,w) = \frac{1}{2}\log\frac{1+|\varphi_z(w)|}{1-|\varphi_z(w)|}, \qquad z,w \in \mathbb{B}_n$$

We shall denote by B(a, r) the Bergman ball centered at $a \in \mathbb{B}_n$ with radius r > 0, that is,

$$B(a,r) = \{ z \in \mathbb{B}_n : \beta(a,z) < r \}.$$

It is well-known (see [1, page 134]) that B(a, r) is the ellipsoid

(2.4)
$$\frac{|P_a(\zeta) - a_r|^2}{R^2 s^2} + \frac{|Q_a(\zeta)|^2}{R^2 s} < 1,$$

where $R = \tanh r$, $a_r = \frac{1-R^2}{1-R^2|a|^2}a$ and $s = \frac{1-|a|^2}{1-R^2|a|^2}$. Let P_k be the space homogeneous polynomial $P : \mathbb{B}_n \to \mathbb{C}$ of degree k. The Taylor

Let P_k be the space homogeneous polynomial $P : \mathbb{B}_n \to \mathbb{C}$ of degree k. The Taylor series expansions of functions in $H^{\infty}(\mathbb{B}_n)$ yield a direct sum decomposition of

$$H^{\infty}(\mathbb{B}_n) = P_0 \oplus P_1 \oplus \ldots \oplus P_m \oplus R_m;$$

where the remaining space R_m consists of the functions $h \in H^{\infty}(\mathbb{B}_n)$ such that $|h(z)|/||z||^m$ is bounded for z near 0. Similarly, $f : \mathbb{B}_n \to \mathbb{C}^n$ admits a homogeneous expansion:

$$f(z) = \sum_{k=0}^{\infty} F_k(z) = f(0) + f'(0)z + \dots,$$

where all *n* component functions of each F_k are homogeneous polynomial of degree *k*. It should be noted that $d_z \varphi = \varphi'(z)$. Note that $d_z \varphi$ is a matrix:

$$d_z \varphi := \begin{bmatrix} \frac{\partial \varphi^1}{\partial z_1} & \cdots & \frac{\partial \varphi^1}{\partial z_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial \varphi^n}{\partial z_1} & \cdots & \frac{\partial \varphi^n}{\partial z_n} \end{bmatrix} (z).$$

3. Proof of Theorem 1.2

Let n-s be the dimension of M_{φ} .

If s = 0, then from [1, Proposition 2.2.14] and [12, Proposition 3.8], φ is a unitary matrix. Since the iterates of φ are convergent, φ is the identity matrix. If s = n, then from [1, Theorem 2.2.32], $M_{\varphi} = \{0\}$ and $\rho_{\varphi} \equiv 0$. Therefore, for s = 0 or n, the result is obtained by considering V as the identity matrix.

Thus, let $1 \leq s \leq n-1$. We give the proof in three steps:

Step 1. There is an invertible matrix V so that $V^{-1}d_0\rho V = P_{n-s}$.

Proof. Recall that P_{n-s} is the orthogonal projection from \mathbb{C}^n onto $e_{s+1} \oplus ... \oplus e_n$.

Let V be an invertible matrix so that $V^{-1}d_0\rho V$ be the Jordan canonical form of $d_0\rho$. Since, $\rho^2 = \rho$ and $\rho(0) = 0$, the matrix $d_0\rho$ is also an idempotent. Thus, the eigenvalues of $V^{-1}d_0\rho V$ are in $\{0,1\}$. Note that since $\rho(\mathbb{B}_n) = M$ and ρ is identity on M, it is easy to show that 0 and 1 will be repeated s and n-s times as the eigenvalues of $d_0\rho$, respectively.

We have

$$V^{-1}d_0\rho V = J_1(0) \oplus ... \oplus J_k(0) \oplus I_1(1) \oplus ... \oplus I_l(1),$$

where $J_i(0)$ and $I_i(1)$ are the blocks associated with the eigenvalues 0 and 1, respectively. Now since $d_0\rho$ is an idempotent, the blocks $J_i(0)$ and $I_i(1)$ must be 1×1 . That is,

$$V^{-1}d_0\rho V = \begin{bmatrix} 0 & 0\\ 0 & I_{n-s} \end{bmatrix},$$

where I_{n-s} is the $(n-s) \times (n-s)$ identity matrix. Hence, $V^{-1}d_0\rho V = P_{n-s}$.

From [1, Theorem 2.1.21], we know that if $f : \mathbb{B}_n \to \mathbb{B}_n$ is holomorphic, f(0) = 0 and $d_0 f$ is identity, then so is f. In the next step, we want to show that if $d_0 f = 0_s \oplus I_{n-s}$, then $f = 0_s \oplus I_{n-s}$.

Step 2. For the matrix V, obtained in step 1, we have $V^{-1}\rho V = P_{n-s}$.

Proof. Let $V^{-1}\rho V \neq P_{n-s}$. Consider the function $\psi = V^{-1}\rho V - P_{n-s} : \mathbb{B}_n \to \mathbb{C}^n$. Since $d_0\psi = V^{-1}d_0\rho V - d_0P_{n-s} = 0$, $\psi(0) = 0$, but $\psi \neq 0$, we can write:

$$V^{-1}\rho V(z) = P_{n-s}(z) + F_k(z) + \sum_{j=k+1}^{\infty} F_j(z),$$

where F_k is a homogeneous polynomial of degree $k \ge 2$. In summation, F_j is zero or a homogeneous polynomial of degree j.

Note that every component of a homogeneous polynomial of degree j is a summation of polynomials

$$z^m = z_1^{m_1} \dots z_n^{m_n},$$

where $z = (z_1, ..., z_n)$, $m = (m_1, ..., m_n) \in \mathbb{N}^n$, and $m_1 + ... + m_n = j$. Thus, for $j \ge k$ if $F_j = (F_j^1, ..., F_j^n)$ is non-zero, then each component of $F_j(V^{-1}\rho V(z))$ is a summation of polynomials

$$\left(P_{n-s}(z) + F_k(z) + \sum_{j=k+1}^{\infty} F_j(z) \right)^m$$

$$= \left(F_k^1(z) + \sum_{j=k+1}^{\infty} F_j^1(z) \right)^{m_1} \dots \left(F_k^s(z) + \sum_{j=k+1}^{\infty} F_j^s(z) \right)^{m_s}$$

$$\times \left(z_{s+1} + F_k^{s+1}(z) + \sum_{j=k+1}^{\infty} F_j^{s+1}(z) \right)^{m_{s+1}} \dots \left(z_n + F_k^n(z) + \sum_{j=k+1}^{\infty} F_j^n(z) \right)^{m_n}$$

Thus, from the above statement and the assumption $1 \leq s \leq n-1$, if F_j is non-zero for $j \geq k$, then each component of $F_j(V^{-1}\rho V(z))$ is a polynomial with a degree greater than or equal to:

 $km_1 + \ldots + km_s + m_{s+1} + \ldots + m_n.$

On the other hand, since $k \geq 2$, we have

$$km_1 + \ldots + km_s + m_{s+1} + \ldots + m_n > \sum_{i=1}^n m_i = j.$$

Thus,

$$V^{-1}\rho^2 V(z) = P_{n-s}(z) + P_{n-s}F_k(z) + \sum_{j=k+1}^{\infty} G_j(z)$$

where each G_j is zero or a homogeneous polynomial of degree j. Since $\rho^2 = \rho$, we must have $F_k = P_{n-s}F_k$ which contradicts the assumption that $s \neq 0, n$.

Indeed, we proved the following result in steps 1 and 2 as well as the paragraph before them:

Corollary 3.1. Every holomorphic retraction ρ on \mathbb{B}_n which fixes the origin is a matrix. **Step 3.** $(V^{-1}\varphi_j V)^i(z^1, ..., z^n) = z^i$, for i = s + 1, ..., n and $j \in \mathbb{N}$.

Proof. From step 2,

(3.1)
$$V^{-1}(\rho \circ \varphi)V = V^{-1} \circ \rho \circ V(V^{-1} \circ \varphi \circ V) = 0_s \oplus \begin{bmatrix} (V^{-1}\varphi V)^{s+1}(z) \\ \vdots \\ (V^{-1}\varphi V)^n(z) \end{bmatrix}.$$

Moreover, since ρ and $\varphi \circ \rho$ are the limit points of the convergent sequence $\{\varphi_j\}$, we have:

(3.2)
$$V^{-1}\rho \circ \varphi V = V^{-1}\varphi \circ \rho V = V^{-1}\rho V.$$

Thus, 3.1, 3.2, and step 2 imply that

$$\begin{bmatrix} (V^{-1}\varphi V)^{s+1}(z) \\ \vdots \\ (V^{-1}\varphi V)^n(z) \end{bmatrix} = \begin{bmatrix} z^{s+1} \\ \vdots \\ z^n \end{bmatrix}.$$

Again, by a similar argument, we can see that $\rho \circ \varphi_j = \varphi_j \circ \rho = \rho$. Thus,

$$\begin{bmatrix} (V^{-1}\varphi_j V)^{s+1}(z) \\ \vdots \\ (V^{-1}\varphi_j V)^n(z) \end{bmatrix} = \begin{bmatrix} z^{s+1} \\ \vdots \\ z^n \end{bmatrix}.$$

The proof is complete.

4. Proof of Theorem 1.3

If φ has an interior fixed point $a \in \mathbb{B}$, then $\psi := \varphi_a \circ \varphi \circ \varphi_a$ is a holomorphic self-map of \mathbb{B}_n that $\psi(0) = 0$. Hence, without loss of generality, we assume that $\varphi(0) = 0$. (ii) \Rightarrow (i) is obvious.

4.1. (iii) \Rightarrow (ii). Since $\varphi_{kj} \rightarrow \rho$, from Theorem (1.2), there is an invertible matrix V so that

$$V^{-1}\varphi_{kj}V = \left((V^{-1}\varphi_{kj}V)^1, ..., (V^{-1}\varphi_{kj}V)^s \right) \oplus P_{n-s},$$

and

$$V^{-1}\rho V = \begin{bmatrix} 0 & 0\\ 0 & I_{n-s} \end{bmatrix} = P_{n-s}.$$

From the continuity of V^{-1} and (iii), there is a C > 0 so that

(4.1)

$$\lim_{j \to \infty} \sup_{z \in V^{-1} \mathbb{B}_n} \left| ((V^{-1} \varphi_{kj} V)^1, ..., (V^{-1} \varphi_{kj} V)^s)(z) \right| = \lim_{j \to \infty} \|V^{-1} (\varphi_{kj} - \rho)\|_{\infty} \\ \leq C \lim_{j \to \infty} \|\varphi_{kj} - \rho\|_{\infty} = 0$$

It is easy to see that $V^{-1}\mathbb{B}_n$ is a taut manifold. Thus, from 2.2 we have:

$$\sup_{z \in \mathbb{B}_n} \beta(\varphi_{kj}(z), \rho(z)) \leq \sup_{z \in \mathbb{B}_n} k_{V^{-1}\mathbb{B}_n} (V^{-1}\varphi_{kj}(z), V^{-1}\rho(z))$$
$$= \sup_{z \in V^{-1}\mathbb{B}_n} k_{V^{-1}\mathbb{B}_n} (V^{-1}\varphi_{kj}V(z), V^{-1}\rho V(z)).$$

Hence, from [12, Lemma 4.1] and Equation 4.1, we obtain:

$$\sup_{z \in \mathbb{B}_{n}} \beta(\varphi_{kj}(z), \rho(z)) \leq \sup_{z \in V^{-1} \mathbb{B}_{n}} \omega(\left| ((V^{-1}\varphi_{kj}V)^{1}, ..., (V^{-1}\varphi_{kj}V)^{s})(z) \right|, 0)$$
$$= \frac{1}{2} \sup_{z \in V^{-1} \mathbb{B}_{n}} \tanh^{-1}(\left| ((V^{-1}\varphi_{kj}V)^{1}, ..., (V^{-1}\varphi_{kj}V)^{s})(z) \right|) \to 0.$$

as $j \to \infty$. Therefore, (ii) follows from [12, Theorem 3.6].

4.2. (i) \Rightarrow (iii). Before presenting the proof, we state some auxiliary results.

For k > 0 and $\zeta \in \partial \mathbb{B}_n$, we define the ellipsoid

$$E(k,\zeta) = \{z \in \mathbb{B}_n : |1 - \langle z, \zeta \rangle|^2 \le k(1 - |z|^2)\}.$$

Let ρ be a holomorphic self-map of the unit ball and $\eta > 0$. Set

$$L(\rho,\eta) = \{ z \in \mathbb{B}_n, \ \beta(z,\rho(z)) \ge \eta \}.$$

The following lemma is an extension of [12, Lemma 3.9]. Since the proof is the same, we omit it.

Lemma 4.1. Let φ be a holomorphic self-map of the unit ball, $\varphi(0) = 0$, and ρ be the holomorphic retraction associated with φ . If $\eta > 0$ be such that $L(\rho, \eta) \neq \emptyset$, then there is some A > 1 such that

$$\frac{1-|\varphi(z)|}{1-|z|} > A, \qquad \forall z \in L(\rho,\eta).$$

Proposition 4.2. $\beta(z,w) \geq \frac{1}{2}|z-w|$, for all $z, w \in \mathbb{B}_n$.

Proof. The case z = w is clear. Let $z \neq w$. Then $\beta(z, w) = r > 0$. Note from (2.4) that B(w, r) is the ellipsoid

$$\frac{|P_w(\zeta) - w_R|^2}{R^2 s^2} + \frac{|Q_w(\zeta)|^2}{R^2 s} < 1,$$

where

$$R = \tanh r = \frac{e^r - e^{-r}}{e^r + e^{-r}} < 1,$$

$$w_R = \frac{1-R^2}{1-R^2|w|^2}w$$
 and $s = \frac{1-|w|^2}{1-R^2|w|^2} < 1$. Thus,
 $\frac{|P_w(z) - w_R|^2}{R^2 c^2} + \frac{|Q_w(z)|^2}{R^2 c^2} =$

 $\frac{|Q_w(z)|^2}{R^2 s^2} + \frac{|Q_w(z)|^2}{R^2 s} = 1,$ Since s < 1 and $Q_w(z)$ is orthogonal to $P_w(z)$ and $P_w(z) - w_R$, we obtain $|z - w_R|^2 = |P_w(z) - w_R|^2 + |Q_w(z)|^2$

$$\begin{aligned} z - w_R|^2 &= |P_w(z) - w_R|^2 + |Q_w(z)|^2 \\ &= R^2 s \Big(\frac{|P_w(z) - w_R|^2}{R^2 s} + \frac{|Q_w(z)|^2}{R^2 s} \Big) \\ &< R^2 s \Big(\frac{|P_w(z) - w_R|^2}{R^2 s^2} + \frac{|Q_w(z)|^2}{R^2 s} \Big) = R^2 s \end{aligned}$$

From the mean value theorem, there is a $0 \le t \le r$ so that:

$$R = \tanh r = rsech^2 t \le r.$$

Note that the last inequality comes from sech $t = \frac{2}{e^t + e^{-t}} \leq 1$. Combining the above estimates, we deduce that:

$$\begin{split} |z - w| &\leq |z - w_R| + |w_R - w| \\ &< R\sqrt{s} + R^2 \Big(\frac{1 - |w|^2}{1 - R^2 |w|^2} \Big) \\ &< 2R \leq 2r = 2\beta(z, w). \end{split}$$

The proof is complete.

Now we proceed to the proof of (i) \Rightarrow (iii). From [12, Lemma 3.3], there is a positive integer k so that $\varphi_{kj} \rightarrow \rho$ uniformly on the compact subsets of \mathbb{B}_n and

(4.2)
$$\lim_{j \to \infty} M_j(C_{\varphi}) = \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \circ \varphi_i}.$$

for the strong operator topology. Let (iii) not hold.

Claim 4.3. There is an $\varepsilon > 0$ so that $\|\varphi_{kj} - \rho\|_{\infty} \ge \varepsilon$ for all j.

Proof. Since (iii) does not hold, there is a sequence m_j in \mathbb{N} such that $\|\varphi_{km_j} - \rho\|_{\infty} \ge \varepsilon$ for all j. Consider an arbitrary positive integer j. Then, there is a j_0 so that $m_{j_0} \ge j$. Thus, from the fact that $\rho \circ \varphi_{kl} = \rho$ for all $l \in \mathbb{N}$, we have:

$$\begin{split} \varepsilon &\leq \|\varphi_{km_{j_0}} - \rho\|_{\infty} \\ &= \|\varphi_{kj} \circ \varphi_{k(m_{j_0} - j)} - \rho \circ \varphi_{k(m_{j_0} - j)}\|_{\infty} \\ &= \sup_{z \in \mathbb{B}_n} |(\varphi_{kj} - \rho)(\varphi_{k(m_{j_0} - j)}(z))| \\ &\leq \|\varphi_{kj} - \rho\|_{\infty}. \end{split}$$

The proof is complete.

Claim 4.4. For every 0 < r < 1, we can find $a \in \mathbb{B}_n$ and $m \in \mathbb{N}$ such that:

$$|\varphi_{2km}(a) - \rho(a)| \ge \varepsilon$$
, and $|\varphi_{km}(a)| > r$.

Proof. If the claim do not hold, then there is an 0 < r < 1 so that

(4.3)
$$\sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| > r\} \le \varepsilon.$$

for all $j \in \mathbb{N}$. On the other hand, there is a j_0 so that

(4.4)
$$\sup\{|\varphi_{kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |z| \le r\} \le \varepsilon$$

We have:

$$\|\varphi_{2kj_0} - \rho\|_{\infty} = \max \left\{ \sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| > r \}, \\ \sup\{|\varphi_{2kj}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| \le r \} \right\}.$$

From (4.3), the first supremum is less than or equal to ε . For the second one, from the fact $\rho = \rho \circ \varphi_{kj_0}$ and (4.4), we have

$$\sup\{|\varphi_{2kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj_0}(z)| \le r\} \\ = \sup\{|\varphi_{kj_0} \circ \varphi_{kj_0}(z) - \rho \circ \varphi_{kj_0}(z)|; \ z \in \mathbb{B}_n, \ |\varphi_{kj}(z)| \le r\} \\ \le \sup\{|\varphi_{kj_0}(z) - \rho(z)|; \ z \in \mathbb{B}_n, \ |z| \le r\} \le \varepsilon$$

Therefore, $\|\varphi_{2kj_0} - \rho\|_{\infty} \leq \varepsilon$, which contradicts Claim (4.3).

Claim 4.5. There are two sequences $\{m_j\} \subseteq \mathbb{N}$ and $\{a_j\} \subset \mathbb{B}_n$ and some f in $H^{\infty}(\mathbb{B}_n)$ such that $|\varphi_{2km_j}(a_j) - \rho(a_j)| \geq \varepsilon$ for all j, and

$$f \circ \rho \equiv 0, \quad f(\varphi_l(a_j)) = |\varphi_{2km_j}(a_j) - \rho(a_j)|^2, \qquad 1 \le l \le km_j, \ \forall j \in \mathbb{N}.$$

Proof. From Lemma 4.1, there is a constant 0 < a < 1 such that if $\beta(z, \rho(z)) \geq \varepsilon/2$, then

(4.5)
$$\frac{1-|z|}{1-|\varphi(z)|} < a.$$

Let a_1 in \mathbb{B}_n be such that $|\varphi_{2k}(a_1) - \rho(a_1)| \ge \varepsilon$. Then, from Proposition (4.2), the fact that $\rho \circ \varphi_{kl} = \rho$ and $\rho \circ \varphi_l = \varphi_l \circ \rho$ for al $l \in \mathbb{N}$, and inequality (2.2), we obtain:

$$\frac{\varepsilon}{2} \le \beta(\varphi_{2k}(a_1), \rho(a_1)) = \beta(\varphi_{2k}(a_1), \rho \circ \varphi_{2k}(a_1)) \le \beta(\varphi_i(a_1), \rho \circ \varphi_i(a_1)).$$

for all $1 \le i \le 2k$. Thus, from 4.5, we have

$$\frac{1 - |\varphi_i(a_1)|}{1 - |\varphi_{i+1}(a_1)|} < a, \quad 1 \le i \le k - 1.$$

Put $m_1 = 1$. Using Claim 4.4, we can find $a_2 \in \mathbb{B}_n$ and $m_2 \in \mathbb{N}$ such that $|\varphi_{km_2}(a_2)|$ is large enough so that

$$|\varphi_{2km_2}(a_2) - \rho(a_2)| \ge \varepsilon$$

and

$$\frac{1 - |\varphi_{km_2}(a_2)|}{1 - |\varphi(a_1)|} < a$$

Again,

$$\frac{\varepsilon}{2} \le \beta(\varphi_{2km_2}(a_2), \rho(a_2)) \le \beta(\varphi_i(a_2), \rho \circ \varphi_i(a_2))$$

for all $0 \le i \le 2km_2$. Thus, from 4.5, we obtain:

$$\frac{1 - |\varphi_i(a_2)|}{1 - |\varphi_{i+1}(a_2)|} < a, \quad 1 \le i \le km_2 - 1$$

By repeating this process we will construct the sequence

$$\begin{aligned} x_1 &= \varphi_k(a_1), & x_2 &= \varphi_{k-1}(a_1), & \dots, & x_{km_1} &= \varphi(a_1) \\ x_{km_1+1} &= \varphi_{km_2}(a_2), & x_{km_1+2} &= \varphi_{km_2-1}(a_2), & \dots, & x_{k(m_2+m_1)} &= \varphi(a_2) \\ x_{k(m_2+m_1)+1} &= \varphi_{km_3}(a_3), & x_{k(m_2+m_1)+2} &= \varphi_{km_3-1}(a_3), & \dots, & x_{k(m_3+m_2+m_1)} &= \varphi(a_3), \\ &\vdots & \vdots & \ddots \end{aligned}$$

which satisfies condition (i) of [12, Lemma 3.11]. Thus, there are some M > 0 and a sequence $\{f_{l,j}\}_{j,l=1}^{\infty,km_j} \subset H^{\infty}(\mathbb{B}_n)$ such that

(a) $f_{l,j}(\varphi_l(a_j)) = 1$, and $f_{l,j}(\varphi_r(a_s)) = 0$ whenever $l \neq r$ or $j \neq s$. (b) $\sum_{j=1}^{\infty} \sum_{l=1}^{km_j} |f_{l,j}(z)| \leq M$, for all $z \in \mathbb{B}_n$.

Define

$$f(z) = \sum_{j=1}^{\infty} \sum_{l=1}^{km_j} \langle \varphi_{2km_j-l}(z) - \rho \circ \varphi_{2km_j-l}(z), \varphi_{2km_j}(a_j) - \rho(a_j) \rangle f_{l,j}(z).$$

Hence, from the Lebesgue dominated convergence theorem, (a), (b), and the fact that $\rho \circ \varphi = \varphi \circ \rho$, we deduce that $f \in H^{\infty}(\mathbb{B}_n)$, $f(\rho) = 0$, and

$$f(\varphi_l(a_j)) = |\varphi_{2km_j}(a_j) - \rho(a_j)|^2, \ 1 \le j < \infty, \ 1 \le l \le km_j.$$

The proof is complete.

9

Using Claim 4.5, we have:

$$\begin{split} \left\| \frac{1}{m_j} \sum_{l=1}^{m_j} C_{\varphi_l} - \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \circ \varphi_i} \right\| &\geq \frac{1}{\|f\|_{\infty}} \left\| \frac{1}{m_j} \sum_{l=1}^{m_j} C_{\varphi_l} f - \frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \circ \varphi_i} f \right\|_{\infty} \\ &\geq \frac{1}{\|f\|_{\infty}} \left| \frac{1}{m_j} \sum_{l=1}^{m_j} f(\varphi_l(a_j)) - \frac{1}{k} \sum_{i=0}^{k-1} f(\rho \circ \varphi_i(a_j)) \right| \\ &= \frac{1}{\|f\|_{\infty}} \cdot \frac{1}{m_j} \sum_{l=1}^{m_j} |\varphi_{2km_j}(a_j) - \rho(a_j)|^2 \geq \frac{\varepsilon^2}{\|f\|_{\infty}}. \end{split}$$

From the above estimate, we deduce that $\{M_j(C_{\varphi})\}_{j=1}^{\infty}$ does not converge to $\frac{1}{k} \sum_{i=0}^{k-1} C_{\rho \circ \varphi_i}$ for the strong operator topology, which contradicts 4.2. Thus, (iii) holds.

5. Proof of Theorem 1.4

First, we define the sequence of operators $T_j: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ as follows

$$T_j f(z) := f \circ \varphi_j^1(z, 0, ..., 0)$$

where φ_j^1 is the first component of φ_j . Note that if we consider $f \in H^{\infty}(\mathbb{D})$ as a function in $H^{\infty}(\mathbb{B}_n)$, then $T_j f = C_{\varphi_j} f$. Thus, if C_{φ} is mean ergodic on $H^{\infty}(\mathbb{B}_n)$, then

$$N_j(\varphi) := \frac{1}{j} \sum_{i=1}^j T_i : H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D}),$$

converges for the strong operator topology.

We give the proof in two steps. In the first step, we show that if $N_j(\varphi)$ is SOTconvergent, then it must converge in the norm operator. Then, in the second step, we prove that $N_j(\varphi)$ does not converge in the norm operator. Therefore, the proof will be complete.

Step 1. From the ergodic theorem, $M_j(\varphi)$ converges to a projection P so that $PC_{\varphi} = C_{\varphi}P = P$. Since $N_j(\varphi)$ converges for the strong operator topology to $P \mid_{H^{\infty}(\mathbb{D})}$ and $H^{\infty}(\mathbb{D})$ is a GDP space, from [13, Theorem 2] the spectral radius of $N_j(\varphi) - P$ converges to 0 as $j \to \infty$. That is, $I - N_j(\varphi) + P$ is invertible for a large enough j.

Now, we show that $I - T_1 + P$ is bounded below. If not, then there is a sequence of unit vectors $\{f_l\}$ in $H^{\infty}(\mathbb{B}_n)$ so that:

$$\|(I - T_1 + P)f_l\|_{\infty} \to 0 \qquad as \ j \to \infty.$$

Since $P = PT_1 = P^2$, we obtain

$$||Pf_l||_{\infty} = ||P(I - T_1 + P)f_l||_{\infty} \to 0 \qquad as \ j \to \infty.$$

Thus,

$$||(I - T_1)f_l||_{\infty} \to 0 \qquad as \ j \to \infty.$$

Therefore,

$$(I - N_j(\varphi) + P)f_l = (I - M_j(\varphi) + P)f_l$$

= $\frac{1}{n} \sum_{i=1}^j (I - C_{\varphi_i})f_l + Pf_l$
= $\frac{1}{n} \sum_{i=1}^j (I + C_{\varphi} + \dots + C_{\varphi_{i-1}})(I - C_{\varphi})f_l + Pf_l$
= $\frac{1}{n} \sum_{i=1}^j (I + T_1 + \dots + T_{i-1})(I - T_1)f_l + Pf_l \to 0$

as $l \to \infty$. This contradicts the invertibility of $I - N_i(\varphi) + P$.

Now, since $I - T_1 + P$ is bounded below, there is a bounded operator S on $H^{\infty}(\mathbb{D})$ so that $S(I - T_1 + P) = I$. Therefore,

$$(N_j(\varphi) - P) = S(I - T_1 + P)(N_j(\varphi) - P)$$

= $S(I - C_{\varphi} + P)(M_j(\varphi) - P)$
= $\frac{1}{j}S(C_{\varphi} - C_{\varphi_{j+1}}) \rightarrow 0,$

as $j \to \infty$.

Step 2. The proof of this step is similar to that of [4, Theorem 3.6] and also [12, Theorem 3.14].

From [1, Theorem 2.2.31], there is a $z_0 \in \partial \mathbb{B}_n$ such that $\varphi_j \to z_0$ uniformly on the compact subsets of \mathbb{B}_n . By a unitary equivalent, we can let $z_0 = e_1$. Thus, if $\varphi_j = (\varphi_j^1, ..., \varphi_j^n)$, then $\varphi_j^1 \to 1$ and $\varphi_j^i \to 0$ for $2 \le i \le n$ uniformly on the compact subsets of \mathbb{B}_n as $j \to \infty$.

Thus, if $N_j(\varphi)$ converges in operator norm, then $N_j(\varphi) \to K_1$ on

 $A(\mathbb{D}) = H(\mathbb{D}) \cap \{f : \overline{\mathbb{D}} \to \mathbb{C}, \text{ continuous}\},\$

where $K_1(f) = f(1)$ on $A(\mathbb{D})$. The remaining of the proof is similar to that of [4, Theorem 3.6], by considering $g(z) = \frac{1+z}{2} \in A(\mathbb{B}_n)$.

Acknowledgments. This paper was supported by the Iran National Science Foundation: INSF [project number 4000186].

References

- M. Abate, Iteration theory of holomorphic maps on taut manifolds (Mediterranean Press, Cosenza, 1989) http://www.dm.unipi.it/abate/libri/libriric/libriric.html.
- [2] W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions, Indiana Math. J. 64(4) (2018), 1571–1595.
- [3] W. Arendt, I. Chalendar, M. Kumar and S. Srivastava, Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces, J. Aust. Math. Soc. 108 (2020), 289–320.

- [4] M. J. Beltrán-Meneua, M. C. Gómez-Collado, E. Jordá, D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, Journal of Functional Analysis 270 (2016) 4369–4385.
- Bo Berndtsson, Interpolating sequences for H[∞] in the ball, Indagationes Mathematicae (Proceedings) Volume 88, Issue 1, 25 March 1985, Pages 1-10.
- [6] J. Bonet and P. Domanski, A note on mean ergodic composition operators on spaces of holomorphic functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 105, no. 2 (2011), 389–396.
- [7] C. Cowen and B. MacCluer, Spectra of some composition operators, J. Funct. Anal. 125 (1994), 223-251.
- [8] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
- [9] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hail, Englewood Cliffs, 1962.
- [10] E. Jordá, A. Rodríguez-Arenas, Ergodic properties of composition operators on Banach spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 486, Issue 1, 1 June 2020, 123891.
- [11] D. Jornet, D. Santacreu, P. Sevilla-Peris, Mean ergodic composition operators on spaces of holomorphic functions on a Banach space, Journal of Mathematical Analysis and Applications Volume 500, Issue 2, 15 August 2021, 125139.
- [12] H. Keshavarzi, Mean ergodic composition operators on $H^{\infty}(\mathbb{B}_n)$, Positivity (2022) 26:30.
- [13] H. P. Lotz, Uniform convergence of operators on L^∞ and similar spaces, Math. Z. 190 (1985), 207–220.
- [14] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin, 1993.
- [15] K. Zhu, Spaces of holomorphic functions in the unit ball (Springer-verlag, New York, 2005).

Hamzeh Keshavarzi

E-mail: Hamzehkeshavarzi67@gmail.com

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran.

Karim Hedayatian

E-mail: hedayati@shirazu.ac.ir

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran.