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COMPUTATION OF λ-CLASSES VIA STRATA OF

DIFFERENTIALS

GEORGIOS POLITOPOULOS AND ADRIEN SAUVAGET

Abstract. We introduce a new family of tautological relations of the moduli
space of stable curves of genus g. These relations are obtained by computing
the Poincaré-dual class of empty loci in the Hodge bundle. We use these
relations to obtain a new expression for the Chern classes of the Hodge bundle.
We prove that the (g − i)th class can be expressed as a linear combination
of tautological classes involving only stable graphs with at most i loops. In
particular the top Chern class may be expressed with trees. This property was

expected as a consequence of the DR/DZ equivalence conjecture by Buryak-
Guéré-Rossi.

1. Introduction

1.1. Tautological rings. We work over C. Let g and n be non-negative integers
satisfying 2g − 2 + n > 0. We denote by

Mg,n ⊃ Mct
g,n ⊃ Mrt

g,n ⊃ Mg,n

the moduli spaces of stable curves (respectively curves of compact type, curves with
rational tails, and smooth curves) of genus g with n markings. We recall that a
stable curve is of compact type if it has only non-separating nodes, and has rational
tails if it has one irreducible component of genus g. Besides, we have the following
families of morphisms between moduli spaces of stable curves:

• The forgetful morphism of the last marking: π : Mg,n+1 → Mg,n. The
image of a marked curve is defined as the stabilization of the curve obtained
by removing the marking with label n+ 1. For n′ ≥ 1, we will also denote
by πn′ the composition of n′ times π.

• The gluing morphism of type tree jg′,I : Mg′,|I|+1 ×Mg−g′,n−|I|+1 → Mg,n

defined for all I ⊂ [[1, n]] and g′ < g respecting the stability condition on
both factors. The image of a pair of curves is the nodal curve obtained by
identifying the last two markings.

• The gluing morphism of type loop j0 : Mg−1,n+2 → Mg,n (if g > 0). The
image of a curve is the nodal curve obtained by identifying the last two
markings.

The tautological rings {R∗(Mg,n)}g,n are the family of smallest sub-Q algebras of

A∗(Mg,n,Q) stable under push-forwards along the forgetful morphisms and gluing
morphisms (see [GP03]). Tautological classes of Mg,n,M

rt
g,n and Mct

g,n are defined

as the restrictions of tautological classes of Mg,n to the corresponding open sub-
stack. The standard examples of tautological classes are given by the two families:
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• for all 1 ≤ i ≤ n, we denote by ψi ∈ A1(Mg,n,Q) the Chern class of the
cotangent line at the i-th marking.

• if m ≥ 0, we denote by κm = π∗ψ
m+1
n+1 ∈ Am(Mg,n,Q).

Definition 1.1. If i ∈ N, then we denote by R∗
i (Mg,n) the linear subspace of

R∗(Mg,n) spanned by push-forwards of polynomials in ψ and κ-classes along gluing
morphisms of type tree and at most i times the morphism of type loop.

These subspaces form a filtration of R∗(Mg,n) as the tautological rings are spanned
by push-forwards of polynomials in ψ and κ-classes along gluing morphisms (see
the appendix of [GP03]). The space of relations between these linear generators
of R∗(Mg,n) is known as the set of tautological relations. Several techniques have
been proposed to produce tautological relations (see [Fab97], [Yin16], [CJ18] for
a sample of these techniques). The largest class of known tautological relations
are the Pixton-Faber-Zagier (PFZ) relations which were computed in [PPZ15] in
cohomology and then in [Jan17] in the Chow rings. An open problem is to know
whether the PFZ relations recover all possible tautological relations or not.

Here, we will produce a new family of tautological relations that we call Hodge
relations. Two natural questions arise: are the Hodge relations contained in the
PFZ relations? If yes, which part of the PFZ relations is recovered by the Hodge
relations? Unfortunately we are unable at the moment to answer these questions.

1.2. Hodge classes. We denote by Hg,n → Mg,n the Hodge bundle, i.e. the vector
bundle whose fiber over a marked curve (C, x1, . . . , xn) is given by H0(C, ωC). This
vector bundle is of rank g and we have Hg,n = π∗

nHg,0. We will be interested in
the Hodge classes (often called λ classes):

λi = ci(Hg,n) ∈ Ai(Mg,n,Q) or H2i(Mg,n,Q),

and we define the Hodge polynomial as

Λg(ξ) = ξg + ξg−1λ1 + . . .+ λg ∈ A∗(Mg,n,Q)[ξ]

In his seminal paper [Mum83], Mumford applied the Grothendieck-Riemann-Roch
formula to show that these classes are tautological and expressed them in terms
of κ and ψ classes and the gluing morphisms. These classes satisfy the following
remarkable properties:

• Λg(1)Λg(−1) = (−1)g (in particular λ2
g = 0 if g > 0).

• For all i ∈ N, and β ∈ R∗(Mg,n) \R∗
i (Mg,n), we have β · λg−i = 0.

The Hodge Polynomial plays an important role in different areas of enumera-
tive geometry as it arises in the computation of Gromov-Witten invariants of
Toric varieties via the virtual Localization formula of Graber and Pandharipande
(see [GP99]).

Using the theory of Double Ramification cycles, Janda-Pandharipande-Pixton-
Zvonkine showed that λg may be expressed as a linear combination of tautological
classes constructed with graphs with no non-separating nodes (see [JPPZ17]). This
result is, up to our knowledge, the only systematic expression of some Hodge classes
apart from Mumford’s original formula. Here we propose an alternative expression
of Hodge classes. As a consequence of this approach we obtain the following result:

Theorem 1.2. For all i ∈ N, the class λg−i sits in R∗
i (Mg,n).
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The following corollary shows that λ classes bound the complexity of any given
tautological class.

Corollary 1.3. For all i ∈ N, and all β ∈ R∗(Mg,n), the class λg−i · β sits in

R∗
i (Mg,n).

In the specific case of λg, Theorem 1.2 is somewhat orthogonal to the computa-
tion via DR-cycles as it implies that λg may be expressed as a linear combination of
decorated trees. This property of λg was conjectured in [BGR19] as a consequence
of the so-called DR/DZ equivalence conjecture as explained below.

1.3. Strata of differentials with prescribed zeros. The projectivization of
the Hodge bundle will be denoted by f : PHg,n → Mg,n, and by PHg,n for the
restriction to Mg,n. We recall that we have the following isomorphism:

A∗(PHg,n,Q) ≃ A∗(Mg,n,Q)[ξ]
/

Λg(ξ),

where A∗(Mg,n,Q) is included in A∗(PHg,n,Q) via the pull-back along f and ξ is

identified with the Chern class of O(1). We define the tautological ring of PHg,n

as R∗(PHg,n) = R∗(Mg,n)[ξ]
/

Λ(ξ). The euclidean division in R∗(Mg,n)[ξ] implies

that any class α in R∗(Mg,n)[ξ] can be uniquely decomposed as

α = q(α)Λ(ξ) + r(α),

where r(α) has degree at most (g − 1) in ξ. Then α = r(α) in R∗(PHg,n).
We fix a vector of non-negative integers Z = (z1, . . . , zn). We will be interested

in the loci defined by:

Hg(Z) = {(C, ω, x1, . . . , xn), s.t. ordxi
(ω) = zi for all 1 ≤ i ≤ n} ⊂ Hg,n.

We denote by PHg(Z) the Zariski closure of PHg(Z) in PHg,n. In [Sau19], the

second author proposed an algorithm to compute a class α(g, Z) ∈ R∗(PHg,n)
which satisfies:

α(g, Z) = [PHg(Z)] in R∗(PHg,n),

where [ ·] stands for the the Poincaré-dual class. Here we improve this result by
showing that this algorithm uniquely determines a class α(g, Z) in R∗(Mg,n)[ξ]

whose class in R∗(PHg,n) is equal to [PHg(Z)] (see Section 2.5). Besides, we will

show that the coefficient of ξi in α(g, Z) sits in R∗
i (Mg,n).

We will use this algorithm to compute α(g, Z) for Z of size (2g − 1). In this
case the locus PHg(Z) is empty and thus the class α(g, Z) vanishes in R∗(PHg,n).
Therefore, the remainder of the euclidean division of α(Z) by Λ(ξ) vanishes. This
fact allows us to compute up to g tautological relations in R∗(Mg,n). This will
constitute the set of Hodge tautological relations. In particular we will show that:

Λ(ξ) =
2−g+1

g!
· π(g−1)∗α

(
g, (1, 2, . . . , 2︸ ︷︷ ︸

(g−1)×

)

)
.

We use this expression of Λ(ξ) in R∗(Mg,1) to finish the proof of Theorem 1.2.
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1.4. Relation to the strong DR/DZ equivalence conjecture. Given a Coho-
mological Field Theory, one may construct two integrable systems of PDE’s: the
double ramification (DR) hierarchy (defined in [BGR19]), and the Dubrovin-Zhang
(DZ) hierarchy (defined if the CohFT is semi-simple in [DZ01]). The coefficients of
both hierarchies are defined by the intersection theory on Mg,n.

In [BDGR18] Buryak-Dubrovin-Guéré-Rossi conjectured that these two hierar-
chies are related by a Miura transformation, a change of coordinates in the space
on which the PDE’s are defined. Furthermore, in [BGR19] they constructed two
families of classes Ag

z1,...,zn
and Bg

z1,...,zn
in Rz1+···+zn(Mg,n) defined for all vectors

of positive integers Z of size greater than 2g − 2. They conjectured that

Ag
z1,...,zn

= Bg
z1,...,zn

,

and showed that this conjecture implies the equivalence of the DR and DZ hierar-
chies. The case n = 1 of this conjecture has been recently proved in [BHIS22].

Besides, the class Ag
z1,...,zn

that they constructed may be decomposed as a prod-

uct Ãg
z1,...,zn

·λg. Using this fact they conjectured that λg sits in R∗
0(Mg,n). Based

on numerical experiments we conjecture the equalities:

(2g − 1)! Ãg
(2g−1) = the coefficient in ξ0 of q(α(g, (2g − 1))) in R∗(Mct

g,n).

(2g − 1)!Bg
(2g−1) = the coefficient in ξ0 of α(g, (2g − 1)) in R∗(Mg,n).

This conjecture would allow us to reprove the case n = 1 of the A = B conjecture.
For more general values of Z, such a simple statement does not holds but we
expect that the DR/DZ correspondence follows from a linear combination of Hodge
relations.

Acknowledgement. We would like to thank Sacha Buryak, David Holmes, Jérémy
Guéré, Reinier Kramer, Scott Mullane, Paolo Rossi, Johannes Schmitt, and Sergey
Shadrin for useful discussions on the topic.

2. Inductive computation of classes of strata of differentials

Here we recall the computation of the function α defined in the introduction.

2.1. Strata algebra. Given a genus g and a finite set I, a stable graph of genus g
marked by I is the datum of

Γ = (V,H, g : V → Z≥0, ι : H → H,φ : H → V,Hι ≃ I),

where:

• An element v ∈ V is a vertex. The value g(v) the genus of v.
• An element h ∈ H is called a half-edge. We say that it is incident to φ(h),

and write h 7→ v if φ(h) = v. Moreover, we denote by n(v) the valency of the
vertex v, that is the of half-edges incident to v.

• The function ι is an involution. The cycles of length 2 will be denoted by E
and are called the edges.

• The fixed points of ι are called legs.
• For all vertices v we have the stability condition 2g(v) − 2 + n(v) > 0.
• The graph (V,E) is connected.
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• The genus of Γ is defined as

g(Γ) = h1(Γ) +
∑

v∈V

g(v), with h1(Γ) = |E| − |V | + 1.

the number h1(Γ) is the number of loops of Γ. We impose that g(Γ) = g.

An automorphism of Γ consists of automorphisms of the sets V and H that leave
invariant the data g, ι and φ. A stable graph is said to be of compact type if
h1(Γ) = 0, i.e. if the graph is a tree.

We write by Stabg,I the set of stable graphs of genus g and marked by I. We
simply denote Stabg,n if I = {1, . . . , n}.

Given a stable graph Γ in Stabg,n, we denote by:

MΓ =
∏

v∈V

Mg(v),n(v)

the associated moduli space. If there is a canonical morphism:

ζΓ → Mg,n

defined by a composition of gluing morphisms of type loop or tree. The degree of
this morphism on its image is |Aut(Γ)|.

A decorated graph is the datum of Γ and c(v) a product of κ and ψ classes in
Mg(v),n(v) and of degree at most the dimension of Mg(v),n(v), for all vertices of v of
Γ. We denote by Sg,n the vector space whose is given by all decorated graphs. This
vector space is naturally equipped with a structure of graded algebra and we call
it the strata algebra. By [GP03], there is a natural surjective morphism of graded
algebra s:

S∗
g,n → R∗(Mg,n) → 0.

This morphism is defined by

(Γ, {c(v)}v∈V ) 7→ ζΓ∗

(
⊗

v∈V

c(v)

)
.

The kernel of this morphism is the space of tautological relations.
As we consider polynomials in R∗(Mg,n)[ξ], we extend the notation for ζΓ∗:

ζΓ∗ :

(
⊗

v∈V

R∗(Mg(v),n(v))[ξ]

)
≃

(
⊗

v∈V

R∗(Mg(v),n(v))

)
[ξ] → R∗(Mg,n)[ξ],

and we extend the definition of the push-forwards and pull-back along the forgetful
morphisms to R∗(Mg,n)[ξ] in the same way.

Finally we recall that, if a class sits in
(⊗

v∈V ′ R∗(Mg(v),n(v))[ξ]
)

for some subset

V ′ ⊂ V then it naturally defines a class in
(⊗

v∈V R
∗(Mg(v),n(v))[ξ]

)
by extending

by 1 on each of the component indexed by V \ V ′.

2.2. Generalized strata with residue conditions. Now, we fix a triplet of
vectors of non-negative integers of length k: g = (g1, . . . , gk), n = (n1, . . . , nk), and
m = (m1, . . . ,mk) which is stable, i.e. which satisfies 2gi − 2 + ni + mi > 0 for all
1 ≤ i ≤ k. Then we denote by

Mg,n,m =

k∏

i=1

Mgi,ni+mi
, and Mg,n,m =

k∏

i=1

Mgi,ni+mi
.
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Then we fix

P = (P1 = (p1,1 . . . , p1,m1), . . . , Pk = (pk,1 . . . , pk,mk
)),

and Z = (Z1 = (z1,1 . . . , z1,n1), . . . , Zk = (zk,1 . . . , zk,nk
)),

vectors of vectors of positive (respectively non-negative integers). Then we denote
by Hg,n(P ) → Mgi,ni+mi

) the vector bundle whose fiber over a marked curve

((Ci, xi,1, . . . xi,ni+mi
)1≤i≤k is canonically identified with:

k⊕

i=1

H0(C, ωC(pi,1xi,ni+1 + . . .+ pi,ni+mi
).

We denote by Hg,n(P ) the restriction of this bundle to Mg,n,m and by

H(g, P , Z) ⊂ Hg,n(P )

the locus of differentials satisfying ordxi,j
(ω) = zi,j for all 1 ≤ i ≤ k and 1 ≤ j ≤ ni.

We denote by Res(m) the sub-vector space of
⊕k

i=1 C
mi of vectors (ri,j) 1≤i≤k

1≤j≤mi

satisfying:

ri,1 + . . .+ ri,mi
= 0

for all 1 ≤ i ≤ k. Then, if R is a sub-vector space of Res(m), we denote by
H(g, P , Z,R) the subspace of H(g, P , Z) of differentials with residues at the marked

poles sitting in R. Finally we denote by PH(g, P , Z,R) the closure of the projec-

tivization of this space in PHg,n(P ).

2.3. Level graphs. A twist on a stable graph Γ is a function µ : H → Z satisfying
the following conditions:

• For all v ∈ V , we denote by µ(v) the vector of twists at half-edges incident
to v. If n(v) = 1, then we impose that |µ(v)| ≤ 2g(v) − 2.

• If e = (h, h′) is an edge of Γ from v to v′, then we have µ(h) = −µ(h′) − 2.
Moreover we denote by µ(e) = |µ(h) + 1| (for any of the two half-edges).

• There exists a partial order ≥ on V such that for all vertices v, v′ connected
by an edge (h, h′) we have (v ≥ v′) ⇔ (µ(h) + 1 ≥ 0).

A twisted graph is a pair (Γ, µ), where m is a twist on Γ. Given a vector of
non-negative integers Z = (z1, . . . , zn), then the twisted graph is said compatible
with Z, if the twist at the ith leg is equal to zi while the twist at n + ith leg is
equal to −pi.

Definition 2.1. Let (g, Z) (P is empty here) be as in the previous section. A level

graph Γ = ((Γi, µi)1≤i≤k, ℓ) of depth d and compatible with Z is the datum of a
twisted graph of genus gi with ni marking and compatible Zi for all 1 ≤ i ≤ k, and
a surjective function

ℓ : ∪1≤i≤kV (Γi) → {0,−1, . . . ,−d}

satisfying: ℓ(v) < ℓ(v′) ⇔ v < v′ for all pairs of vertices (v, v′), and if v is of level
smaller than 0 then |µ(v)| ≤ 2g(v) − 2.

We denote by LGd(g, Z) the set of level graphs Γ = (Γ, µ, ℓ), i.e. twisted graphs
compatible with Z, with a level function of depth d, which is surjective and which
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has no horizontal edges. Finally, we denote by:

m(Γ) =
∏

e∈∪iE(Γi)

µ(e).

Given a level graph, we denote h1(Γ) stands for the sum of the h1(Γi) while the
automorphism group of Γ is the product of the groups of automorphism of Γi that
commute with the twist and level functions.

Definition 2.2. A level graph is Γ in LG1(g, Z) is a bi-colored graph if there is
some 1 ≤ i0 ≤ k such that for all i 6= i0, the graph Γi is trivial and the level function
maps the unique vertex of this graph to 0.

We denote by Bic(g, Z) the set of such graphs, and if 1 ≤ i ≤ n and 1 ≤ j ≤ ni,
we denote by Bic(g, Z)i,j the set of such graph such that the marking xi,j sits on the
level −1. Besides, if (i′, j′) is another marking then we denote by Bic(g, Z)i,j,i′,j′

with both xi,j and xi′,j′ at level −1, while Bic(g, Z)i′,j′

i,j ⊂ Bic(g, Z)i,j is the set of
bi-colored graphs with xi,j at level 0.

2.4. Strata associated to a level graph. Let Γ be a level graph in LGd(g, Z).

For all 0 ≥ i ≥ −d, Γ determines a stable triple (g[i], n[i],m[i]) as in the previous

section: the length of these vectors is the cardinality of ℓ−1(i), g[i] is the vector

of genera of vertices in ℓ−1(i), n[i] is the vector of numbers of half-edge with non-
negative twists, while m[i] is the vector of numbers of half-edge with negative twists.

Moreover, Γ determines P [i] and Z [i] the vectors of opposite of negative twists, and
non-negative twists respectively at half-edges incident to vertices in ℓ−1(i).

Remark 2.3. The level graph Γ does not exactly determine these vectors, as we
need to make a choice of an ordering on the set of vertices of level −i and on the
half-edges incident to vertices of level −i. We will have to carefully show that all
such choices are equivalent in our computations.

Finally we determine spaces of residue conditions R
[i] ⊂ Res(m[i]) for all 0 ≥

i ≥ −d (see Section 2.2 for the definition of residue conditions) as follows:

• R
[0] is trivial (there are no negative twists at vertices of level 0).

• R
[−1] is defined by the following conditions: if v is a vertex in ℓ−1(0) then

∑
(h, h′) ∈ E(Γ), s.t. (h′ 7→ v, h 7→ ℓ−1(−1))rh = 0.

Here the summation is over all the edges with an extremity incident to v
while the other one maps to a vertex in ℓ−1(−1), and rh stands for the
residue associated to the label of the half-edge incident to the level −1.

• For i < −1, we first construct the graph Γ
′

obtained from Γ by contracting
all edges between levels greater than i. Then the vertices of Γ of level −i

are in correspondence with vertices of Γ
′

of level −1, and we define R
[i] as

the vector space R
[−1] of this newly constructed graph.

With this notation at hand we let PH(Γ)[i] = PH(g[i], P [i], Z[i],R[i]) and denote

by f [i] : PH(g[i], P [i]) → Mg[i],n[i],m[i] the forgetful morphism of the differential.

2.5. Inductive computation of classes of strata. For all pairs (g, Z) we define

a class α(g, Z) ∈
⊗k

i=1 R
∗(Mgi,ni

)[ξ] of degree |Z| inductively as follows:

(1) Base case. If all entries of Z are equal to 0 then α(g, Z) = 1.
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(2) Incrementing (i, j). Otherwise, we chose an entry 1 ≤ i ≤ j and 1 ≤ j ≤ ni

such that zi,j > 0. We denote by Zi,j the vector obtained from Z by
diminishing zi,j by 1. Then we set:

α(g, Z) = (ξ + zi,jψi,j)α(g, Zi,j) −
∑

Γ∈Bic(g,Z)i,j

m(Γ)α(Γ),

where α(Γ) is defined by the next point.
(3) Class of a level graph. If Γ is a level graph, then we define:

α(Γ) =
ξh1(Γ)

|Aut(Γ)|
ζΓ∗




⊗

−d≤i≤−1

fi∗[PH(Γ)[i]] ·




⊗

v∈ℓ−1(i)

Λv(ξ)




⊗ α(g[0], Z[0]),

where for all v ∈ ℓ−1(−1), Λv(ξ) stands for the class (ξg(v) + . . .+ λg(v)) in

R∗(Mg(v),n(v))[ξ].

This algorithm is a priori ill-defined as, at the second point, one has to make a
choice of value of (i, j) to increment. However, we should remark that the function
α is defined by induction on |Z|. The first point provides the initialization of this
algorithm, while the second one provides the induction: the size of Zi,j is equal to

|Z| − 1, while the class α(Γ) of a bi-colored graph in the sum of the right-hand side

vanishes if Z [0] is of size at least |Z|. This is due to the vanishing of f−1∗[PH(Γ)[−1]]
for dimension reasons.

Lemma 2.4. The class α(g, Z) is uniquely determined by the above algorithm (i.e.

independently of the choices at the second and third points).

Proof. We prove this lemma by induction on the size of Z, i.e.
∑k

i,j zi,j . The

initialization is uniquely determined as α(g, Z) = 1 if the size of Z is 0.
Now we assume that the size of Z is positive. Therefore if only one entry of Z is

non-zero then α(g, Z) is uniquely determined. Indeed, for each bi-colored graph, if

the graph contributes non-trivially then Z[0] is of size smaller than Z and thus the
class of this bi-colored graph is uniquely determined.

Therefore we assume that two entries zi,j and zi′,j′ are non-trivial. We denote by

Z̃ the vector obtained from Z by diminishing zi,j and zi′,j′ by one. We denote by
α(g, Z) obtained from α(g, Zi,j,i′,j′) by incrementing zi′,j′ − 1 to zi′,j′ and then to
zi,j − 1 to zi,j while α(g, Z)′ is the converse. We will show that α(g, Z) = α(g, Z)′.

If i 6= i′ then the resulting formulas are equivalent, thus we will assume that i = i′

for the rest of the proof. Then we have the following expression:

α(g, Z) = (ξ + zi,j′ψi,j′)(ξ + zi,jψi,j)α(g, Z̃) −
∑

Γ∈Bic(g,Z
i,j′ )i,j′

m(Γ) · α(Γ)

−
∑

Γ∈Bic(g,Z̃)i,j

m(Γ) · (ξ + zi,j′ψi,j′ ) · α(Γ).
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Then we introduce the following notation:

T j
1 =

∑

Γ∈Bic(g,Z̃)i,j′

i,j

m(Γ) · (ξ + zi,j′ψi,j′ ) · α(Γ) −
∑

Γ∈Bic(g,Z
i,j

)i,j′

i,j

m(Γ) · α(Γ)

T j′

1 =
∑

Γ∈Bic(g,Z̃)i,j

i,j′

m(Γ) · (ξ + zi,jψi,j) · α(Γ) −
∑

Γ∈Bic(g,Z
i,j′ )i,j

i,j′

m(Γ) · α(Γ)

T2 =
∑

Γ∈Bic(g,Z
i,j′ )i,j,i,j′

m(Γ) · α(Γ) −
∑

Γ∈Bic(g,Z
i,j

)i,j,i,j′

m(Γ) · α(Γ)

T3 =
∑

Γ∈Bic(g,Z̃)i,j,i,j′

m(Γ) · (zi,j′ψi,j′ − zi,jψi,j) · α(Γ)

Then with these notation we have

α(g, Z) − α(g, Z)′ = T j′

1 − T j
1 − T2 − T3.

In order to finish the proof, we will show that T j′

1 −T j
1 = T2 +T3 are both are equal

to
T :=

∑

Γ∈Tri(g,Z̃)i,j

i,j′

m(Γ)α(Γ) −
∑

Γ∈Tri(g,Z̃)i,j′

i,j

m(Γ)α(Γ),

where Tri(g, Z̃)i,j′

i,j is the set of Tri-colored graphs, i.e. level graphs of depth 2

with no horizontal edges such that: only the graph component i is non-trivial (the
others are trivial graphs of level 0), and the leg (i, j) is incident to the level −2
while the leg (i′, j′) is incident to the level −1.

To prove that T = T j′

1 −T j
1 , we simply apply the induction formula to the level 0

part of each graph of Bic(g, Z̃)i,j
i,j′ . Multiplying the class of the graph by (ξ+zi,jψi,j)

has the effect of either incrementing zi,j − 1 to zi,j or to create a new intermediate

level that carries the leg (i, j), i.e. an element of Tri(g, Z̃)i,j′

i,j . The same holds if we

replace j by j′ thus the equality.
To prove that T = T2 + T3, we use a similar idea, but this at the level of the

moduli space of curves. Indeed, here we only need to compare the classes appearing
at negative levels. Applying the splitting formula of [Sau19], Theorem 6, to compute

the intersection of (zi,j′ψi,j′ − zi,jψi,j) with the class of a graph in Bic(g, Z̃)i,j,i,j′

we may express it as a sum on graphs with one more level and with the legs (i, j)
and (i, j′) on distinct levels (this is the term T2). �

2.6. Properties of α. In order to prove Theorem 1.2, we will prove the following
properties of the function α.

Proposition 2.5. For all (g, Z) we have: α(g, z) ≃ [PH(g, Z)] in R∗(PHg,n).

The proposition follows from the main result of [Sau19].

Proposition 2.6. If I ⊂ {1, . . . , n} is a set of size at least 2, then we denote by
δI the class of the boundary divisor of Mg,n of curves with a node separating a
component of genus 0 with the markings in I from the rest of the curve.

δI · α(g, Z) = j0,I∗(α(g, ZI) ⊗ 1) in R∗(Mrt
g,n)[ξ]

where ZI is the vector with entries: the zi for i /∈ I and zI =
∑

i∈I zi (and we recall

that j0,I : Mg,n−|I|+1 × M0,|I|+1 → Mg,n is the gluing morphism).
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Proof. We will prove this result by induction on the size of Z. For the base case, we
chose any set I of size at least 2. Then we have j∗

0,Iα(g, (0, . . . , 0)) = j∗
0,I1 = 1 ⊗ 1.

Note that this is equal to α(g, (0, . . . , 0)) ⊗ 1.
Suppose that the inductive hypothesis holds. We fix some vector Z. We compute

the class α(g, (z1 + 1, z2, . . . , zn)) by applying the inductive formula of the previous
section.

(1) α(g, (z1 + 1, z2, . . .)) = (ξ + (z1 + 1)ψ1)α(g, Z) −
∑

Γ∈Bic(g,Z)1

m(Γ)α(Γ).

As we only compute the restriction of α(g, (z1 + 1, z2, . . .)) to R∗(Mrt
g,n)[ξ], the

only bi-colored graphs that contribute are the ones with one vertex of level −1 of
genus 0 and with one vertex of level 0. By induction, the class of such a graph
is δ0,I′ · α(g, Z) where I ′ is the set of markings on the vertex of level −1. Thus
equation (2) becomes:

(2) α(g, Z) = (ξ + z1ψ1)α(g, Z) − α(g, Z) ·




∑

1∈I⊆[1,n]
|I|>1

(zI′ + 1) · δI′




To calculate the pullback of (2) under j∗
0,I we treat two cases, namely, 1 ∈ I or

1 /∈ I. This is because j∗
0,I(δI′) = 0 unless one of the following holds: I ′ ⊂ I or

I ⊂ I ′.

Case 1 /∈ I. In this case we cannot have I ′ ⊂ I, thus we only need to calculate
j∗

0,I(·δI′) only in the case I ( I ′. In this case, we have δI · δI′ = j0,I∗(δ{h}∪I\I′ ⊗ 1),
where h is the half-edge on the component of genus g of the graph defining the
class δI . Therefore, we may replace the summation over I ′ in equation (2) by a
summation over I ′′ = I ′ \ I. Then, using the induction assumption we get:

j∗
0,I (α(g, (z1 + 1, z2, . . .)) =

(
(ξ + z1ψ1)α(g, ZI)

)
⊗ 1

−
∑

I′′⊆[1,n]\I

|I′′|>0

zI∪I′′

(
α(g, ZI) · δI′′∪{h}

)
⊗ 1

= α(g, (z1 + 1, {zi}i/∈I , zI)) ⊗ 1,

Thus ending the induction.

Case 1 ∈ I. Here, all three cases I = I ′, I ( I ′ and I ′ ( I should be considered.
Firstly, if I = I ′, we have the classical formula for the auto-intersection of δI :

j∗
0,I(δI) = −ψh ⊗ 1 − 1 ⊗ ψh′ ,

where h and h′ are the two half-edges of the unique edge of the graph defining δI .
Besides the cases I ( I ′ and I ′ ( I can be treated as above, thus we obtain:

j∗
0,I α(z1 + 1, z2, . . . )) = β1 ⊗ 1 + α(g, zI) ⊗ β2,
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where β1 and β2 are given by:

β1 =

(
(ξ + (zI + 1)ψh) −

∑

I′′⊆[1,n]\I

(
1 + zI +

∑

i∈I′′

zi

)
· δI′′∪{h}

)
)

· α(g, ZI)

= α(g, ({zi}i/∈I , zI + 1)), and

β2 = (z1 + 1)ψ1 + (zI + 1)ψh′ −
∑

1∈I′⊂I

(zI′ + 1)δI′ = 0.

For β1, we went from the first line to the second by using the formula for the
incrementation of the value at a half-edge. For the term β2 we have used the
splitting formula of [Sau19], Theorem 6. This finishes the induction. �

3. Computation of Hodge classes

In order to prove Theorem 1.2, we begin by stating several properties of the
filtration of the tautological rings introduced in the introduction.

Lemma 3.1. If β ∈ R∗
i (Mg,n), then:

(1) π∗β, π∗β are in R∗
i (Mg,n+1) and R∗

i (Mg,n−1) respectively;

(2) if β = π∗β′ then β′ ∈ R∗
i (Mg,n−1);

(3) if we assume that λg′−i ∈ R∗
i (Mg′,1) for all 1 ≤ g′ ≤ g, and i ∈ N, then we

have λg−i · β ∈ R∗
i (Mg,n).

Proof. The first property is obvious from the construction of the strata algebra. To
show that the second one holds, we use the fact that ψnβ sits in R∗

i (Mg,n) and

thus β′ = (2g − 3 + n)−1π∗(ψnβ) sits in R∗
i (Mg,n−1).

In order to prove the last point, we assume that λg′−i ∈ R∗
i (Mg′,1) for all

1 ≤ g′ ≤ g, and i ∈ N. We first remark that the first two point implies that for
any choice of non-negative integers g′, n′, i such that 2g′ − 2 + n′ > 0 and g′ ≤ g,
then λg′−i sits in R∗

i (Mg,n). Indeed, this follows from the fact that the λ classes

are pull-back from Mg if g ≥ 2 or from M1,1 (and are trivial in genus 0).
Then, let β be a class of the form ζΓ∗(P ), where Γ is a stable graph of genus

g′ ≤ g and with n markings, and P is a monomial in ψ and κ classes. We fix some
value of i. Moreover, we chose any order on the vertices of Γ, i.e. an identification
V ≃ {v1, . . . , vk}. Then, we have the following identity:

Pζ∗
Γλg−i =

∑

i1+...+ik=i−h1(Γ)

P ·

k⊗

j=1

λg(vj )−ij
.

Where the ij ’s in the sum are non-negative integers. Moreover, for any partition

i1, . . . , ik in this sum. By assumption, each of the λg(vj )−ij
sits in R∗

ij
(Mg(v),n(v)).

Thus, β ·λg′−i is a linear combination of decorated graphs with at most i loops. �

We will prove Theorem 1.2 and Corollary 1.3 by induction on g. The case g = 0
is trivial, thus we may assume that g ≥ 1 and that Theorem 1.2 holds for all genera
up to (g − 1). Using the third point of Lemma, Corollary 1.3 also holds for all
genera up to g − 1.

Lemma 3.2. If Theorem 1.2 holds for all genera up to (g− 1), then for all vectors
of non-negative integers Z, the coefficient of ξi in α(g, Z) sits in R∗

i (Mg,n).
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Proof. To prove this lemma, we will show a more general statement: for all pairs
(g, Z) with g = (g) or is of size smaller than g, the coefficient of ξi in α(g, Z) may
be expressed as linear combination of classes with at most i loops.

3We prove this more general statement by induction on the size of Z. It holds
trivially if Z has size 0. Thus, let Z be a vector of size at least one (we assume that
z1,1 > 0). Then we recall from Section 2.5 that α(g, Z) is given by

(ξ + z1ψ1,1)α(g, Z1,1) −
∑

Γ∈Bic(g,Z1,1)

m(Γ)α(Γ).

As the coefficient of ξi in α(g, Z1,1) may be expressed with disconnected graphs

with at most i loops for all i ≥ 0. This is also the case for (ξ + z1ψ1)α(g, Z1,1).

Besides if Γ ∈ Bic(g, Z1,1), then we will prove the the degree i in ξ of α(Γ) may
be expressed with graphs with at most i loops for all i ≥ 0. Indeed, we recall from
Section 2.5, that the class α(Γ) is given (up to a coefficient) by:

ξh1(Γ)ζΓ∗



f−1∗[PH(Γ)[−1]]
⊗

v∈ℓ−1(i)

Λv(ξ)



⊗ α(g[0], Z[0]).

By induction assumption, the coefficient of ξi in α(g[0], Z[0]) may be expressed with
graphs with at most i loops. Moreover, for each v of level −1 the coefficient of
ξi of the contribution of the vertex is a linear combination of classes of the form
λg(v)−i · β for some tautological class β ∈ R∗(Mg(v),n(v)). Thus using Lemma 3.1,

it sits in R∗
i (Mg(v),n(v)). Therefore the coefficient of ξi of the class


f−1∗[PH(Γ)[−1]]

⊗

v∈ℓ−1(i)

Λv(ξ)


⊗ α(g[0], Z [0])

may be expressed by using at most i times the attaching morphism of type loop.
QED. �

In order to finish the proof of Theorem 1.2, we consider the classes

α(g, z, n) :=
1

n!
· πn∗α

(
g, (z, 2, . . . , 2︸ ︷︷ ︸

n×

)

)
,

for all non negative integers g, z, n. More specifically, we willconsider the class
α(g, 1, g−1). This class is of degree g and vanishes in R∗(PHg,1) by Proposition 2.5.
Thus it is of the form:

α(g, 1, g − 1) = agΛ(ξ).

for some rational number ag. Thus, if ag 6= 0, then Lemma 3.2 implies that the

class λg−i sits in R∗
i (Mg,1). Therefore Theorem 1.2 and Corollary 1.3 follow from

the following proposition.

Proposition 3.3. For all g ≥ 1, we have ag = 2g−1g.

In order to prove this proposition we will denote a(g, z, n) ∈ Q the coefficient in
ξz+n of α(g, z, n). With this notation, we have ag = a(g, 1, g − 1).

Lemma 3.4. The function a satisfies the following identities:

(1) For all g, z we have: a(g, z, 0) = 1.
(2) For all g, z, n we have: a(g, z, n) = a(g, z − 1, n) − 2a(g, z + 1, n− 1).
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(3) For all g ≥ 1, we have: a(g, 0, g − 1) = 2g−1(2g − 1).
(4) If g ≥ 2, and 0 ≤ n < g − 1, then we have:

a(g, g − 1 − n, n) = a(g − 1, g − 2 − n, n) + 4a(g − 1, g − 1 − n, n− 1).

Proof. In order to compute the function a(g, z, n) one only need to compute the
restriction of α(g, z, n) to R∗(Mrt

g,n,Q). We use this fact to prove the first two
identities. Then, for all Z = (z1, . . . , zn) vectors with z1 > 0, the formulas of
Section 2.5 take the following simpler form by Proposition 2.6:

α(g, Z) = (ξ + z1ψ1)α(g, Z1) −
∑

1∈I⊂[[1,n]]

(zI + 1)δ0,I · α(g, Z1) in R∗(Mrt
g,n)[ξ].

where the sum is over all subsets of I of [[1, . . . , n]], and we recall that zI stands for
−1 +

∑
i∈I zi. In particular if n = 1, α(g, (z)) =

∏z
j=1(ξ + jψ1) in R∗(Mrt

g,1)[ξ],
thus implying the first identity of the proposition.

To prove the second identity, we denote by ψ∗
1 the pull-back of ψ1 along the

morphism πn−1 : Mg,n → Mg,1, then we recall that

ψ∗
1 = ψ1 +

∑

1∈I⊂[[1,n]]

(zI + 1)δ0,I ,

thus we obtain:

α(g, Z) = (ξ + z1ψ
∗
1)α(g, Z1) −

∑

1∈I⊂[[1,n]]

(zI − z1 + 1)δ0,I · α(g, Z1) in R∗(Mrt
g,n)[ξ].

We apply this expression to the vector of length (n+ 1): Z = (z, 2, . . . , 2). Then in
this, case if we push-forward the above expression along πn, the only terms in the
sum that do not vanish are the one indexed by I of size exactly 2. Then we obtain:

n!α(g, z, n) = πn∗α(g, Z) = (ξ + z1ψ1)n!α(g, z − 1, n) − 2(n− 1)!α(g, z + 1, n− 1)

in R∗(Mrt
g,n)[ξ]. Taking the top coefficient in ξ in this expression gives the second

identity.

To prove the third and fourth identities, we remark that under the constraint
n + z = g − 1, the class α(g, z, n) is of degree g − 1. Thus, if we denote by
f : PHg,1 → Mg,1, then a(g, z, n) is equal to f∗α(g, z, n) in R0(Mg,1) ≃ Q. Using
this remark, we may use the de Joncquières formula as in [Mul17] to show that
a(g, 0, g − 1) = 2g−1(2g − 1) (this is also the number of odd spin structures on a
curve of genus g).

To prove the fourth identity, we will compute the intersection of f∗α(g, z, n) with
the divisor δ1,{1} to compute a(g, z, n) in terms of evaluations of the function a at
smaller genera. For all pairs of vectors (Z,P ) of length n and m and satisfying
|Z| − |P | = 2g − 2, we denote by:

M(g, Z, P ) = f(PH(g, Z, P ))

where we recall that f : PHg,n(P ) → Mg,n+m is the forgetful morphism of the

differential (or simply M(g, Z) if P is empty). Then, with this notation, if we
impose the constraint z + n = g − 1, then we have

a(g, z, n) =
1

n!(g − 1 − n)!
π(g−1)∗[M(g, (z, 2, . . . , 2︸ ︷︷ ︸

n×

, 1 . . . , 1︸ ︷︷ ︸
(g−n)×

)].
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We fix some vector Z of length g, size (2g − 2) and satisfying z1 > 0. Then
for any choice of I ⊂ [[1, n]], such that I contains 1, then we we have the following
identity

j∗
1,I [M(g, Z)] =

{
0 if zI = 1
[M(1, (zi,i∈I ,−zI)] ⊗ [M(g − 1, (zi,i/∈I , zI − 2)] otherwise.

Indeed, this is due to the fact that M(g, Z) intersects transversally the divisor
δ1,I along the locus M(g, (zii∈I ,−zI) × M(g, (zii/∈I , zI − 2) if zI > 1 while this
intersection is a locus of co-dimension at least 2 if zI = 1. Then, for dimension
reasons, the push-forward of δ1,I · [M(g, Z)] along π(g−1) vanishes if I is not of size

2 (this is due to the fact M(1, Z, P ) is of dimension 1 if P is non-trivial). Besides
we have the identity

π∗
(g−1)δ1,{1} =

∑

1∈I⊂[[1,g]]

δ1,I .

Therefore in the case of Z = (z, 2, . . . , 2︸ ︷︷ ︸
n×

, 1 . . . , 1︸ ︷︷ ︸
(g−n)×

), we obtain the identity:

a(g, z, n) = π∗[M(1, (z, 1,−z − 1)] × a(g − 1, z − 1, n)

+π∗[M(1, (z, 2,−z − 2)] × a(g, z, n− 1)

where π stands for the forgetful morphism of the second marking. The first sum-
mand in the RHS corresponds to the choices of I = {z, i} with zi = 1, while the
second corresponds to zi = 2. In both cases we have:

π∗[M(1, (z, z′,−z − z′)] = (z′)2,

as there are (z′)2 points x on a general elliptic curve E with markings (x1, x3) that
satisfy the equation z′ · [x] = (z + z′) · [x3] − z · [x1] in the Picard group of E. This
finishes the proof of the fourth identity. �

End of the proof of Proposition 3.3. We define two sequences

ug,n := a(g, g − n, n) and wg,n = a(g, g − n− 1, n)

The first part of the above lemma then readily translates to ug,n = wg,n − 2ug,n−1

which in turn, implies that

(3) ug,n =

n∑

i=0

(−2)iwg,n−i,

since ug,0 = wg,0 = 1. Furthermore, from the last part of Lemma 3.4 we have
wg,n = wg−1,n +4wg−1,n−1, if n < g−1. If g > 1, we would like to compute ug,g−1,
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by applying n = g − 1 in (3):

ug,g−1 = wg,g−1 +

g−1∑

i=1

(−2)iwg,g−1−i

= wg,g−1 +

g−1∑

i=1

(−2)iwg−1,g−1−i + 4

g−2∑

i=1

(−2)iwg−1,g−2−i

= wg,g−1 − 2

g−2∑

i=0

(−2)iwg−1,g−2−i + 4(ug−1,g−2 − wg−1,g−2)

= wg,g−1 − 2ug−1,g−2 + 4ug−1,g−2 − 4wg−1,g−2

= 2ug−1,g−2 + 2g−1.

Note that we used the third identity of Lemma 3.4: wg,g−1 = 2g−1(2g −1). Putting
everything together, we have ag = 2ag−1 + 2g−1 and a1 = 1. Therefore, we have
ag = 2g−1g. �
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