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Abstract

A well-known problem in holomorphic dynamics is to obtain Denjoy–Wolff-type

results for compositions of self-maps of the unit disc. Here, we tackle the particular

case of inner functions: if fn : D → D are inner functions fixing the origin, we show

that a limit function of fn ◦ · · · ◦ f1 is either constant or an inner function. For the

special case of Blaschke products, we prove a similar result and show, furthermore, that

imposing certain conditions on the speed of convergence guarantees L1 convergence of

the boundary extensions. We give a counterexample showing that, without these extra

conditions, the boundary extensions may diverge at all points of ∂D.

1 Introduction

Let f : D → D be a holomorphic function. When taking iterates of f , the Denjoy–Wolff
theorem – one of the earliest theorems in complex dynamics – tells us that, if f is not
an elliptic Möbius transformation, the sequence (fn)n∈N converges locally uniformly to a
unique constant c ∈ D. A variation of this problem concerns the “iteration” of sequences of
holomorphic functions fn : D → D, of which there are two flavours:

Fn := fn ◦ fn−1 ◦ · · · ◦ f1 and Gn := f1 ◦ f2 ◦ · · · ◦ fn.

The procedure on the left is called forward iteration, while the other is called backward

iteration; sometimes, the names left and right compositions (respectively) are used. In view
of the Denjoy-Wolff theorem, many criteria, pioneered by Lorentzen [17] and Gill [12], have
been found to establish when the limits of forward and backward iteration are constant –
see, for instance, [2], [6], [1], and [14, Chapters 11 to 13]. For example, Keen and Lakic
proved in [13] the remarkable result that for any f : D → K where K ⊂ D is a non-Bloch
domain there exists a sequence fn : D → K such that the backward iteration of (fn)n∈N
converges locally uniformly to f . The non-Bloch condition is subtle and geometric in nature,
and we will not discuss it further here; see [2] for a definition.

Regarding forward iteration, Benini et al. recently gave a more explicit criterion for
deciding if the limit function of fn ◦ · · · ◦ f1 is constant – under the extra assumption that
fn(0) = 0 for all n ∈ N. More specifically, they showed [3, Theorem A]:

Theorem A. Let fn : D → D be holomorphic and such that fn(0) = 0 for all n ∈ N, and

assume that the forward iteration of fn converges locally uniformly to a limit f : D → D.

Then, f is non-constant if and only if
∑

n≥1

(1− |f ′n(0)|) < +∞.
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Benini et al.’s result was motivated by the study of wandering domains in iteration of
meromorphic functions. We will not discuss such domains here, but an important property
of this scenario is that the induced sequence (fn)n∈N of self-maps of D is entirely made
of inner functions (see [3, Section 3] and [9, Lemma 2.2]). By inner function, we mean a
holomorphic function f : D → D such that the radial limits

f(eiθ) := lim
rր1

f(reiθ)

exist and satisfy |f(eiθ)| = 1 for Lebesgue-a.e. θ ∈ [0, 2π).
A composition of two inner functions yields again an inner function – see, for example,

[21, Theorem 2]. Our primary aim here is to extend this result to limits of forward iteration
of inner functions. Notice that knowing that locally uniform convergence takes place is not
enough; in fact, as shown by Carathéodory [5], any holomorphic function f : D → D can
be locally uniformly approximated by finite Blaschke products (which are, of course, inner
functions). Nevertheless, the fact that forward iteration is primarily a composition allows
us to prove the following.

Theorem 1.1. Let fn : D → D, n ∈ N, be inner functions such that fn(0) = 0 for all n ∈ N,

and assume that Fn := fn ◦ · · · ◦ f1 converges locally uniformly to some F : D → D. Then,

F is either constant or an inner function, and the latter happens if and only if
∑

n≥1

(1− |f ′n(0)|) < +∞.

After proving Theorem 1.1 in Section 2, we turn to the special case of Blaschke products –
see [8] and [11] for more properties of such functions. The composition of two finite Blaschke
products is once again a Blaschke product, but that is not true in general for infinite Blaschke
products – it is true for a specific class of Blaschke products called indestructible Blaschke
products; see [18] and [15]. In view of that, the following result is of some interest.

Theorem 1.2. Let bn : D → D be finite Blaschke products such that bn(0) = 0 for all n ∈ N,

and assume that Bn := bn ◦ · · · ◦ b1 converges locally uniformly to some B : D → D. Then,

B is either constant or a Blaschke product.

After that is established, we move on to consider the boundary extensions of forward
iterations of Blaschke products. As mentioned previously, an inner function f admits radial
limits almost everywhere on T = ∂D. This means that one can define the boundary extension

of f to be
f̂(eiθ) := lim

rր1
f(reiθ);

the hat notation here serves to emphasise that we should think of f̂ as a function f̂ : T → C

belonging to Lp(T) for p ∈ [1,+∞]; see [8] and [19, Chapter 17] for more on Hp spaces
and their relation to Lp(T). We drop the T from this notation, since we will not be talking
about any other Lp spaces. Of course, since f is an inner function, one has |f̂(eiθ)| = 1
almost everywhere, so that in fact one can think of f̂ as a measurable self-map of T, defined
up to a set of measure zero. In our setting, this means that the forward iteration of the
inner functions (fn)n∈N induces the forward iteration of (f̂n)n∈N on T. A natural question
then is: if the functions Fn := fn ◦ · · · ◦ f1 converge locally uniformly to F , do the boundary
extensions F̂n := f̂n ◦ · · · f̂1 converge (in any sense) to F̂? We give sufficient conditions for
a positive answer:

Theorem 1.3. Let bn : D → D be finite Blaschke products such that bn(0) = 0, b′n(0) > 0
and dn := deg bn − 1 < M < +∞ for all n ∈ N. Assume that

∑

n≥1

(1− b′n(0)) log
1

1− b′n(0)
< +∞. (1)
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Then, the functions Bn := bn◦· · ·◦b1 converge locally uniformly in D to a Blaschke product B,

and the boundary extensions of B̂n converge to B̂ in L1.

Remark. The condition b′n(0) > 0 is stated only to guarantee that the sequence (Bn)n∈N
converge to a unique limit. We could do without it, as long as we assume that the sequence
is converging to a unique limit.

The summability condition (1) was first introduced by Frostman [10] to study the bound-
ary convergence of infinite Blaschke products, and hence we will call it the Frostman con-

dition. Rybkin [20] too investigated this and other “Frostman conditions”; his results are
closely related to ours, but more related to Lp convergence of boundary extensions of in-
finite Blaschke products. Linden [16] showed that one can construct an infinite Blaschke
product for which this condition fails and that diverges everywhere on T. In the same spirit,
we construct a sequence (bn)n∈N for which the Frostman condition fails and the boundary
extensions of its forward iteration diverges everywhere on T.

Theorem 1.4. Let (rn)n∈N be a sequence in (0, 1) such that

∑

n≥1

(1− rn) < +∞ but
∑

n≥1

(1− rn) log
1

1− rn
= +∞.

Let

θn :=
n
∑

i=1

(1− ri) log
1

1− ri
,

let zn := rne
iθn , and define

bn(z) = z ·
|zn|

zn

zn − z

1− znz
.

Then, Bn := bn ◦ · · · ◦ b1 converges locally uniformly in D to an infinite Blaschke product B,

but the boundary extensions B̂n do not converge to B̂ at any point of T.

The proof of Theorem 1.4 is very similar to that of [16, Theorem]. As such, we will
provide only a brief outline at the end of Subsection 3.2.
Acknowledgements. I would like to thank my supervisors, Phil Rippon and Gwyneth
Stallard, for their encouragement, comments, and suggestions – especially regarding Theo-
rem 1.1.

2 Forward iteration of inner functions

In this section, we use estimates from [3, Corollary 2.4 and Theorem 2.5] to prove Theo-
rem 1.1. More specifically, we have:

Lemma 2.1. Let g : D → D be a holomorphic function with g(0) = 0 and |g′(0)| = λ. Then,

for z ∈ D such that |z| ≤ λ,

|g(z)| ≥ |z|

(

1− µ ·
1 + |z|

1− |z|

)

,

where µ = 1− λ.

Proof of Theorem 1.1. Let us assume that F = limn→+∞ Fn is non-constant. It is clear
from Weiestrass’s theorem that F is holomorphic; we must prove the stronger fact that it
is an inner function. By Theorem A, we have

∑

n≥1

(1− |f ′n(0)|) < +∞;
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in other words,
∏

n≥1 |f
′
n(0)| converges to a positive number, and so given ǫ > 0 there exists

N = N(ǫ) such that

ν :=
+∞
∏

n=N+1

|f ′n(0)| > 1− ǫ.

Now, for n > N , let
Hn(z) := fn ◦ · · · ◦ fN+1;

by Montel’s theorem, there exists a subsequence (Hnk
)k∈N converging locally uniformly to

some H : D → D, and by Schwarz’s lemma we in fact have |Hn| → |H|. It follows that
|H ′(0)| = ν, so that by Lemma 2.1 we have

|H(z)| ≥ |z|

(

1− (1− ν)
1 + |z|

1− |z|

)

≥ |z|

(

1− ǫ ·
1 + |z|

1− |z|

)

for |z| < ν. Applying this to |z| = 1− ǫ1/2 < 1− ǫ < ν, we get

|H(z)| ≥ (1− ǫ1/2)

(

1− ǫ ·
2− ǫ1/2

ǫ1/2

)

= (1− ǫ1/2)(1− 2ǫ1/2 + ǫ),

and since ǫ > 0 this gives
|H(z)| ≥ 1− 3ǫ1/2. (2)

Define now the set Γǫ := {z : |FN (z)| = 1− ǫ1/2}; then, by (2),

|F (z)| = |H ◦ FN (z)| ≥ 1− 3ǫ1/2 for z ∈ Γǫ. (3)

Furthermore, by Schwarz’s lemma,

Γǫ ⊂ {z : 1− ǫ1/2 < |z| < 1}. (4)

It is not true in general that for any inner function f : D → D fixing the origin the set
{z : |f(z)| = r} surrounds the circle {z : |z| = r}, even for r very close to one; think, for
instance, of the inner function z 7→ z · exp ((z − 1)/(z + 1)). Nevertheless, we can show that
Θǫ := {arg z : z ∈ Γǫ} always has full measure in [0, 2π), and that ǫ′ < ǫ implies Θ′

ǫ ⊂ Θǫ.
Indeed, since FN is a composition of finitely many inner functions, it is itself an inner

function, so that the set

IN := {θ ∈ [0, 2π) : lim
rր1

|FN (reiθ)| = 1}

has full Lebesgue measure. Applying the intermediate value theorem to the function r 7→
|FN (reiθ)|, we see that for θ ∈ IN there is always some r∗ ∈ (0, 1) such that |FN (r∗eiθ)| =
1 − ǫ1/2, and hence IN ⊂ Θǫ. Since IN has full measure in [0, 2π), so does Θǫ, as claimed.
Now, if ǫ′ < ǫ, we can assume that N ′ = N(ǫ′) ≥ N = N(ǫ), so that by Schwarz’s lemma
|FN ′(z)| ≤ |FN (z)| for all z ∈ D. For z′ = r′eiθ

′

∈ Γǫ′ , this means that |FN (z′)| ≥ |FN ′(z′)| =
1−ǫ1/2, meaning that we can once again apply the intermediate value theorem and conclude
that θ′ ∈ Θǫ, and therefore Θǫ′ ⊂ Θǫ.

Taking now a sequence ǫk ց 0, we see that the set

Θ :=
⋂

k≥1

Θǫk

has full Lebesgue measure in [0, 2π), and for θ ∈ Θ we have by (3) and (4) that

lim sup
rր1

|F (reiθ)| = 1.

By Fatou’s theorem, F has well-defined radial limits in a full-measure set E ⊂ [0, 2π), and
the set E∩Θ has full Lebesgue measure. For θ ∈ E∩Θ, we must therefore have |F (eiθ)| = 1;
it follows that F is an inner function.
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3 The special case of Blaschke products

Here, we prove Theorems 1.2 and 1.3.

3.1 Convergence to a Blaschke product

To prove Theorem 1.2, we must pay attention to the zeros of B and Bn. Denoting by Z(f)
the set of zeros of the holomorphic function f , we have:

Lemma 3.1. Under the conditions of Theorem 1.2 with B non-constant, we have

Z(Bn) ⊂ Z(Bn+1), n ∈ N, and Z(B) =
⋃

n≥1

Z(Bn).

In particular,
∑

z∈
⋃

n Z(Bn)

(1− |z|) < +∞. (5)

Proof. Since bn+1(0) = 0 and Bn+1 = bn+1 ◦Bn, it follows that Z(Bn) ⊂ Z(Bn+1), whence

Z(B) ⊃
⋃

n≥1

Z(Bn). (6)

To prove the reverse inclusion, take a zero z∗ of B. Since B is holomorphic and non-
constant, there exists a small disc D = {z : |z− z∗| < r} such that D ⊂ D and D ∩Z(B) =
{z∗}. By Hurwitz’s theorem, Bn also has a zero zn in D for all large n; by (6), we must
have zn = z∗, proving the reverse inclusion.

Finally, (5) follows from the fact that B is a bounded non-constant function, and thus
Z(B) satisfies the Blaschke condition by [8, Theorem 2.3].

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The first thing to notice is that Bn, being a finite composition of
finite Blaschke products, is a finite Blaschke product. The degree Dn of Bn is given by

Dn =

n
∏

i=1

deg bi,

and it follows that we can decompose Bn as

Bn(z) = αn · z ·

Dn
∏

i=1

|zi|

z

zi − z

1− ziz
,

where |αn| = 1 and zi runs over the zeros of Bn excluding the origin. Since Z(Bn+1) ⊃ Z(Bn)
by Lemma 3.1, we have

Bn+1(z) =
αn+1

αn





Dn+1−Dn
∏

i=1

|zi|

zi

zi − z

1− ziz



Bn(z),

where zi runs over Z(Bn+1) \ Z(Bn). In other words, the sequence (Bn)n∈N represents a
multiplicative sequence of Blaschke factors, which converges locally uniformly to an infinite
Blaschke product by (5) and [8, Theorem 2.4]. This infinite Blaschke product is B, and we
are done.

Remark. It is clear from the proof that Theorem 1.2 can be extended to forward itera-
tion of indestructible Blaschke products. A natural question is whether the limit is itself
indestructible.
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3.2 Convergence of boundary extensions

First, we show that if a forward iterated sequence of inner functions converges to a non-zero
limit, then there is always some “good behaviour” of the boundary extensions.

Lemma 3.2. Let fn : D → D be inner functions such that fn(0) = 0 and f ′n(0) > 0 for

all n ∈ N. If Fn := fn ◦ · · · ◦ f1 converges locally uniformly to a non-constant function

F : D → D, then

f̂n(e
iθ)

eiθ
→ 1

for Lebesgue-a.e. θ ∈ [0, 2π).

Proof. For n ∈ N, define the functions

ψn(z) :=

{

fn(z)
z , z ∈ D \ {0},

f ′n(0), z = 0.

By the removable singularity theorem, these functions are holomorphic in D, and by Schwarz’s
lemma they actually satisfy ψn : D → D. Furthermore, since Fn → F 6≡ 0, we also have

∑

n≥1

(1− ψn(0)) =
∑

n≥1

(1− f ′n(0)) < +∞

by Theorem A. It then follows from [4, Theorem B] that

|ψn(e
iθ)− ψn(z)| → 0 for z ∈ D as n→ +∞

for Lebesgue-a.e. θ ∈ [0, 2π). Since ψn(0) → 1 as n → +∞, it now follows from [4,
Theorem A] that ψn(z) → 1 for all z ∈ D, and by the triangle inequality ψn(e

iθ) → 1 for
Lebesgue-a.e. θ.

Lemma 3.2 shows that, if fn are inner functions fixing the origin such that f ′n(0) > 0
and (Fn) is a semi-contracting sequence (see [4, Theorem 7.2] for this terminology), then f̂n
converges to the identity Lebesgue almost everywhere, which might imply that some kind
of convergence happens for F̂n. Of course, our point here is that things are not so simple;
nevertheless, we offer a sufficient condition for that to be the case, thus proving Theorem
1.3.

Proof of Theorem 1.3. Let

ψn(e
iθ) :=

B̂n(e
iθ)

eiθ
;

we will show that (ψn)n∈N is a Cauchy sequence in L1. As H1 is a closed subspace of L1,
which is a Banach space, this in turn implies that (B̂n)n∈N converges in L1, and our theorem
will follow from the fact that convergence of the boundary extensions in L1 implies locally
uniform convergence in D (see [8, Theorem 3.3] and the following corollary, or [19, Remark
17.8(c) and Theorem 17.11]).

To that end, let dist(eiθ, eiφ) denote distance in T, so that

dist(ψn(e
iθ), ψn+m(eiθ)) =

∣

∣

∣

∣

∣

arg
B̂n+m(eiθ)

B̂n(eiθ)

∣

∣

∣

∣

∣

for all m,n ∈ N, where arg z ∈ [−π, π). We rewrite the right-hand quotient as

B̂n+m(eiθ)

B̂n(eiθ)
=

m
∏

i=1

B̂n+i(e
iθ)

B̂n+i−1(eiθ)
=

m
∏

i=1

b̂n+i

(

B̂n+i−1(e
iθ)
)

B̂n+i−1(eiθ)
,
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so that

dist(ψn+m(eiθ), ψn(e
iθ)) =

∣

∣

∣

∣

∣

∣

arg

m
∏

i=1

b̂n+i

(

B̂n+i−1(e
iθ)
)

B̂n+i−1(eiθ)

∣

∣

∣

∣

∣

∣

≤

m
∑

i=1

∣

∣

∣

∣

∣

∣

arg
b̂n+i

(

B̂n+i−1(e
iθ)
)

B̂n+i−1(eiθ)

∣

∣

∣

∣

∣

∣

.

(7)
In order to relate this to L1, we note that,

|eiθ − eiφ| ≤ dist(eiθ, eiφ)

for all θ, φ ∈ [0, 2π), meaning that (7) implies

‖ψn+m−ψn‖1 =
1

2π

∫ 2π

0
|ψn+m(eiθ)−ψn(e

iθ)| dθ ≤
m
∑

i=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

arg
b̂n+i

(

B̂n+i−1(e
iθ)
)

B̂n+i−1(eiθ)

∣

∣

∣

∣

∣

∣

dθ.

Our next step is to recall that, as shown by Doering and Mañé [7, Corollary 1.5], inner
functions fixing the origin preserve the (normalised) Lebesgue measure on T in the sense
that µ◦f̂−1 = µ (for µ being the normalised Lebesgue measure and f̂ the boundary extension
of an inner function fixing the origin), and so the inequality above can be rewritten as

‖ψn+m − ψn‖1 ≤
m
∑

i=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

arg
b̂n+i

(

eiθ
)

eiθ

∣

∣

∣

∣

∣

dθ. (8)

Since we assume the functions bn to be finite Blaschke products of degree dn + 1, we can
decompose them as

bn(z) = z

dn
∏

i=1

|zi|

zi

zi − z

1− ziz
,

where zi = zi(n), 1 ≤ i ≤ dn, are the non-zero zeros of bn. This gives us the following
identity (see [11, Theorem 2.4] or [20, Equation 2.1]):

arg
b̂n(e

iθ)

eiθ
= −2

dn
∑

i=1

arctan





1− |zi|

(1 + |zi|) tan
(

θ−θi
2

)



 ,

where θi = arg zi and θ 6= θi for 1 ≤ i ≤ dn, and arctan denotes the principal branch of the
arctangent (and, in particular, has range (−π/2, π/2)). Inserting this identity into (8) and
applying the triangle inequality yields

‖ψn+m − ψn‖1 ≤

m
∑

i=1

dn+i
∑

j=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∣

2 arctan





1− |zj |

(1 + |zj |) tan
(

θ−θj
2

)





∣

∣

∣

∣

∣

∣

dθ.

A direct application of the estimates given by Rybkin for the integral on the right-hand side
[20, Proof of Theorem 3] gives

‖ψn+m − ψn‖1 ≤

m
∑

i=1

dn+i
∑

j=1

(

(2 + log 2π2)(1− |zj |) + 2(1− |zj |) log
1

1− |zj |

)

.

Rearranging the sums and denoting the smallest non-zero zero of bn by z∗n, we obtain

‖ψn+m − ψn‖1 ≤ (2 + log 2π2)M

m
∑

i=1

(1− |z∗n|) + 2M

m
∑

i=1

(1− |z∗n|) log
1

1− |z∗n|
,

and we see that we can make the sum on the right-hand side arbitrarily small by taking a
large enough n, since |z∗n| ≥ b′n(0) by [3, Corollary 2.4] and the sequence (b′n(0))n∈N satisfies
the Frostman condition (1) by hypothesis. It follows that (ψn)n∈N is a Cauchy sequence in
L1, and we are done.
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Remark. As an alternative proof of Theorem 1.3, we could start from the “product decom-
position” used in the proof of Theorem 1.2 and attempt to apply [20, Theorem 3]. However,
unlike in the proof of Theorem 1.2, it is not straightforward to show that the zeros of Bn

collectively satisfy the Frostman condition.

Finally, we outline the proof of Theorem 1.4. Most of the necessary tools were already
introduced in the proofs of Theorem 1.2 and 1.3; the rest is due to Linden [16].

Outline of the proof of Theorem 1.4. The compositions Bn := bn ◦ · · · ◦ b1 are all finite
Blaschke products, and as such can be rewritten as a product

Bn(z) = αn · z ·

Dn
∏

i=1

|zi|

zi

zi − z

1− ziz

in the spirit of the proof of Theorem 1.2. Therefore, recalling the proof of Theorem 1.3, its
boundary extension satisfies

arg B̂n(e
iθ) = θ − 2

Dn
∑

i=1

arctan





1− |zi|

(1 + |zi|) tan
(

θ−θi
2

)



 ;

due to our careful choices of zi, the same arguments in the proof of Theorem [16, Theorem]
show that (B̂n(e

iθ))n∈N is not a Cauchy sequence at any point of T.
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