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Some Identities in Quantum Torus Arising from

Ringel-Hall Algebras

Jiuzhao Hua

Abstract

We define two classes of representations of quivers over arbitrary fields,

called monomorphic representations and epimorphic representations. We

show that every representation has a unique maximal nilpotent subrepre-

sentation and the associated quotient is always monomorphic, and every

representation has a unique maximal epimorphic subrepresentation and

the associated quotient is always nilpotent. The uniquenesses of such

subrepresenations imply two identities in the Ringel-Hall algebra. By

applying Reineke’s integration map, we obtain two identities in the cor-

responding quantum torus.

1 Introduction

Let N be the set of all non-negative integers, Z the ring of integers and Q the
field of rational numbers. Let Q = (Q0, Q1) be a finite quiver and assume that
Q is connected and Q0 = {1, 2, · · · , n} with n ≥ 1. For any arrow h ∈ Q1,
let h′ and h′′ be its source vertex and target vertex respectively, depicted as

h′•
h

−→ •h′′ . The Euler form associated with Q is defined as follows:

〈v, w〉 :=
∑

i∈Q0

viwi −
∑

h∈Q1

vh′wh′′ for v, w ∈ Zn. (1)

A representation of Q over a field k is a collection of finite dimensional k-vector
spaces and k-linear maps M = (Vi, fh)i∈Q0,h∈Q1 such that fh is a k-linear map
from Vh′ to Vh′′ . (dimk V1, · · · , dimk Vn) ∈ Nn is called the dimension vector
of M , denoted by dimM . A morphism from M to another representation
N = (Wi, gh)i∈Q0,h∈Q1 is a collection of k-linear maps (φi : Vi → Wi)i∈Q0 such
that φh′′fh = ghφh′ for all h ∈ Q1. If φi is non-singular for all i ∈ Q0, then M
and N are called isomorphic. N is called a subrepresentation of M if Wi ⊂ Vi

for all i ∈ Q0 and gh(x) = fh(x) for all h ∈ Q1 and x ∈ Wh′ . In this case we
write gh = fh|Wh′

.

A vertex i ∈ Q0 is called a source vertex if it is not a target of any arrow in Q1,
and i is called a sink vertex if it is not a source of any arrow in Q1. We assume
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that Q has no sink vertices and no source vertices. If Q does have sink vertices
or source vertices, we will work over an extended quiver Q, which is constructed
as follows:

1. add a new vertex labelled as n+ 1,

2. add a new arrow from vertex n+ 1 to each source vertex,

3. add a new arrow from each sink vertex to vertex n+ 1.

In this setting, every representation of Q can be extended to a representation
of Q by adding the zero vector space to vertex n+1 and the zero map to every
arrow connected to vertex n+ 1.

LetN = (Wi, fh|Wh′)i∈Q0,h∈Q1 be a subrepresentation ofM = (Vi, fh)i∈Q0,h∈Q1 ,
we define an operator im− as follows:

im−(N) := (Ui, fh|Uh′)i∈Q0,h∈Q1 where Ui =
⋂

h′=i

f−1
h (Wh′′) ⊂ Vi for i ∈ Q0.

Moreover, we let

im−1(N) = im−(N) and im−i(N) = im−(im−(i−1)(N)) for i > 1.

Note that im−(N) is always a subrepresentation of M and N ⊂ im−(N). Thus
we have the following chain of subrepresentations of M :

0 ⊂ im−1(0) ⊂ im−2(0) ⊂ · · · ⊂ im−s(0) ⊂ · · · (2)

M is called a nilpotent representation if im−s(M) = M for some s ∈ N and M is
called a monomorphic representation if im−1(0) = 0. Note that M is nilpotent
if and only there exists s ∈ N such that each vector space Vi (for i ∈ Q0) is
mapped to the zero vector space by any path starting from vertex i as long as
the length of the path is greater s. Thus, the definition of nilpotency here is
equivalent to the one given by Bozec, Schiffmann & Vasserot [1]. Note that if Q
has no oriented cycles, then the only nilpotent representation of Q is the zero
representation.

We define another operator im+ as follows:

im+(N) := (Ui, fh|Uh′)i∈Q0,h∈Q1 where Ui =
∑

h′′=i

fh(Wh′) ⊂ Wi for i ∈ Q0.

Moreover, we let

im+1(N) = im+(N) and im+i(N) = im+(im+(i−1)(N)) for i > 1.

Note that im+(N) is always a subrepresentation of M and im+(N) ⊂ N . Thus
we have the following chain of subrepresentations of M :

M ⊃ im+1(M) ⊃ im+2(M) ⊃ · · · ⊃ im+s(M) ⊃ · · · (3)
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M is called an epimorphic represenation if im+1(M) = M . Note that M is
nilpotent if there exists s ∈ N such that im+s(M) = 0.

Let modk(Q) be the category of representations of Q over k and let modn
k (Q)

(resp. modmk (Q), modek(Q)) be the subcategory consisting of all nilpotent
(resp. monomorphic, epimorphic) representations. All three subcategories are
closed under direct summands and extensions. Let modk(Q) (resp. modn

k (Q),
modmk (Q), mode

k(Q)) denote the set of isomorphism classes in modk(Q)(resp.
modnk (Q), modmk (Q), mode

k(Q)). The isomorphism class of an objectM in a cat-
egory is denoted by [M ] and the cardinality of a set X is denoted by |X |.

For any finite field k, Ringel [10] defines an associative algebra H(Q) known as
the Ringel-Hall algebra associated with Q. As a Q-vector space, H(Q) has a
basis {[M ] | [M ] ∈ modk(Q)}, and the multiplication of two basis elements is
given by:

[M ] ◦ [N ] :=
∑

[X]

gXMN [X ],

where gXMN is the number of subrepresentations U of X such that U ∼= N and
X/U ∼= M .

Ringel [10] proved that when Q is of finite representation type (precisely when
the underlying graph of Q is a Dynkin diagram by Gabriel [2]) the twisted
Ringel-Hall algebra is isomorphic to the quantized enveloping algebra of the
positive part of the semisimple Lie algebra associated with Q. For general
quivers, Green [3] proved that the composition subalgebra of the twisted Ringel-
Hall algebra is isomorphic to the quantized enveloping algebra of the positive
part of the Kac-Moody algebra associated with Q.

Let X1, · · · , Xn be n non-commuting indeterminates, and let Xv =
∏n

i=1 X
vi
i

for any vector v = (v1, · · · , vn) ∈ Nn. Let T (Q) be the torus algebra associated
with Q. Thus as a Q-vector space, T (Q) has a basis {Xv| v ∈ Nn}, and the
multiplication of two basis elements is defined by the following rule:

Xv ◦Xw = q−〈v,w〉Xv+w for all v, w ∈ Nn. (4)

Reineke’s integration map is a Q-linear map from H(Q) to T (Q) defined as
follows:

δ : [M ] →
1

|Aut(M)|
XdimM , (5)

where Aut(M) is the automorphism group of M . The Riedtmann-Peng formula
([9][6]) can be stated as:

gXMN =
|Aut(X)| · |Ext1(M,N)X |

|Hom(M,N)| · |Aut(M)| · |Aut(N)|
,

where Ext1(M,N)X is the set of extension classes corresponding to short exact
sequences with middle term isomorphic to X . The Riedtmann-Peng formula im-
plies that Reineke’s integration map δ is a homomorphism of algebras (Lemma
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3.3 of Reineke [8]). Reineke’s integration map can be naturally extended to a
homomorphism from the completion algebra of H(Q) to the completion alge-
bra of T (Q). In these two completion algebras, the sum and product of two
infinite series are well defined because both algebras are graded by dimension
vectors.

Let Q(t) be the field of rational functions in t over Q and let Tt(Q) be the
quantum torus over Q(t) associated with Q. Thus as a Q(t)-vector space, Tt(Q)
has a basis {Xv| v ∈ Nn} and the multiplication of two basis elements is defined
by the following rule:

Xv ◦Xw = t−〈v,w〉Xv+w for all v, w ∈ Nn. (6)

In the next section, we show that each representation of Q is a unique extension
of a monomorphic representation by a nilpotent representation, and it is also a
unique extension of a nilpotent representation by an epimorphic representation.
The uniquenesses of those extensions yield two identities in the Ringel-Hall
algebra involving the numbers of representations of Q over finite fields. These
identities are then translated into identities in the quantum torus by Reineke’s
integration map. In the last section we present two identities which count the
isomorphism classes of absolutely simple (resp. indecomposable) conservative
representations of Q over finite fields.

2 Two Identities in Quantum Torus

Each representation M = (Vi, fh)i∈Q0,h∈Q1 gives rise to two linear maps σi and
τi for each i ∈ Q0 as follows:

σi : Vi →
⊕

h′=i

Vh′′ , τi :
⊕

h′′=i

Vh′ → Vi,

vi 7→ (fh(vi))h′=i, (vh′) 7→
∑

h′′=i

fh(vh′).

The following lemma is a direct consequence of the definitions of monomorphic
and epimorphic representations.

Lemma 2.1. Let M = (Vi, fh)i∈Q0,h∈Q1 be a representation of Q. Then we
have

1. M is monomorphic if and only σi is injective for all i ∈ Q0.

2. M is epimorphic if and only τi is surjective for all i ∈ Q0,

Lemma 2.2. For any representation M of Q over a field k, there exists a unique
maximal nilpotent subrepresentation N ⊂ M . Moreover, M/N is monomorphic.
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Proof. Since M is finite dimensional, chain (2) must be stable in finite steps,
i.e., there exists an integer s such that im−t(0) = im−s(0) for all t > s. We
claim that im−s(0) is the unique maximal nilpotent subrepresentation of M .

im−s(0) is obviously nilpotent. Let N = (Wi, fh|Wh′
)i∈Q0,h∈Q1 be any nilpotent

subrepresentation of M , we claim that N ⊂ im−s(0). Since N is nilpotent,
there exists r ∈ N such that each vector space Wi (for i ∈ Q0) is mapped
to the zero vector space by any path starting from vertex i as long as the
length of the path is greater than r. This implies that N ⊂ im−(s+r)(0). Since
im−(s+t)(0) = im−s(0), we have N ⊂ im−s(0).

To show that M/im−s(0) is monomorphic, we only need to show the σi is
injective for each i ∈ Q0 when σi is acting on vector spaces in M/im−s(0),
which is an easy consequence of the definition of im−.

Lemma 2.3. For any representation M of Q over a field k, there exists a unique
maximal epimorphic subrepresentation E ⊂ M . Moreover, M/E is nilpotent.

Proof. Since M is finite dimensional, chain (3) must be stable in finite steps,
i.e., there exists an integer s such that im+t(M) = im+s(M) for all t > s. We
claim that im+s(M) is the unique maximal epimorphic subrepresentation of M .

im+s(M) is obviously epimorphic. Let E be any epimorphic subrepresenta-
tion of M , then im+1(E) = E and hence im+s(E) = E. E ⊂ M implies
that im+s(E) ⊂ im+s(M) and hence E ⊂ im+s(M). Thus im+s(M) is the
unique maximal epimorphic subrepresentation. M/im+s(M) is nilpotent be-
cause im+i(M)/im+(i+1)(M) is nilpotent for all i ≥ 1.

In what follows, let k be the finite field Fq with q elements, where q is a prime
power. Lemma 2.2 and Lemma 2.3 implies the following theorem.

Theorem 2.1. The following identities hold in the completion algebra of the
Ringel-Hall algebra H(Q):

∑

[M ]∈mod
k
(Q)

[M ] =

(

∑

[M ]∈modm
k
(Q)

[M ]

)

◦

(

∑

[M ]∈modn
k
(Q)

[M ]

)

,

∑

[M ]∈mod
k
(Q)

[M ] =

(

∑

[M ]∈modn
k
(Q)

[M ]

)

◦

(

∑

[M ]∈mode
k
(Q)

[M ]

)

.

Applying Reineke’s integration map δ on both sides of the identities in Theorem
2.1, it yields the following results.
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Corollary 2.1. The following identities hold in the completion algebra of the
torus algebra T (Q):

∑

v∈Nn

|R(v,Fq)|

|GL(v,Fq)|
Xv =

(

∑

v∈Nn

|M(v,Fq)|

|GL(v,Fq)|
Xv

)

◦

(

∑

v∈Nn

|N(v,Fq)|

|GL(v,Fq)|
Xv

)

,

∑

v∈Nn

|R(v,Fq)|

|GL(v,Fq)|
Xv =

(

∑

v∈Nn

|N(v,Fq)|

|GL(v,Fq)|
Xv

)

◦

(

∑

v∈Nn

|E(v,Fq)|

|GL(v,Fq)|
Xv

)

.

If Q has source vertices or sink vertices, then Corollary 2.1 holds for Q. By
taking Xn+1 = 0 we recover those two identities for Q.

For any dimension vector v = (v1, · · · , vn) ∈ Nn, let v · v =
∑n

i=1 v
2
i ∈ N,

v• = (vi•) ∈ Nn with vi• =
∑

h′=i vh′′ , •v = (•v
i) ∈ Nn with •v

i =
∑

h′′=i vh′ ,
and GL(v,Fq) =

∏n

i=1 GL(vi,Fq), where GL(vi,Fq) is the General Linear Group

of order vi over Fq. Let gl(s, t) =
∏s−1

i=0 (t
s − ti) ∈ Q(t) for s ∈ N and gl(v, t) =

∏n

i=1 gl(vi, t), then we have |GL(v,Fq)| = gl(v, q).

For any given dimension vector v ∈ Nn, let R(v,Fq) (resp. N(v,Fq), M(v,Fq),
E(v,Fq)) denote the set of all representations (resp. nilpotent, monomorphic
and epimorphic representations) of Q over Fq with dimension vector v.

Define the following rational functions in Q(t):

r(v, t) = tv·v−〈v,v〉,

m(v, t) = t〈v,v〉
gl(v•, t)

gl(v• − v, t)
if v• ≥ v, else m(v, t) = 0,

e(v, t) = t〈v,v〉
gl(•v, t)

gl(•v − v, t)
if •v ≥ v, else e(v, t) = 0.

Then we have |R(v,Fq)| = r(v, q), |M(v,Fq)| = m(v, q) and |E(v,Fq)| = e(v, q).

Define the rational function n(v, t) as follows:

n(v, t)

gl(v, t)
=
∑

v∗

t−
∑

k<l
〈v(k),v(l)〉

∏

k≥1

H(v(k), v(k+1), t−1)

gl(v(k), t)
, (7)

where the sum ranges over all tuples v∗ = (v(1), v(2), . . . ) of non-zero dimension
vectors such that

∑

k≥1 v
(k) = v and •v

(k) ≥ v(k+1) for k ≥ 1, and where the
function H is defined by:

H(v, w, t−1) = t(•v−w)·(•v−w)−•v·•v
gl(•v, t)

gl(•v − w, t)
. (8)

Then we have |N(v,Fq)| = n(v, q), which is due to Bozec, Schiffmann & Vasserot
[1].
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For the Jordan quiver i.e., the quiver with one vertex and one loop, the identities
in Corollary 2.1 are reduced to the following identity which is trivial:

∞
∑

n=0

qn
2

Xn

∏n−1
i=0 (q

n − qi)
=

(

∞
∑

n=0

qn
2−nXn

∏n−1
i=0 (q

n − qi)

)

·

(

∞
∑

n=0

Xn

)

. (9)

For the wild quiver which has one vertex and 2 loops, the first few terms of the
identities in Corollary 2.1 are as follows:

R(1, q) = q2,

R(2, q) = q8,

R(3, q) = q18,

N(1, q) = 1,

N(2, q) = q3 + q2 − q,

N(3, q) = q9 + 2q8 − q6 − 2q5 + q3,

M(1, q) = q2 − 1,

M(2, q) = q8 − q5 − q4 + q,

M(3, q) = q18 − q14 − q13 − q12 + q9 + q8 + q7 − q3,

E(1, q) = q2 − 1,

E(2, q) = q8 − q5 − q4 + q,

E(3, q) = q18 − q14 − q13 − q12 + q9 + q8 + q7 − q3.

Because |R(v,Fq)|, |N(v,Fq)|, |E(v,Fq)|, |M(v,Fq)| and |GL(v,Fq)| are all poly-
nomial functions in q with rational coefficients and there are infinitely many
prime numbers, the two identities in Corollary 2.1 must also hold in the quan-
tum torus.

Corollary 2.2. The following identities hold in the completion algebra of the
quantum torus Tt(Q):

∑

v∈Nn

r(v, t)

gl(v, t)
Xv =

(

∑

v∈Nn

m(v, t)

gl(v, t)
Xv

)

◦

(

∑

v∈Nn

n(v, t)

gl(v, t)
Xv

)

,

∑

v∈Nn

r(v, t)

gl(v, t)
Xv =

(

∑

v∈Nn

n(v, t)

gl(v, t)
Xv

)

◦

(

∑

v∈Nn

e(v, t)

gl(v, t)
Xv

)

.

3 Numbers of absolutely indecomposable con-

servative representations

A representation of Q is called conservative if it is monomorphic and epimorphic
at the same time. The subcategory of conservative representations is denoted by
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modck(Q). It is closed under direct summands and extensions. A representation
of Q over a field is called absolutely indecomposable if it is still indecomposable
when the ground field is extended to its algebraic closure. Let c(v, q) be the
number of conservative representations of Q over Fq with dimension v ∈ Nn and
let a(v, q) (resp. s(v, q)) be the number of isomorphism classes of absolutely
indecomposable conservative (resp. absolutely simple conservative) representa-
tions of Q over Fq with dimension v.

Following the methods of Mozgovoy and Reineke [8][7], we have the following
result.

Corollary 3.1. Assuming that c(v, q) is a polynomial function in q with rational
coefficients for all v ∈ Nn, we have the following identity in the completion
algebra of the quantum torus Tq(Q):

(

∑

v∈Nn

c(v, q)

gl(v, q)
Xv

)

◦ Exp

(

∑

v∈Nn\{0}

s(v, q)

1− q
Xv

)

= 1, (10)

where Exp is the plethystic exponential map (see [7] for details).

Following the methods of Hua [4], we have the following result.

Corollary 3.2. Assuming that c(v, q) is a polynomial function in q with rational
coefficients for all v ∈ Nn, we have the following identity in the formal power
series ring Q(q)[[X1, · · · , Xn]]:

1 +
∑

v∗

(

∏

s≥1

q〈v
s, vs〉

q〈βs, βs〉

c(vs, q)

gl(vs, q)
Xsvs

)

= Exp

(

∑

v∈Nn\{0}

a(v, q)

q − 1
Xv

)

, (11)

where the sum runs over all tuples of dimension vectors v∗ = (v1, v2, · · · , vr)
such that r ≥ 1, vi ∈ Nn for 1 ≤ i ≤ r and vr 6= 0, and βs =

∑

i≥s v
i for

1 ≤ s ≤ r.

Consequently, s(v, q) and a(v, q) are polynomials in q with rational coefficients.
Elementary calculations suggest that their coefficients are always integers. Using
the classification of indecomposable representations of the Kronecker quiver, one
can verify that the assumptions in Corollary 3.1 and 3.2 are ture for the wild
quiver which has one vertex and 2 loops.
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