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DEFORMATIONS OF MODIFIED r-MATRICES AND COHOMOLOGIES OF

RELATED ALGEBRAIC STRUCTURES

JUN JIANG AND YUNHE SHENG

Abstract. Modified r-matrices are solutions of the modified classical Yang-Baxter equation, intro-

duced by Semenov-Tian-Shansky, and play important roles in mathematical physics. In this paper,

first we introduce a cohomology theory for modified r-matrices. Then we study three kinds of

deformations of modified r-matrices using the established cohomology theory, including algebraic

deformations, geometric deformations and linear deformations. We give the differential graded Lie

algebra that governs algebraic deformations of modified r-matrices. For geometric deformations,

we prove the rigidity theorem and study when is a neighborhood of a modified r-matrix smooth in

the space of all modified r-matrix structures. In the study of trivial linear deformations, we intro-

duce the notion of a Nijenhuis element for a modified r-matrix. Finally, applications are given to

study deformations of complement of the diagonal Lie algebra and compatible Poisson structures.
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1. Introduction

In the seminal work [25], Semenov-Tian-Shansky showed that solutions of the modified clas-

sical Yang-Baxter equation, which we call modified r-matrices in this paper, play an important

role in studying solutions of Lax equations [23, 25, 26]. Furthermore, modified r-matrices are

intimately related to particular factorization problems in the corresponding Lie algebras and Lie

groups. This factorization problem was considered by Reshetikhin and Semenov-Tian-Shansky

in the framework of the enveloping algebra of a Lie algebra with a modified r-matrix to study

quantum integrable systems [24]. Any modified r-matrix induces a post-Lie algebra [1], and a

factorization theorem for group-like elements of the completion of the Lie enveloping algebra of a

post-Lie algebra was established by Ebrahimi-Fard, Mencattini and Munthe-Kaas in [9, 10]. Re-

cently, the global factorization theorem for a Rota-Baxter Lie group was given in [15]. Moreover,

modified r-matrices are also useful for the construction of flat metrics and Frobenius manifolds
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[27], and compatible Poisson structures [18]. Note that in the associative algebra context, such

objects are called modified Rota-Baxter algebras by Zhang, Gao and Guo [30, 31].

A classical approach to study a mathematical structure is to associate to it invariants. Among

these, cohomology theories occupy a central position as they enable for example to control defor-

mations or extension problems. Note that the cohomology theory for a skew-symmetric classical

r-matrix was studied in [29] under the general framework of relative Rota-Baxter operators (also

called O-operators [17]). The first purpose of this paper is to study the cohomology theory for a

modified r-matrix. In [25], Semenov-Tian-Shansky showed that a modified r-matrix R : g → g

on a Lie algebra (g, [·, ·]g) induces a new Lie algebra gR in which the Lie bracket [·, ·]R is given by

[x, y]R = [R(x), y]g + [x,R(y)]g, ∀x, y ∈ g.

In [2], Bordemann showed that the induced Lie algebra gR represents on g. We use the cor-

responding Chevalley-Eilenberg cohomology [4] of the Lie algebra gR with coefficients in g to

define the cohomology of the modified r-matrix R. It is well known that there is a one-to-one

correspondence between modified r-matrix R and Rota-Baxter operator B of weight 1 via the re-

lation R = Id + 2B. The cohomology theory of the latter was given in [16] and the Van Est type

theorem was established. We also show that the cohomology of the modified r-matrix R = Id+2B

and the cohomology of the Rota-Baxter operator B are isomorphic.

The concept of a formal deformation of an algebraic structure began with the seminal work

of Gerstenhaber [13, 14] for associative algebras. Nijenhuis and Richardson extended this study

to Lie algebras [20, 21]. There is a well known slogan, often attributed to Deligne, Drinfeld

and Kontsevich: every reasonable deformation theory is controlled by a differential graded Lie

algebra, determined up to quasi-isomorphism. This slogan has been made into a rigorous theorem

by Lurie and Pridham [19, 22]. It is also meaningful to deform maps compatible with given

algebraic structures. Recently, the deformation theory of morphisms was developed in [3, 11, 12],

the deformation theories of O-operators on Lie algebras and associative algebras were developed

in [29, 6]. The second purpose of the paper is to study deformation theories of modified r-

matrices. We study three kinds of deformations of a modified r-matrix R:

• (algebraic deformations) first we consider algebraic deformation R + R′ for certain linear

map R′, and show that this kind of deformations are governed by a differential graded Lie

algebra. This fulfill the general slogan for the deformation theory proposed by Deligne,

Drinfeld and Kontsevich;

• (geometric deformations) then we consider smooth geometric deformation Rt such that

R0 = R using the approach developed by Crainic, Schatz and Struchiner in [5]. We

show that the tangent space TROrbR of the orbit OrbR is the space of 2-coboundaries

B2(R). Consequently, the condition H2(R) = 0 will imply certain rigidity theorem, and

the condition H3(R) = 0 will imply the space of modified r-matrices on the Lie algebra g

is a manifold in a neighborhood of R. We also give the necessary and sufficient condition

on a 2-cocycle giving a geometric deformation using the Kuranishi map;

• (linear deformation) next we study linear deformation R + tR̂. In particular, trivial linear

deformations leads to the concept of Nijenhuis elements for a modified r-matrix. If x ∈ g

is a Nijenhuis element, then adx is a Nijenhuis operator on the Lie algebra gR.

Note that certain particular deformation of classical r-matrices are considered in [28] in the study

of integrable infinite-dimensional systems.

The papers is organized as follows. In Section 2, we define the cohomology of a modified

r-matrix R using the Chevalley-Eilenberg cohomology of the Lie algebra gR with coefficients
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in g. In Section 3, we construct a differential graded Lie algebra that governs algebraic defor-

mations of a modified r-matrix. In Section 4, we study geometric deformations of a modified

r-matrix. In Section 5, we study linear deformations of a modified r-matrix. In Section 6, we

study deformations of complement of the diagonal Lie algebra and compatible Poisson structures

as applications.

2. Cohomologies of modified r-matrices

In this section, we establish the cohomology theory of a modified r-matrix R using the Chevalley-

Eilenberg cohomology of the Lie algebra gR with coefficients in g.

Definition 2.1. ([25]) Let (g, [·, ·]g) be a Lie algebra. A linear map R : g → g is called a modified

r-matrix if it is a solution of the following modified classical Yang-Baxter equation:

(1) [R(x),R(y)]g = R([R(x), y]g + [x,R(y)]g) − [x, y]g, ∀x, y ∈ g.

Definition 2.2. Let R and R′ be modified r-matrices on a Lie algebra (g, [·, ·]g). A homomorphism

from R to R′ is a Lie algebra homomorphism ϕ : g → g such that

ϕ ◦ R = R′ ◦ ϕ.

Remark 2.3. The notion of a modified Rota-Baxter operator of weight −1 on an associative

algebra was introduced in [8]. More precisely, it is a linear map P : A → A on an associative

algebra (A, ·A) satisfying

P(u) ·A P(v) = P(P(u) ·A v + u ·A P(v)) − u ·A v, ∀u, v ∈ A.

It is straightforward to see that if a linear map P : A → A is a modified Rota-Baxter operator

of weight −1 on an associative algebra (A, ·A), then P is a modified r-matrix on the Lie algebra

(A, [·, ·]A), where [·, ·]A is the commutator Lie bracket.

Remark 2.4. Let R : g → g be a linear map on a Lie algebra (g, [·, ·]g). Under the condition

R2 = Id, the following structures are equivalent:

• R is a modified r-matrix;

• R is a Nijenhuis operator;

• R is a product structure;

• There is a vector space direct sum decomposition g = g1 ⊕ g2 of g into subalgebras g1 and

g2 such that R is given by

R(x, u) = (x,−u), ∀x ∈ g1, u ∈ g2.

Let (g, [·, ·]g) be a Lie algebra and R be a modified r-matrix. Semenov-Tian-Shansky showed

that (g, [·, ·]R) is a Lie algebra which plays important roles in the study of integrable systems [25],

where

(2) [x, y]R = [R(x), y]g + [x,R(y)]g, ∀x, y ∈ g.

Recall that a matched pair of Lie algebras consists of Lie algebras (g, [·, ·]g), (h, [·, ·]h), a repre-

sentation ρ : g → gl(h) of g on h and a representation ̺ : h → gl(g) of h on g, such that some

compatibility conditions are satisfied. Bordemann further showed that the induced Lie algebra gR
represents on g which leads to a matched pair of Lie algebras ((g, [·, ·]g), (g, [·, ·]R)) [2]. Here we

give a direct proof to be self-contained.
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Proposition 2.5. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). Define a linear map

ρ : g → gl(g) by

(3) ρ(x)y = [R(x), y]g − R([x, y]g), ∀x, y ∈ g.

Then ρ is a representation of the Lie algebra (g, [·, ·]R) on the vector space g.

Proof. For all x, y, z ∈ g, by (1) and (3), we have

[ρ(x), ρ(y)]z

= ρ(x)ρ(y)z − ρ(y)ρ(x)z

= ρ(x)([R(y), z]g − R([y, z]g)) − ρ(y)([R(x), z]g − R([x, z]g))

= [R(x), [R(y), z]g]g − [R(x),R([y, z]g)]g − R([x, [R(y), z]g]g) + R([x,R([y, z]g)]g)

−[R(y), [R(x), z]g]g + [R(y),R([x, z]g)]g + R([y, [R(x), z]g]g) − R([y,R([x, z]g)]g)

= [[R(x),R(y)]g, z]g − R([R(x), [y, z]g]g) − R([x, [R(y), z]g]g) + [x, [y, z]g]g

+R([R(y), [x, z]g]g) − [y, [x, z]g]g + R([y, [R(x), z]g]g)

= [[R(x),R(y)]g, z]g + [[x, y]g, z]g − R([[R(x), y]g, z]g) − R([[x,R(y)]g, z]g),

and

ρ([x, y]R)z

= ρ([R(x), y]g + [x,R(y)]g)z

= [R([R(x), y]g + [x,R(y)]g), z]g − R([[R(x), y]g + [x,R(y)]g, z]g)

= [[R(x),R(y)]g, z]g + [[x, y]g, z]g − R([[R(x), y]g, z]g) − R([[x,R(y)]g, z]g).

Thus we have ρ([x, y]R) = [ρ(x), ρ(y)], which means that ρ is a representation of (g, [·, ·]R) on the

vector space g. �

Let dR
CE

: Hom(∧kg, g) → Hom(∧k+1g, g) be the corresponding Chevalley-Eilenberg cobound-

ary operator of the Lie algebra (g, [·, ·]R) with coefficients in the representation (g, ρ). More pre-

cisely, for all f ∈ Hom(∧kg, g) and x1, · · · , xk+1 ∈ g, we have

dR
CE

f (x1, · · · , xk+1)(4)

=

k+1
∑

i=1

(−1)i+1ρ(xi) f (x1, · · · , x̂i, · · · , xk+1)

+
∑

i< j

(−1)i+ j f ([xi, x j]R, x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)

=

k+1
∑

i=1

(−1)i+1[R(xi), f (x1, · · · , x̂i, · · · , xk+1)]g

−

k+1
∑

i=1

(−1)i+1R([xi, f (x1, · · · , x̂i, · · · , xk+1)]g)(5)

+
∑

i< j

(−1)i+ j f ([R(xi), x j]g + [xi,R(x j)]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1).

Now, we define the cohomology of a modified r-matrix R : g → g. Define the space of 0-

cochains C0(R) to be 0 and define the space of 1-cochains C1(R) to be g. For n ≥ 2, define the

space of n-cochains Cn(R) by Cn(R) = Hom(∧n−1g, g).
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Definition 2.6. Let (g, [·, ·]g) be a Lie algebra and R be a modified r-matrix. The cohomology of

the cochain complex (⊕+∞
i=0

Ci(R), dR
CE

) is defined to be the cohomology for the modified r-matrix

R.

Denote the set of n-cocycles by Zn(R), the set of n-coboundaries by Bn(R) and the n-th coho-

mology group by

Hn(R) = Zn(R)/Bn(R), n ≥ 0.

It is obvious that x ∈ g is closed if and only if

adx ◦ R = R ◦ adx,

and f ∈ Hom(g, g) is closed if and only if

[R(x), f (y)]g − R([x, f (y)]g) − [R(y), f (x)]g + R([y, f (x)]g) = f ([R(x), y]g + [x,R(y)]g),(6)

for all x, y ∈ g.

At the end of this section, we recall the cohomology theory of Rota-Baxter operators given in

[16], and establish its relation with the cohomology theory of modified r-matrices.

Definition 2.7. Let (g, [·, ·]g) be a Lie algebra. A linear map B : g → g is called a Rota-Baxter

operator of weight λ if

[B(x), B(y)]g = B([B(x), y]g + [x, B(y)]g + λ[x, y]g), ∀x, y ∈ g.

The following result is well known.

Proposition 2.8. Let g be a Lie algebra and B ∈ gl(g). The linear map Id + 2B is a modified

r-matrix on g if and only if B is a Rota-Baxter operator of weight 1 on g.

Let B be a Rota-Baxter operator of weight 1 on a Lie algebra g. Consider the cochain complex

(⊕+∞
k=1

Ck(B), dB
CE

), where C1(B) = g and Ck(B) = Hom(∧k−1g, g) for k ≥ 2, and dB
CE

is defined by

dB
CE

f (u1, · · · , uk+1)

=

k+1
∑

i=1

(−1)i+1B([ f (u1, · · · , ûi, · · · , uk+1), ui]g)

+

k+1
∑

i=1

(−1)i+1[B(ui), f (u1, · · · , ûi, · · · , uk+1)]g

+
∑

i< j

(−1)i+ j f ([B(ui), u j]g − [B(u j), ui]g + [ui, u j]g, u1, · · · , ûi, · · · , û j, · · · , uk+1),

where f ∈ Ck+1(B) and ui ∈ g, 1 ≤ i ≤ k + 1.

It was proved in [16] that (dB
CE

)2 = 0. The cohomology of the cochain complex (⊕+∞
k=1

Ck(B), dB
CE

)

is defined to be the cohomology of the Rota-Baxter operator B.

Theorem 2.9. With the above notations, we have

dR
CE
= 2dB

CE
.

Consequently, for k ≥ 1, the k-th cohomology group Hk(B) of a Rota-Baxter operator B is iso-

morphic with the k-th cohomology group Hk(R) of the modified r-matrix R = Id + 2B.
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Proof. For k ≥ 1, define linear maps Φk : Ck(B) → Ck(R) by Φk = 2k−2Id. Then the following

diagram is commutative:

0 // g
dB

CE
//

1
2

Id

��

Hom(g, g)
dB

CE
//

Id

��

· · ·
dB

CE
// Hom(∧kg, g)

dB
CE

//

2k−1Id
��

· · ·

0 // g
dR

CE
// Hom(g, g)

dR
CE

// · · ·
dR

CE
// Hom(∧kg, g)

dR
CE

// · · · .

In fact, for any f ∈ Hom(∧kg, g), xi ∈ g, 1 ≤ i ≤ k + 1, we have

dR
CE

(Φk f )(x1, · · · , xk+1)

= 2k−1
(

k+1
∑

i=1

(−1)i+1([xi, f (x1, · · · , x̂i, · · · , xk+1)]g

+2[B(xi), f (x1, · · · , x̂i, · · · , xk+1)]g)

−

k+1
∑

i=1

(−1)i+1[xi, f (x1, · · · , x̂i, · · · , xk+1)]g

−

k+1
∑

i=1

(−1)i+12B([xi, f (x1, · · · , x̂i, · · · , xk+1)]g)

+
∑

i< j

(−1)i+ j2 f ([xi, x j]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)

+
∑

i< j

(−1)i+ j2 f ([B(xi), x j]g + [xi, B(x j)]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)
)

= 2k
(

k+1
∑

i=1

(−1)i+1([B(xi), f (x1, · · · , x̂i, · · · , xk+1)]g − B([xi, f (x1, · · · , x̂i, · · · , xk+1)]g))

+
∑

i< j

(−1)i+ j f ([B(xi), x j]g + [xi, B(x j)]g + [xi, x j]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xk+1)
)

= Φk+1(dB
CE

f )(x1, · · · , xk+1),

which implies that dR
CE
= 2dB

CE
and Hk(B) � Hk(R), k ≥ 1. �

Example 2.10. Consider the Lie algebra g = sl(n,R). It is well known that the Cartan subalgebra

of sl(n,R) is H = span{Eii − Ei+1i+1|1 ≤ i ≤ n − 1}. Denote the Borel subalgebra of sl(n,R) by

B(sl(n,R)). It is well known that B(sl(n,R)) = H ⊕ span{Ei j|i < j}. Thus sl(n,R) = B(sl(n,R))⊕A

as vector spaces, where A = span{Ei j|i > j}. Define a linear map R : sl(n,R) → sl(n,R) by

R(x + u) = x − u, ∀x ∈ B(sl(n,R)), u ∈ A.

By Remark 2.4, we obtain that R is a modified r-matrix on the Lie algebra sl(n,R). Assume that

a = x + u ∈ sl(n,R) where x ∈ B(sl(n,R)) and u ∈ A, such that dR
CE

a = 0, that is

dR
CE

a(y) = [R(y), a] − R([y, a]) = 0, ∀y ∈ sl(n,R).

• For any y ∈ A, [R(y), a] − R([y, a]) = 0 implies that x ∈ H.

• For any y ∈ B(sl(n,R)), [R(y), a] − R([y, a]) = 0 implies that u = 0.

Thus dR
CE

a = 0 if and only if a ∈ H. Therefore, H1(R) � Rn−1.
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Example 2.11. Consider the Lie algebra g = sl(2,R), where the Lie bracket is given by [e, f ] =

h, [h, e] = 2e and [h, f ] = −2 f with respect to the basis {e, f , h}. Then R : sl(2,R) → sl(2,R)

defined by

R(e, f , h) = (e, f , h)



















1 0 0

0 −1 0

0 0 1



















,

is a modified r-matrix. Let T =



















t11 t12 t13

t21 t22 t23

t31 t32 t33



















: sl(2,R) → sl(2,R) satisfy dR
CE

T = 0. Then we

obtain

0 = [e, T ( f )] + [ f , T (e)] − R([e, T ( f )]) + R([ f , T (e)]),

0 = [e, T (h)] − [h, T (e)] − R([e, T (h)]) + R([h, T (e)]) + 4T (e)

and

0 = −[ f , T (h)] − [h, T ( f )] − R([ f , T (h)]) + R([h, T ( f )]).

Thus we have t11 = t21 = t31 = 0 and t22 = t13 = 0. By Example 2.10, we have B2(R) = ImdR
CE
�

g

ker dR
CE

=
g

H1(R)
� R2. Thus H2(R) ≃ R2.

3. Algebraic deformations of modified r-matrices

In this section, we construct a differential graded Lie algebra that governs algebraic deforma-

tions of a modified r-matrix.

Let (g, [·, ·]g) be a Lie algebra. We consider the graded vector space C∗(g) = ⊕+∞
k=1

Hom(∧kg, g).

Define a skew-symmetric bracket operation

~·, ·� : Hom(∧p
g, g) × Hom(∧q

g, g) → Hom(∧p+q
g, g)

by
�

f , g
�

(x1, x2, · · · , xp+q)(7)

=
∑

σ∈S (q,1,p−1)

(−1)σ f ([g(xσ(1), · · · , xσ(q)), xσ(q+1)]g, xσ(q+2), · · · , xσ(p+q))

−(−1)pq
∑

σ∈S (p,1,q−1)

(−1)σg([ f (xσ(1), · · · , xσ(p)), xσ(p+1)]g, xσ(p+2), · · · , xσ(p+q))

+(−1)pq
∑

σ∈S (p,q)

(−1)σ[ f (xσ(1), · · · , xσ(p)), g(xσ(p+1), · · · , xσ(p+q))]g,

for all f ∈ Hom(∧pg, g), g ∈ Hom(∧qg, g).

Then we have the following theorem characterizing modified r-matrices.

Theorem 3.1. Let (g, [·, ·]g) be a Lie algebra. Then (C∗(g), ~·, ·�) is a graded Lie algebra and its

Maurer-Cartan elements are precisely Rota-Baxter operators of weight 0.

Moreover, a linear map R ∈ gl(g) is a modified r-matrix on the Lie algebra g if and only if R

satisfies the equation

(8) ~R,R� = 2π.

where denote [·, ·]g by π.
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Proof. By [29, Corollary 6.1], (C∗(g), ~·, ·�) is a graded Lie algebra.

For R ∈ gl(g), we have

~R,R� (x, y) = 2(R([R(x), y]g) − R([R(y), x]g) − [R(x),R(y)]g), ∀x, y ∈ g.

By this equality, we can deduce that on the one hand R is a Rota-Baxter operator of weight 0 if

and only if ~R,R� = 0, i.e. R is a Maurer-Cartan element. On the other hand, R is a modified

r-matrix on the Lie algebra g if and only if R satisfies (8). �

Proposition 3.2. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). Then ~R,R� is in the

center of the graded Lie algebra (C∗(g), ~·, ·�).

Proof. Denote the Lie bracket [·, ·]g by π. Since R is a modified r-matrix on the Lie algebra g, we

have ~R,R� = 2π via Theorem 3.1. For all f ∈ Hom(∧kg, g), by (7), we have
�

2π, f
�

(x1, · · · , xk, xk+1, xk+2)

= 2
(
∑

σ∈S (k,1,1)

(−1)|σ|π(π( f (xσ(1), · · · , xσ(k)), xσ(k+1)), xσ(k+2))

−
∑

σ∈S (2,1,k−1)

(−1)|σ| f (π(π(xσ(1), xσ(2)), xσ(3)), xσ(4), · · · , xσ(k+2))

+
∑

σ∈S (2,k)

(−1)|σ|π(π(xσ(1), xσ(2)), f (xσ(3), · · · , xσ(k+2)))
)

= 0,

which implies that ~R,R� is in the center of C∗(g). �

We denote ~R, ·� by dR. Now we obtain the differential graded Lie algebra that governs alge-

braic deformations of a modified r-matrix.

Theorem 3.3. With the above notations, (C∗(g), ~·, ·� , dR) is a differential graded Lie algebra.

Furthermore, R + R′ is still a modified r-matrix on the Lie algebra (g, [·, ·]g) if and only if R′ is

a Maurer-Cartan element of the differential graded Lie algebra (C∗(g), ~·, ·� , dR).

Proof. It follows from the graded Jacobi identity that dR is a graded derivation on the graded Lie

algebra (C∗(g), ~·, ·�). By Proposition 3.2, we have

d2
R f =

�

R,
�

R, f
��

=
�

~R,R� , f
�

−
�

R,
�

R, f
��

,

which implies that

d2
R f =

�

R,
�

R, f
��

=
1

2

�

~R,R� , f
�

= 0.

Therefore, (C∗(g), ~·, ·� , dR) is a differential graded Lie algebra.

Let R′ be a linear map from g to g. Then R + R′ is a modified r-matrix if and only if
�

R + R′,R + R′
�

= 2π,

that is

0 =
�

R,R′
�

+
1

2

�

R′,R′
�

= dRR′ +
1

2

�

R′,R′
�

.

Thus R + R′ is still a modified r-matrix on the Lie algebra (g, [·, ·]g) if and only if R′ is a Maurer-

Cartan element of the differential graded Lie algebra (C∗(g), ~·, ·� , dR). �

At the end of this section, we establish the relationship between the coboundary operator dR
CE

and the differential dR.
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Proposition 3.4. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). Then we have

dR
CE

( f ) = (−1)n−1 �R, f
�

, ∀ f ∈ Hom(∧n−1
g, g).

Proof. For any f ∈ Hom(∧n−1g, g) and xi, 1 ≤ i ≤ n, by (7), we have

(−1)n−1 �R, f
�

(x1, · · · , xn)

= (−1)n−1
(
∑

σ∈S (n−1,1)

(−1)σR([ f (xσ(1), · · · , xσ(n−1)), xσ(n)]g)

−(−1)n−1
∑

σ∈S (1,1,n−2)

(−1)σ f ([R(xσ(1)), xσ(2)]g, xσ(3), · · · , xσ(n))

+(−1)n−1
∑

σ∈S (1,n−1)

(−1)σ[R(xσ(1)), f (xσ(2), · · · , xσ(n))]g
)

=

n
∑

i=1

(−1)i+1R([ f (x1, · · · , x̂i, · · · , xn), xi]g)

+
∑

i< j

(−1)i+ j
(

f ([R(xi), x j]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xn)

− f ([R(x j), xi]g, x1, · · · , x̂i, · · · , x̂ j, · · · , xn)
)

+

n
∑

i=1

(−1)i+1[R(xi), f (x1, · · · , x̂i, · · · , xn)]g

= dR
CE

( f )(x1, · · · , xn).

We finish the proof. �

4. Geometric deformations of modified r-matrices

In this section, we study geometric deformations of modified r-matrices following the approach

developed by Crainic, Schatz and Struchiner. We show that the condition H2(R) = 0 will imply

certain rigidity theorem, and the condition H3(R) = 0 will imply the space of modified r-matrices

on the Lie algebra g is a manifold in a neighborhood of R. We also give the necessary and

sufficient condition on a 2-cocycle giving a geometric deformation using the Kuranishi map.

Definition 4.1. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). A geometric deformation

of R is a smooth one parameter family of modified r-matrices Rt on the Lie algebra (g, [·, ·]g) such

that R0 = R.

Definition 4.2. Two geometric deformations Rt and R′t of R are called equivalent if there exists a

smooth family of modified r-matrices isomorphism ϕt : Rt → R′t such that ϕ0 = Id, where ϕt are

inner automorphisms of the Lie algebra g.

Let Rt be a geometric deformation of R. Denote d
dt
|t=0Rt by Ṙ0. Then there is the following

proposition.

Proposition 4.3. With the above notations, Ṙ0 is a 2-cocycle in C2(R). Moreover if Rt and R′t are

equivalent geometric deformations of R, then [Ṙ0] = [Ṙ′
0
] in H2(R).

Proof. Since Rt is a geometric deformation of R, for any x, y ∈ g, we have

[R(x), Ṙ0(y)]g + [Ṙ0(x),R(y)]g(9)
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=
d

dt
|t=0[Rt(x),Rt(y)]g

=
d

dt
|t=0(Rt([Rt(x), y]g + [x,Rt(y)]g) − [x, y]g)

= Ṙ0([R(x), y]g + [x,R(y)]g) + R([Ṙ0(x), y]g + [x, Ṙ0(y)]g).

Thus by (6) and (9), we have dR
CE

(Ṙ0) = 0.

Assume that ϕt is an isomorphism from Rt to R′t , that is

ϕt(Rt(x)) = R′t(ϕt(x)), ∀x ∈ g.

Denote d
dt
|t=0ϕt by ϕ̇0. Then we have ϕ̇0(R(x)) + Ṙ0(x) = R(ϕ̇0(x)) + Ṙ′

0
(x). Since ϕt are inner

automorphisms of the Lie algebra g, it follows that ϕ̇0 is an inner derivation of the Lie algebra g.

Thus there exists y ∈ g such that ϕ̇0 = ady. Therefore, we have

[y,R(x)]g + Ṙ0(x) = R([y, x]g) + Ṙ′
0
(x),

which implies Ṙ0 − Ṙ′
0
= dR

CE
(y). Thus [Ṙ0] = [Ṙ′

0
] in H2(R). �

Next, we consider under which conditions does a cocycle f ∈ Z2(R) determine a geometric

deformation Rt. Define the Kuranishi map K : Z2(R) → H3(R) by

K( f ) = [
�

f , f
�

], ∀ f ∈ Z2(R).

Now we give a necessary condition of the above question. The sufficient condition need some

preparations and will be given at the end of this section.

Proposition 4.4. Assume that there exists a geometric deformation Rt of R on a Lie algebra

(g, [·, ·]g) such that Ṙ0 = f ∈ Z2(R), then K( f ) = 0.

Proof. Consider the Taylor expansion of Rt around t = 0, then we have

Rt(x) = R(x) + t f (x) +
t2

2
g(x) + o(t3).

Since [Rt(x),Rt(y)]g = Rt([Rt(x), y]g + [x,Rt(y)]g) − [x, y]g and f ∈ Z2(R), we have

(10)
t2

2

(

dR
CE

(g)(x, y) + 2[ f (x), f (y)]g − 2 f ([ f (x), y]g + [x, f (y)]g)
)

+ o(t3) = 0.

Thus by (7) and (10), we obtain
�

f , f
�

= dR
CE

g, which implies that K( f ) = 0. �

Let E
π
→ M be a vector bundle. Assume that there is a smooth action · : G × E → E of a

Lie group G on E preserving the zero-section Z : M → E. It follows that M inherits a G-action.

We also denote the action of G on M by · : G × M → M. For all x ∈ M, define a smooth map

µx : G → M by µx(g) = g · x. Denote the tangent map from g to Tx M by D(µx)eG
, where eG is the

unit of G.

Definition 4.5. ([5]) A section s : M → E is called equivariant if s satisfies

s(g · x) = g · s(x), ∀g ∈ G, x ∈ M.

Denote the zero set of a section s : M → E by z(s) = {x ∈ M|s(x) = 0}. A zero x ∈ M of s is

called non-degenerate if the sequence

g
D(µx)eG

−→ Tx M
Dv(s)x

−→ Ex

is exact, where Dv(s)x is the vertical derivative of s at x.
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Proposition 4.6. ([5]) Let s be an equivariant section of the vector bundle E
π
→ M and x be

a non-degenerate zero of s. Then there is an open neighborhood U of x and a smooth map

p : U → G such that for all m ∈ U with s(m) = 0, one has p(m) · x = m. In particular, the orbit

of x under the action of G and the zero set of s coincide in an open neighborhood of x.

Proposition 4.7. ([5]) Let E and F be vector bundles over a smooth manifold M. Let s ∈ Γ(E) be

a section and φ ∈ Γ(Hom(E, F)) be a vector bundle map such that φ ◦ s = 0. Suppose that x ∈ M

is s(x) = 0 such that

TxM
Dv(s)x

−→ Ex

φx

−→ Fx

is exact. Then s−1(0) is locally a manifold around x of dimension dim ker(Dv(s)x).

Denote the group whose elements are inner automorphisms of a Lie algebra g by InnAut(g).

Then its Lie algebra is the Lie algebra of inner derivations of g and denote it by InnDer(g). Define

an action of InnAut(g) on Hom(g, g) by

· : InnAut(g) × Hom(g, g) → Hom(g, g), A · f = A f A−1,

for all A ∈ InnAut(g), f ∈ Hom(g, g). Assume that R is a modified r-matrix on a Lie algebra g,

then the orbit OrbR = {A · R|A ∈ InnAut(g)} of R is a manifold. Define a map µR : InnAut(g) →

Hom(g, g) by µR(A) = A · R. Then TROrbR is D(µR)eG
(InnDer(g)), where D(µR)eG

is the tangent

map of µR at eG.

Proposition 4.8. With the above notations, TROrbR is B2(R).

Proof. Since TROrbR = D(µR)eG
(InnDer(g)), for any v ∈ TROrbR, there exists x ∈ g such that

v =
d

dt
|t=0 exp(tadx) · R

=
d

dt
|t=0(exp(tadx)R exp(−tadx))

= adxR − Radx

= −dR
CE

x.

Thus we have TROrbR = B2(R). �

Theorem 4.9. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). If H2(R) = 0, then there

exists an open neighborhood U ⊂ Hom(g, g) of R and a smooth map p : U → InnAut(g) such

that p(R′) · R = R′ for every modified r-matrix R′ ∈ U.

Proof. Denote by M = Hom(g, g) and E = Hom(g, g) × Hom(∧2g, g). Then E is a trivial vector

bundle over M with fiber Hom(∧2g, g). Define an action of InnAut(g) on the manifold E by

· : InnAut(g) × E → E, A · ( f , α) = (A f A−1, Aα ◦ A−1),

for ( f , α) ∈ E, A ∈ InnAut(g), where Aα ◦ A−1(x, y) = Aα(A−1x, A−1y) for any x, y ∈ g. Define a

section s : M → E by

s( f ) = ( f , S ( f )), ∀ f ∈ M,

where S : Hom(g, g) → Hom(∧2g, g) is given by

S ( f )(x, y) = [ f (x), f (y)]g − f ([ f (x), y]g + [x, f (y)]g) + [x, y]g,

for all f ∈ Hom(g, g), x, y ∈ g. Then for any A ∈ InnAut(g), f ∈ M and x, y ∈ g, we have

AS ( f ) ◦ A−1(x, y)
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= A([ f (A−1x), f (A−1y)]g − f ([ f (A−1x), A−1y]g + [A−1x, f (A−1y)]g) + [A−1x, A−1y]g)

= [A f (A−1x), A f (A−1y)]g − A f A−1([A f (A−1x), y]g + [x, A f (A−1y)]g) + [x, y]g

= S (A f A−1)(x, y).

Thus we have

A · s( f ) = (A f A−1, AS ( f ) ◦ A−1) = s(A · f ),

which implies that s is an equivariant section.

Since R is a modified r-matrix on the Lie algebra g, it follows that R ∈ z(s). Moreover, since E

is a trivial vector bundle, we have Dv(s)R = D(S )R : TR M → ER. For any g ∈ Hom(g, g), x, y ∈ g,

D(S )R(g)(x, y)(11)

=
d

dt
|t=0S (R + tg)(x, y)

=
d

dt
|t=0

(

[R(x) + tg(x),R(y) + tg(y)]g

−(R + tg)([R(x) + tg(x), y]g + [x,R(y) + tg(y)]g) + [x, y]g
)

= [g(x),R(y)]g + [R(x), g(y)]g − R([g(x), y]g + [x, g(y)]g) − g([R(x), y]g + [x,R(y)]g)

= dR
CE

(g)(x, y).

By Proposition 4.8 and H2(R) = 0, we have that R is a non-degenerate zero of s. By Propo-

sition 4.6, there exists an open neighborhood U ⊂ Hom(g, g) of R and a smooth map p : U →

InnAut(g) such that p(R) · R = R′ for every modified r-matrix R′ ∈ U. �

Theorem 4.10. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). If H3(R) = 0, then the

space of modified matrices on the Lie algebra g is a manifold in a neighborhood of R, whose

dimension is dimZ2(R).

Proof. Denote by M = Hom(g, g), E = Hom(g, g)×Hom(∧2g, g) and F = Hom(g, g)×Hom(∧3g, g).

Then E and F are trivial vector bundles over M with fiber Hom(∧2g, g) and Hom(∧3g, g) respec-

tively. Define a smooth map φ : E → F by

φ( f , α) = ( f ,
�

f , α
�

), ∀ f ∈ M, α ∈ Hom(∧2
g, g).

Thus φ is a vector bundle map.

Moreover, denote the Lie bracket [·, ·]g by π, define s( f ) = π− 1
2

�

f , f
�

. By Proposition 3.2, we

know that π lies in the center, we have φ◦ s( f ) = ( f ,
�

f , π
�

− 1
2

�

f ,
�

f , f
��

) = ( f , 0), which implies

φ ◦ s = 0. Moreover, denote φR : ER → FR by φ(R, ·), then φR = dR
CE

. By (11) and H3(R) = 0, we

have that

TR M
Dv(s)R

−→ ER

φR

−→ FR

is exact. By Proposition 4.7, we obtain that the space of modified r-matrices on the Lie algebra g

is a manifold in a neighborhood of R, whose dimension is dimZ2(R). �

At the end of this section, we give the sufficient condition on a 2-cocycle to give a geometric

deformation. Recall that the necessary condition is given in Proposition 4.4 using the Kuranishi

map.

Corollary 4.11. With the above notations, if H3(R) = 0, then any f ∈ Z2(R) gives rise to a

geometric deformation of R.



DEFORMATIONS OF MODIFIED r-MATRICES 13

Proof. Since R is a modified r-matrix and H3(R) = 0, we have that the space W of modified r-

matrices on the Lie algebra g is a manifold in a neighborhood of R, whose dimension is dimZ2(R).

Assume γ(t) ∈ W, by Proposition 4.3, we have γ̇(0) ∈ Z2(R). Moreover, dimW = dimZ2(R), then

TRW = Z2(R). Thus any f ∈ Z2(R) gives rise to a geometric deformation of R. �

5. Linear deformations of modified r-matrices

In this section, we study linear deformations of a modified r-matrix using the established co-

homology theory. In particular, a trivial linear deformation leads to a Nijenhuis element for a

modified r-matrix R.

Definition 5.1. Let R be a modified r-matrix on the Lie algebra (g, [·, ·]g) and R̂ : g → g be a

linear map. If there exists a positive number ǫ ∈ R such that Rt = R+tR̂ is still a modified r-matrix

on the Lie algebra (g, [·, ·]g) for all t ∈ (−ǫ, ǫ), we say that R̂ generates a linear deformation of

the modified r-matrix R.

Definition 5.2. Let R : g → g be a modified r-matrix on g. Two linear deformations R1
t = R+ tR̂1

and R2
t = R + tR̂2 are said to be equivalent if there exists an x ∈ g such that

ϕt = Idg + tadx,

satisfies the following conditions:

(i) ϕt([y, z]g) = [ϕt(y), ϕt(z)]g, ∀y, z ∈ g,

(ii) R2
t ◦ ϕt = ϕt ◦ R1

t .

Theorem 5.3. Let R̂ : g → g generate a linear deformation of the modified r-matrix R. Then R̂

is a 2-cocycle.

Let R1
t and R2

t be equivalent linear deformations of R generated by R̂1 and R̂2 respectively. Then

[R̂1] = [R̂2] in H2(R).

Proof. Since Rt = R + tR̂ is a modified r-matrix on the Lie algebra (g, [·, ·]g), we have

[Rt(x),Rt(y)]g = Rt([Rt(x), y]g + [x,Rt(y)]g) − [x, y]g, ∀x, y ∈ g.

Consider the coefficients of t and t2 respectively, we have

[R̂(x),R(y)]g + [R(x), R̂(y)]g(12)

= R([R̂(x), y]g + [x, R̂(y)]g) + R̂([R(x), y]g + [x,R(y)]g), ∀x, y ∈ g,

and

[R̂(x), R̂(y)]g = R̂([R̂(x), y]g + [x, R̂(y)]g).(13)

By (12), we deduce that R̂ is a 2-cocycle of the modified r-matrix R.

If R1
t and R2

t are equivalent linear deformations of R, then there exists x ∈ g such that

(Idg + tadx)(R + tR̂1)(u) = (R + tR̂2)(Idg + tadx)(u), ∀u ∈ g,

which implies

(14) R̂1(u) − R̂2(u) = [R(u), x]g − R([u, x]g), ∀u ∈ g.

By (14), we have

R̂1 − R̂2 = dR
CE

x,

where dR
CE

is given by (4). Thus [R̂1] = [R̂2] in H2(R). �
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Definition 5.4. A linear deformation of a modified r-matrix R generated by R̂ is trivial if there

exists an x ∈ g such that Id + tadx is an isomorphism from Rt = R + tR̂ to R.

Definition 5.5. Let R be a modified r-matrix on a Lie algebra (g, [·, ·]g). An element x ∈ g is called

a Nijenhuis element associated to R if x satisfies

[[x, y]g, [x, z]g]g = 0,(15)

[x, [x,R(y)]g]g = [x,R([x, y]g)]g,(16)

for all y, z ∈ g.

Let R̂ generate a trivial linear deformation of a modified r-matrix R on a Lie algebra (g, [·, ·]g).

Then there exists x ∈ g such that

(Id + tadx)[y, z]g = [y + t[x, y]g, z + t[x, z]g]g,

R(y + t[x, y]g) = (Id + tadx)(R(y) + tR̂(y)),

for all y, z ∈ g. Therefore, we have

[[x, y]g, [x, z]g]g = 0, [x, R̂(y)]g = 0, R([x, y]g) = [x,R(y)]g + R̂(y).

Thus a trivial linear deformation gives rise to a Nijenhuis element.

Theorem 5.6. Let R be a modified r-matrix on a Lie algebra g. Then for any Nijenhuis element

x ∈ g, Rt = R + tdR
CE

x is a trivial linear deformation of the modified r-matrix R.

Proof. Denote by R̂ = dR
CE

x. To show that Rt is a linear deformation of R, it suffices to show

that (12) and (13) hold. Note that (12) means that R̂ is closed, which holds naturally since now

R̂ = dR
CE

x is exact. Thus, we need to verify that Equation (13) holds. For any y, z ∈ g, by (4), we

obtain R̂(y) = [R(y), x]g − R([y, x]g). Moreover, by (1), (15) and (16), it follows that

[R([y, x]g),R([z, x]g)]g
(1),(15)
= R

(

[R([y, x]g), [z, x]g]g + [[y, x]g,R([z, x]g)]g
)

= R
(

[R([y, x]g), [z, x]g]
)

+ R
(

[[y, x]g,R([z, x]g)]g
)

= R
(

[[R([y, x]g), z]g, x]g
)

+ R
(

[z, [R([y, x]g), x]g]
)

+R
(

[[y,R([z, x]g)]g, x]g
)

+ R
(

[y, [x,R([z, x]g)]g]g
)

(15),(16)
= R

(

[[R([y, x]g), z]g, x]g
)

+ R
(

[x, [z, [x,R(y)]g]g]
)

+R
(

[[y,R([z, x]g)]g, x]g
)

− R
(

[x, [y, [x,R(z)]g]g]g
)

,

−[[R(y), x]g,R([z, x]g)]g

= −[[R(y),R([z, x]g)]g, x]g − [R(y), [x,R([z, x]g)]g]g
(1)
= −[R([R(y), [z, x]g]g), x]g − [R([y,R([z, x]g)]g), x]g

+[[y, [z, x]g]g, x]g − [R(y), [x,R([z, x]g)]g]g
(15),(16)
= −[x, [x,R([R(y), z]g)]g]g − [R([z, [R(y), x]g]g), x]g − [R([y,R([z, x]g)]g), x]g

+[[y, [z, x]g]g, x]g + [x, [x, [R(y),R(z)]g]g]g + [[x, [R(y), x]g]g,R(z)]g
(1),(16)
= [x, [x,R([y,R(z)]g)]g]g − [x, [x, [y, z]g]g]g + [[y, [z, x]g]g, x]g
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−[R([z, [R(y), x]g]g), x]g − [R([y,R([z, x]g)]g), x]g − [[x,R([x, y]g]g),R(z)]g

and

−[R([y, x]g), [R(z), x]g]g
(1)
= [R([[R(z), y]g, x]g), x]g + [R([y, [R(z), x]g]g), x]g + [R([z,R([y, x]g)]g), x]g

−[[z, [y, x]g]g, x]g + [R(z), [x,R([y, x]g)]g]g.

By (15) and above equations, we have

[R̂(y), R̂(z)]g − R̂([R̂(y), z]g + [y, R̂(z)]g)

= [[R(y), x]g − R([y, x]g), [R(z), x]g − R([z, x]g)]g

−[R([[R(y), x]g − R([y, x]g), z]), x]g + R([[[R(y), x]g − R([y, x]g), z]g, x]g)

−[R([y, [R(z), x]g − R([z, x]g)]g), x]g + R([[y, [R(z), x]g − R([z, x]g)]g, x]g)

= −[[R(y), x]g,R([z, x]g)]g + [R([y, x]g),R([z, x]g)]g − [R([y, x]g), [R(z), x]g]g

−[R([[R(y), x]g − R([y, x]g), z]), x]g + R([[[R(y), x]g − R([y, x]g), z]g, x]g)

−[R([y, [R(z), x]g − R([z, x]g)]g), x]g + R([[y, [R(z), x]g − R([z, x]g)]g, x]g)

= 0.

Thus Rt = R + tdR
CE

x is a linear deformation of the modified r-matrix R. Since x ∈ g is a

Nijenhuis element, we have (Id + tadx)[y, z]g = [y + t[x, y]g, z + t[x, z]g]g and R ◦ (Id + tadx) =

(Id + tadx) ◦ (R + tdR
CE

x). Thus for any Nijenhuis element x ∈ g, Rt = R + tdR
CE

x is a trivial linear

deformation of the modified r-matrix R. �

At the end of this section, we consider the relation between linear deformations of modified

r-matrices and linear deformations of the induced Lie algebras. Recall that a skew-symmetric

bilinear map ω : ∧2g → g generates a linear deformation of a Lie algebra (g, [·, ·]g) if [·, ·]t =

[·, ·]g + tω defines a Lie algebra structure on g for all t ∈ (−ǫ, ǫ).

Proposition 5.7. Let R̂ generate a linear deformation of a modified r-matrix R on a Lie algebra

(g, [·, ·]g). Then ω defined by

ω(x, y) = [R̂(x), y]g + [x, R̂(y)]g, ∀x, y ∈ g,

generates a linear deformation of the Lie algebra (g, [·, ·]R) given by the modified r-matrix R,

which is exactly the one associated to the linear deformation of the modified r-matrix R.

Proof. It is obvious that

[x, y]Rt
= [R(x), y]g + [x,R(y)]g + t([R̂(x), y]g + [x, R̂(y)]g) = [x, y]R + tω(x, y).

Since [·, ·]Rt
are Lie algebra structures, we have that ω generates a linear deformation of the Lie

algebra (g, [·, ·]R) given by the modified r-matrix R. �

The notion of a Nijenhuis operator on a Lie algebra (g, [·, ·]g) was given in [7], which gives rise

to a trivial linear deformation of the Lie algebra (g, [·, ·]g).

Definition 5.8. ([7]) Let (g, [·, ·]g) be a Lie algebra. A linear map N : g → g is called Nijenhuis

operator if

[N(x),N(y)]g = N([N(x), y]g + [x,N(y)]g) − N2([x, y]g), ∀x, y ∈ g.

Theorem 5.9. Let x ∈ g be a Nijenhuis element associated to a modified matrix R. Then adx is a

Nijenhuis operator on the Lie algebra (g, [·, ·]R).
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Proof. For any x, y, z ∈ g, by (15) and (16), we have

[adxy, adxz]R

= [R([x, y]g), [x, z]g]g + [[x, y]g,R([x, z]g)]g

= [[R([x, y]g), x]g, z]g + [x, [R([x, y]g), z]g]g + [[x,R([x, z]g)]g, y]g + [x, [y,R([x, z]g)]g]g

= −[[x, [x,R(y)]g]g, z]g + [x, [R([x, y]g), z]g]g + [[x, [x,R(z)]g]g, y]g + [x, [y,R([x, z]g)]g]g

= −[x, [[x,R(y)]g, z]g]g + [x, [R([x, y]g), z]g]g + [x, [[x,R(z)]g, y]g]g + [x, [y,R([x, z]g)]g]g

and

adx([adxy, z]R + [y, adxz]R) − ad2
x([y, z]R)

= [x, [R([x, y]g), z]g]g + [[x, y]g,R(z)]g + [x, [R(y), [x, z]g]g]g

[x, [y,R([x, z]g)]g]g − [x, [x, [R(y), z]g]g]g − [x, [x, [y,R(z)]g]g]g.

Thus [adxy, adxz]R = adx([adxy, z]R+[y, adxz]R)−ad2
x([y, z]R), which implies that adx is a Nijenhuis

operator on the Lie algebra (g, [·, ·]R). �

6. Applications

In this section, we give some applications of the above deformation theories, including defor-

mations of complement of the diagonal Lie algebra g∆ and compatible Poisson structures.

6.1. Deformations of complements. Let (g, [·, ·]g) be a Lie algebra, then we have a direct-

product Lie algebra structure [·, ·]⊕ on g ⊕ g, where

[(x1, y1), (x2, y2)]⊕ = ([x1, x2]g, [y1, y2]g), ∀xi, yi ∈ g, i = 1, 2.

Define the subspace g∆ by g∆ = {(x, x)|∀x ∈ g} and the subspace g−∆ = {(x,−x)|∀x ∈ g}. It

is obvious that g∆ is a Lie subalgebra of g ⊕ g, while g−∆ is not a Lie subalgebra. To find a

complement of g∆ which is also a Lie subalgebra, it is natural to consider the graph of certain

linear map from g−∆ to g∆. It is known that a complement of g∆ is isomorphic to a graph of a

linear map from g−∆ to g∆. Let R ∈ gl(g) be a linear map. Define a linear map R̂ : g−∆ → g∆ by

R̂(x,−x) = (−R(x),−R(x)), ∀x ∈ g.

Proposition 6.1. With the above notations, the graphG(R̂) := {R̂u+u|u ∈ g−∆} is a Lie subalgebra

of (g ⊕ g, [·, ·]⊕) if and only if R is a modified r-matrix.

Proof. For all x, y ∈ g, we have

[(−R(x),−R(x)) + (x,−x), (−R(y),−R(y)) + (y,−y)]⊕

= ([x, y]g, [x, y]g) + ([R(x),R(y)]g, [R(x),R(y)]g)

+(−[R(x), y]g, [R(x), y]g) + (−[x,R(y)]g, [x,R(y)]g)

= ([x, y]g + [R(x),R(y)]g, [x, y]g + [R(x),R(y)]g)

+(−[R(x), y]g − [x,R(y)]g, [R(x), y]g + [x,R(y)]g).

Thus G(R̂) is a Lie subalgebra if and only if

R([R(x), y]g + [x,R(y)]g) = [x, y]g + [R(x),R(y)]g,

i.e. R is a modified r-matrix. �

Proposition 6.2. Let R be a modified r-matrix. Then (g∆,G(R̂)) is a matched pair of Lie algebras.
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Proof. It is obvious that g ⊕ g = g∆ ⊕ G(R̂) since g∆
⋂

G(R̂) = 0. Then the conclusion follows

from the fact that both g∆ and G(R̂) are Lie subalgebras. �

Summarizing the above studies, we have the following conclusion.

Theorem 6.3. Let Rt be a geometric deformation of a modified r-matrix R. Then G(R̂t) is a

deformation of the complement G(R̂). Moreover, (g∆,G(R̂t)) are matched pairs of Lie algebras.

6.2. Compatible Poisson structures. A compatible Poisson structure consists of two Poisson

structures π, π′ on a manifold M such that π + π′ is also a Poisson structure on the manifold M.

Let R be a modified r-matrix on a Lie algebra g. Then (g, [·, ·]R) is a Lie algebra and we denote

by (g∗, {·, ·}R) the corresponding linear Poisson manifold.

Proposition 6.4. Let R be a modified r-matrix on a Lie algebra g and Rt = R + tR̂ be a linear

deformation of R. For any t1, t2 ∈ R, {·, ·}Rt1
and {·, ·}Rt2

are compatible Poisson structures on g∗.

Proof. By the fact that R + t1+t2
2

R̂ is also a modified r-matrix on the Lie algebra g, we have

[x, y]Rt1
+ [x, y]Rt2

= 2([R(x) +
t1 + t2

2
R̂(x), y]g + [x,R(y) +

t1 + t2

2
R̂(y)]),

which implies that [·, ·]Rt1
+ [·, ·]Rt2

is also a Lie bracket on the Lie algebra g by (2). Thus, for any

t1, t2 ∈ R, {·, ·}Rt1
and {·, ·}Rt2

are compatible Poisson structures on g∗. �
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