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ON DENSENESS OF CERTAIN DIRECTION AND GENERALIZED

DIRECTION SETS

DEEPA ANTONY, RUPAM BARMAN AND JAITRA CHATTOPADHYAY

Abstract. Direction sets, recently introduced by Leonetti and Sanna, are generalization of
ratio sets of subsets of positive integers. In this article, we generalize the notion of direction
sets and define k-generalized direction sets and distinct k-generalized direction sets for subsets
of positive integers. We prove a necessary condition for a subset of Sk−1 := {x ∈ [0, 1]k :
||x|| = 1} to be realized as the set of accumulation points of a distinct k-generalized direction
set. We provide sufficient conditions for some particular subsets of positive integers so that the
corresponding k-generalized direction sets are dense in Sk−1. We also consider the denseness
properties of certain direction sets and give a partial answer to a question posed by Leonetti
and Sanna. Finally we consider a similar question in the framework of an algebraic number
field.

1. Introduction and statements of results

For a non-empty set A ⊆ N, the ratio set of A is defined by R(A) := {a
b ∈ Q : a, b ∈ A}. One

of the most fundamental results in real analysis, viz. Q is dense in R, when rephrased in terms

of ratio sets, reads as the ratio set of N is dense in R>0. This reformulation of the denseness of

Q in R has spurred a lot of research in recent times. In particular, the classification of subsets of

N having dense ratio sets in R>0 has been a central question of investigation. In what follows,

we say that A is fractionally dense in R>0 if R(A) is dense in R>0.

One of the most natural choices for A is the set P of prime numbers and it is known to be

fractionally dense (cf. [16], [19]). Several generalizations of this result have been proven over

the years and several interesting subsets of natural numbers have been shown to be fractionally

dense (cf. [3] - [7], [11], [14] - [16], [19] - [21], [24] - [27]). In [8], [11] and [23], analogous questions

have been dealt with in the set up of algebraic number fields. Very recently, the denseness of

ratio sets in the p-adic completion Qp have also been considered (cf. [1], [2], [12], [13], [18], [22]).

Very recently, Leonetti and Sanna [17] introduced the notion of direction sets, which gener-

alizes the notion of ratio sets as follows. For an integer k ≥ 2 and ∅ 6= A ⊆ N, they considered

the following sets:

Sk−1 := {x ∈ [0, 1]k : ||x|| = 1}, Dk(A) := {ρ(a) : a ∈ Ak} and Dk(A) := {ρ(a) : a ∈ Ak},
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where ρ : Rk
≥0 → Sk−1 is the map defined by ρ(x) = x

||x|| and Ak = {a ∈ Ak : ai 6= aj for all i 6=
j}. The sets Dk(A) and Dk(A) are called the k-direction sets of A. We note that, for k = 2, we

can identify S1 with [0,+∞] via a bijective map and thus the question of denseness in R>0 can

be translated into that in S1. Therefore, direction sets are indeed generalizations of ratio sets.

Leonetti and Sanna [17, Theorem 1.2] proved a necessary and sufficient criterion that determines

whether a set X ⊆ Sk−1 can be realized as the set of accumulation points of Dk(A) for some

A ⊆ N. Moreover, they proved a sufficient condition (cf. [17, Theorem 1.5]) that asserts whether

Dk(A) is dense in Sk−1.

In this article, we further generalize the notion of direction sets and introduce generalized

k-direction sets as follows.

Definition 1. Let k ≥ 2 be an integer and let U1, . . . , Uk be non-empty subsets of N. We

define the k-generalized direction set for the k-tuple (U1, . . . , Uk) to be Dk(U1, . . . , Uk) :=

{ρ(u1, . . . , uk) : uj ∈ Uj for j = 1, . . . , k}. Also, we define the distinct k-generalized direction

set to be Dk(U1, . . . , Uk) := {ρ(u1, . . . , uk) : uj ∈ Uj for j = 1, . . . , k and ui 6= uj for all i 6= j}.

Our first theorem is an analogue of Theorem 1.2 of [17] for distinct k-generalized direction

sets. For any set X ⊆ Sk−1, we denote by X ′ the set of accumulation points of X. Also, we

denote by Sk the symmetric group on k elements {1, . . . , k}. For a permutation π ∈ Sk, we

define π(x1, . . . , xk) := (xπ(1), . . . , xπ(k)) for all x = (x1, . . . , xk) in Sk−1. Also, for any subset I

of {1, . . . , k}, we define ρI(x) := ρ(y) where y = (y1, . . . , yk) is defined as yi := xi if i ∈ I and

the other coordinates as 0. We say that I meets x if xi 6= 0 for some i ∈ I. We state our first

theorem as follows.

Theorem 1. Let k ≥ 2 be an integer. For subsets U1, . . . , Uk of N, let X = Dk(U1, . . . , Uk)
′.

Then, we have:

(i) X is a closed subset of Sk−1.

(ii) If Ui1 = · · · = Uim for some {i1, . . . , im} ⊆ {1, . . . , k}, then for π ∈ Sk with π(j) = j for

all j /∈ {i1, . . . , im}, we have π(x) ∈ X for every x ∈ X.

(iii) If |Ui| ≥ k for each i ∈ {1, . . . , k}, then for every I ⊆ {1, . . . , k} that meets x, we have

ρI(x) ∈ X.

We recall that for a non-empty set A ⊆ N, the natural density of A is defined as d(A) :=

lim
X→∞

#{n ∈ A : n ≤ X}
X

, provided the limit exists. The next theorem provides a sufficient

condition for Dk(U1, . . . , Uk) to be dense in Sk−1.

Theorem 2. Let k ≥ 2 be an integer and let U1, . . . , Uk ⊆ N be such that d(Ui) exists and equals

δi > 0 for all i = 1, . . . , k. Assume that
k
⋂

i=1

Ui is an infinite set. Then Dk(U1, . . . , Uk) is dense

in Sk−1.
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The next theorem extends Theorem 1.5 of [17], which asserts that if for a set A ⊆ N, there

exists an increasing sequence {an}∞n=1 ⊆ A with lim
n→∞

an
an+1

= 1, then Dk(A) is dense in Sk−1.

We generalize this for Dk(U1, . . . , Uk) as follows.

Theorem 3. Let k ≥ 2 be an integer and let U1, U2, . . . , Uk be non-empty subsets of N. If

there exist increasing sequences u
(n)
i ⊆ Ui for all i ∈ {1, . . . , k} such that lim

n→∞

u
(n−1)
i

u
(n)
i

= 1, then

Dk(U1, . . . , Uk) is dense in Sk−1.

Remark 1. For an integer k ≥ 2 and for each i ∈ {1, . . . , k}, let ai and mi be integers with

gcd(ai,mi) = 1. Let Pmi
:= {p ∈ P : p ≡ ai (mod mi)}. For Ui = Pmi

, using Dirichlet’s theorem

for primes in arithmetic progressions, we see that the hypotheses of Theorem 3 are satisfied.

Therefore, Dk(Pm1 , . . . ,Pmk
) is dense in Sk−1.

Theorem 4. Let k ≥ 2 be an integer and for each i ∈ {1, . . . , k}, let fi(X1, . . . ,Xm) ∈
Z[X1, . . . ,Xm] be polynomials of total degree di such that the sum of the coefficients of degree

di terms is positive. Let Ui := {fi(n1, . . . , nm)|(n1, . . . , nm) ∈ Nm} ∩ N. Then Dk(U1, . . . , Uk) is

dense in Sk−1.

In [5], it is proven that there is a 3-partition of N = A∪B ∪C, such that none of R(A), R(B)

and R(C) is dense in R>0. That is, none of D2(A),D2(B) and D2(C) is dense in S1. In [17],

Leonetti and Sanna asked for a possible generalization of this result for k ≥ 3 [17, Question 1.9].

We give a partial answer to their question in the next theorem.

Theorem 5. Let k ≥ 3 be an integer. Then there exists a 3-partition N = A∪B ∪C of N such

that none of Dk(A),Dk(B) or Dk(C) is dense in Sk−1.

Remark 2. In view of Theorem 5, it remains to be seen whether for a 2-partition N = A ∪B,

either Dk(A) or Dk(B) is dense in Sk−1 or not. We note that Theorem 3 cannot be directly

applied to address this issue. This can be seen by considering A =

∞
⋃

k=0

[3k, 2 · 3k) ∩ N and

B =

∞
⋃

k=0

[2 · 3k, 3k+1) ∩ N. For, if {an}∞n=1 ⊆ A is an infinite sequence, then there are infinitely

many indices i for which ai ∈ [3k, 2 · 3k) and ai+1 ∈ [3ℓ, 2 · 3ℓ) for k < ℓ. Then it follows that
ai

ai+1
< 2·3k

3ℓ
≤ 2

3 . Therefore, the elements of the sequence { an
an+1

}∞n=1 cannot get arbitrarily close

to 1. Similar argument works for B as well. Thus there exist a 2-partition of N, none of which

contains a sequence with the ratio of consecutive terms converging to 1.

One of the interesting questions in the literature of fractionally dense sets is to look for

sets A ⊆ N such that the ratio set R(A) is dense in R>0 but A contains no 3-term arithmetic

progressions. One such set is A = {2m : m ≥ 2}∪{3n : n ≥ 2}, which is known to be fractionally

dense in R>0 but A contains no 3-term arithmetic progressions (cf. [3, Proposition 6]). In view

of this, we may ask the following question.
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Question 1. For an integer k ≥ 2, does there exist a set A ⊆ N such that A contains no 3-term

arithmetic progressions and Dk(A) is dense in Sk−1?

We answer Question 1 assertively in the following theorem.

Theorem 6. There exists a set A ⊆ N such that A contains no 3-term arithmetic progressions

and Dk(A) is dense in Sk−1.

Remark 3. We shall see in the proof of Theorem 6 that we can obtain infinitely many sets

A ⊆ N having no arithmetic progression of length 3 such that Dk(A) is dense in Sk−1.

Next, we discuss the denseness of some particular type of sets whose properties have been

recently considered in [10]. For an arithmetic function f : N → N and a positive real number X,

let fX := #{n ≤ X : n = kf(k) for some k ∈ N}. Keeping this notation, we state the results of

[10] as follows.

Theorem 7. [10] (i) Let ω(n) =
∑

p|n
p∈P

1 be the prime divisor function. Then

ωX =
X

log logX
+ o

(

X

log logX

)

.

(ii) Let φ(n) = #{1 ≤ k ≤ n : gcd(k, n) = 1} be the Euler’s totient function. Then

φX = cX
1
2 + o(X

1
2 ),

where c =
∏

p

(

1 +
1

p(p− 1 +
√

p2 − p)

)

∼ 1.365 . . ..

Now, we state our result as follows.

Theorem 8. Let A = {nω(n) : n ∈ N} and B = {nφ(n) : n ∈ N}. Then for any integer k ≥ 2,

we have that both Dk(A) and Dk(B) are dense in Sk−1.

2. Proof of Theorems

In this section, we prove our theorems. We first prove Theorem 1.

Proof of Theorem 1. Since X is the set of accumulation points of a subset of Sk−1, we immedi-

ately conclude that X is closed and (i) is satisfied.

Now, let x = (x1, x2, . . . , xk) ∈ X = Dk(U1, . . . , Uk)
′. Then there exists a sequence ρ(a(n)) ∈

Dk(U1, . . . , Uk) converging to x such that ρ(a(n)) 6= x for infinitely many n, where a(n) ∈
k
∏

i=1

Ui.

For π ∈ Sk with π(j) = j for all j /∈ {i1, . . . im}, we consider b(n) := π(a(n)) ∈ Dk(U1, . . . , Uk).
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Then ρ(b(n)) converges to π(x). Consequently, we have π(x) ∈ X for every x ∈ X and thus (ii)

is satisfied.

Now, assume that I is a non-empty subset of {1, . . . , k} that meets x. We can consider a sub-

sequence of a(n) such that each a
(n)
i is non-decreasing for each i ∈ {1, . . . , k}. If j ∈ {1, . . . , k}\I,

then we can choose distinct cj ∈ Uj such that for sufficiently large positive integer n0, a sequence

d(n) ∈ U1 × · · · ×Uk with distinct coordinates can be defined for all n ≥ n0 with d
(n)
i := a

(n)
i for

i ∈ I and d
(n)
i := ci for i /∈ I. This choice is possible because of the assumption |Ui| ≥ k for each

i. It then follows that ρ(d(n)) converges to ρI(x). Thus (iii) holds. This completes the proof of

Theorem 1. �

Proof of Theorem 2. Let x ∈ (x1, . . . , xk) ∈ Sk−1 and let Ii = (ai, bi) be open intervals such that

xi ∈ Ii for each i ∈ {1, . . . , k}. Then
k
∏

i=1

(ai, bi) ∩ Sk−1 is a basic open set in Sk−1 containing x.

For a real number X > 1, let Ui(X) := #{ui ∈ Ui|ui ≤ X}. By the hypothesis, we have that

limX→∞
Ui(X)
X = δi > 0. This implies that Ui(X) = δiX + o(X). Therefore,

lim
X→∞

Ui(aiX)

Ui(biX)
= lim

X→∞

δiaiX + o(aiX)

δibiX + o(biX)
=

ai
bi

< 1.

Thus for all sufficiently large real number X, there exists ui ∈ Ui such that aiX < ui ≤ biX.

That is, ai < ui

X ≤ bi. Since
k
⋂

i=1

Ui is an infinite set, we can choose a large enough element

u ∈
k
⋂

i=1

Ui such that aiu < ui ≤ biu for all i = 1, . . . , k. This, in turn, implies that ui

u ∈ (ai, bi).

Using the fact that ρ(α) = α
‖α‖ is continuous function, we see that ρ(u1, . . . , uk) ∈

k
∏

i=1

Ii ∩ Sk−1.

In other words, Dk(U1, . . . , Uk) is dense in Sk−1. �

We next prove Theorem 3 which extends Theorem 1.5 of [17].

Proof of Theorem 3. Let x = (x1, . . . , xk) ∈ Sk−1 with xi > 0 ∀ i ∈ {1, . . . , k}. We pick an

integer m such that m >
u
(1)
i

min{x1,...,xk}
∀ i ∈ {1, . . . , k}. Then there exist integers mi for each

i ∈ {1, . . . , k} such that u
(mi−1)
i ≤ mxi < u

(mi)
i . That is, xi <

u
(mi)
i

m ≤ u
(mi)
i

u
(mi−1)
i

xi. Since mi → ∞

as m → ∞, it follows that lim
m→∞

u
(mi)
i

m
= xi. Consequently, u = (u

(m1)
1 , . . . , u

(mk)
k ) converges to

x. Since ρ is a continuous map, ρ(u) converges to x. Consequently, Dk(U1, . . . , Uk) is dense in

Sk−1. �

Proof of Theorem 4. For a fixed integer i ∈ {1, . . . , k}, we consider the polynomial gi(X) ob-

tained by replacing all variables of gi by the variable X. We get, gi(X) = adiX
di +adi−1X

di−1+
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· · ·+ a0 ∈ Z[X]. Since adi > 0, we conclude that for a sufficiently large positive real number X,

we have gi(X) > 0. Let Bi := {gi(n)|n ∈ N} ∩ N. We have gi(X−1)
gi(X) =

adi (X−1)di+···+a0

adiX
di+···+ao

which

tends to 1 as X tends to ∞. Also, since gi(X) is a polynomial in one variable, the sequence

{gi(n)}∞n=1 is eventually increasing. Therefore, by using Theorem 3, we obtain that Dk(Bi) is

dense in Sk−1. Since Bi ⊆ Ui, we conclude that Dk(U1, . . . , Uk) is dense in Sk−1. �

We now prove Theorem 5 which gives a partial answer to [17, Question 1.9].

Proof of Theorem 5. We consider the following three sets as in [5] (see also [3]).

A :=

∞
⋃

k=0

[5k, 2 · 5k) ∩ N,

B :=

∞
⋃

k=0

[2 · 5k, 3 · 5k) ∩ N,

C :=

∞
⋃

k=0

[3 · 5k, 5 · 5k) ∩ N.

If Dk(A), Dk(B) or Dk(C) is dense in Sk−1, then by Theorem 1.4 of [17], which states that if

Dk(A) is dense in Sk−1 for some A ⊆ N, then Dk−1(A) is dense in Sk−2, we see inductively that

D2(A) (or D2(B) or D2(C)) is dense in S1, which is false (cf. [3, Proposition 3]). Therefore,

we get a 3-partition of N such that none of Dk(A), Dk(B) or Dk(C) is dense in Sk−1. This

completes the proof of Theorem 5. �

Proof of Theorem 6. In [9], it has been proven that the equation xn+yn = 2zn has no non-trivial

solution in Z if n ≥ 3. In other words, the set A := {mr : r,m ∈ Z, r ≥ 3} does not contain any

3-term arithmetic progressions. Since for a fixed value of r ≥ 3, we have mr

(m+1)r → 1 as m → ∞,

by Theorem 1.5 of [17], we conclude that Dk(A) is dense in Sk−1. �

Proof of Theorem 8. Let x = (x1, . . . , xk) ∈ Sk−1 and let

k
∏

i=1

(ai, bi) be a basic neighborhood of

x. Then by Theorem 7, we see that

lim
X→∞

ωaiX

ωbiX
= lim

X→∞

aiX

log log aiX
· log log biX

biX
=

ai
bi

< 1 for all i with 1 ≤ i ≤ k.

Therefore, for sufficiently large X, there exists αi ∈ A such that aiX < αi < biX for all i. That

is,
(

α1
X , . . . , αk

X

)

∈
k
∏

i=1

(ai, bi). Hence ρ(α1, . . . , αk) = ρ
(

α1
X , . . . , αk

X

)

∈
k
∏

i=1

(ai, bi). Consequently,

Dk(A) is dense in Sk−1.

Similarly, for Dk(B), we note that

lim
X→∞

φaiX

φbiX
=

√
ai√
bi

< 1 for all i with 1 ≤ i ≤ k
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and thereafter it follows a similar line of argument. �

3. Concluding remarks : Case of algebraic number fields

The ratio sets have been studied in the context of algebraic number fields in [8], [11] and

[23]. It is interesting to extend the notion of direction sets in the set up of number fields and

formulate analogous questions for the same.

Let K ( R be a number field of degree d ≥ 2 and let OK be its ring of integers. Let

O0
K := {α ∈ OK : TrK/Q(α) = 0} be the set of elements in OK with trace 0. Since OK is a

free Z-module of rank d and Tr is an additive group homomorphism from OK to Z, we see that

OK
∼= O0

K ⊕Z. In particular, O0
K is a free Z-module of rank d− 1. Therefore, O0

K itself is dense

in R whenever d ≥ 3. Also, for d = 2, we see that the ratio set of O0
K is Q. Consequently, the

direction set of O0
K is dense in Sk−1 for any integer k ≥ 2.

We note that O0
K ∩ N = ∅. In view of this, we ask the following question.

Question 2. Let d ≥ 2 and k ≥ 2 be integers and let K be a number field of degree d.

Characterize the sets A ⊆ OK such that A ∩ N is finite and Dk−1(A) is dense in Sk−1.
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