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Abstract

In this article we introduce a general approach for deriving zero-free
half-planes for the Riemann zeta function ζ by identifying topological
vector spaces of analytic functions with specific properties. This ap-
proach is applied to weighted ℓ2 spaces and the classical Hardy spaces
Hp (0 < p ≤ 2). As a consequence precise conditions are obtained for
the existence of zero-free half planes for the ζ-function.
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0 Introduction

The Riemann Hypothesis (RH) is equivalent to a completeness problem
in L2(0, 1). This was first stated in the 1950’s by Nyman [15] and Beurling
[10]:

Theorem 0.1 Define ρα(x) := ρ
(

α
x

)

− αρ
(

1
x

)

for 0 < α < 1 (where ρ(x)
denotes the fractional part of x). If we denote ν := span{ρα | 0 < α < 1}
and 1(0,1) the characteristic function of (0, 1), then the following statements
are equivalent:

1. The RH holds true,

2. 1(0,1) belongs to the closure of ν in L2(0, 1),

3. ν is dense in L2(0, 1).

A remarkable strengthening by Báez-Duarte [2] in 2003 showed it is
enough to restrict ν to the countable index set α = 1/ℓ for ℓ ∈ N in condi-
tion 2 (whereby the density of ν in condition 3 no longer holds). The reader
is directed to an article by Bagchi [3] that collects these results of Nyman,
Beurling and Báez-Duarte and their proofs in one place. Recently in [14]
these ideas have been transferred to the Hardy-Hilbert Space H2(D). Here,
the RH is equivalent to the constant function 1 being in the closed linear
span of certain elements {hk | k ≥ 2} in H2(D). In [14] it is also proved that

n
∑

k=2

µ(k)(I − S)hk → 1− z as n→ ∞

in H2(D), where S is the shift operator and µ the Möbius function. As a
consequence, this proves the density of span{hk | k ≥ 2} in H2(D) in the
compact-open topology (weaker than the H2-topology) by relating it with
invertibility of (I − S). The goal of this paper is to generalize these ideas to
other spaces of analytic functions and establish criteria that would guarantee
zero-free regions for the ζ-function.

The plan of the paper is the following. After a section of preliminaries, our
general framework for obtaining zero-free half-planes for ζ is introduced in
Section 2. This approach entails finding topological vector spaces of analytic
functions X that satisfy a checklist of conditions. This general framework is
then applied to the weighted Hardy spaces (unitarily equivalent to weighted
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ℓ2 spaces) in Section 3. After considering some concrete examples in Sub-
section 3.1, we obtain numerical conditions on the weights that guarantee
zero-free regions for ζ in Subsection 3.2. In Subsection 3.3, we see that for
non-trivial zero free half-planes the required weights can exhibit very ex-
treme behavior. In Section 4, we apply this approach to the classical Hardy
spaces Hp for 0 < p ≤ 2. In Subsection 4.1, we show that the checklist is
completely satisfied for Hp with 0 < p < 1. In particular we prove that
span{hk | k ∈ k ≥ 2} is dense in Hp (see Corollary 4.6) for 0 < p < 1. Since
convergence in Hp implies convergence in the compact-open topology, this
strengthens one of the main results of [14, Theorem 10]. In Subsection 4.2
all but one condition is satisfied for Hp with 1 ≤ p ≤ 2. More precisely, we
show that

1 ∈ spanHp{hk | k ≥ 2} =⇒ ζ(s) 6= 0 for ℜ(s) > 1/p

(see Theorem 4.8) where the hk are defined in Section 1. This is an Hp

analogue of Beurling’s results from[10].

Before we begin, it is worthwhile to highlight some results in the litera-
ture, with the hope of making evident the continuity of ideas and techniques
after relocating the RH and questions surrounding zero-free regions of the
ζ-function from the Lp spaces to analytic function spaces. Beurling in [10]
proved that for every 1 < p <∞, the non-vanishing of ζ(s) for ℜ(s) > 1/p is
equivalent to the density of ν in Lp(0, 1), hence generalizing Theorem 0.1 con-
siderably. Balazard and Saias [5] continued the study of the relation between
zero-free half-planes and approximation problems in Lp spaces. Bercovici
and Foias [9] proved that the L2(0, 1)-closure of ν equals

{f ∈ L2(0, 1) :
Ff(s)

ζ(s)
is holomorphic for ℜ(s) > 1/2}

where F denotes the Mellin transform which is an isometric isomorphism of
L2(0, 1) onto the Hardy space H2(C1/2) of the half-plane ℜ(s) > 1/2. This
formula may be viewed as an unconditional version of Theorem 0.1. See [6]
for interesting discussions around this formula and its possible generalizations
to other Lp(0, 1) spaces. The transform F has played an important role in
this theory due to the identity

Fρα(s) =
ζ(s)

s
(α− αs) (0 < α < 1,ℜ(s) > 0).

The starting point of our approach is to introduce functionals Λ(s) on spaces
of analytic functions on D which replicate the role of F (see Section 2). The
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two families of spaces we apply Λ(s) to are the weighted sequence spaces ℓ2w
(Section 3) and the Hardy spaces Hp for p > 0 (Section 4). In particular we
obtain Hp analogues of Beurling’s results from[10]. The Hardy space H1/3

was employed by Balazard [8] to prove the formula

1

2π

∫

ℜ(s)= 1

2

log |ζ(s)|

|s|2
|ds| =

∑

ℜ(ρ)>1/2

log

∣

∣

∣

∣

ρ

1− ρ

∣

∣

∣

∣

where the sum is taken over the zeros of ζ (counting multiplicities) to the
right of the critical line. In conclusion, spaces of analytic functions and
Hardy spaces in particular have played an important role within the Nyman-
Beurling approach to the RH and the theory it has inspired. Our goal is
to explore further these connections. Balazard’s bibliographical survey [4]
contains detailed discussions on numerous works throughout the 20th century
regarding completeness problems and a functional approach to the RH.

1 Preliminaries

Definition 1.1 The Hardy-Hilbert space H2(D) consists of all holomorphic
function on the unit disk D that satisfy

‖f‖ :=

(

sup
0<r<1

∫

T

|f(rz)|2 dm(z)

)1/2

<∞ (1)

where m is the normalized Lebesgue measure on T. The space H2(D) is a
Hilbert space which inherits its inner product from the sequence space ℓ2:

H2(D) = {f =

∞
∑

n=0

anz
n | (an)n∈N ∈ ℓ2}. (2)

The functions hk in H2(D) were defined in [14] as

hk(z) :=
1

k

1

1− z
log

(

1 + z + . . .+ zk−1

k

)

, k ≥ 2.

Actually this definition of hk differs from that of [14] by the factor 1/k. The
H2(D) version of Báez-Duarte’s result in [14] plays a central role in this work.

Theorem 1.2 The following statements are equivalent:
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1. RH holds true,

2. 1 belongs to the closure of span{hk | k ≥ 2} in H2(D), and

3. span{hk | k ≥ 2} is dense in H2(D).

where 1 is the constant function.

Let S = Mz denote the shift operator on H2(D) of multiplication by z.
Then in [14, Lemma 11] it is also proved that

∥

∥

∥

n
∑

k=2

µ(k)(I − S)hk − (1− z)
∥

∥

∥

H2(D)
−→ 0 as n→ ∞ (3)

and as a consequence it was established that

spanH2(D){(I − S)hk | k ≥ 2} = H2(D). (4)

It is important to note that I − S is not an invertible operator on H2(D)
(but has dense range). If it were invertible, then (I − S)−1 applied to (3) or
(4) would prove the RH by Theorem 1.2. It is worth remarking that a result
similar to (3) appears in [7, Section 13], but in the latter article the shift
operator S is defined on the weighted ℓ2 space with weights (1/(ζ(2)k2))k
which is equivalent to multiplication by z on a weighted Bergman space A
(defined below). The shifts on H2(D) and A are not equivalent, and hence (3)
is not an immediate consequence of results in [7]. In fact, unlike the shift on
H2(D), even basic questions such as a characterization of the closed invariant
subspaces of the Bergman shifts remain open problems (see [12]).

It is useful to locate the H2(D) version of Báez-Duarte’s theorem among
the cornucopia of spaces where it appears in the literature (see Figure 1).
The space A is the Hilbert space of analytic functions f(z) =

∑∞
n=0 anz

n and
g(z) =

∑∞
n=0 bnz

n defined on D for which the inner product is given by

〈f, g〉 :=
∞
∑

n=0

anbn
(n+ 1)(n+ 2)

.

Then the maps T : H2(D) → A (defined in Figure 1) and Ψ : ℓ2ω → A

Ψ : (x(1), x(2), . . .) 7−→
∞
∑

n=0

x(n + 1)zn

4



are isometric isomorphisms, where ℓ2ω is the weighted ℓ2-space with weights
ωn = 1

(n+1)(n+2)
corresponding to the coefficients of functions in A. See [14]

for more details on T and Ψ. Let M be the closed subspace of L2(0, 1)
consisting of functions almost everywhere constant on the intervals [ 1

n+1
, 1
n
)

for n ≥ 1, and H2(C 1

2

) the Hardy space of analytic functions F on the

half-plane C 1

2

:= {s ∈ C : ℜ(s) > 1/2} such that

||F ||2 := sup
σ> 1

2

1

2π

∫ ∞

−∞

|F (σ + it)|2 dt <∞.

The maps U : M → H and the Mellin transform F : L2(0, 1) → H2(C 1

2

) are

also isometric isomorphisms. See [3] for more details on U and F .

H2(C 1

2

)

Gk(s) = − ζ(s)
s (k−s − k−1)

E = 1
s

M ⊂ L2(0, 1)

gk = ρ
(

1
kx

)

− 1
kρ
(

1
x

)

1(0,1)

ℓ2ω

γk =
(

ρ
(

n
k

))

n∈N∗

γ = (1, 1, 1, . . .)

A

H2(D)

hk

Constant function 1

F(h)(s) =
∫ 1

0
xs−1h(x) dx

F

Uf = (

f
(

1
n

)

)

n∈N∗

U

(Tg)(z) = ((1−z)g(z))′

1−z

TΨ

Figure 1: Spaces and isometries between them.

2 General framework

In this section we outline our approach to finding zero free half-planes for
ζ using more general spaces of analytic functions, but that contain H2(D).
We begin by looking more carefully at the situation in H2(D).

From Figure 1, we see that there is a chain of isometries:

H2(D)
T
−→
∼=

A
Ψ−1

−−→
∼=

ℓ2ω
U−1

−−→
∼=

M
F

−−−−→
not onto

H2(C 1

2

). (5)
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We denote by Λ: H2(D) → H2(C 1

2

) the composition of these isometries.

Since H2(C 1

2

) is a reproducing kernel Hilbert space, the evaluation function-

als Es : H
2(C 1

2

) → C for each s ∈ C 1

2

are bounded. So if we define the

functionals Λ(s) := Es ◦ Λ : H2(D) → C, then we get

Lemma 2.1 Λ(s) is bounded on H2(D) for ℜ(s) > 1/2.

The principal feature of these functionals is the property that

Λ(s)(hk) = Gk(s) = −
ζ(s)

s
(k−s − k−1) (6)

which can be seen from Figure 1. By (5) one can also check that

Λ(s)(1) = −
1

s
, Λ(s)(zk) = fk(s) := −

1

s

(

(k + 1)1−s − k1−s
)

. (7)

Indeed, since T (zk) = kzk−1 − zk

1−z
we have the sequence

sk := Ψ−1T (zk) = (0, . . . , 0, k,−1,−1, . . .) ∈ H.

where the k-th term of sk is k. Now pk := U−1sk belongs to M such that
pk(x) = sk(n) for all x ∈ [ 1

n+1
, 1
n
) and its Mellin transform is

F(pk)(s) =

∫ 1

k

1

k+1

kxs−1 dx−

∫ 1

k+1

0

xs−1 dx = fk(s).

Therefore Λ(s)(zk) = fk(s) and Λ(s) is uniquely determined by these values.

The following growth estimate for fk(s) will be used frequently.

Proposition 2.2 For each ℜ(s) > 0, we have |fk(s)| ≍ k−ℜ(s) for all k ≥ 1.

Proof. By the Fundamental Theorem of Calculus we have

|(k + 1)1−s − k1−s| = |1− s|

∣

∣

∣

∣

∫ k+1

k

y−s dy

∣

∣

∣

∣

≍ |1− s|k−ℜ(s) (8)

and the growth estimate easily follows.

The following checklist of conditions summarizes our abstract approach.
Denote by Cr the half-plane {s ∈ C | ℜ(s) > r}.
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Suppose a topological vector space X of analytic functions satisfies the
following conditions:

(C1) zk ∈ X for k ∈ N form a Schauder basis of X .

(C2) H2(D) ⊆ X with the relative topology weaker than that of H2(D).

(C3) 1 belongs to the closure of span{hk | k ≥ 2} in X .

(C4) There exists r ∈ R such that the functionals Λ(s) : X → C defined by

zk 7→ fk(s) = −
1

s

(

(k + 1)1−s − k1−s
)

(k ∈ N
∗)

1 7→ −
1

s

are bounded on X for all s ∈ Cr.

The following result provides the justification for our general approach.

Proposition 2.3 If there exists a space of analytic functions X satisfying
the conditions above for some r ∈ R, then ζ(s) 6= 0 for all s ∈ Cr.

Proof. By (C1) and (C2) it is clear that Λ(s) is determined by it values on
H2(D). Therefore by (C3), (C4) and (6) it follows that Λ(s)(1) = −1/s can
be approximated pointwise by linear combinations of

Λ(s)(hk) = −
ζ(s)

s
(k−s − k−1)

for all s ∈ Cr. Since 1/s has no zeros for s ∈ Cr, the same must be true for
Λ(s)(hk) and hence for ζ(s).

In the remainder of this article we apply this approach to the weighted
sequence spaces ℓ2w and the Hardy spaces Hp. In particular, we investigate
the extent to which these spaces satisfy conditions (C1) to (C4) . It will
become evident in the following sections that condition (C3) poses the main
challenge here. For instance Example 3.2 and Theorem 4.8 show that (C3)
would imply ζ(s) 6= 0 for Cr with 1/2 < r < 1. An alternative route to
proving (C3) is to show that the operator I − S is invertible on X . This is
because the approximation (3) holds in X by (C2), that is

∥

∥

∥

n
∑

k=2

µ(k)(I − S)hk − (1− z)
∥

∥

∥

X
−→ 0 as n→ ∞. (9)
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We therefore call the invertibility of I − S on X the Easy (C3) condition.

We want to be clear that no new zero-free half-planes for ζ are obtained
in this work. But rather, we hope it will lead to a deeper understanding
of the challenges posed en route to such results, when viewed through the
lens of spaces of analytic functions. It is reasonable to ask why H2(D) was
chosen over H2(C 1

2

) (see [3]) or A (equivalently ℓ2w as in [7]) to formulate our

approach. Compared to the latter two spaces, the theory of H2(D) is the
most complete of any reproducing kernel Hilbert space, with a vast array of
tools and techniques developed over many decades. The article [14] contains
some applications of these tools to the Nyman-Beurling approach to the RH.

3 Weighted ℓ2 sequence spaces

In this section our goal is to apply the fundamental principle of Section
2 to spaces X of analytic functions with Taylor series coefficients in some
weighted ℓ2 space. We begin with some illustrative examples.

3.1 Some examples

Example 3.1 (Smaller disks) Recall the definition 1.1 of H2(D). We can
restrict the supremum to 0 < r < ǫ to get a Hardy Space on the smaller disk
Dǫ := B(0; ǫ), where 0 < ǫ < 1, defined by

H2(Dǫ) := {f ∈ Hol(Dǫ) | sup
0<r<ǫ

1

2π

∫ 2π

0

|f(reiθ)|2dθ <∞}. (10)

It is a quick check to see this is equivalent to the weighted ℓ2 definition:

H2(Dǫ) = {

∞
∑

n=0

anz
n | (anǫ

n)n∈N ∈ ℓ2}. (11)

Comparing with the Checklist, (C1) certainly holds as (z/ǫ)k form an or-
thonormal basis. From (10), we see that H2(D) ⊆ H2(Dǫ) and (C2) holds.
The Easy (C3) condition also follows by definition 10:

∥

∥

∥

∥

1

1− z
f(z)

∥

∥

∥

∥

H2(Dǫ)

≤
1

1− ǫ
‖f(z)‖H2(Dǫ)

.

8



The problem arises in (C4). That is because Λ(s) is bounded on H2(Dǫ) if
and only if Λ(s)(zk/ǫk) = fk(s)/ǫ

k forms an ℓ2 sequence. Since |fk(s)| ≍ k−ℜ(s)

by Proposition 2.2, this requires that

(

(1/ǫ)kk−ℜ(s)
)

k∈N∗
∈ ℓ2 where (1/ǫ) > 1.

However, there are no values of s ∈ C for which this is true as the sequence
above is unbounded.

In the next example we see that (C4) does hold.

Example 3.2 For α > 0, consider the space of analytic functions

Xα := {

∞
∑

n=0

anz
n | (ann

−α)n∈N∗ ∈ ℓ2} (12)

with the inner product 〈
∑∞

n=0 anz
n,
∑∞

n=0 bnz
n〉 = a0b0 +

∑∞
n=1 anbnn

−2α.
Condition (C1) holds as (nαzn)n∈N∗ ∪ {1} forms an orthonormal basis for
Xα. Also, (C2) holds as H2(D) ⊆ Xα and the norm on Xα is dominated by
the H2(D) norm. Condition (C4) also holds: Λ(s) is bounded on Xα if and
only if Λ(s)(nαzn) = nαfn(s) ∈ ℓ2. Since |fn(s)| ≍ n−ℜ(s), we require that

(

nαn−ℜ(s)
)

n∈N∗
∈ ℓ2 where α > 0.

This holds for ℜ(s) > 1
2
+α. It follows that if (C3) holds for any 0 < α < 1/2,

then the checklist is satisfied by Xα and we obtain a non-trivial zero free half-
plane for ζ . But verifying (C3) for any such α is not easy. So lets consider
Easy (C3) instead. Define the functions fδ(z) =

∑∞
m=1m

δzm for some real
δ > 0. Then fδ ∈ Xα if and only if δ < α − 1

2
. Since (I − S)−1 is formally

the operator of multiplication by 1
1−z

, we have

(I − S)−1fδ =
∞
∑

n=0

zn ·
∞
∑

m=1

mδzm.

By the ratio test we see that the infinite sum has radius of convergence 1.
Collecting the coefficient of zk we see that (I − S)−1fδ =

∑∞
k=0 ckz

k where

ck =
∑k

l=1 l
δ. Since δ > 0, we can bound this sum from below as follows

ck =

k
∑

l=1

lδ ≥

∫ k

0

xδdx =
kδ+1

δ + 1
.

9



Hence for (I − S)−1fδ ∈ Xα we must necessarily have

∞
∑

k=1

k2(δ+1)k−2α <∞

or equivalently δ < α− 3
2
. Hence if we choose δ such that α− 3

2
< δ < α− 1

2
,

then fδ ∈ Xα but (I − S)−1fδ /∈ Xα. Therefore Easy (C3) fails for Xα.

3.2 Analysis of weights

We now consider the general setting of weighted ℓ2 sequence spaces.

Definition 3.3 For wn ≥ 1 (n ∈ N), we define the following Hilbert space:

X = {
∞
∑

n=0

anz
n | (an/wn)n∈N ∈ ℓ2} ≃ ℓ2w (13)

where X is equipped with the inner product

〈

∞
∑

n=0

anz
n,

∞
∑

n=0

bnz
n〉 =

∞
∑

n=0

anbn/wn
2.

Clearly X is isometrically isomorphic to a weighted ℓ2-space.

It follows from the definition that (zkwk)k∈N forms an orthonormal basis
for X . As wn ≥ 1, the norm of X is dominated by that of H2(D) and
H2(D) ⊂ X . Therefore (C1) and (C2) both hold. We shall therefore focus
on Easy (C3) and (C4).

The examples we considered in Subsection 3.1 are:

1. wn = 1 : Corresponds to X = H2(D). Here (I − S)−1 is not invertible,
but Λ(s) is bounded for ℜ(s) > 1/2.

2. wn = (1/ǫ)n for 0 < ǫ < 1 : Corresponds to H2(Dǫ) in Example 3.1.
Here I − S is invertible, but Λ(s) is not bounded for any s.

3. wn = nα, α > 0 : Corresponds to X in Example 3.2. Here I − S is not
invertible, but Λ(s) is bounded for ℜ(s) > 1/2 + α.

10



(1/ǫ)n 1nα

Left Strip
(I − S)−1 bounded

No half-plane of functionals

Central Strip
(I − S)−1 bounded

A half-plane of functionals

Right Strip
(I − S)−1 not bounded

A half-plane of functionals

Decay rates wn →

Figure 2: Weights and Conditions

A general tendency can be observed as depicted by Figure 2. If the decay
rates of weights are too fast (left strip), we do not have a half-plane where
Λ(s) is bounded. If the decay rates are too slow (right strip), then we do
not have (I − S)−1 as a bounded operator. Ideally we would like to obtain
weights that belong between these extremes (central strip).

The next result characterizes the weights required for X to satisfy (C4).

Proposition 3.4 Given a weighted Hardy space X as in (13) and s ∈ C,
the functional Λ(s) is bounded on X if and only if

( wk

kℜ(s)

)

k∈N∗

∈ ℓ2. (14)

Proof. The monomials (zkwk)k∈N form an orthonormal basis for X . Hence
Λ(s) is bounded on X precisely when Λ(s)(zkwk) = wkfk(s) forms an ℓ2 se-
quence. Therefore the estimate |fk(s)| ≍ k−ℜ(s) (Proposition 2.2) implies
that this is equivalent to

( wk

kℜ(s)

)

k∈N∗

∈ ℓ2.

This concludes the result.

The following is a necessary condition for Easy (C3) to hold.

Proposition 3.5 Given a Hilbert Space X as in (13), let

rm :=

∞
∑

n=m

wm
2

wn
2
.

If I − S is invertible on X , then (rm)m∈N is a bounded sequence.

11



Proof. Suppose the operator (I − S)−1 is well defined and bounded, with
operator norm C > 0. For each m ∈ N, consider (I−S)−1zm in the equation
above. Then

‖(I − S)−1zm‖2X = rm/wm
2 = rm‖z

m‖2X .

By definition of the operator norm of (I − S)−1, rm ≤ C2 for all m ∈ N

Table 1 includes a collection of weights that have been tested.

Table 1: Weights wn and their classifications

Weight wn I − S invertible Λ(s) bounded Strip
1 ✗ ✓ Right
nα ✗ ✓ Right

nα + (logn)β ✗ ✓ Right
exp ((log n)1+α), α > 0 ✗ ✗ -
exp(nα), 0 < α < 1 ✗ ✗ -

(1/ǫ)n ✓ ✗ Left
exp(nα), α > 1 ✓ ✗ Left

3.3 Extremal behavior of weights

Suppose we have weights wn for a space X that satisfies both conditions
Easy (C3) and (C4) (thus giving a zero-free half plane ℜ(s) > r). We
are only interested in 1

2
< r < 1 since ζ(s) has no zeroes for r = ℜ(s) ≥ 1.

The following result shows that such weights wn necessarily exhibit extremely
divergent behavior.

Proposition 3.6 Let wn be the weights for a sequence space X satisfying
conditions Easy (C3) and (C4) with 1

2
< r < 1. If (ni) ⊆ N is a subsequence

with
∑

1
ni

= ∞, then

lim inf
i→∞

wni

n
r− 1

2

i

= 0 and lim sup
i→∞

wni

n
r− 1

2

i

= ∞. (15)

In particular, limi→∞
wni

n
r−1

2
i

does not exist for any such subsequence (ni).

12



Proof. We prove by contradiction for each half of the result.

Suppose, lim inf i→∞
wni

n
r−1

2
i

= C > 0. Then for any C ′ < C, there exists

N ∈ N such that for all i ≥ N ,
wni

n
r−1

2
i

> C ′. Thus,

∞
∑

i=N

(

wni

nr
i

)2

> C ′2
∞
∑

i=N

(

n
r− 1

2

i

nr
i

)2

= C ′2
∞
∑

i=N

1

ni
= ∞.

Hence we contradict Proposition 3.4 since (wn/n
r)n>0 ∈ ℓ2.

Now suppose, lim supi→∞
wni

n
r− 1

2
i

< +∞. Then, there is C ′′ > 0 andM ∈ N

such that for all i > M ,
wni

n
r−1

2
i

< C ′′. This gives,

∞
∑

i=N

1

w2
ni

>
1

C ′′2

∞
∑

i=N

1

n2r−1
i

>
1

C ′′2

∞
∑

i=N

1

ni

= ∞.

Hence we contradict Proposition 3.5 since rN is finite.

We note that Proposition 3.6 highlights a tension between Easy (C3)
and (C4) which is supported by Figure 2 and Table 1.

4 The Classical Hardy spaces Hp

In this section we consider the spaces Hp (p > 0) consisting of functions
f holomophic in D for which

‖f‖pp := sup
0<r<1

∫

T

|f(rz)|p dm(z) <∞

where m is normalized Lebesgue measure on T. The text of Duren [11] is a
classical reference. The Hp spaces are Banach spaces for p ≥ 1 and complete
metric spaces for 0 < p < 1. By Fatou’s theorem, any f ∈ Hp has radial
limits a.e. on T with respect to m. Using f to also denote the radial limit
function, we have

‖f‖pp =

∫

T

|f(z)|p dm(z).

13



The case p = 2 gives us the Hardy-Hilbert space H2(D) as defined in 1.1. In
this section we will focus on 0 < p ≤ 2. It is well-known that the monomials
form a basis for Hp, that Hp ⊂ Hq for p > q and that the topology of
Hp weakens as p decreases. Therefore the conditions (C1) and (C2) in
the checklist are satisfied for X = Hp with 0 < p ≤ 2. We shall see that
(C4) also holds for all 0 < p ≤ 2. As for (C3), the next subsection uses
the invertibility of I − S between distinct Hp spaces to prove (C3) when
0 < p < 1. In Subsection 4.2 we show that (C3) for some 1 < p ≤ 2 would
imply ζ(s) 6= 0 for ℜ(s) > 1/p. This is an Hp analogue of Beurling’s result
[10].

4.1 The Hp spaces for 0 < p < 1

We first show that (C4) holds in this case.

Proposition 4.1 Λ(s) is bounded on Hp for 0 < p < 1 if ℜ(s) > 1
p
.

Proof. Let f(z) =
∑∞

n=0 anz
n ∈ Hp for 0 < p < 1. Then |an| ≤ Cn1/p−1‖f‖Hp

for some constant C > 0 by [11, Theorem 6.4]. Hence by Lemma 2.2

|Λ(s)f | ≤

∞
∑

n=0

|an||fn(s)| ≤ C

∞
∑

n=0

n1/p−1−ℜ(s)‖f‖Hp.

So, Λ(s) is bounded on Hp if ℜ(s) > 1
p
.

We now move to the proof of (C3). We shall need the following result
from Duren [11, Theorem 6.1].

Theorem 4.2 Let 1 ≤ q ≤ 2 and p satisfying 1/p + 1/q = 1. If (an)n∈N is
a sequence in ℓq, then f(z) =

∑∞
n=0 anz

n defines a function in Hp satisfying

‖f‖p ≤ ‖(an)n∈N‖q .

We first extend the validity of equation (3) to all Hp spaces with 0 < p <
∞. Denote the ℓq norm of f(z) =

∑

n anz
n by ‖f‖ℓq = (

∑

n |an|
q)1/q.

Lemma 4.3 For all 0 < p <∞, we have

n
∑

k=2

µ(k)(I − S)hk → 1− z in Hp. (16)
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Proof. First note that we already have the result for 0 < p ≤ 2 by (3) which
corresponds to 2 ≤ q < ∞. Therefore by Theorem 4.2 it is enough to prove
that

∑n
k=2 µ(k)(I − S)hk → 1− z in the ℓq sense for 1 < q < 2. We have

n
∑

k=2

µ(k)(I − S)hk(z) =

n
∑

k=1

µ(k)

k

[

log(1− zk)− log(1− z)− log k
]

. (17)

The Taylor coefficients of log(1−z) = −
∑∞

j=1 z
j/j belong to ℓq for 1 < q < 2,

which implies the same for log(1− zk) = −
∑∞

j=1 z
jk/j. Therefore the Taylor

coefficients of(17) belong to ℓq for each n ≥ 2. We shall need the following
relations involving the Möbius function

∞
∑

k=1

µ(k)

k
= 0 and

∞
∑

k=1

µ(k) log k

k
= −1 (18)

(see [1, Thm. 4.16] and [13, p. 185, Excercise 16]). This implies that

n
∑

k=1

µ(k)

k
[− log(1− z)− log k] → 1

in ℓq norm as n→ ∞. Hence by (17) it suffices to prove that

n
∑

k=1

µ(k)

k
log(1− zk) → −z in the ℓq sense. (19)

By [14, eq. (4.6)] we have

n
∑

k=1

µ(k)

k
log(1− zk) + z = −

∞
∑

j=n+1

zj

j

∑

d|j
1≤d≤n

µ(d)

with
|
∑

d|j
1≤d≤n

µ(d)| ≤
∑

d|j
1≤d≤n

|µ(d)| ≤
∑

d|j

1 = τ(j) ,

where τ(n) denotes the number of divisors of n. Since τ(n) = o(nǫ) for every
ǫ > 0 [1, p. 296], we get
∥

∥

∥

∥

∥

n
∑

k=1

µ(k)

k
log(1− zk) + z

∥

∥

∥

∥

∥

q

ℓq

=

∞
∑

j=n+1

1

jq
|
∑

d|j
1≤d≤n

µ(d)|q ≤

∞
∑

j=n+1

σ(j)q

jq
→ 0

since σ(j) . jǫ where ǫ > 0 can be chosen small enough so that q − ǫq > 1.
This proves (19) and hence the result.
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Although the I − S is not invertible on any Hp space, (I − S)−1 =M 1

1−z

may still be bounded between different Hp spaces.

Lemma 4.4 For each 0 < q < 1 there exists p > 0 sufficiently large such
that the operator M 1

1−z
from Hp to Hq is bounded.

Proof. We shall need the reverse Hölder’s inequality: Let 0 < r < 1 and s
satisfying 1

r
+ 1

s
= 1 (so that s < 0). For any non-negative f ∈ Lr(T) and

g ∈ Ls(T) with
∫

gs dm > 0,

∫

fg dm ≥

(
∫

f r dm

)1/r (∫

gs dm

)1/s

.

Choose any 0 < q < p (not necessarily conjugate exponents) and let h ∈ Hp.
Define r := q/p < 1 (hence s < 0), f(z) := |h(z)/(z−1)|p and g(z) := |1−z|p.
So we have
∫

f r dm =

∫

T

∣

∣

∣

∣

h(z)

z − 1

∣

∣

∣

∣

q

dm,

∫

gs dm =

∫

T

|1− z|ps dm,

∫

fg dm = ||h||pp.

Therefore we get

(
∫

T

∣

∣

∣

∣

h(z)

z − 1

∣

∣

∣

∣

q

dm

)1/r

≤ ||h||pp

(
∫

T

|1− z|ps dm

)−1/s

. (20)

For the right side of (20) to be finite, we need
∫

T
|1 − z|ps dm < ∞ keeping

in mind that s < 0. This occurs precisely when

ps > −1 ⇐⇒ −
1

s
> p ⇐⇒

1

r
> 1 + p ⇐⇒

q

p
<

1

1 + p
⇐⇒ q <

p

1 + p
.

So we necessarily have 0 < q < 1. Hence we conclude that for any 0 < q < 1
there exists p > 0 large enough satisfying q < p

1+p
for which (20) gives

∥

∥

∥

∥

h

1− z

∥

∥

∥

∥

q

≤ Cp,q‖h‖p ∀ h ∈ Hp (21)

where constant Cp,q > 0 depends only on p and q. This proves the lemma.

We are now ready to prove (C3) for X = Hq with 0 < q < 1.

Theorem 4.5
∑n

k=2 µ(k)hk → 1 in Hq for 0 < q < 1.
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Proof. For any 0 < q < 1 there exists a p > 0 large enough so that M 1

1−z

is bounded from Hp to Hq by Lemma 4.4. Therefore applying M 1

1−z
to the

approximation
∑n

k=2 µ(k)(I−S)hk → 1− z in Hp from Lemma 4.3 gives the
result.

Therefore the checklist is completely satisfied for Hp with 0 < p < 1
giving the zero-free half-plane ℜ(s) > 1. As an immediate corollary we get

Corollary 4.6 span(hk)k≥2 is dense in Hp for all 0 < p < 1.

Proof. We need to show that the weighted composition operators

Wnf(z) = (1 + z + · · ·+ zn−1)f(zn), n ≥ 1

introduced in [14] are bounded in Hp. The Littlewood Subordination Theo-
rem [11, Theorem 1.7] states that if ϕ ∈ Hol(D), then

|ϕ(z)| ≤ |z| ∀z ∈ D =⇒

∫

T

|f ◦ ϕ|p dm ≤

∫

T

|f |p dm

for all p ∈ (0,∞]. So the operator f 7→ f ◦ ϕ with ϕ(z) = zn is bounded on
Hp as is the multiplication operator f 7→ ψf where ψ(z) = 1+ z+ · · ·+ zn−1.
Therefore similar to [14, Section 3], the bounded semigroup (Wn)n∈N leaves
spanHp{hk | k ≥ 2} invariant and it contains the constant 1 by Theorem
4.5 for 0 < p < 1. But 1 is a cyclic vector for (Wn)n∈N since span(Wn1)n∈N
contains all analytic polynomials and is hence dense in Hp for 0 < p < 1.

4.2 Zero free half-planes via Hp spaces

Our main goal here is to show that condition (C4) holds for Hp with
1 ≤ p ≤ 2 and therefore that proving (C3) immediately provides nontrivial
zero free half-planes for ζ . Recall that for each s ∈ C, the linear functionals
Λ(s) : X → C are formally defined by

Λ(s)(zn) = fn(s) = −
1

s
((n+ 1)1−s − n1−s)

where |fn(s)| ≍ n−ℜ(s) for n ∈ N by Proposition 2.2.
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Proposition 4.7 If 1 ≤ p ≤ 2, then Λ(s) is bounded on Hp for ℜ(s) > 1
p

and is bounded on H1 for ℜ(s) ≥ 1.

To prove this we need the following results from Duren’s book [11]:

(a) ([11, Theorem 3.15]) If f(z) =
∑

anz
n ∈ H1, then

∞
∑

n=0

|an|

n+ 1
≤ π||f ||1.

(b)([11, Theorem 6.3]) If (an) is a sequence such that

∞
∑

n=0

nq−2|an|
q <∞

for some 2 ≤ q <∞, then f(z) =
∑

anz
n ∈ Hq.

(c) ([11, Theorem 7.3]) For 1 < p < ∞, each φ ∈ (Hp)∗ is representable
in the form

φ(f) =
1

2π

∫ 2π

0

f(eiθ)g(eiθ)dθ for f ∈ Hp

by a unique g ∈ Hq where 1
p
+ 1

q
= 1.

Proof. Let f(z) =
∑

anz
n ∈ Hp and let p ∈ (1, 2]. Define the functions

ks(z) =

∞
∑

n=0

fn(s)z
n for each s ∈ C.

Then q = p
p−1

≥ 2 and we get

∞
∑

n=1

nq−2|fn(s)|
q ≤ C

∞
∑

n=1

nq−2−qℜ(s) <∞

if q − 2− qℜ(s) < −1 or equivalently if ℜ(s) > q−1
q

= 1
p
. So (b) implies that

ks ∈ Hq for ℜ(s) > 1
p
. Therefore the functional φs defined by

φs(f) =
1

2π

∫ 2π

0

f(eiθ)ks̄(eiθ)dθ
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is bounded on Hp for ℜ(s) > 1
p
by (c). Now since ks ∈ Hq ⊂ H2 for q ≥ 2,

we see that
φs(z

n) = 〈zn, ks̄〉 = fn(s̄) = fn(s) = Λ(s)(zn)

for all n ∈ N and hence Λ(s) = φs and Λ(s) ∈ (Hp)∗ for ℜ(s) > 1
p
when

p ∈ (1, 2]. For p = 1 and ℜ(s) ≥ 1, (a) gives

|Λ(s)f | ≤

∞
∑

n=0

|an||fn(s)| ≤
|a0|

|s|
+

∞
∑

n=1

|an|

nℜ(s)
≤

∞
∑

n=0

2|an|

n+ 1
≤ 2π||f ||1

and hence Λ(s) is bounded on H1 for ℜ(s) ≥ 1.

Therefore proving condition (C3) for Hp with 1 < p ≤ 2 will lead to
nontrivial zero free half-planes for ζ .

Theorem 4.8 For any 1 < p ≤ 2, we have

1 ∈ spanHp{hk | k ≥ 2} =⇒ ζ(s) 6= 0 for ℜ(s) > 1/p.

Note that the case p = 1 gives the known zero-free half-plane ℜ(s) ≥ 1 and
the hypothesis above is equivalent to the density of span(hk)k≥2 in Hp by
Theorem 4.6. It is unclear whether the converse of Theorem 4.8 holds.
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