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BOUNDARY POINTS, MINIMAL L? INTEGRALS AND
CONCAVITY PROPERTY V—VECTOR BUNDLES

QI’AN GUAN, ZHITONG MI, AND ZHENG YUAN

ABSTRACT. In this article, for singular hermitian metrics on holomorphic vec-
tor bundles, we consider minimal L? integrals on sublevel sets of plurisubhar-
monic functions on weakly pseudoconvex Kéahler manifolds related to modules
at boundary points of the sublevel sets, and establish a concavity property
of the minimal L? integrals. As applications, we present a necessary condi-
tion for the concavity degenerating to linearity, a strong openness property of
the modules and a twisted version, an effectiveness result of the strong open-
ness property of the modules, and an optimal support function related to the
modules.

1. INTRODUCTION

The strong openness property of multiplier ideal sheaves [36] (Demailly’s strong
openness conjecture [14]: Z(p) = Z4(p) := L>JOI((1 +€)¢)) is an important feature
€

of multiplier ideal sheaves, which was called ”"opened the door to new types of
approximation techniques” (see e.g. [36, 47, 44l (4} [5, 20, 8, (4, B9, B5, (6L 2T
[45, @), where the multiplier ideal sheaf Z(¢) was defined as the sheaf of germs of
holomorphic functions f such that |f|?e~% is locally integrable (see e.g. [53, 48]
[49] 16l 17, 14, [18, 46l 511 52, [15] [40]), and ¢ is a plurisubharmonic function on a
complex manifold M (see [13]).

Guan-Zhou [36] proved the strong openness property (the 2-dimensional case was
proved by Jonsson-Mustata [42]). After that, using the strong openness property,
Guan-Zhou [37] proved a conjecture about volumes growth of the sublevel sets of
quasi-plurisubharmonic functions which was posed by Jonsson-Mustata (Conjecture
J-M for short, see [42]).

Considering the minimal L? integrals on sublevel sets of a plurisubharmonic
function with respect to a module at a boundary point of the sublevel sets, Bao-
Guan-Yuan [2] (see also [29]) established a concavity property of the minimal L?
integrals, which deduces an approach to Conjecture J-M independent of the strong
openness property.

In this article, for singular hermitian metrics on holomorphic vector bundles,
we consider minimal L? integrals on sublevel sets of plurisubharmonic functions
on weakly pseudoconvex Kéahler manifolds related to modules at boundary points
of the sublevel sets, and obtain a concavity property of minimal L? integrals. As
applications, we present a necessary condition for the concavity degenerating to
linearity, a strong openness property of the modules and a twisted version, an
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effectiveness result of the strong openness property of the modules, and an optimal
support function related to the modules.

1.1. Singular hermitian metrics on vector bundles. Let M be an n—dimensional
complex manifold. Let E be a rank r holomorphic vector bundle over M and E the
conjugate of E. Let h be a section of the vector bundle E* ® E* with measurable
coefficients, such that h is an almost everywhere positive definite hermitian form
on F; we call such an h a measurable metric on E.

We would like to use the following definition for singular hermitian metrics on
vector bundles in this article which is a modified version of the definition in [7].

Definition 1.1. Let M, E and h be as above and ¥ C M be a closed set of
measure zero. Let {M; };r:“f be a sequence of relatively compact subsets of M such
that My € My € ... @ M; €@ M4 € ... and U;':(XfMj = M. Assume that for each
M, there exists a sequence of hermitian metrics {h; s} on M; of class C? such
that

lim hjs=~h point-wisely on M;\3.

s——+o0

We call the collection of data (M, E, X, M;, h,h;s) a singular hermitian metric
(s.h.m. for short) on E.

Remark 1.2 (see [7]). Let M, E, ¥, h be as in Definition[I1l Assume that there
exists a sequence of hermitian metrics hs of class C? such that
lim hs=h in the C®*—topology on M\X.

s——+o00
The authors of [7] called such a collection of data (X, FE,%,h, BS) a singular
hermitian metric on E. They called @h(EX\E) the curvature of (X, E, 3, h, BS) and
denoted it by On(E). Ox(E) has continuous coefficients and values in Hermp,(E)
away from X; they denoted the a.e.-defined associated hermitian form on TX ® E
by the same symbol O (E).

We use the following definition of singular version of Nakano positivity in this
article. Let w be a hermitian metric on M, 6 be a hermitian form on T'M with
continuous coefficients and (M, E, X, M;, h, hj ) be a s.h.m in the sense of Definition

1

Definition 1.3. Let things be as above. We write:
On(E) >Nk 0 @ Idg

if the following requirements are met.

For each M;, there exist a sequence of continuous functions \j s on M; and a
continuous function \j on M; subject to the following requirements:
(1.2.1) for any x € Q: |egln,, < |ex|n, .,.» for any s € N and any e, € Ey;
(1.2.2) Ghj,s(E) >Nak 0 — Ajsw® Idg on M;;
(1.2.3) A\js = 0 a.e. on M;;
(1.2.4) 0 < Xj s < \j on M;, for any s.

We would also like to recall the following notation of singular version of Nakano
positivity in [7]. Let w be a hermitian metric on M, 6 be a hermitian form on 7'M
with continuous coefficients and (X, FE, 3, h, hs) be a s.h.m in the sense of Remark
1.2
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Remark 1.4 (see [7]). Let things be as above. In [7], the authors wrote
On(E) Zxar 0 ® Idg

if the following requirements are met.

There exist a sequence of hermitian forms 0, on TM @ E with continuous coef-
ficients, a sequence of continuous functions As on M and a continuous function \
on M subject to the following requirements:

(1.2.1) for any x € X ¢ |eals < lealj,,, for any s € N and any ey € Ey;

(1.2.2) 05 > Nar 0 @ Idg;

(1.2.3) O, (E) >Nak s — Asw @ Idp;
(1.2.4) 6, — O4(E) a.e on M;
(1.2.5) Ay = 0 a.e on M;

(1.2.6) 0 < As <A, for any s.

Remark 1.5. Let M be a weakly pseudoconvexr Kdhler manifold. Let ¢ be a
plurisubharmonic function on M. Using regularization of quasi-plurisubharmonic
function (see Theorem [O11l), we know that h := e~% is a singular metric on
E = M x C in the sense of Definition [L1 and h satisfies Op(E) >3, 0 in
the sense of Definition [L3. We will prove Remark [L3 in appendiz (see Remark
nE))

We recall the following definitions which can be referred to [7].

Definition 1.6 (see [7]). Let h be a measurable metric on E. Let Z(h) be the
analytic sheaf of germs of holomorphic functions on M defined as follows:
Z(h)y = {fs € Oxy @ |foesls is integrable in some neighborhood of x, Ve, €
O(E)q}-
Analogously, we define an analytic sheaf E(h) by setting:
E(h)y == {es € O(E), : |e,|7 is integrable in some neighborhood of x}.

1.2. Main result: minimal L? integrals and concavity property. Let M be
a complex manifold. Let X and Z be closed subsets of M. We call that a triple
(M, X, Z) satisfies condition (A), if the following two statements hold:

I. X is a closed subset of M and X is locally negligible with respect to L?
holomorphic functions; i.e., for any local coordinated neighborhood U C M and for
any L? holomorphic function f on U\X, there exists an L? holomorphic function
f on U such that f|U\X = f with the same L? norm;

II. Z is an analytic subset of M and M\(X U Z) is a weakly pseudoconvex
Kahler manifold.

Let M be an n—dimensional complex manifold. Assume that (M, X, Z) satisfies
condition (A). Let Kjs be the canonical line bundle on M. Let dVjs be a continuous
volume form on M. Let F' # 0 be a holomorphic function on M. Let ¢ be a
plurisubharmonic function on M. Let E be a holomorphic vector bundle on M
with rank . Let & be a smooth metric on E. Let h be a measurable metric on E.
Denote h := he™%. Let (M, E, E,Mj,fz, ilj)s) be a singular metric on E. Assume
that ©; (E) >3, 0.

Let (V,z) be a local coordinate near a point p of M and E|y is trivial. Let
g€ H(V,O(Ky ® E)) and g = § ® e locally, where § is a holomorphic (n, 0) form

n2
on V and e is a local section of E on V. We define [g[} |v = V=1 g A gle,e)n,,
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where hg is any (smooth or singular) metric on E. Note that |g|} |v is invariant
under the coordinate change and |g|; is a globally defined (n,n) form on M.
Let T € [—00, +00). Denote that

U := min{¢ — 2log |F|,—T7}.

For any z € M satisfying F(z) = 0, we set U(z) = —T. Note that for any
t > T, the holomorphic function F has no zero points on the set {¥ < —t}. Hence
U =1 —2log |F| = ¢ + 2log|+| is a plurisubharmonic function on {¥ < —t}.

Definition 1.7. We call that a positive measurable function ¢ (so-called “gain”)
on (T,400) is in class PT7M7\p,h if the following two statements hold:

(1) c(t)et is decreasing with respect to t;

(2) For any to > T, there exists a closed subset Ey of M such that Ey C Z N
{¥(z) = —oo} and for any compact subset K C M\Ey, |es|2c(—1) > C’K|ez|}% for
any x € KN{¥ < —tg}, where Cx > 0 is a constant and e, € E,.

Let zp be a point in M. Denote that J(E, W), = {f € HO{¥ < —t} N
V,O(E)}) : t € Rand V is a neighborhood of z5}. We define an equivalence relation
«won J(E, V)., as follows: for any f,g € J(¥).,, we call f « g if f = g holds on
{¥ < —t}NV for some ¢ > T and open neighborhood V' 3 zy. Denote J(E, ¥),,/ «
by J(E,¥).,, and denote the equivalence class including f € J(E, )., by f.,.

If zo € N> {¥ < —t}, then J(E, ¥),, = O(E),, (the stalk of the sheaf O(E) at
20), and [, is the germ (f, zo) of holomorphic section f of E. If zg ¢ N> p{¥ < —t},
then J(E, )., is trivial.

Let f.y, 92 € J(E, V)., and (¢, 20) € Opr,z,- We define fo,+ 9., := (f+9), and
(q,20) f2o := (qf)2- Note that (f+g)., and (¢f)., (€ J(E,¥),,) are independent
of the choices of the representatives of f,g and ¢. Hence J(E,¥),, is an Ops 4, -
module.

Let dV); be a continuous volume form on M. Recall that h is a measurable
metric on E. For f., € J(E, V)., and a > 0, we call f., € I(h,aV) ., if there exist
t > T and a neighborhood V of zy, such that f{\l/<—t}ﬂV |[flZe"YdVy < 4o0.
Note that I(h, a\I/)ZO is an O ,-submodule of J(E, ¥),,. If z5 € Ni>7{T < —t},
then I, = O(E),,, where I, := I(ﬁl, O\IJ)ZO and hy is a smooth metric on E.

Let Zy be a subset of Ny>7{¥ < —t}. Let f be an E-valued holomorphic (n,0)
form on {¥ < —tp} NV, where V O Zj is an open subset of M and to > T is a real
number. Let J., be an Onyz,-submodule of J(E, V)., such that I(h, V)  C J,,
where 29 € Zy. Denote J := U,,ecz,J,,. Denote the minimal L? integral related
to J

inf {/ [fle(=W): f e HO{¥ < —t},0(Kn ® E))
{U<—t} (1'1)
&(f = f)zg € O(Kns)zy @ Jap, for any 2z € ZO}

by G(t;c, ¥, h,J, f), where t € [T,400), ¢ is a nonnegative function on (7', +00).
Without misunderstanding, we denote G(t;¢, U, h, J, f) by G(t) for simplicity. For
various ¢(t), we denote G(¢;¢, ¥, h, J, f) by G(t; ¢) respectively for simplicity.

In this article, we obtain the following concavity property of G(t).
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Theorem 1.8. Let ¢ € Pr .. If there exists t € [T, 400) satisfyz'ng that G(t) <

+00, then G(h™(r)) is concave with respect to r € ( fTT 7tdt f t)e tdt),
. . . t

tah%%ro G(t) = G(T) and tilﬁnoo G(t) = 0, where h(t fT ldtl and T €

(T, +00).

Remark 1.9. Let ¢ € Praswpn. If fT Ye tdt = 400 and f., & O(Kpr)z @z,

for some zy € Zp, then G(t) = +oo for any t > T. Thus, when there ex-
ists t € [T,+00) satisfying that G(t) € (0,400), we have thoo c(t)e tdt < 400
and G(h=Y(r)) is concave with respect to r € (O,f;oo c(t)e~tdt), where h(t) =

J elhetd.

For any ¢ > T, denote
Ho(tc, f) = {f / FRe(—W) < 400, f e HO{W < —t},O(Kus © E))
{T<—t}

&(f_ f)zo € O(KM)ZU ® Jzoufor any 2o € Z0}7

where f is an E-valued holomorphic (n,0) form on {¥ < —t,} NV for some V D Z;
is an open subset of M and some ¢y > T and ¢(t) is a positive measurable function
n (T, 4+00).
As a corollary of Theorem [[.§ we give a necessary condition for the concavity
property degenerating to linearity.

Corollary 1.10. Let ¢ € ]E’T_,M_,q,,h. Assume that G(t) € (0,+00) for some t >
T, and G(h="(r)) is linear with respect to r € [O,f;foo c(s)e*ds), where h(t) =
[ e(tetdl.

Then there exists a unique E-valued holomorphic (n,0) form F on {¥ < T}
such that (F—f)., € O(Kr)z,®J., holds for any 2o € Zy, and G(t f{‘y< 0 |F|2c(—W)
holds for any t > T.

Furthermore

~ G(Ty;c b _
/ FlRa(—w) = 205 / a(t)e"dt (1.2)
{—t1<U<—ts} I, clt)e=tdt Je,

holds for any nonnegative measurable function a on (T, +00), where T < to < t1 <
+oo and Ty € (T, +00).

Remark 1.11. If H?(to; ¢, f) C H?(to; ¢, f) for some to > T, we have
_ Lo G(Ty;c too s
G(to; ©) :/ |F7e(—0) = Jmf—l)/ é(s)e *ds, (1.3)
{w<—to} S e(t)etdt Ji

where ¢ is a nonnegative measurable function on (T,4+00) and T € (T, +0o0). Thus,
if H2(t; E) C H2(t'c) for any t > T, then G(h='(r);¢) is linear with respect to
r e [0, fT s)e”%ds).

1.3. Applications. In this section, we give some applications of Theorem [L.8
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1.3.1. Strong openness property of I(h,a¥),,. In this section, we give an estimate of
|f|2 on sublevel sets of ¥, which implies the strong openness property of I(h, ¥).,.

Let M be an n—dimensional weakly pseudoconvex Kéahler manifold, and let dVj,
be a continuous volume form on M. Let K ; be the canonical line bundle on M. Let
F # 0 be a holomorphic function on M. Let ¥ be a plurisubharmonic function on
M. Let E be a holomorphic vector bundle on M with rank . We call a measurable
metric & on F has a positive locally lower bound if for any compact subset K of M,
there exists a constant C'x > 0 such that h > Ckhy on K, where hy is a smooth
metric on E. Let h be a measurable metric on E satisfying that h has a positive
locally lower bound.

Denote that

U := min{¢ — 2log|F|,0}.
Let zp € M. Recall that f., € I(h,a¥)., if and only if there exist ¢ > 0 and

a neighborhood V' of z; such that f{‘ll<—t}m/ |fl3e=*YdVar < +o0, where a > 0.
Denote that

I (h,aW)zg := Uss oI (h, sP),,.
Let f be an E-valued holomorphic (n,0) form on {¥ < —tg} such that f,, €
O(Kpr)z, ® I(h,09)),,. Denote that
aﬁo(\IJ; h):=sup{a>0: f., € (O(Ky)®I(h,2a7)).,}.

Especially, af (U; k) is the jumping number ¢/ () (see [43]), when F =1, 9(z0) =
—00, E is the trivial line bundle and ~ = 1.

Theorem 1.12. Assume that af (¥;h) < +oo and ©;(E) >4, 0, where h =
he 2% (WM Then we have al (U;h) >0 and

1

= 7R > G050 = 1,9, 1,1, (h, 20, (8 )W), ) > 0

r {afo(‘ll;h)\ll<logr}

holds for anyr € (0, eiago(kp;h)to], where the definition of G(0;¢ = 1,9, h, I (h,2al (¥;h)V)., f)
can be found in Section [L.2

Theorem [[LT2] implies the following strong openness property of I(h,a¥).,.

Corollary 1.13. I(h,a¥)., = I (h,a¥)., holds for any a > 0 satisfying Opc—z2av >%
0.

When F is the trivial line bundle and h = ™%, where ¢ is a plurisubharmonic
function on M, Theorem and Corollary [ T3] can be referred to [29].

Remark 1.14. Let F = 1 and ¢¥(z0) = —oo. Note that zo € M>r{¥ < —t}
and I(h,a¥),, = E(he™),,, then Corollary[I13 is a vector bundle version of the
strong openness property of multiplier ideal sheaves [36].

1.3.2. Effectiveness of the strong openness property of I(h, ¥),,. In this section, we
give an effectiveness result of the strong openness property of I(h, ¥)., (Corollary
[LI3). We follow the notations and assumptions in Section [[31] Let f be an
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E-valued holomorphic (n,0) form on {¥ < 0}, and denote that

it / |fl7e =Y. fe HO{U < 0},0(Ky @ E))
K, f,n,a(20) (w<0}

& (f - f)zo € O(KM)ZO ® I (hv 2a£0 (\I]§ h)\I])zo}a

where a € (0, 4+00).
We present the following effectiveness result of the strong openness property of
I(h,¥).,,.

Theorem 1.15. Assume that ©;(E) >3, 0, where hi= he 2% (UMY Lot Ch
and Cy be two positive constants. If there exists a > 0, such that
(1) f{\p<0} |f|}27,e_\p < Ol;
1
(2) Ky ¢.h,a(20) > Cy.
Then for any q > 1 satisfying

Cq
9(1 ~
0 >7
we have f., € O(Knr)zy @ I(h, q¥).,, where 0,(q) = 2L,

q—1

1.3.3. A twisted version of the strong openness property of 1(h,a¥),. Let D C C"
be a pseudoconvex domain containing the origin o, and let ¥ be a plurisubharmonic
function on D. Let F' # 0 be a holomorphic function on D. Denote that

U := min{¢ — 2log|F|,0}.

For any z € M satisfying F(z) = 0, we set U(z) = 0. Let E be a holomorphic
vector bundle on D with rank r, and let h be a measurable metric on E satisfying
that h has a positive locally lower bound.

It is clear that the following two statements are equivalent:

(1) The strong openness property of I(h,a¥), (Corollary [LI3): I(h,a¥), =
I, (h,a¥), for any a > 0 satisfying Oj,-av >3 5 0

(2) fo & I(h,2al(¥;h)V), for any f, € I(h,0¥), satisfying a/(¥;h) < +oo and

he—al (win)p Z?Vak 0.
We present a twisted version of the strong openness property of I(h,a¥),.

(C)

Theorem 1.16. Let a(t) be a positive measurable function on (—oo,+00). If one
of the following conditions holds:

(1) a(t) is decreasing near +0o;

(2) a(t)e! is increasing near +0o,

then the following two statements are equivalent:

(A) a(t) is not integrable near +00;

(B) for any v, h and f, € I(h,00), satisfying al(¥;h) < +oo and ©,.
0, we have

—al (v;n)y Z?Vak
|f[2 e 200 (MY o (20 (W; h)W) ¢ LHU N {W < —t})
or any neighborhood U of o and any t > 0.
Y g )

When E is the trivial line bundle, Theorem can be referred to [29]. When
F =1, ¥(o) = —c0 and F is the trivial line bundle, Theorem [[.I@ is a twisted
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version of the strong openness property of multiplier ideal sheaves (some related
results can be referred to [38], [6] and [34]).

1.3.4. An optimal support function related to I(h, V). Let M be an n—dimensional
complex manifold. Let X and Z be closed subsets of M such that (M, X, Z)
satisfies condition (A). Let Kjs be the canonical line bundle on M. Let F # 0 be
a holomorphic function on M. Let ¢ be a plurisubharmonic function on M. Let
FE be a holomorphic vector bundle on M with rank r, and let A be a measurable
metric on E satisfying that ©).-+ >3, 0 and h has a positive locally lower bound.
Denote that

U := min{y — 2log|F|,0}
and M, :={z € M : —t < U(z) < 0}. Let Zy be a subset of M, and let f be an
E-valued holomorphic (n,0) form on {¥ < 0}. Denote

inf { /Mt 2 :f € HO{T < 0}, 0Ky @ E))

& (F — )z € O(Kar) @ I(h, W), for any zo € zo}

fMt If‘ieiw

by Cu, ¢ nt(Zo) for any ¢t > 0. When Cy 1.+(Zo) = 0 or +00, we set Coa e =

—+00.

2 _—w
We obtain the following optimal support function of Jaa, Flne

Proposition 1.17. Assume that f{\l,<_l} |fI? < 400 holds for any 1 > 0. Then
the inequality

fMt |flhe™™ t

C\pyf,hyt(Zo) T 1l—et
holds for any t > 0, where 1; is the optimal support function.

_eft

(1.4)

When FE is the trivial line bundle and h = 1, Proposition .17 can be referred to

Take M = A C C, Zy = o the origin of C, F =1 and ¢ = 2log |z|. Let F is the
trivial line bundle, h = 1 and f = dz. It is clear that [}, |f|? < 400. By direct
calculations, we have Cy yn:(Zo) = 27(1 —e™") and [, [f[e™" = 2tm. Then

2 —w
fg; Lfl (ZO) = 1_2,“ which shows the optimality of the support function

_t
l—e—t"
2. PREPARATIONS

2.1. L? methods. Let X be an n—dimensional weakly pseudoconvex Kéhler mani-
folds. Let 1 be a plurisubharmonic function on M. Let F' be a holomorphic function
on X. We assume that F' is not identically zero. Let E be a rank r holomorphic
vector bundle over X. Let h be a smooth metric on E. Let (X,E, X, Mj, h,hjs)
be a singular hermitian metric on E. Assume that O, (E) >%, 0

Let § be a positive integer. Let T be a real number. Denote

M :=max{y+ T,2log|F|}
and

U := min{¢ — 2log |F|,—T7}.
If F(z) = 0 for some z € M, we set U(z) = —T.
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t

Let ¢(t) be a positive measurable function on [T, +00) such that c(t)e™" is de-

creasing with respect t. We have the following lemma.

Lemma 2.1. Let B € (0,+00) and to > T be arbitrarily given. Let f be an
E-valued holomorphic (n,0) form on {¥ < —to} such that

/ IfI2 < +oo, (2.1)
{U<—to}NK
for any compact subset K C X, and
1
| Flto-bercminlf PR < 4o (2.2)
M

Then there exists an E-valued holomorphic (n,0) form F on X such that

[ = (1= by p()) fF O evto 2 =N oy (W)
X

1 P 1 )
< gC(T)e_ +/ c(s)e "ds / EH{—tO—B<\I/<—t0}|fF|h7
T X

where by, p(t) = fioo FLto—Bes<—to1dS, Vi B(t) = fito bto.5(s)ds — to.

We would like to recall the following notations in section Let M be an
n—dimensional complex manifold. Assume that (M, X, Z) satisfies condition (A).
Let K s be the canonical line bundle on M. Let dVj; be a continuous volume form
on M. Let F' # 0 be a holomorphic function on M. Let ¢ be a plurisubharmonig
function on M. Let E be a holomorphic vector bundle on M with rank r. Let h
be a smooth metric on E. Let h be a measurable metric on E. Denote h := he™".
Let (M, E,%, Mj,h,hjs) be a singular metric on E. Assume that ©; (E) >3, 0
Let C(f) S PT,M,\I/,h-

Let T' € [—00,4+00). Denote

U := min{y — 2log |F|,—T}.
If F(z) = 0 for some z € M, we set ¥(z) = —T. Let T1 > T be a real number.
Denote M := max{t + T1,2log|F|}. Denote

Uy := min{y — 2log|F|,—T1}.
If F(z) =0 for some z € M, we set Uy(z) = —T7.

It follows from Lemma 2] that we have the following lemma.

Lemma 2.2. Let (M, X, Z) satisfy condition (A). Let B € (0,+00) and tg > Ty >
T be arbitrarily given. Let f be an E-valued holomorphic (n,0) form on {¥ < —ty}
such that

[ i) < +0, (2.3
{T<—to}
Then there exists an E-valued holomorphic (n,0) form F on M such that

/M |F—(1- bto,B(q’l))fFHé|,%6%‘B(\Pl)_éMC(—Uto,B(‘IH))

1 - to+B . 1 5
< 50(T1)€7 ! +/ c(t)e "dt / E]I{—tO—B<\I/1<—t0}|fF|ﬁv
T M

where by, p(t) = ffoo ELto—Bes<—to1ds and vy, p(t) = fito bo.5(s)ds — to.

(2.4)



10 QI’AN GUAN, ZHITONG MI, AND ZHENG YUAN

Proof. We note that {¥ < —to} = {¥; < —to} and U3 = ¥ = ¢ — 2log|F| on
{¥ < —to}. It follows from inequality (Z3), h = he™¥ and c(t)e~! is decreasing
with respect to t that

1 2
/M EH{_tO—B<\I/1<—to}|fF|fz < Fo0.

As C(f) S PT,M,\I/,ha {\If < —to} = {‘I’l < —to} and ¥y = ¥ on {\If < —to},
there exists a closed subset Ey C ZN{¥ = —oo} such that for any compact subset
K C M\Ey, |e|jc(=¥) > Cklel2 on K N{¥; < —to}, where C > 0 is a constant
and e is any E-valued holomorphic (n,0) form on {¥; < —tg}. It follows from
inequality (23) that we have

/ 2 < +oo.
Kﬁ{‘l’1<—t0}

As (M, X, Z) satisfies condition (A), M\ (ZUX) is a weakly pseudoconvex Kéhler
manifold. It follows from Lemma 1] that there exists an E-valued holomorphic
(n,0) form Fz on M\(Z U X) such that

/M\(Z X) |FZ - (11— bt‘)’B(\Ill))fFH_&|;2}evt°’3(‘p1)_5Mc(—Ut07B(\Ill))
U

T

1 T tot 55 1 )
< gc(Tl)f ' +/ c(s)e”*ds / E]I{—to—BoIfl<—to}|fF|;"I < +oo.
M

For any z € ((Z U X)\Ep), there exists an open neighborhood V; of z such that
V. € M\ Ey.

As (M,E,%, Mj,h,h; ) is a singular metric on E and O;(E) >%,. 0, there
exist a relatively compact subset M; C M containing V, and a C? smooth met-
ric izjgl < h on V. € Mj.. Note that SM is a plurisubharmonic function on
M. As c(t)e™" is decreasing with respect to ¢ and v, 5(¥1) > —to — 2,
c(—v1y,5(W1))e%0-5(¥1) > c(tg+B)e~=%F > 0. Denote C' := inf eVro-8 (V) =M (g p(W1)),

we have

we know C' > 0. On V., as both h and ﬁjgl are continuous, we have ﬁjgl < Ch for
some C > 0. Then we have

P2
/vz\(zux) hir

< / By — (1 by 5 (W) FEOR 42 / (1= by 5 (1) FE2
2\ (ZUX) 31 V. \(ZUX) 31

< / Py — (1= by 5(01)) FEVO2 4 25up |F1HP2 / 2
V A\ (ZUX) V. { FARS!

U <—to}NVs

2 ~ _
§5< / [Py — (1= byy 5 (1)) f 2 (70) We(—vm,B(wl)))
M\(ZUX)
+ G sup |FYP / 2
V. {U1<—to}NV,
< 4 0.

As Z U X is locally negligible with respect to L? holomorphic function, we can
find an E-valued holomorphic extension Fg, of Fiz from M\(ZUX) to M\E, such
that
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/M\E |Fg, — (1 - bto,B(‘1’1))fFlH|;2;€Ut°’3(%)75MC(—Uto,B(‘1/1))
0

1 - to+B 1 )
S gC(Tl)@i 1 +/ C(S)efsds / EH{*tD*B<‘I’1<*tD}|fF|}~1'
M

T

Note that Ey C {¥ = —oco} C {¥ < —to} and {¥ < —to} is open, then for
any z € Ey, there exists an open neighborhood U, of z such that U, € {¥ <
—to} = {¥, < —to}. As (M,E,%,M;, h,h;,) is a singular metric on E and
O (E) >Xar 0, there exist a relatively compact subset M;» C M containing U,
and a C? smooth metric hju 1 < h on U, C Mjn. As vy, p(t) > —to — %, we have
c(—vgy.5(V1))evo-B (V1) > c(to—|—§)e*t“*% > 0. Note that 6M is plurisubharmonic
on M. Thus we have

/ Py — (1= by p (W) fFO2
U.\Eo o

S/ |FE0 - (1 - btoyB(\I/))fFlJrﬂ}%
U.\Eo
1

Sa v |Fg, — (1— bto,B(\Ill))fFlJrﬂ;%evto’B(‘yl)iéMc(_vto,B(\Ill)) < o0,
z 0

where (' is some positive number.
As U, € {¥ < —tp}, we have

/ |(1—bto,B(\I’))fI“1 6|;2; < (Sup|F1 5|2) / |f|i < +o0.
U:-\Eo MRS U. U. 3
Hence we have

[ Il <o
Uz\EO 37

As Ej is contained in some analytic subset of M, we can find a holomorphic exten-
sion F' of Fg, from M\Ey to M such that

/M |F—(1- bto,B(Wl))fFHé|,%€%‘B(Wl)_éMC(—Uto,B(‘I’l))

1 to+B 1 (2'5)
< gc(Tl)e_Tl —|—/ C(t)e_tdt / E]I{ftofB<‘1‘1<*to}|fF|}%'
T M
Lemma 2.2] is proved. O

Let T € [—o0,+00). Let ¢(t) € Prasw.p. Following the notations in Lemma
and using the result of Lemma [Z2] we have the following lemma, which will be
used to prove Theorem [[.8

Lemma 2.3. Let (M, X, Z) satisfy condition (A). Let B € (0,400) and to > t1 >
T be arbitrarily given. Let f be a holomorphic (n,0) form on {¥ < —tg} such that

/ f2e(=®) < +oo, (2.6)
{T<—to}

Then there exists an E-valued holomorphic (n,0) form F on {¥ < —t,} such that
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/{«J ) |E — (1 = by, 5(0)) f2 €02 (N~ oy 5(T))
<—t1

to+B 1 2 _w
< / c(s)e™%ds / Eﬂ{ftofB<‘I/<fto}|f|hei ’
t1 M

where by, p(t) = fjoo Bty Bes<—to}ds, Vi, B(t) = fito be, B(s)ds — to.
Proof of Lemma[Z3 Denote that
U := min{tp — 2log|F|, —t1}.

As tg > t; > T, we have {¥ < —to} = {¥ < —to}. It follows from inequality
[28) and Lemma 22 that there exists an E-valued holomorphic (n,0) form Fjs on
M such that

/M By — (1= by, p (0)) fFYF0 R evton (=00 oy (1))

1 » to+B B 1 9
< | 5elta)e 1+/t c(s)e”*ds /M Bl—to-B<i<—to} | [F -
1

Note that on {¥ < —t;}, we have ¥ = W = 1) — 2log |F|. Hence

/{ , |Fs — (1— bto,B(‘I’))fFHéh%evt“’B(‘y)féMC(—Uto,B(‘I’))
U<—t

:/ |Fs — (1— bto,B(‘i’))fFHéh%evm‘B(\il)_éMC(—Uto,B(‘I’))
{T<—t1}

< y |Fs — (1— bto,B(‘i’))fFHﬂ%evto’B(@)_51\20(—%0,3(@))

1 . to+B B 1 9
S gc(tl)e ! +/t C(S)e *ds /M EH{—to—B<\i’<—to}|fF|}~l
1

1 . to+B 1 9
= gc(tl)e_ 1 _|_/ c(s)e%ds /M E]I{_to_3<\p<_t0}|fF|;l < +o0.

(2.7)

ty

Let Fj5 := % be an E-valued holomorphic (n,0) form on {¥ < —¢;}. Then it
follows from (Z77) that

/{ oo Vs (L by (O F 2 ()
<—t1

1 . to+B 1 5
<(Getwer + [T cemas) [ pi-neacnliF,
M

ty

(2.8)

Note that eva’B('I’)c(—vth(\I/)) > (C(to + %)eitoi%) > 0. As C(t) € ﬁ)T,M,‘Il.]'U
there exists a closed subset Ey of M such that Ey C ZN{¥(z) = —oo} (where Z
is an analytic subset of M) and for any compact subset K C M\ Ey, |e,|7c(—V) >
CK|em|% for any z € KN{V < —ty}, where Cx > 0 is a constant and e, € F,. Let
K be any compact subset of M\ Ey. As (M, E, X, M;, h, ﬁjys) is a singular metric on
E and ©;(E) >3, 0, there exist a relatively compact subset M, C M containing
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K and a C? smooth metric hj, 1 < hon K C Mj,. It follows from inequality (Z)
that we have

sup/ |Fs — (1 — bto,B(\If))fF|%_ | <+oo.
§ J{u<—t1}nK TK

We also note that

[ -besonsrg, < (swlrR) [ <
{T<—t1}NK JK K {U<—to}INK JK

Then we know that

sup/ |F5|% | < +oo.
0 J{U<—t1}NK IK

By Montel theorem and diagonal method, there exists a subsequence of {Fj} (also
denoted by Fj) compactly convergent to a holomorphic (n,0) form F; on {¥ <
—t1}\ Eo. It follows from Fatou’s Lemma and inequality ([2-8)) that we have

/{ s VB (b () S Ve, ()
<—t1 0

<liminf / By — (1= by p(0)) [ F2e%02We(—py, 5(1))
{¥<—t1}\Eop

d—+oco

< 1iminf/ |F5 = (1= bio, (V) fF|7 €02 e(—vg, 5 (1)) (2.9)
{U<—t1} ’

d——+oco

1 . to+B 1 9
< lim inf (gc(tl)e ! +/ C(S)esd5> /M E]I{—to—B<\p<—to}|fF|f1

d—+oo t

to+B 1 2
< / c(s)e%ds / EH{—tO—B<\I/<—to}|fF|E'
t1 M

Note that Ey C {¥ = —oo} C {¥U < —t1} and {¥ < —¢1} is open, then for any
z € Ep, there exists an open neighborhood U, of z such that U, € {¥ < —#;}.
As (M, E, ¥, M, B,iLJ‘)S) is a singular metric on E and ©;(E) >3, 0, there exist
a relatively compact subset M;» C M containing U, and a C? smooth metric
izj/gl <honV,C M. As vy, p(t) > —to — g, we have c(—vth(\Ill))e”fo’B('l’l) >
c(to + %)e*t"*g > 0. Thus we have

/ By — (1~ by () [P
U.\Eo EAE

< / By — (1= by p(0)) [ FI2
U.\Eo

1 -
<— / [Py — (1= bty 5(9)) fF|Z V0 e(—vy, p(V)) < +00,
Cr Ju\E

where (' is some positive number.
As U, € {U < —t1}, we have

[ da=benonsre < (swlR) [ 10, <.
Uz\E[) G U. U. G
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Hence we have

[ IR, <+
U:\Eo I

As Ej is contained in some analytic subset of M, we can find a holomorphic exten-
sion Fy of Fy from {¥ < —t1}\Ep to {¥ < —t1} such that

/{ o B (b () FE 2 Ve, 5(9)
<—t1

to+B 1 2
< / c(s)e”%ds / EH{—tO—B<\I/<—t0}|fF|E'
t1 M

Denote F := % Note that 7 = he™¥ and on {¥ < —t,}, we have ¥ =
1 — 2log |F|. Tt follows from inequality (ZI0) that we have

/{‘I’ t1} |F - (1 - bto,B(\I/))f|%zevt0’B(‘p)_\Ilc(_vto,B(\I/))
<—t1

to+B 1 2 _g
< / c(s)e %ds / EH{—tO—B<\I/<—to}|f|hei :
t1 M

Lemma 23] is proved.

(2.10)

O

2.2. Properties of Oy .,-module J,,. In this section, we present some properties
of O, z,-module J,.

We recall the following property of closedness of holomorphic functions on a
neighborhood of o.

Lemma 2.4 (Closedness of Submodules, see [22]). Let N be a submodule of Of.. ,,
1 < g < 4o, let fj € OL.(U) be a sequence of g-tuples holomorphic in an open
neighborhood U of the origin. Assume that the f; converge uniformly in U towards

a q-tuple f € OL,(U), assume furthermore that all germs f;o belong to N. Then
fo € N.

We recall the following lemma which will be used in the proof of Lemma

Lemma 2.5. Let M be a complex manifold. Let dVa; be a continuous volume form
on M. Let S be an analytic subset of M. Let E be a holomorphic vector bundle on
M with rank r. Let h be a smooth metric on E. Let h be a measurable metric on
E.

Let {gj}j=1,2,. be a sequence of nonnegative Lebesgue measurable functions on
M, which satisfies that g; are almost everywhere convergent to g on M when j —
400, where g is a nonnegative Lebesque measurable function on M. Assume that
for any compact subset K of M\S, we have |e;|7g; > CK|61|}% for any x € K and
any j € Zy, where C > 0 is a constant and e, is any section of E,.

Let {F;};j=1,2,.. be a sequence of E-valued holomorphic (n,0) forms on M. As-
sume that liminf;_, | fM |Fj|igj < C, where C is a positive constant. Then there
exists a subsequence {Fj, }1=1,2,..., which satisfies that {F}, } is uniformly convergent
to an E-valued holomorphic (n,0) form F on M on any compact subset of M when

l — 400, such that
[ rga<c
M
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Proof. Let (U CC M,#) be a local trivialization of E, where E is a holomorphic
vector bundle on M. For any f = (f1,...,f) € H°(U,O(E)), denote |f|3 :=
i |fil>. Then there exists a constant A > 0 such that +|f[? < |f|i < A3
on U. Let K be any compact subset of U and S be an analytic subset of M. By
Local Parametrization Theorem (see [13]) and Maximum Principle, there exists a
compact subset Ky C U\S such that
sup | f(2)[7 < C1 sup [f(2)[F.
zeK zeKy
Hence we have
sup |f(2)[2 < Asup [f(2)f < AC1 sup |f(2)[F < A2Cy sup |£(2)]3.
zeK zeEK z€EK4 z€K1

Recall that S is an analytic subset of M. By the argument above, for any compact
set K CC M, there exists K1 C M\S such that for any j > 0, we have

Fi(2)|? Fi(2))?
p| i( )|h§01 SupIg( i

, 2.11
2eK M e A% (2.11)

where C1 > 0 (depends on K and fz) is a real number. Then there exists a compact
subset Ky C M\S such that K1 C K3 and for any z € Ky and j > 0,

|Fy(2) 2 C: C.
ot < [ IBEE < [ IBERS < 5R0< e,
Kg CK2 Kz CKQ

2
Hence we know that supy, IE‘(/ZN)II’"‘
follows from inequality ([Z.I1]), Montel theorem and diagonal method that we have
a subsequence of {F;} (still denoted by {F;}) uniformly converges to an E-valued
holomorphic (n,0) form F on any compact subset of M. It follows from Fatou’s
Lemma and liminf;_, [,,|Fj|7g; < C that we have

/ [FZg < limin / F2g; < C.
M J—=+o0 Jar

Lemma has been proved. O

is uniformly bounded with respect to j. Then it

Since the properties of J,, is local, we assume that D is a pseudoconvex domain
in C" containing the origin o € C™. Let F' be a holomorphic function on D. Let
f=(f1, f2,..., fr) be a holomorphic section of DxC". Let ¢ be a plurisubharmonic
function on D. Let h be a measurable metric on D x C”. Denote h := he™¥. Let
(D,D x (CT,E,DJ‘,ZL, ﬁj,s) be a singular metric on £ := D x C" which satisfies
O, (E) > 0. Let T' € [—00, +00). Denote

U := min{¢ — 2log |F|,—T7}.

If F(z) =0 for some z € M, we set U(z) = —T. Let Ty > T be a real number.
Denote

M := max{y+ T,2log|F|},
¢1 = 2max{y + Ty, 2log |F|},
and
Uy :=min{y — 2log|F|,-T1}.
If F(z) =0 for some z € M, we set ¥1(z) = —T;. We also note that by definition
I(h, W), = 1(h,¥),.
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Let ¢(t) be a positive measurable function on (T, 4-00) such that ¢(t) € Pr.p v s.
Let dVp be a continuous volume form on D. Denote that H, := {f, € J(E, ¥), :
f{\l/<—t}ﬂV0 |fI2¢(=W0)dVp < +oo for some t > T and V; is an open neighborhood of o}

and H, = {(F,0) € Og. , on |F|?e=¢1¢(—W4)dVp < 400 for some open neighborhood Uy of o}.

As c(t) € Pr.p.w.p, c(t)e™t is decreasing with respect to t and we have I(h, ¥;), =
I(h,¥), C H,. We also note that H, is an submodule of Ot o

Lemma 2.6. For any f, € H,, there exist a pseudoconvex domain Dy C D con-
taining o and a holomorphic section F of D x C" on Dy such that (F,0) € H,
and

/ |I:" — fF2|%e_“’1_\I'1 < 400,
{\I/1<—t1}ﬂD0
for some t; > T.

Proof. Tt follows from f, € H, that there exist tyo > 77 > T and a pseudoconvex
domain Dy € D containing o such that

/ F2e(— W) < +o0. (2.12)
{W<—to}NDy

Then it follows from Lemmal[Z2 that there exists a holomorphic section F of D x C”
on Dg such that

/D B — (1 by (1)) f 22t (VD=0 oy, (1))

to+1
< (C(Tl)eTl +/ c(s)eSds> / H{,t0,1<\p1<,to}|fF|%,
Dg

T

(2.13)

where by, (t) = ffoo [ty —1<sc—to}ds, Vi, (t) = fito by, (s)ds — to. Note that h =
he ", ¢+ M = ¢ + U; and U = ¥, = o) — 2log|F| on {¥ < —ty}. Hence, by
@I13), we have

/ | — (1 = by, (W) fF2[Fem 2~ toe (P o (—py (T7))
Do

to+1
= (C(Tl)eT1 +/ C(S)esds) / Ity 1<w,<—to} | flRe "
Do

T

Denote C := ¢(Ty)e 1t + f:ﬁerB c(s)e*ds, we note that C' is a positive number.
As vy, (t) > —tg — 1, we have eV e(—v;, (V)) > c(tg + 1)e~ ot > 0. As

be, (t) =0 on (—o0, —tg — 1), we have

/ | fP2 e
Doﬂ{‘p1<—t0—1}

1 7 - - v
ST 1P 0 ()R el ()
¢ 2 —v
=2lto + De 07D /D L—to—1<wi<—to} [ flne™ "t < +o0.

(2.14)
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Note that on {¥; < —to}, |F|*e~ %t = 1. Asw, (¥;) > Uy, we have c(—vy, (¥1))evr0 (Y1) >
c(—=Vp)e 1. Hence we have

[ iRy

Dg

<2 /D F = (1= by (01)) fF? 269 e~y
+2 /D (1= by (01)) FF2 e P e(—0y)

§2/ | — (1 = by, (W) fF2[Fe 0 Trtoe (P e (—yy (01))
Do

vz | e(-)
Don{¥<—to}

< + o0.

Hence we know that (F,0) € H,. O

For any (F,0) € H, and (Fy,0) € H, such that fD1ﬁ{\I’1<—t1} |F—fF?3e—v1— V1 <
400 and fDlm{‘Il1<7t1} |F1 — fF?|2e#17¥1 < 400, for some open neighborhood
Dy of o and t; > T}, we have

/ |Fy — F2e=o "1 < 4o
Dlﬁ{\I’1<—t1}
As (F,0) € H, and (F},0) € H,, there exists a neighborhood Dy of o such that
/ |F} — Fl2e™?1¢(=0) < +oc. (2.15)
Do

Note that we have c(—W1)e¥t > c(t1)e™ " on {¥ > —t;}. It follows from inequality

2I3) that we have

/ |Fy — Fl2e "Y1 < 4o0.
DQQ{‘sztl}

Hence we have (F — Fy,0) € E(he™#1~Y1),,. i
Thus it follows from LemmaZ@that there exists amap P : H, — H,/E(he ¥17 Y1),
given by
P(fo) = [(F,0)]
for any f, € H,, where (1:", o) satisfies (1:", 0) € H, and fD1ﬁ{\I’1<—t1} |ﬁ'_fF2|}2Le—g01—\Il1 <
400, for some ¢; > T} and some open neighborhood D; of o, and [(F,0)] is the
equivalence class of (F,0) in H,/E(he=#17¥1),.

Proposition 2.7. P is an Ocr o-module homomorphism and Ker(ﬁ) =1I(h,Uq),.

Proof. For any fo,9, € H,. Denote that P(f,) = [(F,0)], P(go) = [(G,0)] and
P(fo+90) = [(H,0)].

Note that t~here exist an open neighborhood D; of~o and t > T such that
fDlﬂ{\IJ1<ft} |F — fF2|]2Ie_901—‘I’1 < 400, fDlﬂ{\IJ1<ft} |G — gF2|%e_</71—‘1’1 < +00,
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and fDlﬁ{\I/1<7t} \H — (f +g)F?|2e~#1~¥1 < +00. Hence we have
/ = (F+G)2e= " < 400,
Din{¥,<—t}

As (F,0),(G,0) and (fIN, 0) belong to H,, there exists an open neighborhood D C
Dy of o such that [ [H — (F + G)[fe”#1e(=P1) < +o00. As c(t)e”" is decreasing
with respect to t, we have ¢(—¥;)e¥t > ¢(t)e~! on {¥U; > —t}. Hence we have

1
c(t)e~t

/ H—(F4G)2e " < / [H—(F4G)2e %1 e(—0y) < +o0.
Dlﬁ{\lllz—t} Dlﬁ{\lflz—t}

Thus we have [ |H — (F +G)|3e=%1~¥1 < 400, which implies that P(f, + g,) =
P(f,) + Plg,). ] )

For any (g,0) € Ocn . Denote P((qf),) = [(Fy,0)]. Note that there exist an
open neighborhood Dy of 0 and ¢ > T such that fD2m{%<7t} |E,—(qf)F?7e~ "Y1 <
+00. It follows from ngﬁ{\I/1<—t} |F — [F?|3e=#1~%1 < 400 and ¢ is holomorphic

on Dy (shrink Dy if necessary) that fD2m{‘1/1<—t} lgF — qf F?3e=#1~ %1 < 4oo0.
Then we have

/ |Fq —gFPPe 1 < 4o,
Dgﬁ{\lll<—t}

Note that (¢F,0) and (Fy,0) belong to H,, we have Ip, |Fy — qF[Ze%1e(—0) <
+00. As c(t)e~? is decreasing with respect to t, we have c¢(—Wq)e¥t > ¢(t)e™! on

{¥; > —t}. Hence we have

_ 1 _
/ By < | FyaFfe (- 1) < +oc.
Don{ ¥ >t} c(t)e™ Jp,nqw.>—1)

Thus we have [, |E,—qF|3e=%1~¥1 < o0, which implies that P(qf,) = (q,0)P(f,).
We have proved that Pis an Ocr ,-module homomorphism.

Next, we prove Ker(P) = I(h, ¥),.

If f, € I(h,%),. Denote P(f,) = [(F,o0)]. It follows from Lemma that
(F,0) € M, and there exist an open neighborhood D3 of o and a real number

t1 > T such that

/ |F — fFY2e 17 < 4.
{\I/1<—t1}ﬂD3
As f, € I(h,VU1),, shrink D3 and ¢; if necessary, we have
/ |F~‘|%6_4P1_\I’1
{‘I’1<—t1}ﬁD3
=3 P fPfe e e FF2 e
{\I/1<—t1}ﬁD3 {‘I’1<—t1}ﬁD3 (216)

<[ P fPfee e R
{¥i<—t1}ND3 {¥1<—t1}ND3

< + o0.
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As ¢(t)e™t is decreasing with respect to t, ¢(—¥y)e¥t > Cy > 0 for some positive
number Cy on {U; > —t1}. Then we have

1 ~
/ FReo b < o / FlRe1e(~¥) < o0, (2.17)
{¥1>—t1}ND3 0 J{¥:>~t1}ND3

Combining inequality (ZI6) and inequality ZIT), we know that I € £(he~#1~¥1),,
which means P(f,) = 0 in H,/E(he=#*~Y1),. Hence we know I(h, 1), C Ker(P).

If f, € Ker(P), we know F € E(he=#1~"1),. We can assume that F' satisfies
fD4 |1:"|he_‘/’1_‘1’1 < 400 for some open neighborhood Dy of 0. Then we have

/ e
{‘I’1<—t1}ﬁD4

- FF2e"
/{\P1<—t1}ﬁD4 " (2.18)
</ Fee v [ | fP R
{¥1<—t1}NDy {W1<—t1}NDy
<+ 00.
By definition, we know f, € I(h, ¥1),. Hence Ker(P P) C I(h, ¥;),.
Ker(P) = I(h, V), is proved. O

Now we can define an O¢n ,-module homomorphism P : H,/I(h, ¥1), — H,/E(he™¢17 Y1),

as follows, .
P([fo]) = P(fo)

for any [f,] € Ho/I(h,V1),, where f, € H, is any representative of [f,]. It follows
from Proposition 27 that P([f,]) is independent of the choices of the representatives

of [fo].

Let (F,0) € H,, i.e. I |F|2e=#1¢(—W) < +oo for some neighborhood U of o.
Note that |F|*e=#* =1 on {¥; < —T}. Hence we have fUﬁ{\I/1<—t} | L Ze(—1) <
+oo for some t > T, ie. (i) € H,. And if (F,0) € E(he=#1~ 1), it is easy

to verify that (£5), € I(h,¥1),. Hence we have an Ogn ,-module homomorphism
Q:Ho/E(he= 1 =Y1), — H,/I(h,¥1), defined as follows,

QU(F, o)) = [(35).]

The above discussion shows that ) is independent of the choices of the repre-
sentatives of [(F',0)] and hence @ is well defined.
Proposition 2.8. P: H,/I(h, V1), = H,/E(he ¥~ Y1), is an Ocn ,-module iso-
morphism and P~ = Q.
Proof. Tt follows from Proposition 7] that we know P is injective.

Now we prove P is surjective. R

For any [(F,0)] in H,/E(he™ %1~ ‘1’1) Let (F, 0) be any representatives of [(", 0)]
in H,. Denote that [(f1)o] := [( 5)o] = A Q([( ,o)])~. Let (f1)o == (%)O € H, be
the representative of [(f1)o]. Denote [(F1,0)] := P((f1)o) = P([(f1)o]). By the
construction of P, we know that (F,0) € H, and

/ |Fy — iF?[e 977 < 4o,
Dlﬂ{\I/1< t}

F,
F
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where ¢ > T and D; is some neighborhood of o. Note that (f1), := (i)o Hence

we have
/ |Fy = Fe "1 < oo,
D1I"W{‘I’1<—t}

It follows from (F,0) € H, and (Fi,0) € H, that there exists a neighborhood
D5 C Dy of o such that

/ |F— F1|2e%1e(=;) < 4o0.
D>

Note that on {¥; > —t}, we have ¢(—=W¥1)e¥t > ¢(t)et > 0. Hence we have

/ |F — F2e "Y1 < 400,
Dgﬁ{\lflz—t}

Thus we know that (F} —F, 0) € E(he=#1~1), ie. [(F,0)] = [(F1,0)] in H,/E(he 1~ ¥1),.
Hence we have P o Q([(F,0)]) = [(F,0)], which implies that P is surjective.

We have proved that P : H,/I(h,¥1), — H,/E(he™¥17 Y1), is an Ocn ,-module
isomorphism and P~ = Q. 1

The following lemma shows the closedness of submodules of H,.

Recall that D is a pseudoconvex domain in C™ containing the origin o € C", F’
is a holomorphic function on D and f = (f1, f2,. .., fr) be a holomorphic section of
E =D x C". Let ¥ be a plurisubharmonic function on D. Let h be a measurable
metric on D x C” and h := he¥. Let (D,D x CT,Z,DJ',?L,;LJ'_’S) be a singular
metric on E := D x C" which satisfies ©; (E) >%,, 0. Let c(t) € ]5T7D7q,,h.

Lemma 2.9. Let Uy € D be a Stein neighborhood of o. Let J, be an Ocn ,-
submodule of H, such that I(h,¥), C J,. Assume that f, € J(¥),. Let {f;};>1 be
a sequence of E-valued holomorphic (n,0) forms on UyN{¥ < —t;} for any j > 1,
where t; > T. Assume that to := lim; 100 t; € [T, +00),
Jim sup / s 2e(—) < C < +oc, (2.19)
j—+oo JUN{¥<—t;}
and (fj—f)o € Jo. Then there exists a subsequence of { f;};>1 compactly convergent
to an E-valued holomorphic (n,0) form fo on {¥ < —to} N Uy which satisfies

/ fofe(-9) < C.
UoN{¥<—to}
and (fo— f)o € Jo.

Proof. Tt follows from c¢(t) € ]5T7 p,w,, that there exists an analytic subset Z of D
and for any compact subset K C D\Z, |e|7c(—v) > C’K|e%|}?I for any z € KN{¥ <
—to}, where Cx > 0 is a constant and e, € E,.

It follows from inequality (2I9), Lemma and diagonal method that there
exists a subsequence of { f;};>1 (also denoted by {f;};>1) compactly convergent to
an E-valued holomorphic (n,0) form fo on {¥ < —to} NUy. It follows from Fatou’s
Lemma that

/ |fole(—¥) < lim nf Be(—w) < C.
Uon{T<—to} J=to0 Jusn{w<—t,}

Now we prove (fo — f)o € Jo. We firstly recall some constructions in Lemma
2.0
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As tg :==lim; 4o t; € [T, +00). We can assume that {t;},>0 is upper bounded
by some real number 77 + 1. Denote ¥y := min{y —2log |F|, =11}, and if F(z) =0
for some z € M, we set U1(z) = —17. We note that

1imsup/ |fil7e(=¥) < C < +oc.
j—r+oo JUN{¥<-T1—1}

It follows from c(t) € 151 p,w,n, and Lemma that there exists an F-valued
holomorphic (n,0) form F; on Uy such that

|F; — (1= by (W) f F2f e T (M) =Py (7))
Ug

T +2
< C(Tl)e_T”r/ c(s)e *ds /H{7T172<@1<7T171}|fj|%€_W1a
Uo

T

(2.20)

where by (t) = fioo [{_7 —2cs<—m—13ds, v1(t) = fiTﬁl bi(s)ds — (Th + 1). Denote
Cy=c(Th)e I + fTTfH c(s)e *ds.

Note that vy (t) > —T; — 2. We have e?* (Y1 ¢(—vy (U)) > ¢(Ty + 2)e~ 7112 > 0.
As by(t) =0 on (—o0, =Ty — 2), we have

I 212 —p1—¥
[ e
Uon{¥<—T1 -2}

1 n —p1— v
e*(T1+2)/U | — (1= b1 (1)) fF2 (e 917 e(—y, (1)
0

<
C(T1 —|— 2)
O
<
_C(Tl + 2)67(T1+2)

/ ]I{*Tl*2<\I/1<7Tl*1}|fj|%ze_\ll1 < +o0.
U
’ (2.21)
Note that [F?[?e™%" = 1 on {¥U; < —T7 — 1}. As v, (¥1) > ¥y, we have
c(—vy, (¥1))e™ (1) > ¢(—W;)e"1. Hence we have
| B se-w)
Uo
<2 [ [F = (= bi(00) [ P2 Re P e(— 1)
Uo

+2 | (1= ba(BO) e el =0) (2.22)

<2 [ |Fj — (1= b1(W0)) f;F2pe =Vt (P e(—py (07))
Uo

2 / B e(—wy)
Upn{¥1<—T1—1}

<+ 0.
Hence we know that (Fj,0) € H,.
It follows from inequality 2.19), sup;s; (on ]I{—Tl—2<\11<—T1_1}|fj|,216"1’) <
+oo and inequality [222) that we actually have

sup ( |13'j|,216“’lc(—\111)> < +o0. (2.23)
Uo

J
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Note that c(t)e~" is decreasing with respect to ¢ and there exists an analytic subset
S of D and for any compact subset K C D\S, les|ic(—1) > CK|ez|}% for any
x € KN{¥ < —tp}, where Cx > 0 is a constant and e, € E,.

Let K C Up\S C D\S be any compact set, then for any f being an E-valued
holomorphic (n,0) form, we have

|[falhe™#re(=¥1) = Ck|ful}
for any x € KN {¥; < —T1} and

[folie 91 e(—W1) > Culfolie ™" = [ fol2e M > 10| £ 2

for any x € K N{¥; > —T1}, where Ck,Cy,Cy > 0 are constants. Hence

|fz|he Ple(—w )>m1n{CK,C'1C2}|fz (2.24)

|h’
for any € K N{¥; > —T1}. It follows from inequality (2.23), inequality (224)
and Lemmal[2Flthat there exists a subsequence of { Fj } j>1 (also denoted by {F}};>1)
compactly convergent to an E-valued holomorphic (n,0) form Fy on Uy and

BolZePie(—y) < liminf/ Fy[2e % c(—y) < +o0. (2.25)
Uo I+ Ju,

As f; converges to fo, it follows from Fatou’s Lemma and inequality (2Z20) that

/U |Fy — (1= b1 (0)) foF2|Fe o T (W)= P~y (4))

Jj—+o0

ghmmf/ |Fj — (1= by (W) f; F?[2e o T (=Y oy (1))
Uo

<+ 00,

which implies that

/ |Fo — foF?[fe ™" < +oc. (2.26)
Uon{¥<—T1—2}

It follows from inequality (Z2I)), inequality (222), inequality (220), inequality
([226) and definition of P : H,/I(h,¥1), — Ho/E(he ¥17 Y1), that for any j > 0,
we have

P([(f5)o]) = [(Fj, 0)].

Note that I(h,¥q), = I(h, ), C J,. As (fj — f)o € J, for any j > 1, we have
(fj = f1)o € Jo for any j > 1. It follows from Proposition 28 that there exists a
submodule .J of Ot , such that E(he™#1= 1), C J C H, and J/E(he= 91~ Y1), =
Im(P|s,/1(h,w,),). It follows from (f; — f1)o € J, and P([(f;)o]) = [(F},0)] for any
7 > 1 that we have

(Fj — Fl) eJ,
for any j > 1. R

As Fj compactly converges to Fp, using Lemma 4, we obtain that (Fy —
F1,0) € J. Note that P is an Ogn ,-module isomorphism and J/&(he=#1~Y1), =
Im(Pls,/1(h,w,),). We have (fo — f1)o € Jo, which implies that (fo — f)o € Jo-

Lemma 2.9]is proved. O
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Let ¢ = 1, and note that H, = I(h,00), and H, = E(he™¥*),. It is clear that
I(h,a¥), C I(h,a'¥), for any 0 < @’ < a < +oo. Denote that Iy (h,a¥), :=
Upsal(h,p¥), is an Ocn o-submodule of H,, where a > 0.

Lemma 2.10. There exists a’ > a such that I(h,a'U), = Iy (h,a¥®), for any a > 0.

Proof. The definition of I (h, a¥), shows I(h,p¥), C I;(h,a¥), for any p > a. It
suffices to prove that there exists a’ > a such that I (h,a¥), C I(h,a’ ¥),.

Denote that ¢, := kp; = 2max{kt + kT, 2log |F*|} and ¥ := k¥ = min{ki —
2log |F¥|, —kT}, where k > a is an integer. As he™% >%,, 0 and ¢ is plurisub-
harmonic on M, it follows from Remark that he %% >3, 0. Proposition 28]
shows that there exists an Ogn o,-module isomorphism P from I(h,09),/I(h, ¥), —
E(he=%1),/E(he=#1~Y),, which implies that for any p € (0,k), there exists an
Ocn o-submodule K, of Og. , such that

P(I(h,p®),/I(h,¥),) = K,/E(he=?~Y),,.

Denote that
L:= L-Ja<p<kI(p
be an Ocn o-submodule K, of Og. ,. Hence P|I+(h)a\1,)o/{(h7‘i,)o is an O¢r ,-module
isomorphism from I (h,a¥),/I(h,¥), to L/E(he=?~Y),. As Ocn, is a Noe-
therian ring (see [1]), we know that Og.. , is a Noetherian Oc» ,-module, which
implies that L is finitely generated. Thus, we have a finite set {(f1)o,--., (fm)o} C
I (h,a¥),, which satisfies that for any f, € I (h,a¥),, there exists (hj,0) € Ocn
for 1 < j < m such that
fo= (hj,0)- (fi)o € I(h, D),
j=1

By the definition of Iy (h, a¥),, there exists a’ € (a, k) such that {(f1)o, .-, (fm)o} C
I(h,a'¥),. Note that I(h,V), = I(h,k¥), C I(h,a’¥),. Then we obtain that
I (h,aW), C I(h,d'¥),.

Thus, Lemma 210 holds. O

3. PROPERTIES OF G(t)

Following the notations in Section [[L2], we present some properties of the function
G(t) in this section.
For any ¢t > T', denote

H2(t;c, f, H) = {f: / 1f2e(—0) < 400, fe H{¥ < —t},0(Ky @ E))
{U<—t}

&(f = f)zo € O(Knr)z @ (2 N Hy,), for any zg € 20}7

where f is an E-valued holomorphic (n,0) form on {¥ < —to} NV for some V D Z
is an open subset of M and some to > T, ¢(t) is a positive measurable function on
(T, +00) and H,, = {f, € J(¥), : f{\If<—t}mv0 |f|?e"%c(—¥) < 400 for some ¢ >
To and Vj is an open neighborhood of zp} (the definition of H,, can be referred to

Section [2.2]).
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If G(t1;¢,9,¢,J, f) < 400, then there exists an E-valued holomorphic (n,0)
form fo on {¥ < —t1} such that (fo — f)z, € O(Kar)z @ Ja, for any zg € Zp and

/ FolZe(—0) < +oo.
{T<—t1}

Lemma 3.1. If G(tl;Nc, U, p,J, f) < +oo for some t; > T, we have H?(t;c, f)
H2(t; e, fo) = H2(t; ¢, fo, H) for anyt > T.
Proof. As (fo = )z € OKpr)zy ® Jop,for any zg € Zo, we have H2(t;c, f) =
H2(t; ¢, fo) for any t > T. ) )
Now we prove H2(t~; ¢, fo) = H3(t; ¢, fo, H) for any t > T. It is obviously that
H2(t; ¢, fo) D H?(t; ¢, fo, H). We only need to show H?(t; ¢, fo) C H?(t; ¢, fo, H).
Let f1 € H2(ta;¢, fo) for some to > T. As f{‘y<7t2} |f1]7c(—¥) < +o0, denote
t = max{ty,t2}, we know that

/ o= Fol2e(—) < +oo,
{T<—t}

which implies that (f; — fo)zy € O(Kpr)zy ® H.,, for any zy € Zo. Hence (f) —
fo)zo € O(Knr)2®(J2,NHz,), for any zo € Zo, which implies that f; € H2(t; ¢, fo, H).
Hence H2(t; ¢, fo) = H2(t; ¢, fo, H). O
Remark 3.2. If G(t1;¢,9, ¢, J, f) < 400 for some t1 > T, we can always assume
that J,, is an O z,-submodule of H,, such that I(h, \IJ)ZO C Ju, for any zo € Zy

in the definition of G(t;c, W, h,J, f), where t € [T, +00).
Proof. If G(t1;¢,%, ¢, J, f) < 400 for some t; > T, it follows from Lemma 3] that
H2(t;c, f) = H3(t;¢, fo) = H2(t; ¢, fo, H) for any t > T. By definition, we have
G(tie, U, h, J, f) = G(t;c, U, h, J, fo) = G(t;c, ¥, h, J N H, fo).

Hence we can always assume that J., is an Oy, ;,-submodule of H, such that
I(h7 \I!)ZO C Jz,, for any zo € Z. ]

In the following discussion, we assume that J;, is an Oy .,-submodule of H
such that I(h, \II)ZO C J,,, for any zg € Zp.
Let c(t) € PT7 M, v, The following lemma will be used to discuss the convergence

property of E-valued holomorphic forms on {¥ < —t}.

Lemma 3.3. Let f be an E-valued holomorphic (n,0) form on {¥ < —t,} NV,
where V' O Zy is an open subset of M and to > T is a real number. For any
20 € Zo, let J,, be an Oy ., -submodule of H, such that I(h, \II)Z0 C Jzy-

Let {f;}j>1 be a sequence of E-valued holomorphic (n,0) forms on {¥ < —t;}.
Assume that to :=lim;_, o t; € [T, +00),

limsup/ |fil7e(=¥) < C < +oo, (3.1)
{T<—t;}

j—+oo

and (fj — f)zo € O(Knr)z ® Jay for any zo € Zy. Then there exists a subsequence
of {fj}jen+ compactly convergent to an E-valued holomorphic (n,0) form fo on
{U < —to} which satisfies

/ folie(—w) < ¢,
{T<—to}

and (fo — f)zo € O(Knr)z ® Jz, for any zo € Zy.
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Proof. Tt follows from c(t) € ]5T7 M,w,n, that there exists an analytic subset Z of D
and for any compact subset K C D\Z, |e[jc(—¢) > Cklel? on K N{¥ < —to},
where Cx > 0 is a constant and e is any E-valued holomorphic (n,0) form. It
follows from inequality (B1]), Lemma and diagonal method that there exists a
subsequence of {f;};>1 (also denoted by {f;};>1) compactly convergent to an E-
valued holomorphic (n,0) form fy on {¥ < —t¢}. It follows from Fatou’s Lemma
that

/ folie(— ) < liminf / i Be(—w) < C.
{T<—to} {P<—t;}

Jj—+o0
Next we prove (fo — f)z € O(K )z, @ Js, for any zo € Zp.
Let zg € Zy be a point. As limsup f{‘1/<7t-} |fi]7e(—=¥) < C < +o0, there exists
Jj—+o0 /

an open Stein neighborhood U, €@ M of zy such that

limsup/ |fil7e(=¥) < C < +oo.
U.on{¥<—t;}

Jj—+oo

Note that we also have (f; — f)s, € Js. It follows from Lemma and the
uniqueness of limit function that (fo — f)., € O(Knr)z, ® Js, for any zo € Zy.
Lemma is proved. O

Lemma 3.4. Let to > T. The following two statements are equivalent,
(1) G(to) = 0;
(2) fzo € O(KM)ZO ® Jzo7 for any zo € ZO~
Proof. Tt f., € O(Kpr)z ® Joy, for any zg € Zp, then take f = 0 in the definition
of G(t) and we get G(tog) = 0.

If G(tg) = 0, by definition, there exists a sequence of E-valued holomorphic (n,0)
forms {f;};ez+ on {¥ < —to} such that

lim |filhe(=¥) =0, (32)
I+ J{w<—to}

and (f; — flzo € O(Knr)zy ® Jsy, for any zp € Zp and j > 1. It follows from
Lemma that there exists a subsequence of {f;};en+ compactly convergent to
an E-valued holomorphic (n,0) form fo on {¥ < —tp} which satisfies

[ kv =0
{¥<—to}

and (fo—f)z, € O(Kr) 2@, for any zg € Zy. It follows from f{\l,<_t0} |folZe(—=T) =
0 that we know fo = 0. Hence we have f., € O(Km )., ® J,, for any zyp € Zy. State-
ment (2) is proved. O

The following lemma shows the existence and uniqueness of the F-valued holo-
morphic (n,0) form related to G(t).

Lemma 3.5. Assume that G(t) < +oo for some t € [T, +00). Then there exists a
unique E-valued holomorphic (n,0) form Fy on {¥ < —t} satisfying

[ IRRd-w=c
{U<—t}

and (Fy — f) € O(K)z @ Jay, for any zo € Zp.
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Furthermore, for any E-valued holomorphic (n,0) form F on {¥ < —t} satisfy-
mng

/ |F|7c(—¥) < 400
{U<—t}
and (F —f) € O(Knr)z @ Jay, for any 20 € Zo. We have the following equality
[ RBew+ [ PR
{T<—t} {T<—t}
[ |Pe-w)
{T<—t}

Proof. We firstly show the existence of Fy. As G(t) < 400, then there exists a
sequence of E-valued holomorphic (n,0) forms {f;};en+ on {¥ < —t} such that

(3.3)

lim | filhe(=0) = G(t)
J=te Jiw<—1}

and (f; — f) € O(Kum)z ® Js, for any zo € Zy and any j > 1. It follows from
Lemma that there exists a subsequence of {f;};en+ compactly convergent to
an E-valued holomorphic (n,0) form F on {¥ < —t} which satisfies

[ iFRe-wm <a
{T<—t}

and (F' — )z, € O(Kpm)z ® J4, for any zg € Zy. By the definition of G(t), we have
f{q}<7t} |F|?2c(—W¥) = G(t). Then we obtain the existence of Fy(= F).

We prove the uniqueness of F; by contradiction: if not, there exist two different
holomorphic (n,0) forms f; and fo on {¥ < —t} satisfying f{\Il<—t} |f1l2e(—0) =
Jpeoy 12RE=) = G(O), (fi — flay € OKar)ay © ., for any 20 € Zo and
(fa— [)zo € O(Kp) 2y ® Js, for any zg € Zy. Note that

Sitf2 Ji—fa
[ e [ R R e

{T<—t}

=3[, Wl [ i) = co

{T<—t}

then we obtain that

[ g <aw
{T<—t}

and (# = [z € O(Kp)z @ Js for any zg € Zy, which contradicts to the
definition of G(t).

Now we prove equality (33). Let ¢ be an E-valued holomorphic (n,0) form on
{¥ < —t} such that f{\l,<_t} lglic(—¥) < 400 and g € O(K ), ® Js, for any zg €
Zy. Tt is clear that for any complex number a, F; + aq satisfying ((F; + aq) — f) €
O(K pp) 2 ® 2, for any zg € Zy and f{q}<7t} |Ft|ic(—\11) < f{q}<7t} |Ft+aq|ic(—ﬁ/).
Note that

/ Iy + aql2e(~0) - / FyBe(—0) > 0
{T<—t} {v<—t}
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(By considering az — 0) implies
m/ <Ft7 Q>hc(_\Ij) = 07
{P<—t}

then we have

/ Iy + ql2e(—) = / (EE + aB)e(— D).
{w<—t} {w<-t}

O

Letting ¢ = F' — F, we obtain equality (33).
The following lemma shows the lower semicontinuity property of G(t).

Lemma 3.6. G(t) is decreasing with respect tot € [T, +00), such that . lithrO G(t) =
—to

G(to) for anyto € [T, +0), and if G(t) < +oo for somet > T, then . li+m G(t) =0.
—+o00

FEspecially, G(t) is lower semicontinuous on [T, 400).

Proof. By the definition of G(t), it is clear that G(t) is decreasing on [T, +00).
If G(t) < 400 for some ¢ > T, by the dominated convergence theorem, we know
tl}IEOOG(t) = 0. It suffices to prove tiltgl+0 G(t) = G(tg) . We prove it by contra-
diction: if not, then lim G(t) < G(to).
t—to+0
By using Lemma [3.5] for any ¢ > t¢, there exists a unique E-valued holomorphic
(n,0) form F;, on {¥ < —t} satisfying f{\I/<7t} |Fi|2c(—=V) = G(t) and (F; — f) €
O(Kpm)z @ Js for any zo € Zy. Note that G(t) is decreasing with respect to ¢.
2 o < . . _
We have f{\Il<—t} |Fi|ic(—W) < tﬂhtror#OG(t) for any t > to. If tﬁhtromJrO G(t) = 400,
the equality . litrn+0 G(t) = G(to) obviously holds, thus it suffices to prove the case
—to

. 2 _ < .
t_l)ltror#OG(t) < +o0. It follows from f{\Il<—t} |Felre(—¥) < t—];ltlor%i-o G(t) < +oo holds

for any ¢ € (to,t1] (where t; > 1 is a fixed number) and Lemma that there
exists a subsequence of {F;} (denoted by {F},}) compactly convergent to an F-

valued holomorphic (n,0) form Fy, on {¥ < —to} satisfying

/ |Fyy[re(—0) < lim G(t) < 400
{\I/<_t0} t—to+0

and (Fy, — f)z0 € O(Kar)zy @ Ja, for any zy € Zy.

Then we obtain that G(tg) < f{\I/<7t0} |Fy |2e(—0) < tiagl+0 G(t), which con-

tradicts tiltgl+0 G(t) < G(ty). Thus we have tﬁhtrorirOG(t) = G(to). O

We consider the derivatives of G(t) in the following lemma.

Lemma 3.7. Assume that G(t1) < 400, where t1 € (T,+00). Then for any
to > t1, we have
G(t1) — G(to) < liminf G(to) — G(to + B)

¢ T tot+B PR
S e@)emtdt — Bo0+0 - [OTF e(t)e—tdt

i.€e.

G(to) — G(t1) > lim sup G(to + B) — G(to)

f;‘l) c(t)e—tdt — FE c(t)e~tdt — B—0+0 ;$+B c(t)e~tdt — f;ﬁ c(t)e~tdt
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Proof. Tt follows from Lemma that G(t) < +oo for any ¢t > #;. By Lemma
B3 there exists an E-valued holomorphic (n,0) form Fy, on {¥ < —tg}, such that
(Fty — [z € O(K )z ® Js for any zg € Zp and G(tg) = f{\Il<—t0} |Ft0|%c(—ﬁ!).
It suffices to consider that lim inf w
B—0+0 [0 c(t)emtdt
creasing property of G(t). Then there exists 1 > B; — 0+ 0 (as j — +o00) such
that

€ [0,400) because of the de-

G(to) — G(to + Bj) G(to) — G(to + B)

lim _ = liminf (3.4)
j—++oo tio+By c(t)e—tdt B—0+0 ftio+B c(t)etdt
and {%m}jel\ﬁ» is bounded. As c(t)e™! is decreasing and positive on
(t, —l—oo)’[,) then
lim G(fo) — G(to + B]) _ ( lim G(fo) — G(fo + B]) 1
. to+B; — . . ] B _
J=teo too c(t)e~tdt I B t_&g}‘_oc(ﬂe !
G _ . to
| tim (to) — G(to + Bj) e
j—+o0 B, lim ¢(t)
t—to+0
(3.5)

Hence {%@} jen+ is uniformly bounded with respect to j.

As t < vy, ;(t), the decreasing property of ¢(t)e™! shows that
e Vo, (e, 5 (W) > e(—W).
It follows from Lemma[23] that, for any B;, there exists an E-valued holomorphic
(n,0) form F; on {¥ < —t1} such that

[ IR = (= b, (0 fe-0)
{T<—t1}

< / |FJ - (1 - bto,Bj (\IJ))Fto |}2L67\P+vt0,3j (‘I})C(_vto,Bj (\IJ))
{T<—t1}

fo+B; . 1 2 —w
g/ c(t)e” dt/ B_H{—to—Bj<‘I’<—t0}|Ft0|hei
t1 {¥<—t:1} i

etotB; f:l”-’_Bj c(t)e tdt

< -
- inf  ¢(t)
te(to,to+B;)

et0+Bj LtIU“I’BJ' c(t)eftdt (/
= X
{

1
/{ o BB Filfe )
—l1

1
—Ljwe—to} [ Frofe(—0)

inf t 1 B;
te(tol,?o-i-Bj)c() V<—t,} Pj
1 2
- EH{@<ftOfBj}|Fto|hC(—‘I’)
{Uv<—t1} PJ

ot B [0 o()etat . Glto) =~ Glto + B)

<
- inf  ¢(t) B;
te(to,to-"-Bj)

< +o00. (3.6)
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Note that by, p,(t) = 0 for t < —tg — By, by, B,(t) = 1 for t > to, vy,,B,(t) >
—to— Bj and c(t)e”! is decreasing with respect to ¢. It follows from inequality (3.6)
that (F; — Fiy)z0 € O(Kp)z @ I(h, W), C O(Kn)z @ Jo, for any zp € Zo.

Note that

/ Fye(—w)
{U<—t1}

< / 1By — (1= by s, (0)) Fyy [2e(—0) + 2 / (1 biy 15, (0) Fyy e~ )
{U<—t,} {¥<—t1}

et By [ e tdl  G(to) — Gt + By)

2 « sof R
f t B. 0
te(tol,?oJrBj) (t) J {U<~to}

(3.7)

We also note that B; <1, %ﬁtﬁfm is uniformly bounded with respect to
jand G(ty) = f{\p<—t0} |Fy, [7e(—W). It follows from inequality ([B7) that we know
f{‘y<7t1} |Fj|2e=#c(—W) is uniformly bounded with respect to j.

It follows from Lemma[3.3that there exists a subsequence of { )} ;en+ compactly
convergent to an E-valued holomorphic (n, 0) form F;, on {¥ < —¢; } which satisfies

/ |I:",g1 |,2Ic(—\11) < liminf |Fj|ic(—lf) < 400,
{U<—t1} It Jiwa—ty}

and (Fy, — Fy))z0 € O(Kr)zy ® Ja, for any zo € Zo.
Note that lim; 4o bty B, (t) = Ij¢>—¢yy and

Uty (t) = jEIJPoo Uto,B,; (t) =

—ty if x < —tg,
{t if,TZtQ.

It follows from inequality (3.0) and Fatou’s lemma that

/ By — Fiy2e(—0) + / By Be(—)
{T<—to} {—to<¥<—t1}

S/ By = Tpwe—soy Figlne ™0 Me(—uy, (9))
{T<—t1}

<liminf |Fj -(1- thvB:‘(\I]))Ft‘)"QLC(_\Ij)
i=t0 Jrpeiyy
) B; —
etot By [1T5 o(t)etdt . Glto) = G(to + Bj))

inf c(t B;
te(to,to+B;) () J

<lim inf ( (3.8)

j—+oo

It follows from Lemma BF equality ([B34), equality (3.5) and inequality (B.8)
that we have
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/ oy [Be(—0) / |Foy Be(— )
{U<—t1} {T<—to}

< / By, — Fiyfe(—0) + / | e(—0)
{T<—to}

{—to<T<—t1}

< / |Ft1 - ]I{‘Il<ft0}Ft0 |f2Leikp+vt0(‘I})c(_vto(\Ij))
{T<—t1}

< lim inf |Fj — (1= bey. 5, (9) Fyy |7 c(— )

J=rteo Jrp<e gy

. B; -
ot B 105 (et . Glto) = Glto + B))

<liminf (

j—++00 inf  ¢(t) B; )

te(to,to-"-Bj)

to _
S(/ c(t)e_tdt> lim inf G(ttolB Glto + B).
t B=0+0 [0 c(t)etdt

Note that (F}, — Fiy)zy € O(Kpr)zy @ Jo, for any zg € Zo. It follows from the

definition of G(t) and inequality ([B.9]) that we have

G(t1) — G(to)

< / oy [2e(—0) - / Py l2e(— )
{U<—t1} {T<—to}

< / By — Tpgeto Fao2e(—0)
{T<—t1}

< / |Ft1 - H{‘I’<—t0}Ft0|}2L€7‘Il+vt0(‘ll)c(_vto (\I/))
{U<—t1}

S(/t0 c(t)e”"dt) lim inf Glto) — Glto + B).

t B—0+0 LZO+B c(t)e—tdt

Lemma [3.7] is proved.

(3.10)

O

The following property of concave functions will be used in the proof of Theorem

.3

Lemma 3.8 (see [24]). Let H(r) be a lower semicontinuous function on (0, R].

Then H(r) is concave if and only if
H - H H - H
(r1) — H(r2) < liminf (r3) — H(r2)
r1 — 19 r3—r2—0 r3 — 19
holds for any 0 < rq <ry < R.

4. Proor or THEOREM [[.8] REMARK [[L9, COROLLARY [[LI0] AND REMARK

11
We firstly prove Theorem

Proof. We firstly show that if G(t9) < +oo for some ty > T, then G(t1) < +oo for
any T < t1 < tg. As G(tg) < 400, it follows from Lemma [B.5] that there exists an
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unique E-valued holomorphic (n,0) form Fy, on {¥ < —t} satisfying
/ |Eylne(—W) = G(tg) < +o0
{T<—to}

and (Fiy — f)zy € O(K )z @ Js, for any zg € Zp.
_ It follows from Lemma 2.3 that there exists an E-valued holomorphic (n,0) form
Fy on {¥ < —t1} such that

/{w B (b () By e e, (1)

<—t1

" : (4.1)

<[ etheds) [l peseminlB e < oo
t1 M

Note that by, 5(t) = 0 on {¥ < —ty — B} and vy, g(¥) > —to — B. We have
V0.8 e(—v;, p(¥)) has a positive lower bound. It follows from inequality ()
that we have (F}—Fy,).y € O(Kr) 2o @I(h, ©)., € O(Kpr).,®.J., for any zo € Zo,
which implies that (Fy — f)., € O(Kus)z, ® Joy, for any zg € Zo. As vy, p(¥) > U
and c(t)e™t is decreasing with respect to ¢, it follows from inequality ([@IJ) that we
have

/ By — (1= by p(0))Fyy [2e(~T)

{U<—t1}

< / By — (1= by 5 (0) Fyy B0 20—y p(B)) (4.9
{T<—t1}

fot B 1 2 v
<[ etheds) [l peseminlF e < oo,
t1 M

Then we have

/ B fe(—w)
{T<—t1}

<2 / By — (1= byy (D)) By [2e(~ ) +2 / (1= by 5 (0)) Fyy 2~ D)
{U<—t} {¥<—t1}
fot B 1 2 ) 2
<[ eeds) [ Flen-nevcmlFufie 42 [ | Re-w)
121 M {¥<—to}
< 4 0.
(4.3)

Hence we have G(t1) < [y, |F12e(—T) < +o0.
Now, it follows from Lemma [B.6] Lemma B.7 and Lemma that we know
G(h=1(r)) is concave with respect to r. It follows from Lemmal[3.6that h%n o G(t) =
t—T+

G(T) and . li+m G(t) = 0.
—+o00
Theorem is proved. O

Now we prove Remark

Proof. Note that if there exists a positive decreasing concave function g(t) on
(a,b) C R and ¢(t) is not a constant function, then b < +oc.
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Assume that G(tg) < 400 for some tg > T. As f,, & O(Ku)z, ® Js, for some
20 € Zy, Lemma [3.4] shows that G(ty) € (0,400). Following from Theorem [[.§ we
know G(h~1(r)) is concave with respect to r € (fTTl c(t)e~tdt, f;{oo c(t)e~tdt) and
G(h=1(r)) is not a constant function, therefore we obtain f;;oo c(t)e tdt < 4oo,
which contradicts to ;{OO c(t)e~tdt = +oo. Thus we have G(t) = +oo0.

When G(t2) € (0,400) for some ty € [T,+00), Lemma B4 shows that f,, ¢
O(K )z @ Jsy, for any zp € Zg. Combining the above discussion, we know
fgoo c¢(t)e~tdt < +oco. Using Theorem [, we obtain that G(h~'(r)) is concave
with respect to r € (0, f;oo c(t)e~tdt), where h(t) = :OO c(l)e~tdl.

Thus, Remark holds. O
Now we prove Corollary

Proof. As G(h=1(r)) is linear with respect to r € [O,fTJroo c(s)e=*ds), we have
G(t) = =T [+ ¢(5)e=ds for any t € [T, +00) and Ty € (T, +00).

- f;“’ c(s)e—=ds
We folllow the notation and the construction in Lemma Bl Let tg > ¢; > T be
given. It follows from G(h~1(r)) is linear with respect to r € [0, f;oo c(s)e*ds)
that we know that all inequalities in (B.I0) should be equalities, i.e., we have

G(t1) — G(to)

- / oy e(—0) - / Fooe(—)
{U<—t1} {U<—to}

Z/ 1Fyy — Tiw<—to} Frolne(— )
{T<—t1}

N /{‘I’ t1} |Ft1 - H{\P<7t0}Fto |%ze_\ll+vt0(\ll)c(_vto (\I]))
<—t1

fo to) — G(to + B
:(/ c(t)e"dt) lim inf G(tolB Gllo + )
t Bo0H0 [T e(t)etdt

Note that G(tg) = f{\l,<_t0} |Fyo|2¢(—W). Equality (@) shows that G(t;) =

f{‘y<,t1} |Ft1|l2zc(_‘lj)'
Note that on {¥ > —tg}, we have e~ V00 (W e(—p, (¥)) = (V). Tt follows
from

/ Py, — Tpge—io) Frol7e(—0)

{T<—t1}

:/{\If ) | = Twamsoy Froliie ™00 M e(— vy, (1))
<—t1

that we have (note that v, (¥) = —tg on {¥ < —to})

(4.5)
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As ;OO c(t)e tdt < +oo and c(t)e~ " is decreasing with respect to ¢, we know that
there exists to > t such that c(t)e™ < c(tg)e ' — € for any t > to, where € > 0 is
a constant. Then equality (L) implies that

6/ |Ft1 Fto|
{T<—to}

~W—to (4 ) _ o —
S/{«K t2}|Ft1 Fiolh(e (fa) = e(=1)) (4.6)

< / By — Fi 2 (e c(to) — e(— 1))
{T<—to}
=0.

Note that for any relatively compact subset K C {¥ < —to}, |F}, — Fy,|7e” Y =
|(Ft1 — FtO)F|}21€71’b = |Ft1F—FtOF|% Z |Ft1F_ Ft0F|l2~1K,1 on K, and the integrand
in ([@G) is nonnegative, we must have F, |fg<—¢} = Ft,-

It follows from Lemma that for any ¢ > T, there exists an unique E-valued
holomorphic (n,0) form F; on {¥ < —t} satisfying

/ IFye(—0) = G(1)
{T<—t}

and (Fy — )., € O(Kpr)z ® Jsy, for any zg € Zg. By the above discussion, we
know F; = Fyy on {U < —max {t,t'}} for any ¢t € (T, 4+o0) and ¢’ € (T, 400). Hence
combining lim;_,7r40 G(t) = G(T'), we obtain that there exists an unique E-valued
holomorphic (n,0) form Fon {¥ < —TY} satisfying (F — f)., € O(Kxr)., ® Js, for
any z0 € Zo and G(t) = [y |F|2¢(—W) for any t > T.

Secondly, we prove equahty 2.

As a(t) is a nonnegative measurable function on (7, 4+00), then there exists

n;
a sequence of functions {Z aijle, bient (ni < +oo for any i € N*) satisfying

that Z ai;lg,; is increasing with respect to ¢ and lim Z aijlg,; = a(t) for any
j=1 1~>+ooj 1

t € (T, +00), where Ej; is a Lebesgue measurable subset of (T, +00) and a;; > 0 is
a constant for any 7, j. It follows from Levi’s Theorem that it suffices to prove the
case that a(t) = HE( ), where E CC (T, +00) is a Lebesgue measurable set.

Note that G(t) = [y |Fl2e(—W) = f**”"ci(sTle — j; Je~*ds where T} €
(T, +00), then
- G(T t
/ |Flhe(—¥) = %/ c(s)e*ds (4.7)
{—t1<T<—t2} le c(s)e=sds Jt,

holds for any T < t5 < t; < 4o0. It follows from the dominated convergence
theorem and equality ({1 that

/ P =0 (45)
{zeM:—¥(2)EN}

holds for any N CC (T, +0o0) such that u(N) = 0, where p is the Lebesgue measure
on R.
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As c(t)e™! is decreasing on (T, +00), there are at most countable points denoted
by {s;j}jen+ such that c(t) is not continuous at s;. Then there is a decreasing

sequence of open sets {Uy}, such that {s;};en+ C Up C (T,+00) for any k, and
lim p(Ug) = 0. Choosing any closed interval [t5, #]] C (T, +c0), then we have

k—-+00
/ P2
{(~t<w<-1y}

/ PR+ [
{zeM:—V(z)e(th,t]]\Ur } {zeM: =V (z)e[th,t ]NUL}

~ lim /‘ |FP-+/" lai}
’HJ“X’; {2EM:—W(2)€L; n\Us} " {zEM:—W(2)€[th,t}]NU} "

bty . Note that

Iai (4.9)

where I; , = (t] — (i + D)ap, t) —iay,] and a;, =

n—1
lim / 13
n—»-i—ooz {zeM:—¥(2)el; ,\Uy}

(4.10)
<1£§£; lnfL. AU (1) /{zeM —W(2)€Ln\Uk} i),
It follows from equality (1) that inequality (@I0) becomes
n—1
dm 7l
i—0 J{zeEM: =V (z)€l; n\Uy} (4'11)

G(T) , = 1 ‘/ _
<—hmsup g ——— c(s)e”?ds.
i=0 Ii n\Uyg

*c(s)esds n—+oo infr, ,\v, c(t)

It is clear that ¢(t) is uniformly continuous and has positive lower bound and upper
bound on [t5, t)]\Uk. Then we have

n—1

1
limsup » ———— / c(s)e™?ds
Z Ii n \Uk

n—-+oo in f]7L n\Uk (t)

Smwzﬂh&ﬂ/ o—*ds (4.12)
n—+oo {7] lnfli,n\U;C (t) .0 \Uk

:/ e °ds.
(t5,t1\Uk

Combining inequality ([@9), (I.11) and (£12), we have
/ 71}
{=t1<T<—t5}

/ PR+ [
{zeM:—V(z)e(th,t]]\Ur } {zeM:—V (z)e[th,t)]NUL}
T
N A e | P
le c(s)e=sds J(ty,t1]\Ux {2€M:—W(2)€E[th,t}]NUL}

|7 (4.13)
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Let k — +oo, following from equality (@8] and inequality [@I3]), then we obtain
that

~ G(T t
/ |F|% < %/ e %ds. (4.14)
{—#<T<—t} Jp, cls)em2ds Jy,

Following from a similar discussion we can obtain that

N G(T t)
/ D e
{1y <<t} S e(s)emsds Ju,

Then combining inequality ([EI4), we know

- G(T t
/ P2 = %/ e~*ds. (4.15)
(¥ <T<—t} S, c(s)emsds Ju,

Then it is clear that for any open set U C (T, +00) and compact set V' C (T, +00),

~ G(T
/ FI} = (1) /e_sds,
{2eM;—U(2)eU} le c(s)e=sds Ju
and arr
/ Fl% = %/ e_st.
{zeM;—U(2)eV} le c(s)e—sds Jv

As E CC (T, +oc), then EN (t2,11] is a Lebesgue measurable subset of (T'+ 1, n)

for some large n, where T' < to < t; < 4o00. Then there exists a sequence of

compact sets {V;} and a sequence of open subsets {V/} satisfying Vi C ... C

ViCVipp C...CEN(t,th] € ...V, cVjc...cV/ cc(T,+o0) and
lim M(Vj’ —V;) =0, where p is the Lebesgue measure on R. Then we have

Jj—+oo
/ PLe(-w) = [ 713
{—t, <W<—1)} 2EM:—U(2)€EN(ta,t1]
<liminf |F|?
J—rtoo {zeM:—W(2)eV/}

Sliminf#/ e °ds
j—+o0 le c(s)e=sds Jv!

and

/ PRLe(-) > i [ 2
{—t)<T<—ty} =t JizeM:—w(2)eV;}

G(T
thlnf%/ e “ds
imtoo [1 7 e(s)em*ds Jv;

_ G(Tl) / ! G_S]IE(S)CZS,

thoo c(s)e=sds Ji,
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which implies that
- G(T e
/1 |FﬁﬂEC—W)::_1&7£—ll——-/ﬂ e *Ip(s)ds.
{—t, <T<—t}} I, cls)emsds Ji,
Hence we know that equality (2] holds.
Corollary 10l is proved. O
Now we prove Remark [[.TT}

Proof of Remark[L 11l By the definition of G(t; ¢), we have G(to; ¢) < f{\Il<—t0} |F2e(—W),
where F is the holomorphic (n, 0) form on {¥ < —T'} such that G(t) = f{\I/<7t} |F2e(—0)
for any ¢t > T'. Hence we only consider the case G(to;¢) < +00.

By the definition of G(¢;¢), we can choose an FE-valued holomorphic (n,0)
form Fy,; on {¥ < —to} satisfying (Fiyz— [)zy € OKp)z @ Jz, for any
20 € Zy and f{\Il<—t0} |Fyy cl26(—W) < 4o00. As H2(Z,tg) C H3(c,to), we have
f{\l,<_t0} |Fyy 2|7 c(—¥) < +oo. Using Lemma 35 we obtain that

/ |Fro al2e(—0) = / Fle(—0)
{T<—t} {T<—t}
[ Ve Pl
{T<—t}

for any t > to, then

/ [Fuylie-w) = [ Fe(-v)
{—ts<¥<—ta} {—ts<¥<—ta}

+f [Froi = Fe(-)
{—th\I/<—t4}

holds for any t3 > t4 > to. It follows from the dominated convergence theorem,
equality (LI0), (£8) and c(t) > 0 for any ¢t > T, that

/ IﬂmﬁZ/ |Fypc— FI7 (4.17)
{zeM:—¥(z)=t} {zeM:—¥(z)=t}

holds for any ¢ > ty.

Choosing any closed interval [¢},t5] C (to,+00) C (T,+00). Note that c(t) is
uniformly continuous and have positive lower bound and upper bound on [t/;, t5]\ U,
where {U}} is the decreasing sequence of open subsets of (T, +00), such that ¢ is
continuous on (7', +00)\Uj, and kETwu(Uk) = 0. Take N = N> Uj. Note that

/ LN
{—tp<w<—t4)

(4.16)

n—1
i > Frgelf + [ Foo 2
n—+too =0 {ZEM:—‘I’(Z)ESi,n\Uk} {ZEM:_\p(Z)E(tZ!t,S]mUk} (4 18)
n—1 '
1
<lim sup 7/ Fy 20(—W
n—+o0 ; infg, , c(t) {zeMHp(z)esi,n\uk}| oelie=0)

+ L
{zeM: =V (z)e(ty,t5]NUL}



BOUNDARY POINTS, MINIMAL L? INTEGRALS AND CONCAVITY PROPERTY V 37
. . th—t) .
where S, = (t) — (i + 1), t3 — ioy,] and a,, = =—2. It follows from equality
(£16),EI17), (@8) and the dominated convergence theorem that

/ [y clie(—®)
{zeM:—¥(2)€S; n\Ur}

Fle-w) + [ [Fro = FRe(-).

_/{ZEM:—‘I’(Z)ESLH\U]C} {zeM:—¥(2)€S; n\Ur}
(4.19)

As ¢(t) is uniformly continuous and have positive lower bound and upper bound on
[th, t4]\Uk, combining equality ([@I9]), we have

lim sup Z L

“— infs, \v, c(t) /{ZGM:\IJ(Z)GSi,n\U;C}

=lim sup Z !

i—0 infsi,n\Uk C(t) /{zEM:—\I/(z)ESi,n\Uk}

| Fig elhe(—1)
|[Flre(—v)

+ [Froi = Flie(-¥))
{2E€M:—W(2)€5; n\Uy } (4.20)

— 13
n——+00 i=0 1nfSi,n\U;¢ C(t) /{ZEM:‘II(Z)GSi,n\U;C} h

+/ |Fyy.c — F|})
{zeM: =¥ (2)€S; n\Ur}

|Ft0>5 - F|i21

/ PR+ [
{zeM: =V (z)e(ty,ts\Ux} {zeEM: =V (z)e(ty,t;]\Ux }

If follows from inequality (£I8) and ([@20) that

/ el
{~t4<w<—1}}

</ PR+ [ [Froe
{zeEM: =V (z)e(ty,t5]\Ux } {zeM:—V(z)e(ty,t5]\Ur }

- Fl;  (421)

+/ |Fto,5|i2r
{zeM:—V(z)e(ty,t5]NUL}

It follows from Fy, = € H?(c,tp) that f{—t’<\Il<—t’} |Fyy.cl7 < +o0. Let k — 400,
3= 4
by equality (48], inequality (£21]) and the dominated theorem, we have

_|2o—%
/ Frgafe
{=tasU<~t}}

/ PR+ [
{zEM:—W(2)E () 4]} {2EM:—W(2)E(t},t4]\N}

< |Froc — I, (4.22)

+ L
{zeM: =V (z)e(t),t4]NN}
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By similar discussion, we also have that
2
/ Fioel}
{5 <t}

> [ B+ [
{zEM:—W(2)E (], 4]} {2EM:i—W(2)€(t},t4]\N}

|Ft075 - Fl%

+ L
{zeM: =V (z)e(t),t4INN}

then combining inequality (£22]), we have

/ Pl
{=ta<U<~t}}

=/ |3 +/ |Fy.c — 7, (4.23)
{zeM:—V(z)e(ty,th]} {zeM:—V(z)e(ty,t5]\N}

3

+ Fro el
{zeM:—V(z)e(t),t4INN}

Using equality (@8], (£I7) and Levi’s Theorem, we have
|Ft0>5|i21

/{ZGM:\IJ(Z)GU}

:/ 13 +/ |Froc — Fli (4.24)
{zeM:—¥(z)eU} {zeM:—¥(z)€U\N}

+ ool
{zeM: =¥ (z2)eUNN}

holds for any open set U CC (tg, +00), and

/ (Fry i}
{zeM:—¥(2)eV}

-/ PR+ [ Foe-FE (425)
{zeM:—¥(z)eV} {zeM:—¥(2)eV\N}

+/ |Ft0>5|}21
{zeM:—¥(2)eEVNN}

holds for any compact set V' C (tg, +00). For any measurable set E CC (tg, +00),
there exists a sequence of compact set {V;}, such that V; C Vi1 C F for any [ and

l 1121 w(V) = p(E), hence by equality (£20), we have
—+00

[ Ruelile-w) > tim [Frplili, (<)
{T<—to} =400 Jiw<—to}

> lim F2 Ty, (=¥ 4.96
o {\I/<—t(,}| iy, (=) (4.26)

:/ |FI2Ty, ().
{U<—to}
—+o0

It is clear that for any ¢ > to, there exists a sequence of functions {Z;”:l Ig, ;10

defined on (t,400), satisfying E; ; CC (¢, +00), 27211 Ig,,,(s) > E;”:l g, (s)
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and _ligl 27:1 Ig, ;(s) = é(s) for any s > t. Combining Levi’s Theorem and
1——+00 !
inequality (226, we have
[ R [ (FRa-w) (4.27)
{¥<—to} {T<—to}

By the definition of G(t¢, ¢), we have G(tg, ¢) = f{\Il<—t0} |F|2&(—W). Equality (L3)
is proved.
(]

5. PROOFs OF THEOREM [I.12] AND COROLLARY [L.T3]
In this section, we prove Theorem [[L12] and Corollary [[.13]

5.1. Proof of Theorem[[.T2} LemmaZI0tells us that there exists py > 2af (¥;h)
such that I(h,po¥)., = I4(h,2al (V;h)¥).,. Following from the definition of
al (¥;h) and Lemma 34, we obtain that

G(0;¢=1,9,h, Iy (h,2a! (U;h)T).,, f) > 0. (5.1)

Without loss of generality, assume that there exists ¢ > ¢ such that |, (U<t} IfI7 <
+00. Denote that ¢1 := inf{t > ¢ : f{\I/<7t} |f|7 < +00}. Denote

iﬁ{/ \f17: f e HO{p¥ < —1},0(Ky ® E))
{p¥<—t}

&(f - f)zo € O(KM)ZO ® I(h,p\I/)ZD}

by Gp(t), where t € [0,+00) and p > 2af (¥;h). Then we know that G,(0) >
G(0;¢=1,V,h, I (h,2af (V;h)V).,, f) for any p > 2al (¥;h). Note that

p¥ = min{py + (2[p] — 2p) log |F| — 2log | F71], 0},
where [p] = min{n € Z : n > p}, and
Golpt) < [ I < hoc
{T<—t}

for any ¢ > t;. Note that ©; (E) >%,, 0 and (p—2al (¥;h))y+(2[p] —2p) log |F| is
plurisubharmonic on M. Remark implies that ©,.— v+ ere1—2m 108170 (E) >k
0. Note that h has a positive locally lower bound. Theorem [[§ tells us that
Gp(—logr) is concave with respect to r € (0,1] and lim; 4+ G,(t) = 0, which
implies that

1 1
7/ B> Gy (~2logr)
{p¥<2logr} 1

L
> Gp(0)
> G(0;¢=1,9,h, Iy (h,2a (U;h)T).,, f),

_rto
where 0 <7 <e” "z .
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We prove af (¥;h) > 0 by contradiction: if af (¥;h) =0, as f{@<7t171} If7 <
+00, it follows from the dominated convergence theorem and inequality (B.2]) that

1/ 2 : 1 2
- = tim s [ ]
7 J{w——oc} " pm0r0 13 {pU<2logry} " (5.3)

> G(0;¢ = 1,0, h, Iy (h,2al (U;h)T).,, f).

Note that p({¥ = —c0}) = p({tp = —0}) = 0, where p is the Lebesgue measure
on M. Inequality (53) implies that G(0;¢ = 1, W, h, I (h,2al (¥;h)¥).,, f) = 0,
which contradicts inequality (5.I)). Thus, we get that af (¥;h) > 0.

For any 75 € (0, e_“ﬁo(\ll;h)tl), note that 210?# < —ty forany p € (2a} (¥; h), —%’f”),
which implies that f{p\1/<210g7‘2} |f|? < +o0 for any p € (2a}(¥; h), —212%). Then
it follows from the dominated convergence theorem and inequality (52) that

1 . 1
=) B= m 7
T35 {2a£(‘ll;h)\11§210gr2} p—2al (¥;h)+0 T3 {p¥<2logrs} (54)

> G(0;e=1,9,h, I (h,2a] (U;h)D).,, f).

aﬁo(\ll;h)to] afo(\IJ;h)tl

For any r € (0,e” Jifr > e , we have f{a{;(\IJ;h)‘I/<logr} If7 =

+oo > G(0j¢ = 1,9, h, I, (h,2al (U;h)W).,, f), and if r € (0, (T it
follows from {af (¥;h)¥ < logr} = Upcr,<r{al, (¥;h)¥ < logrs} and inequality

E4) that

/ = s [ I
ag(\I/;h)‘I/<logr} ra€(0,7) {2a£(\I/;h)‘I/§2logT2}
> sup r3G(0;c=1,,h, I (h,2al (V;h)T).,, f)
ro€(0,r)

=r’G(0;c = 1,, h, I (h,2al (Vs h)).,, f).

Thus, Theorem holds.

5.2. Proof of Corollary It is clear that Iy (h,a¥),, C I(h,a¥),,, hence it
suffices to prove that I(h,a¥),, C I (h,a¥),,.

If there exists f., € I(h,a¥)., such that f., & I (h,a®).,, then af (V;h)., =
¢ < +o0. Theorem [LT2 shows that a > 0. Without loss of generality, assume that
M = D is a domain in C" and f € H'({¥ < —to} N D,O(E)), where to > 0. For
any neighborhood U C D of z, it follows from Proposition that there exists
Cpy > 0 such that

1
= i = Cu (5.5)
T J{a¥<2logr}nU
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for any r € (0,67%]. For any ¢t > atp, it follows from Fubini’s Theorem and
inequality (5.5) that

e—a\ll
/ e = [ <|f|,% / d1>
{aV<—t}NU {aV<—t}NU 0
o0 )
- (] 7R ) a
0 {i<e=2¥In{a¥<—t}NU
—+oo
=[] £ ) a
et {a¥<—logl}NU

+oo 1
2CU/ 7l

t

:+OO7

which contradicts f., € I(h,a¥),,. Thus, we have I(h,a¥), \I+(h,a¥),, = 0 for
any a > 0, which shows that I(h,a¥),, = I.(h,a¥),, for any a > 0.

6. PROOF OF THEOREM [1.15

In this section, we prove Theorem [[L.15] by using Theorem
For any Lebesgue measurable function c on (0, +00) and any ¢’ > 2af (¥;h) > 1,
denote that

Ge.q(t) := inf { /{ . 1F12e(=q"0) :(f = f)ay € O(Kar)zy @ I(h, ¢ )2,
&fe H'{¢dU < —t}, O(Ky ® E))}.

Note that there exist a plurisubharmonic function ¥ = ¢’t)+ (2k — 2¢’) log | F'| and
a holomorphic function F; = F¥ on M such that

1 — 2log |F1| = ¢’ (v — 21og|F))

on M, where k > ¢’ is a integer. Denote that ¥y := min{¢; — 2log|F|,0} = ¢'¥
on M.

Firstly, we prove inequality
{r<-3}

B — 6.1
K, f.n,a(%0) (6.1

in two case a € (0,1] and a > 1, where [ > 0 and ¢ > 2aJ (¥;h).

We prove inequality (6.1)) for the case a € (0,1]. Let ¢1(t) = evton (0, 400),
hence ¢; (t)e~" is decreasing on (0, +00) and ¢;(—¢'¥) = e~1=9¥ > 1 on M. Note
that h has a positive locally lower bound. As ©; >%;,, 0 and ¢ is plurisubharmonic,

- —out
where h = he 2% (Y'M? then we have

®he*’¢’l Z?\/ak 0.
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Theorem [ (replace ¥ and ¢ by ¥4 and c1, respectively) shows that G, o (h™'(r))
is concave with respect to r, where h(t f ‘ e~ *ds. Note that

1

Gey g (0) > ———
1,9 ( ) K\I/,f,h,a(ZO)

for any ¢’ > 2af (¥;h). Hence we have

o ¢l
/ (e Y 2@, ( )
{w<—1} a

[ cals)esds
>—
c1(s)e=ds

_a-ltd, 1

Ky fha(z0)

Gcl ,q’ (0)

l1—a
We prove inequality (1) for the case a > 1. Take ¢, (t) = e @ '

n (0,m)
l—a

and ¢,,(t) = ¢™@ ™ on (m,+00), then &,(t) is a continuous function on (0, +00)

and ¢y (t)e~t is decreasing on (0, +00), where m is any positive integer. Note that

e(t) > e 7™ on (0,+00) and h has a positive locally lower bound. Theorem [I.8
(replace ¥ and ¢ by Wy and &, respectively) shows that Gz, (h,,} (1)) is concave
with respect to r, where hy,(t) = t+oo ém/(s)e%ds. Note that

1

Gg (0) > —m——
m»q ( ) K\I}ﬁf:h’a(zo)

for any ¢’ > 2af (¥;h). Hence we have

G (0) (6.2)

As f{‘y<0} IfI2eY < Cy < 400, it follows from &,(—¢'¥) < e~ ¥, the dominated
convergence theorem and inequality (G2)) that

2 —(1—(1,)\11 _ . ~ ,
Jrwsy 1 R _é}lflhcm( /)
Jroo~
e :
11m
~ m——+oo f+00~ (S)e sds K\I’fha(zo)
_a- 1+q’ 1

Ky, fha(20)
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Next, we complete the proof. Following from Fubini’s Theorem, we have

[ it
{¥<0}
e—a\I/
-/ Qﬂ%z@“W/’ @)
{¥<0} 0
e 2 —Utal
[/ e+ ) ds
0 {T<0}n{s<e—a¥}
+oo
/ / |f|}2L67\I/+a\I/ eldl
—0 {¥<-Lin{w<o}
—+o0
:/ |f|}2167\11+a\11 +/ / |f|}2167‘11+a‘11 eldl.
{¥<0} 0 {¥<-L}

Using inequality (GI) and the definition of Ky f5.a(20), we obtain that

[ e
{¥<0}
+oo
=/{ }Iflie‘““‘” +/ (/{ , Iflie‘“‘”) eldl
v<0 0 vl

T gy 1
> (1 +/ e T a ldl) -
( 0 K, f,n,a(20)

_a+q -1 1
T ¢ -1 Kugna()
for any ¢’ > 2af (W;h). Let ¢ — 2af (¥;h), we get that inequality (3] also holds
when ¢’ = 2af (¥;h). Thus, if ¢ > 1 satisfies
L g 2 Kt [ M,
we have p < 2al (U;h), ie. f., € O(Kn)z @ I(h,p¥)s,.

(6.3)

7. PROOF OF THEOREM [1.10

In this section, we prove Theorem [[.T6] by using Remark and Theorem [[.12
Firstly, we recall two basic lemmas, which will be used in the proof of Theorem
. 10}

Lemma 7.1 (see [34]). Let a(t) be a positive measurable function on (—oo,+00),
such that a(t)e' is increasing near +o00, and a(t) is not integrable near +o0o. Then
there exists a positive measurable function a(t) on (—oo, +00) satisfying the follow-
g statements:

(1) there exists T < 400 such that a(t) < a(t) for any t > T';

(2) a(t)et is strictly increasing and continuous near +00;

(3) a(t) is not integrable near +o0c.

Lemma 7.2 (see [38]). For any two measurable spaces (X;, i) and two measurable
functions g; on X; respectively (i € {1,2}), if p1({g1 > s7'}) > pa({ga > s71})
for any s € (0, sgl, then f{glzsal} gidpy > f{gﬁsgl} gadyio.
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Proof of Theorem[[.I0l We prove Theorem [[T0 in two cases, that a(t) satisfies
condition (1) or condition (2).

Case (1). a(t) is decreasing near +00.

Firstly, we prove (B) = (A). Counsider F =1, f = (f1, fo, ..., fr) = (1,1,...,1),
h =1 and v = log|z1| on the unit polydisc A® C C". Note that a/(log|z1|;h) = 1
and

/ | f2em 201008 51 o 94! (log |z, |; h) T)
A

n
S0

1
=r a(—2log |z1|)—=
A ( g| 1|)|Zl|2

n
S0

. 1
:T(ﬂ'sg) 1/ a(—210g|z1|)?|2

" |

S0
zr(wsg)"_lmr /0 a(—2log r)r_ldr

—+o0
—r(rs2)" / a(t)dt
—2log so
for sp € (0,1), hence we obtain (B) = (A).

Then, we prove (A) = (B). Corollary [LI3 shows that f, & I(h,2al(¥;h)¥),
and af(¥;h) > 0. Now we assume that there exist to > 0 and a pseudoconvex do-
main Dy C D containing o such that f{‘ll<*to}ﬂDg |f[2e 20 (UMY o 20 (W; b)) <
+00 to get a contradiction. As f, € I(h,0¥),, there exist t; > ¢y and a pseudo-
convex domain Dy C Dy containing o such that fDm{‘If<—t1} |fI7 < +oo. Set

c(t) = a(t)e! + 1, then we have
/ | 2e(—2al (U3 )W) < +oc. (7.1)
Din{¥<—t1}

Without loss of generality, assume that a(t) is decreasing on (2af(V;h)t;, +00).
Note that c(t)e ™ = a(t)+e~t is decreasing on (2a} (¥; h)t1, +00) and liminf;, o c(t) >
0. As a(t) is not integrable near +o00, so is c¢(t)e~*. Note that there exist a plurisub-
harmonic function v, = 2al(V;h)y + 2(k — al(V;h))log|F| and a holomorphic
function F; = FF on D; such that

1 — 2log |[Fy| = 2af (W3 h) (¢ — 2log | F)

on Dy, where k > af(¥; h) is a integer. Denote that ¥; := min{y; —21log|F1|, —2af(¥; h)t1}
on D;. Note that h has a positive locally lower bound, ¢(t) > 1 on (2al (U; h)t;, +o0)

and ©j,,-v, >%,. 0. Using Remark (replacing M, ¥ and T by D;, ¥; and

2al (W; h)t; respectively), as f, & I(h,2al(¥;h)¥), = I(h,¥;),, then we have
G(2al(¥;h)t1;c, U1, h, I(¥1 +¢),, f) = +00, which contradicts to inequality (Z.1)).

Thus, we obtain (A) = (B).

Case (2). a(t)e! is increasing near +00.

In this case, the proof of (B) = (A) is the same as the case (1), hence it suffices
to prove (A) = (B).
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Assume that statement (A) holds. Lemma [TI] shows that there exists a positive
function a(t) on (—oo, +00) satisfying that: a(t) < a(t) near +o0; a(t)e’ is strictly
increasing and continuous near +oo; a(t) is not integrable near +oo. Thus, it
suffices to prove that for any W, h and f, € I(h,00), satisfying af(¥;h) < 400,
|f|ie’2a£('I’;h)q’a(—2a£(‘ll;h)‘ll) ¢ LY (U N{¥ < —t}) for any neighborhood U of o
and any t > 0.

Take any £y > 0 and any pseudoconvex domain Dy C D containing the origin o
such that f € O(Dy N{¥ < —to}). Let pu1(X) = [ |f|3, where X is a Lebesgue
measurable subset of DoN{¥ < —t¢}, and let us be the Lebeague measure on (0, 1].
Denote that Y, = {—2af(¥;h)¥ > —logs}. Theorem [[12 shows that there exists
a positive constant C' such that p1(Ys) > C's holds for any s € (0, e’zai(‘l’?h)tf’].

Let g1 = a(—2af(V; h)¥) exp(—2af (¥; h)¥) and go(x) = a(— log z+log O)Cx 1.
As a(t)e™! is strictly increasing near +oo, then g; > a(—logs)s—! on Y, implies
that

pi({g1 > a(—logs)s™'}) > (Yy) > Cs (7.2)
holds for any s > 0 small enough. As a(t)e! is strictly increasing near +oo, then
there exists so € (0, 2% (¥)%) such that

pa({x € (0,50 : ga(z) > a(—1logs)s'}) = ua({0 <z < Cs}) = Cs (7.3)

for any s € (0, so]. As a(—logs)s™! converges to +0o (when s — 0+ 0) and a(t) is

continuous near +o0o, we obtain that

p({gr = s71}) 2 pe({z € (0, 50] : g2(2) 2 s713)
holds for any s > 0 small enough. Following from Lemma and a(t) is not
integrable near +oo, we obtain |f|ie’2a£(q’;h)‘1’a(—2a£(‘ll;h)‘ll) Z LY UN{¥ <

—t}).
Thus, Theorem holds. O

8. PROOF OF ProPosITION [[LI7]
In this section, we prove Proposition [[.17] by using Theorem
Proof. Let

o 1
W) =) €O il —1]<1
0 iflxa—11>1

be a real function defined on R, and let gn(z) = g o h(s)ds, where d =

Jz h(s)ds. Note that h(x) € Cg°(R) and h(z) > 0 for any = € R. Then we get that
gn(z) is increasing with respect to z, g, (x) < gn41(x) for any n € Nand z € R, and
limy, s oo gn () = [{seris>0y () for any 2 € R. Setting ¢ (x) = 1 — g, (x —t), where
t is the given positive number in Proposition [[LI7 it follows from the properties
of {gn(x)}nen that ¢(x) is decreasing with respect to z, cf(z) > ¢ (z) for any
n € Nand z € R, and lim;, 1o ¢}’ () = [{seris<sy (7) for any z € R.

Denote

inf {/ [flhci (W) :f € HO({W < ~t},O(Kn © E))
{T<—t}

& (f_ f)zo € O(KM)ZO ® I(hu \I])zo for any zop € ZO}
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by Gin(s). Note that ©p.-v >%,, 0, h has a positive locally lower bound and

@) € (=1

n (0,400). By using Theorem [[.§ we have

too —s
[, w2 G > ST G 0
{w<-1) JoF en(s)esds

for any [ > 0. Following from f{\I/<—l} |f|2 < +o0 for any [ > 0, the properties of
{c?}nen and the dominated convergence theorem, we obtain that

lim flic = / flz. 8.2
Jm [ ikacn= [k (82)
As c}(z) > Ijseris<y(x) for any > 0 and n € N, then it follows from the
definitions of Gy, (0) and Cy_ f5.(Zo) that
Gt)n(O) > C\Il,f,h,t(ZO)- (8.3)
Combining inequality (81, equality [82]), and inequality ([83]), we obtain that

|fl7 = lim |f e (=®)
/{t<‘ll<l} P e {U<—1} e

) fl+°° ct(s)e 4ds
lim S —————
n—+o0 fo cr(s)e~sds

e l—et
=——FC Z
T =i Cv.rni(Zo)

Y

Cw f.1h,(Zo)

for any [ € (0,t). Following from the definition of C'y, 7.5.:(Z0), we have f{7t§¢<0} IfI2 >

Cw f.1h,1(Zp). Thus, we have

2 e’l — et
/{ - |fln = ﬁap,.ﬂh,t(z@ (8.4)
<w <

for any [ € [0,t). Following from Fubini’s Theorem and inequality ([84]), we obtain
that

eV
/ et = | <|f|i / dr)
M; 0
+oo 9
- / / ) dr
0 Min{r<e—¥}
t
-/ 12 ) elan
—oc0 {—t<¥<min{-1,0}}
0 t
-/ ( / |f|i> dar+ | (/ |f|i> el
—oo {—t<¥<min{-1,0}} 0 {—t<U<-1}
0 p—
> Cy,1.n.t(Z0) </ eldl+/11 - dl>
—00 0 -

t
=—C Z9).
o= Cv.rnt(Zo)
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Then Proposition [[L.T7] has thus been proved. O

9. APPENDIX: PROOF OF LEMMA 2]
In this section, we prove Lemma 2.1

9.1. Some results used in the proof of Lemma [2.1] In this section, we do
some preparations for the proof of Lemma 2.1

Let M be a complex manifold. Let w be a continuous hermitian metric on M.
Let dVas be a continuous volume form on M. We denote by Lf,)q(M,w, dVir) the
spaces of L? integrable (p, q) forms over M with respect to w and dVjy. It is known
that L2  (M,w,dVas) is a Hilbert space.

Lemma 9.1. Let {u,} > be a sequence of (p,q) forms in L7 (M,w,dVyr) which
is weakly convergent to u. Let {Un}:[g be a sequence of Lebesque measurable real
functions on M which converges pointwisely to v. We assume that there exists a

constant C > 0 such that |v,| < C for any n. Then {v,u,} > weakly converges to
vu in L2 (M, w,dVyr).

Proof. Let g € L} ,(M,w,dVy). Consider
I = [(vnun, g) — (vu, g)|

—|/ (Untin, §)wdVar — / v, 9)wdVarl

< |/ (Vntp, — VU, §)wdVar| + |/ (v, — v, 9)WwdVa|
- | / Un,Ung )deM| + | / (un —u, Ug)deMl
M

< - llong = ogll | [ (0 = w,0g)dVil.
M

Denote I; := [|uy|| - [|vng — vg|| and I :=| [}, (un — u,vg)wdVas|. It follows from
{un}.t25 weakly converges to u that ||u,|| is uniformly bounded with respect to n.
Note that |v,]| is uniformly bounded with respect to n. We know that |v| < C' and
then vg € L2 (M,w,dVys). Hence we have I, — 0 as n — +oc. It follows from
Lebesgue dominated convergence theorem that we have lim,,_, ., I1 = 0.

Hence lim, ;1. I = 0 and we know {vnun}:[i'j weakly converges to vu in

L2 (M, w,dVay). 0

Lemma 9.2 (see [12]). Let Q be a Hermitian vector bundle on a Kdhler manifold M
of dimension n with a Kdhler metric w. Assume that n,g > 0 are smooth functions
on M. Then for every form v € D(M, \™1T*M ® Q) with compact support we have

/M(n+g’1)|D o dVar + /MnlD o dVis

(9.1)
> [ (nv=10q - V=100~ V=1g0n A Oy, AdJo, vhodVar.

M
The following approximation result can be referred to [I3]. Let (X,w) be a her-
mitian manifold. Let @ be a holomorphic vector bundle on X and h be a hermitian
metric on Q. Denote D(M, A™1T*M ® @) be the space of @Q-valued smooth (n, q)
forms with compact support for any ¢ > 0. Let D” : L*(X,A™T*M ® Q) —
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L*(X, AT M ® Q) be the extension of d-operator in the sense of distribution.
Let D"* be the adjoint operator of D" in the Von-Neumann sense.

Lemma 9.3 (see [13]). Assume that (X,w) is complete. Then D(M,N"*T*M®Q)
is dense in DomD", DomD"* and DomD" N DomD'™* respectively for the graph
norms

u = [l + [[D"ul], w = [[ul] + [[D"ul], u = [|ul| + || D"ul| + [[D"*ul|.

Lemma 9.4 (Lemma 4.2 in [35]). Let Q be a Hermitian vector bundle on a Kdhler
manifold M of dimension n with a Kdihler metric w. Let 6 be a continuous (1,0)
form on M. Then we have

V=10 A8, Au)a = 8 A (o ()?), (9.2)

for any (n,1) form « with value in Q. Moreover, for any positive (1,1) form 3, we
have [B, A,] is semipositive.

We need the following propositions of positive definite hermitian matrices.

Let M :={M € M, (C) : M is a positive definite hermitian matrix}. Note that
M, (C) is an 2n2-dimensional real manifold. Then M is an n?-dimensional real
sub-manifold of M,,(C). Denote F : M,(C) — M,(C) by F(X) = X? for any
X € M,(C). Denote F|p : M — M. We have the following property of F| .

Lemma 9.5. F|y : M — M is a smooth diffeomorphism.

Proof. Tt is easy to see that F|yp : M — M is a smooth injection.

Let M € M C M,(C) be any positive definite hermitian matrix. Then M can
be viewed as a self-adjoint positive definite linear map on C". Then we can find
a unitary matrix P such that M = P~'MP, where M = diag(A1, A2, ..., \y) is a
diagonal matrix and all \; € Rsg. Denote N := diag(v/A1, VA2 -.,vAn). Then
we have M = P"INPP NP = N2 where N := P~!NP is a positive definite
hermitian matrix. Then we have M = N?2. By the theory of positive linear operator,
we know that N is unique. Hence we know that F|x : M — M is surjective and
the inverse mapping (F|x) ™ : M — M of F|p exists.

Assume that X is a positive definite hermitian matrix. Let dF’x be the tangent
map induced by F at point X € M, (C). Then for any matrix Y € Tx (M, (C)) =
M, (C), dF(Y) = lims—0 w = XY +YX. As X is a positive definite
hermitian matrix. We can find a unitary matrix @ such that X = Q™ 1XQ, where
Xisa diagonal matrix and denote Y by the equation ¥ = Q~ 1YQ Then XY +
YX = 0if and only if XY +YX = 0. As X is a diagonal matrix, we know that
XY 4+ YX =0 if and only if Y = 0 which implies that XY + Y X = 0 if and only
if Y = 0. Hence we know that dFx is non-degenerate at X when X is a positive
definite hermitian matrix. Hence we know that F'~! exists locally near X and F~!
is smooth.

By the uniqueness of inverse map, we know that (F|x)~! = F~!|u, hence
(F|pm)~t is a smooth map from M — M. We have proved that F|x : M — M is
a smooth diffeomorphism. O

Remark 9.6. Let Ay = (afj) € M, (C) and A = (a;j) € M, (C) be a family of nxn
positive definite hermitian matrices such that limg_ o0 A = A (which means for
any 4,j € {1,2,....n}, limg o0 afj = ai;). Then there exists a unique family
of n x n positive definite hermitian matrices By, = (bfj) and B = (b;j) such that
B,% = Ay and B? = A. More over, we have limy_, , o B = B.
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Proof. Denote By = (F|m) ' (Ag) and B := (F|m) ' (A). Then we have the
existence and uniqueness of By and B. As limg_, 1 Ax = A, by the smoothness of
(F|m) ™1, we know that limy_, o By = B. Hence we have remark [.6] O

Lemma 9.7. Let A and B be two n x n positive definite hermitian matrices. Then
—T
there exists a unique matriz C' with positive eigenvalue such that A = CBC™ and

CB = BC'. The matriz C depends smoothly on A and B in M x M. Especially,
if im; s 400 A; = Ao and lim;_, 4 oo B; = By, then we have lim;_, o C; = Cj.

Proof. Tt follows from Remark [0.6] that there exists a unique positive definite her-
mitian matrix b such that B = b? and the matrix b depends smoothly on B in
M. As b = BT, we know that b~1Ab~! is a positive definite hermitian matrices.
It follows from Remark that there exists a unique positive definite hermitian
matrix a such that b='A4b~! = a? and we note that the matrix a depends smoothly
on A and B in M x M. Denote C := bab~!. Then C depends smoothly on A and
B in M x M. We note that all eigenvalues of C' are positive and €T =b"lab. We
have
CBC" = bab~'0%b"'ab = ba®b = A,
and
CB = bab~'b? = bab = b%b~ab = BC .
Now we prove the uniqueness of C. Assume that there exists another C satisfies

. =T . —T . —=T
CBC = éj@nd CB = BC . It follows from CB = BC and B = b? that we have
b=1Cb = bC b, which shows that b=1Cb is a hermitian matrix. We note that
(b7ICh)?> =b1CHC b =b"'CBC b =b"tAbL.
By the uniqueness of a such that b=1Ab~! = a2, we know that b=1Cb = a and then
we have C' = C = bab™ .
If {Al}:;ooo and {Bl}:;og satisfy llmlﬁproo Az = AO and llmlﬁproo Bl = Bo, then

we have C; such that A; = CZ-B?Z-T and ;B = B@T, for any 7 > 0. As C; depends
smoothly on A; and B; in M x M for any i > 0, we know that lim; , oo C; = Cy. O

Let X be an nmn—dimensional complex manifold and w be a hermitian metric
on X. Let Q be a vector bundle on X with rank r. Let {h;}; % be a family of
C? smooth hermitian metric on @ and h be a measurable metric on @ such that
lim; 400 h; = h almost everywhere on X. We assume that {h; j:"lo and h satisfy
one of the following conditions,

(A) h; is increasingly convergent to h as i — +00;
(B) there exists a continuous metric i on Q and a constant C' > 0 such that for
any i > 0, h < h; < Ch and Lh < h < Ch.

Denote H; := L*(X,Kx ® Q,h;,dV,,) and H := L*(X,Kx ® Q, h,dV,,). Note
that H C H; C H; for any i € Z~y.

Lemma 9.8. There exists a linear isomorphism H; : H; — Hy (and H : H — H1)
which preserves inner product, i.e., for any o, € H; (or &, 8 € H),

(o, BYn, = (Hi(o), Hi(B))n, (and (&, B)n = (H (&), H(B))n, ),

and satisfies H[l :Hy — H; C Hy (and H™' : H1 — H C Hi) is self-adjoint.
Moreover, H; *(y) converges to H™*(v) point-wisely for any v € H;.
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Proof. We firstly consider the local case.

Let X = Q C C” be a bounded domain and @ = Q x C". In the local case,
every metric h; (or h) on @ can be viewed as a positive definite hermitian matrix
hi = (hiy(x)) (or h = (hgi(z))) where all {h},(x)}; ,_, are C? smooth functions on
Q (all {hg(x)}} =, are measurable functions on 2). It follows from Lemma[0.7 that
there exists C; (or C) such that h; = CihCi' and Cihy = hiCy' (h = CiC"
and Ch; = hléT). By Lemma [0.7 we also know that C; := (OliJ(x))Zl:l
C? smooth matrix functions, C := (C;w(x)); ,—; 18 measurable matrix function
and lim; ;o C;(z) = C(x) almost everywhere. Then for any measurable section
=1, fay ooy fr) of @ =Q x C", denote H;(f) := (f1, f2,..., fr)Ci and H(f) :=
(f1, f2s.-., fr)C. Then for any «, 5 € H;,

is

(0, BYn, = a(hi) BT = aCily Ty BT = (Hi(a), Hi(B))n,,

As Cihy = hlaT, we know that Hi_1 : Hi — H; C Hi is self-adjoint. Similar
discussion shows that for any &, 5 € H,

<0~57ﬂ~>h = <H(d)7 H(B»hu

and H™': Hy — H C H, is self-adjoint.

It follows from lim;_, o, C; = C that we know that H, *(f) converges to H~*(f)
almost everywhere on  for any measurable section f = (fi, fa,..., fr) of @ =
Q x C". C; and C are obviously linear isomorphisms. Hence in the local case, we
have found linear isomorphism satisfying all the requirements in Lemma

Now we prove the existences of H; and H in the global case. Let U, and Ug be
two open subsets of X such that U, NUg # 0. Let Gop : Uy NUg — GL,(C) be
the transition functions of Q. Then we know that the representative matrices of
metric H{* and Hzﬁ under different basis are congruent, i.e. H;* = GgBHfG—aﬁ, for
all i € Z>g. On U,, we have

H® = COH(CT' ) and COHP = HX(CT).
Similarly, on Ug, we have
_r —T
Hf = C?Hf(Cf ) and Cleﬁ = Hf(cf )-
On U, NUg, we have

GapH| Cop = HY!

- _ (9.3)
= CeHp(CF) = C?GZaHlﬁGaB(C?T)-
On U, N Up, it follows from C*H = HE(CF ) that
S —— T
CoGL H Gop = GL H G (CF ) (9.4)

N —T
Denote Gy := (G7,)"1CPGL,;. Then we have Co = (Gag)CP (Gap) ' It

follows from equalities (@.3), ([@4]) that we have

~ ——T —T —T
H’ = C,H!C, and C, H =HIC, .
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It follows from the uniqueness of C’f that we have C’f =C, := (Ggﬁ)fle‘Ggﬁ,
which shows that H;(f) = (f1,- .., fr)Ci can be defined globally. Similar discussion
shows that H(f) = (f1,..., fr)C can be defined globally.

Lemma has been proved.

O

Let X, Q, {h;};> and h be as in Lemma 0.8 Denote P; := H; — KerD"
and P := H — KerD"” be the orthogonal projections with respect to h; and h
respectively.

Lemma 9.9. For any sequence of Q-valued (n,0)-forms {f;} >0 which satisfies

fi € H; and ||filln, < C1 for some constant Cy > 0, there exists a Q-valued
(n,0)-form fo € H such that there exists a subsequence of { f;}° (also denoted by
{fi},£2°) weakly converges to fo in Hi and P;(f;) weakly converges to P(fo) in H;.

Proof. Denote a; = P;(f;) and b; := f; — P;(f;). We note that b; € (KerD")} C H;,
where (KerD"): is the orthogonal complement space of KerD” in H; with respect
to h;. Tt follows from || fi||n, < Ci that we have ||a;||n, < C1 and ||b;]|n, < Ch.
Denote

Then we know that ||A;|[n, = ||ai||ln; < Ci is uniformly bounded. Since the
closed unit ball of the Hilbert space is weakly compact, we can extract a subsequence
of {A4;}% (still denoted by A;) weakly convergent to some Ag in H;. For similar
reason, we know that {B;}° weakly converges to some By in H; and {F;}[
weakly converges to some Fj in H;.

Let 8 € Hy. When {h;};-% and h satisfy condition (A), it follows from dominated
convergence theorem,

1H B ny < [[H(B) 0 = 118llny and [[H(B)[ny < [1H; (B0, = 11BIIn,»

that we have ||H; '(8) — H ' (8)||n, — 0 as i — +oo. When {h;} ;- and h satisfy
condition (B), it follows from dominated convergence theorem,

HH 7 B)lny < C2IHTY(B)]n = C2[|Blln, and [[H; (B)[n, < C2|IH (B)lIn, = C*[|Bl|ns,
that we have ||[H; *(8) — H~Y(8)||n, — 0 as i — +oo.
Then when {h;};-° and h satisfy condition (A) or (B), we have

. lim <ai7ﬂ>h1de
1—~400 X

= lim <Hi(ai)aHi_1(ﬂ)>h1dVW
1—~400 X

= lim [ (Hi(a;)), H*(B))n,dVy, + lim [ (H;(a;), H; *(8) — H*(B))n,dVs,

71— 400 X 71— 400 X 4

/ (Ao, HX(B))n, V.,
X

- / (1 (Ao). B)ny Ve,
X

where the first equality holds because of H[l is self-adjoint and the third equality
holds because of

/M<Hi(ai)= HH(B) = H7H(B))ny dVio < |[Hi(ai)|n || H7(8) = HTH(B)l s
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1H (@)l = llailln, < Cu [1H7X(8) — H(B)llny — 0 as i — +o0. Denote
agp := H71(Ap). Then ap € H C H; and we know that a; weakly converges
to ap in Hy. It follows from D”(a;) = 0 that we have D"”(ap) = 0. Denote
bo := H Y(By) € H C Hy and fo:= H (Fy) € H C H;. Using similar discussion,
we know that b; weakly converges to by in Hy and f; weakly converges to fo in H;.

It follows from the uniqueness of weak limit and f; = a; + b; that we have
fo = ap +bo in H. Now we prove that by € (KerD"”)* C H, where (KerD")= is the
orthogonal complement space of KerD” in H with respect to h. Let v € KerD"” C
H. We have

/ (bo, 1)V
X

/ (H (bo). H (7)), Vi,
X

= lim <H1(bl), Hi(’}/)>h1 de + ) lim <Hl(bl), H(’}/) — Hi(’y»hlde (95)

i—~4o00 X i—+oo [y
< lim f (Hi(bi), Hi(7))n, dVeo + 1im |[bil|n, |[H () = Hi ()] |,
1—+00 X 11— 400

= Tim [ by, y)n,dVe + N ||bs][n, [ H () = Hi()][n,
X 1——+00

1—~+00

When {h;} ;£ and h satisfy condition (A), it follows from dominated convergence
theorem and

HH ()lny = [V and [[Hi(y)[|ny = l17llne < (V][5

that we have ||[H(y) — H;(¥)||n, — 0 as i — 4+o00. When {h;}} % and h satisfy
condition (B), it follows from dominated convergence theorem and

IH)ny = Wln and [|H;(D)]lny = [Vlln, < C?lIv]In,

that we have ||H(y) — H;(y)||n, — 0 as ¢ — +oo. Note that ||b;||5, is uniformly
bounded with respect to i. It follows from above discussion, b; € (KerD");} and
inequality (@) that we have

/ (b, )ndV,, = 0.
X

Hence we know by € (KerD”)t C H. Hence we have P(fy) = ap and we have
showed that a; = P;(f;) weakly converges to ag = P(fo) in H;.
Lemma has been proved.
1

Lemma 9.10. Let (M,w) be a complete Kihler manifold equipped with a (non-
necessarily complete) Kdhler metric w, and let (Q,h) be a hermitian vector bun-
dle over M. Assume that n and g are smooth bounded positive functions on M
such that n + g~' is a smooth bounded positive function on M and let B :=
V—10¢g — V—=100n — /=1gdn A On,A,]. Assume that X\ > 0 is a bounded
continuous functions on M such that B + M 1is positive definite everywhere on
AIT*M @ Q for some q¢ > 1. Then given a form v € L*(M, \"T*M ® Q) such
that D" v =0 and S (BHX) ™10, 0) g wdV, < +00, there exists an approzimate so-
lution uw € L*(M, A"~ 'T*M ® Q) and a correcting term 7 € L*(M, \"IT*M ® Q)
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such that D" u + Po(VAT) = v, where P, : L>(M,A™T*M @ Q) — KerD" is the
orthogonal projection and

/(77+g_1)_1|u|2Q’dew+/ |T|gﬁwdeg/ (B+X)"tv,0)gwdV,. (9.6)
M M M

Proof. Let @ be a complete Kéhler metric on M. Denote we = w + €0, where € €
[0,1]. Then w, is a complete Kéhler metric on M for any € > 0. For any @Q-valued
smooth (n, ¢) form a with compact support, we have a = a3+« where a1 € KerD”
and ap € (KerD"”)t = ImD"* C KerD"*. Tt follows from o € DomD"” N DomD"*
and as € DomD”* that we have a; € DomD”*. For similar reason, we know that
as € DomD"”. Then it follows from Lemma [0.3] and 7, g and  + g~ ! are smooth
bounded positive functions on M that inequality (@) in Lemma [0.2 also holds for
aq and ap. By using Cauchy-Schwarz inequality, inequality (@) and as € KerD'™*,
we have

(v, )5,

=|(v,a1)lZ.n

S(/ <(B+AI)71U,U>w€7thwé)(/ <Bo¢1,a1>w€7thwé +/ <)\a1,a1>w€7thwe)
M M M
)

—(/M<(B +AD M, Ve ndVe,) (110 + 972D 0l + VAP a2 1),
(9.7)

where P, p, : L*>(M,A"T*M ® Q,w,, h) — KerD" is the projection map. Denote
Hy = L2(M, A7 'T*M @ Q,w,, h) and Ha, = L*(M,AN™T*M ® Q,w.,h).
Then it follows from Hahn-Banach theorem and inequality ([@.7) that we have a
bounded linear map H; . ® Hz . — C, which is an extension of the following linear
map

—( / (B + A1) 0, 0o ndV) (0 + g~ D™ a2 + VAo |
M

((1+97 12D, Py, (@) = (v,0)u -
Then there exist %, and 7. such that
(W, QYo n = (e, (0 + g7 2D Qs + (Ter VAPu () s,
and
il + 7l < [ (B+AD 0,00 Ve

Denote u, := (7 + g~ 1) 2, then we have
v=D"uc + P, n(VAT.) (9.8)
and
I+ 97 b cn < [ (BN 0 Ve (09)

Note that [, (B4 X))~ v,v), ndVe, < [, (B + X))~ v,v), 1dV,, for any e > 0.
Then we know that ||(7 + g7 ) 2uc|lw. s |7ellwon and ||V ATe||w,.n is uniformly
bounded with respect to e.

Note that on any compact subset K C M, we have w < w. < w; < Ckw for some
Cx > 0. Tt follows from ||(n+g~) " 2u¢||w, 5 is uniformly bounded with respect to
e and n+ ¢~ ! is a smooth bounded positive function on any compact subset K of M

we,h+||7'€|
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that we know that u, weakly converges to some ug in L?(M, A4 1T*M®Q,loc). It

follows from Lemma@ that (n+g¢~*)~2u. weakly converges to some (n+¢~1) " Zug
in L2(M, A9 'T*M ® Q,loc). Let e; > 0 be given. Then we have

_ 1
/ 07+ 9 ol
K

u)el

we Shminf/ I +97")7ud|
1 e—0 K

gnmmf/ 1+ 972 ulo. (9.10)
e—0 K

We *

§liminf/ [l(n —|—g71)%u€|
e—0 M

It follows from Lemma [0.9] that we know that 7. weakly converges to 7o in Ha 1,
VAT weakly converges to 7y in Ho1 and Pwéyh(ﬁre) weakly converges to P, (7o)
in Hs 1. Lemma[@Ishows that \/XT6 weakly converges to \/XTO in Ho,1 and we know
that 7o = VA7 in Hz 1 since the weak limit is unique. Hence we have Pwéﬁh(\/XTE)
weakly converges to Pwyh(\/XTo) in Ho 1.

It follows from 7. weakly converges to 79 and Pw€7h(\/x7'€) weakly converges to
Pw)h(\/XTQ) in M1 that we have 7. weakly converges to 7o in L*(M, A\ 9T*M ®
Q,loc) and P, (VA1) weakly converges to P, (VA7) in L*(M,\™T*M ®
Q,loc). Let K be any compact subset of M. We have

/ ||7'0|W€1 §liminf/ |7l
K e—0 K
gnmmf/ I
e—0 K

< liminf/ I
e—0 M

Note that u, weakly converges to ug in L?(M, A"~ 'T* M®Q, loc) and P,,_ (VA7)
weakly converges to P, (VA7) in L?(M, N»9T*M®Q, loc). Letting € — 0 in (18),
then we have

u)el

o (9.11)

We *

v=D"uy+ Pwyh(\/XTo).
It follows from inequalities (@), (@I0) and (@I that we have

/||(n+g_l)%u0||°"61dv‘”€1+/ ||TO||weldee1
K K

<timint ([ i+ 97 vl Ve, + [ Jirlle.aVe)
M M (9.12)

<liminf [ ((B+ M) 'v,0), ndVi,
e—0 M

g/ (B+ M), 0) 0, ndV,.
M
When €; — 0 in ([@I2]), by monotone convergence theorem, we have
[+ il + [ Al < [ (8 +0 v,
K K M

As K is any compact subset of M, we have

/ ||(77+9_1)%U0||w+/ ||To||ws/ (B + A1), 0} ndV.
M M M
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Lemma [0.10] has been proved.
O

Lemma 9.11 (Theorem 6.1 in [I1], see also Theorem 2.2 in [55]). Let (M,w) be a
complex manifold equzpped with a hermitian metric w, and Q0 CC M be an open set.
Assume that T = T+ ‘/_88<p is a closed (1,1)-current on M, where T is a smooth
real (1,1)-form and ¢ is a quasi-plurisubharmonic function. Let v be a continuous
real (1,1)-form such that T > ~. Suppose that the Chern curvature tensor of T M
satisfies

(V=107p + @ @ Idra ) (K1 @ K2, k1 @ Kk2) >0

. (9.13)
Vk1,k € TM with (k1,k2) =0

for some continuous nonnegative (1,1)-form w on M. Then there is a family of
closed (1,1)-currents T , = T+ Q@&og,p on M (¢ € (0,+00) and p € (0, p1) for
some positive number p1) independent of v, such that

(i) ¢, is quasi-plurisubharmonic on a neighborhood of 2, smooth on M\ E¢(T),
increasing with respect to ¢ and p on Q0 and converges to ¢ on Q as p — 0.

(it) Te,p > v — Cw — d,w on L.

where E¢(T) :={x € M :v(T,z) > ¢} (¢ > 0) is the C-upper level set of Lelong

numbers and {d,} is an increasing family of positive numbers such that hr% 0, =0.
p—

Remark 9.12 (see Remark 2.1 in [55]). Lemma[Z11l is stated in [I1] in the case
M is a compact complex manifold. The similar proof as in [11] shows that Lemma
[@17 on noncompact complex manifold still holds where the uniform estimate (i)
and (ii) are obtained only on a relatively compact subset €.

Remark 9.13. Let M be a weakly pseudoconver Kdihler manifold. Let ¢ be a
plurisubharmonic function on M. Then h := e~ ¥ is a singular metric on E :=
M x C in the sense of Definition L1l and h satisfies Oy (E) >% . 0 in the sense of
Definition [I.3

Proof. As M is weakly pseudoconvex, there exists a smooth plurisubharmonic ex-
haustion function P on M. Let M, := {P < j} (k = 1,2,...,). We choose P
such that M7 # (. Then M; satisfies My € My € ... € M; € Mj4;1 € ... and
Ui_;M; = M. Each M; is weakly pseudoconvex Kéhler manifold.
Let d > 0 be a real number. Denote ¢; := max{ep, l}—l— Note that p;11—¢; <
— 0D +1) 0. We also note that ¢; is a plurisubharmonic functlon on M and v(T,z) =0
for any x € M.
Let M = M1, Q=M;, T = @a&u , 7 =0 in Lemma[0.17] then there exists
a family of functions ¢; ¢, (¢ € (0,+00) and p € (0, p1) for some positive p1) on
M1 such that
(1) ¢j1.c,p is a quasi-plurisubharmonic function on a neighborhood of M, smooth
on Mj1, increasing with respect to ¢ and p on M; and converges to ¢; on M; as
p—0,
(2) ‘/jl(’?gcpj,lcp > —(w — d,w on Mj,
where {d,} is an increasing famlly of positive numbers such that lim, 4, = 0.
Let p = ﬁ Let by, = 51 and ¢ = b,,. Denote Pitm = P05, 1L Then we
have a sequence of functions {gpj 1,m} satisfying
(1°) ;.1,m is quasi-plurisubharmonic function on M;, smooth on M, 1, decreasing
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with respect to m and converges to ¢; on M; as m — +00,
(27 g85¢j71,m > — 0 — 0w ON M;,
where {Sm} is an decreasing family of positive numbers such that lim,,, o Sm =0.

As M; is relatively compact in M, there exists a positive number b > 1 such
that bw > @ on M;. Then condition (2’) becomes
(27) @Bécpj)hm > — 5T — O > —2bd,w on M;.

Now, for each [ > 1, we choose m; € Zx>y such that ¢;; := @j 1 m, is decreasing
with respect to [ and converges to ¢ when | — 400. Note that M;_y CC M; CC
M. Let my be any positive integer. Now we assume that {m,ms,...,m;} has
been chosen. Now we choose m4 1.

Denote Ejy1,m = {x € M;| ¢j141,m(z) — ©j1,m,(x) <0} and denote Ej ;41 :=
{z € Mj| vri1(x) — @ji,m () < 0}. Note that ¢;41,m and ¢jm, is smooth on
M1, we know that £} ,, is open subset of M; for any m > 1. As ¢j141.m4+1 <
©ji+1,m on M; and @11 < @1 < @j1m,, we have Fj; 111 C Ejjp10 C -+ C
Ejiv1im C Ejivi,m+1 C -+ C By = M; for any m > 1. Hence we know that
Ut Eji+1.m is an open cover of M; and then an open cover of M;_ 1. By the
relatively compactness of M;_1, we know that there exists a positive integer m;41
such that M; 1 C Ejit1,m,,- Let @41 = 02141,m,, and we have ¢;,;11 <
@il = P1,0,m; on M;_q.

Hence we can find a sequence of smooth plurisubharmonic functions ¢;; =
@j1,m, on M;_q1 which is decreasing with respect to [ and converges to ¢ when
Il — 4+00. We note that

V-1

T
on M;_q. Then we know that (M, M x C, ), M;,e” ¥, e~ *%i1) is a singular metric on
M x T and 0, (E) >3, 0. O

0@ > —208,,,w

Lemma 9.14 (Theorem 1.5 in [I0]). Let M be a Kdhler manifold, and Z be an ana-
lytic subset of M. Assume that Q) is a relatively compact open subset of M possessing
a complete Kdhler metric. Then Q\Z carries a complete Kdhler metric.

Lemma 9.15 (Lemma 6.9 in [I0]). Let Q be an open subset of C"* and Z be a
complex analytic subset of Q. Assume that v is a (p,q-1)-form with L} . coefficients

and h is a (p,q)-form with L}, coefficients such that dv = h on Q\Z (in the sense
of distribution theory). Then Ov = h on (.

The following notations can be referred to [3].

Let X be a complex manifold. An upper semi-continuous function v : X —
[—00, +00) is quasi-plurisubharmonic if it is locally of the form u = ¢ 4+ g where ¢
is plurisubharmonic and g is smooth. Let 6 be a closed real (1,1) form on X. By
Poincaré lemma, 6 is locally of the form 6 = dd°f for a smooth real-valued function
f which is called a local potential of 8. We call a quasi-plurisubharmonic function
w is B-plurisubharmonic if 8 + ddu > 0 in the sense of currents.

Lemma 9.16 (see [13], see also [3]). For arbitrary n = (m,...,np) € (0,+00)?,
the function

h.
My(ty,....ty) = | max{ty +hy,....tp+hp} [[ 0(2)dha...dh,
Re 1<j<p Y

possesses the following properties:
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(1) M, (t1,...,tp) is non decreasing in all variables, smooth and convex on RP;
(2) max{ti,...,.tp} < My(t1,....,tp) < ma3<{t1 +01,. Lty p )
(3) Mn(tlv s 7tp) = M771)~~~7ﬁj)'~~)77p (tlu cee 7tj7 S 7tp) lf L+ < Il?gjx{tk - nk};

(4) My(ti +a, ..., t,+a) = My(t1,...,t,) +a for any a € R;

(5) if ur,...,up are plurisubharmonic functions, then u = My(uy,..., up) is
plurisubharmonic;
(6) if ui,...,up are O-plurisubharmonic functions, then u = M, (u1,...,up) is

0-plurisubharmonic function.

Proof. The proof of (1)-(5) can be referred to [I3] and the proof of (6) can be
referred to [3]. For the convenience of the readers, we recall the proof of (6).

Let f be a local potential of §. We know f + u; is plurisubharmonic function.
It follows from (4) and (5) that M,(u1 + f,....up + f) = My(u1,...,up) + f is
plurisubharmonic. Hence u = M, (u1, ..., up) is f-plurisubharmonic function. O

9.2. Proof of Lemma 2.3l Note that X\{F = 0} is a weakly pseudoconvex
Kahler manifold. The following remark shows that we can assume that I’ has no
zero points on M.

Remark 9.17. As (X,E, X, X;,h, hs) is a singular hermitian metric on E and
On(E) >%.r 0. We know that for any compact subset K, there exist a relatively
compact subset X;j,, C X containing K and a C? smooth hermitian metric hj, 1
on Xj, such that th,l <honKcCXj,.

Assume that there exists a holomorphic E-valued (n,0) form F on X\{F = 0}
such that

/X\{F 0} B = (1= by p (W) FF 2 ev0m (=M oy 5(W))

1 Y 1
< | ze(T)e” +/ c(s)e *ds / P t0}|fF|h
d T x\{F=0} B

Let K be any compact subset of X. Both hj, 1 and h are C? smooth hermitian

metrics on I, then there exists a constant cx > 0, such that h;, 1 < cKiAL on K.
Note that My, := inf g V0B =0M (g, 5(U)) > 0 and hj, 1 < h. Then we have

F7,
/<X\{F—0}>mK Pt

< B (b n(O)FR 2 [ (1= biy 6 (W) P2
(X\{F=0})nK (X\{F=0})NK

JKcs1

2 . -
<377 Sy 1 (b o), ()

+2(sup|Fl+5|2> / |f|i < +o0.
K {T<—to}nK

As K is arbitrarily chosen, by Montel theorem and diagonal method, we know that
there exists a holomorphic E-valued (n,0) form F on X such that F = F on

(9.14)
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X\{F = 0}. And we have

/ |F—(1- bto,B(‘I’))fFHﬂ}%evm’B(W)_éMC(—Uto,B(‘I’))
X

1 P 1 )
<(Geme T+ [T eeds) [ Gl peac PR
T X

The following remark shows that we can assume that ¢(t) is a smooth function.

Remark 9.18. We firstly introduce the reqularization process of c(t).

Let f(z) = 2011y % p(x) be a smooth function on R, where p is the kernel of
convolution satisfying supp(p) C (—%,%) and p > 0.

if(iz) of <0

Let gi() = { z-f{;%i zjj >0
tions on R satisfying:

(1) supp(g) € [~ 7, 7], gi(z) 2 0 for any v €R,

(2)f 1gl x)dr =1, fo gi(x)dz < 1 for any i € N*T,

Let h(t ) be an extension of the functwn c(t)et from [T, +o0) to R such that

(1) h(t) = h(t) := c(t)e™t on [T, +00);

(2) h(t) is decreasing with respect to t;

(3) 1imt—>T oh( ) =c(T)e "

Denote ¢;(t) := et fR (t + v)gi(y)dy. By the construction of convolution, we
know ¢;(t) € C'OO( 00, 400). For anyt > T, we have

then {gi}ien+ s a family of smooth func-

ilt) = e(t) > ¢ ( [ e+ - ﬁ<t>>gi<y>dy> >0

i

—t

As B(t) is decreasing with respect to t, we know that c;(t)e™" is also decreasing

with respect to t. Hence c;(t)e~t is locally L' mtegrcible on R. .
As h(t) is decreasing with respect to t, then set h™(t) = lignoh(s) > h(t) for
s—t—

any t € R. Note that ¢~ (t) := Sliériofz(s)et > c(t) for anyt > T.

Now we prove hgrn ci(t)e™t = h™(t). In fact, we have
i—

~ O ~
e =R < [ 1h(e+9) = b @lgo)dy
N (9.15)
+/0 h(t +v)g:(y)dy.

[

For any € > 0, there exists 6 > 0 such that |h(t — 0) — h™(t)| < e. Then IN > 0,
such that for anyn > N, t>t+y>t—9 forally € [—%,O) and % < e. It follows

from (@I8) that
lei(t)e " — if(t)| <e+ eﬁ(t),

hence lim c¢;(t)e™" = h™(t) for any t € R. Especially, we have lim ¢;(T)e™ " =

1—+00 1——+o00

h=(T) = ¢(T)e .
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Assume that for each i, we have an E-valued holomorphic (n,0) form F, on X
such that

/ |F 1—bt0 ( ))fFl+5|,2L6Ut°‘B(\II)_(sMC(—UtO)B(‘I’))
iB (9.16)

_ s 1
<Game ™+ [ a@eds) [ F1cn-neve /PR

T
By construction of ¢;(t), we have

to+B
C ) —h dtl

— S—

!

t0+B N
/h t1 + y)gi(y)dydty

R
t0+B

(/T h(t + y)dt1> dy (9.17)

t0+B+y
/ s)ds | dy

T+y

to+B _ to+B+y _ Tty _

z/gi(y) / h(s)d8+/ h(s)ds—/ h(s)ds | dy,

R T to+B T

then it follows from the construction of g;(t), h(t) is decreasing with respect to t,
inequality (XIT) and h(t) = c(t)e™t on [T, +o0) that we have

I
=
S

gi(y

I
%\

to+B to+B
lim Ci(tl)eitldtl = / c(tl)eftldtl, (918)
1—+400 T T

As (X,E, X, X;, h, hs) is a singular hermitian metric on E and ©,,(E) >%.1 0.
We know that for any compact subset K, there exist a relatively compact subset
Mj,. C M containing K and a C? smooth hermitian metric hj, 1 on M;, such
that hj, 1 < h on K C Mj, . For any compact subset K of M, we have

irilf i%fe”‘oﬁ(\l') 2 ci(—v,,B(¥)) > i%f e”fo*B(‘I’)_‘;Mc(—vto)B(\I!)),
then
sup [ 1= (1= by (W) FPILE < oc.
Hence we have
sup [ 1R = (= by s (W)FFUR, <o

Note that there exists a constant Cx > 0 such that hj, 1 < C’Kﬁ on K. We have

J 0= b s NP, < Culup P [ 12 < +o0,

Kn{¥<—to}
then sup fK |Fz|i] . < +oo, by Montel theorem and diagonal method, we know
. K
K3

that there exists a subsequence of {F;} (also denoted by {F;}), which is compactly
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convergent to an E-valued holomorphic (n,0) form F on X. Then it follows from
inequality (QI0) and Fatou’s Lemma that

/X |F = (1= buy, p()) fF O R0 2 =N oy (W)
S/X | = (1= by, p(0)) fF 0 [Ret0 2 (=M o= (—y (W)

<lim inf / |y = (1= by, p (W) FF 02 ev0 (N =0M o (o (W)
X

1——+o00

1 fot B 1
<liminf gci(T)efT —I—/ ci(s)e™%ds / E]I{_tO_B<‘I’<_tO}|fF|}27/
b's

1——+o00 T

1 Y 1 )
=| =c(T)e” —|—/ c(s)e *ds / = tg—B<w<—to}| fF5-
) T < B

In the following discussion, we assume that F' has no zero points on X and c(t)
is smooth.

As X is weakly pseudoconvex, there exists a smooth plurisubharmonic exhaus-
tion function P on X. Let X; := {P < j} (k=1,2,...,). We choose P such that
X1 # 0.

Then X satisfies X1 € Xp € ... € X; € Xj4; € ... and U?:1Xj = X. Each Xj is
weakly pseudoconvex Kéhler manifold with exhaustion plurisubharmonic function
Py =1/(j - P).

We will fix j during our discussion until step 7.

Step 1: Regularization of V.
We note that there must exists a continuous nonnegative (1, 1)-form w on X1
satisfying

(V=107n + @ @ Idra ) (k1 ® K2, K1 @ Ka) > 0,

for Vi1, ko € TM on M.

Let M =X,41,Q=X,,T= @851/1 , v =0 in Lemma [0.T1] then there exists
a family of functions ¢, (¢ € (0,400) and p € (0, p1) for some positive p;) on
X1 such that
(1) 9¢,, is a quasi-plurisubharmonic function on a neighborhood of X;, smooth on
X;+1\E¢(v), increasing with respect to ¢ and p on X; and converges to 1 on X;
as p — 0,
(2) Q@&/}Cm > —(w — dw on Xj,
where E¢(¢) :={x € X : v(¢p,z) > (} is the upper-level set of Lelong number and
{6,} is an increasing family of positive numbers such that lim, o d, = 0.

Let p = % Let 6, := 5# and ( = bm. Denote Y 1= wSm,i' Then we have a
sequence of functions {1, } satisfying "
(1°) %y, is quasi-plurisubharmonic function on X;, smooth on X;i1\Enm(¢), de-
creasing with respect to m and converges to ¢ on X; as m — 400,
(2) Q@éd)m > 60 — Opmw ON X,
where E,, (1)) = {z € X : v(¢),z) > L} is the upper level set of Lelong number and
{Sm} is an decreasing family of positive numbers such that lim,, S = 0.
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As X is relatively compact in X, there exists a positive number b > 1 such that
bw > w on X;. Then condition (2’) becomes

(27) Y2094, > Smw Smw > —2bd,w on X;.

Let 1, = {1=L, ©2=L} and we have the function M, (¢, +T,2log|F|). Denote
M,, = M, (Ym + T,2log|F|) for simplicity. Note that ¢, + T is a 2b0,,w-

plurisubharmonic function. As F' is a holomorphic function, w is a K&hler form

and b3, > 0, we know that 2log|F| is a 2b6mw-plurisubharmonic function. Tt

follows from Lemma that M, is a 2b5mw-plurisubharmonic function, i.e.,
gaéMnm > —27bb,,w.

Denote ., 1= ¢, — My, (Y +T,2l0g |F|). Then ¥U,, is smooth on X;\E,,. It
is easy to verify that when m — +oo0, ¥,, — W. It follows from Lemma that
we know

(1) if W + T < 2l0g | F| — 29210 1olds, we have W,, = ), — 2log |F|;

(2) if Y + T > 2log |F| + 2“0 D) holds, we have U, = —T;

(3)if 2log |F|— Q(t" < 1/Jm—|-T < 2log |F|+ 2 t“ 20o=T) 1olds, we have max{tm, +
T,2log|F|} < M,,, < (wm+T+ Lo=T) and hence —T - <y, <-T.

Thus we have {\I/ < —to} = {z/)m —2log|F| < —to} C {1/1 —2log|F| < —tp} =
{¥ < —tp}. We also note that ¥,, < —T on M.

Step 2: Recall some constructions.

To simplify our notations, we denote by, g(t) by b(t) and vy, g(t) by v(t).

Let ¢ € (0,3B). Let {ve}eco,1) be a family of smooth increasing convex
functions on R, such that:

(1) ve(t) =t for t > —tg — €, ve(t) = constant for t < —ty — B +¢;

(2) v (t) are convergence pointwisely to %H(,to,Bﬁ,to),when € —0,and 0 <
v/ (t) < BH( to—Bte,—to—e) for ant t € R;

(3) v//(t) are convergence pointwisely to b(t) which is a continuous function on
R When e—0and 0 <wv/(t) <1 for any t € R.

One can construct the family {ve}.c (o 1p) by setting

t t1 1
wit) = [ () Gl nraemu-0 +py(s)ds)dh

— 00

—to t1 1
- / (/ (B — 46H(*t0*3+267*t0*2€) * p%e)(s)d‘s)dtl - t07

—0o0
where picis the kernel of convolution satisfying supp(pie) C (—Lte,e). Then it

161
follows that .

mﬂ(—to—3+2€,—to—2€) *p1(t),

4

vé//(t) —
and
! 1
v (t) = /_Oo(m]l(*t()*3+267*t0*26) *p1c)(s)ds.

Let n = s(—ve(¥,,)) and ¢ = u(—ve(¥,,)), where s € C°°([T, +00)) satisfies s >
2 and u € C°([T, +00)), such that s'(t) # 0 for any ¢, u”s—s" > 0 and s’ —u's = 1.
Let ®,, = ¢ + 0M,,,. Recall that (X, E, X, X;,h,hj ) is a singular hermitian
metric on E and O (FE) Z}G;k 0. Then there exists a sequence of hermitian metrics
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{hjm 31—, on X; of class C? such that lim  hj,, = h almost everywhere on
m/—+oo

X; and {h; m}1,_, satisfies the conditions of Definition [L3l Since j is fixed until
the last step, we simply denote {h; ./ }:£°°, by h,, and denote h := hy, e~ ®m.

m’/=1

Step 3: Solving 5—equati0n_with error term.

Set B = [nv/—10; —v/—100n®Idg—+/—1gonNon®1dEg, A,], where g is a positive
function. We will determine g by calculations. On X;\E,,, direct calculation shows
that

8577 == SI(_UE(\IJm))aé(UE(\IJm)) + S/I(_UE(\Pm))a(ve(\Pm)) A 8(v€(\11m)),

n0; =ndd¢ ® Idg + 0Oy, , + ndd(5M,,,) ® Idg
=5t (=0 (V)00 (¥1n)) A O(0e (V) @ Td g — st/ (—ve(V,,))00(ve (¥)) @ Id
+50, , + s00(6M,,,) ® 1dg.

Hence

W—10; — V/=10dn @ 1dg — vV—1gdn A dn @ 1dg
=50, , + sV—100(6M,,,) ® Idg
+(s" = 5u) (VL (W) V=100V + 0 (Y )V =10 (¥,,) A D(¥,)) @ 1d
+(w"s = §") = g5 ]V=10(0e(V1)) A O(ve(¥)) @ 1d,

where we omit the term —v.(W¥,,) in (s'—su’)(—ve(¥,y,)) and [(u”s—5")—gs"*](—ve (V)
for simplicity.
Let g = “52°—(—vc(V,,)) and note that s" — su’ =1, 0 < v/ (¥,,) < 1. Then

W—10; —/—100n @ Idp — V—1gdn A dn @ 1dg
=sv—10), , + sV/—199(6M,,,) ® 1dg
+ 0 (V,,)V—100(V,,) @ Idg + 7 (Ym)V—=10(V,,) A O(¥,,) @ Idg
=0 (Y )V =10V ) A O(V,) @ Id s + L (¥, )V —=100(¥,,) @ 1d 5
+s(\/—_1®hm, +Aw@ldg) — shpw @ Idg (9.19)
+ s(V=100(5M,),,) + 2780 mw) @ Idg — 27bs60,w @ Idg
>0 (Y )V —=10(V,,)) A (V) @ Id g + vl (V) vV —100(¥,,) @ Id g

+ %(\/—1@,%, + Amw @ Idg) + %(\/—165(51\4%) + 27b80,mw) ® Id g

— SAw @ Idg — 27bs6d,w @ Idg.
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Note that
SV (U )W —100(¥ ) @ Idp + (V-10y, , + Apyw ® Idg)
+ (V=100(5M,),,) + 27666 mw) @ Idp
=1 — v (Un)) (V=104 , + Apw ® Idp + V=199(6M,,,) ® Idg + 2mbdd,mw @ IdE)
+ 0L (V) (V=104 , + Aww @ Idg + V=109(6M,),,) @ Idg + 21b86,,w @ 1dg)
+ 0L (U,,)(00(0) @ Idp — 00(6M,,,) @ 1dR)
=1 — v, (Un)) (V=104 , + Apw ® Idp + V=199(6M,,,) ® Idg + 2mbddmw @ IdE)

+ 0L (V) (V=104 , + Aww @ 1dg + V=109(6¢y,) @ Idp + 27066 w © 1dg)
>0.
(9.20)

It follows from inequality (@I9) and inequality ([@.20) that
W—10; —V=100n @ 1dg — vV —1gon A On @ 1dg
>0 (V) V—=10(¥) A O(U,) @ Idg — 27b500,mw @ Idp — sApw @ Idp.

By the constructions of s(t), ve(t) and sup,,, supx, ¥y, < =T, we have s(—ve(¥n))
is uniformly bounded on X; with respect to e and m. Let N; be the uniformly upper
bound of s(—v(¥,,)) on X;. Then on X;\E,,, we have

—10; — V=100 @ Idg — v/ —1gdn A On @ Idg
>0 (U, )V —=10(V,) A O(,,) @ Td g — 20bN166,,w0 @ Idp — NyAprw @ Id .
Hence, for any E-valued (n, 1) form «, we have
((B + (27bN166, + N1 )Idg)a, a);
> (0! (W) O(¥,) A O(V,) @ Id g, Ao, @), (9.21)
=((v! (Vn)O(Vim) A (@ (0F1n)F)), @),

It follows from Lemma that B + (27rbN155m + N1\ )Idg is semi-positive.
Denote A\, := Ay + %, then B+ (2rbN160,, + N1\ )Idg is positive. Using the
definition of contraction, Cauchy-Schwarz inequality and inequality (@.21]), we have

(07 (W)W Ay, @517 =[(0! (Wi )y, GL(OW0)F) 7 2

<

|
(e (W), )7 (08 (T)|GL (09 )* [}
=((0 ()7, M) (0 (U)W A (G (DT)7), &),
(0 ()7, 1))3 (B + (270N168 + Nid ) )@, @),

for any E-valued (n,0) form v and E-valued (n,1) form &.
As fF'° is holomorphic on {¥ < —to} and {V,, < —tg — €} C {¥,, < —to} C
{¥ < —to}, then X := 9((1—v.(¥,,)) fFT?) is well defined and smooth on X\ Ep,.
Taking v = fF'% & = (B + (27bN100,, + Nidp )Idg) 1 (OV.(0,,)) A fFIH.
Then it follows from inequality (@.22) that

(B + (27bN186m + Nidm )IdE) "' A, A)j, < 07 (W) | fFTTL2.
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Thus we have
/ ((B + (27bN180,,, + Ni A )Idg) '\, N, < / 0 (W) | FFOL2.
Xj\Em Xj\Enl
Recall that h = h,ye~®m and ®,, = ¢+0M,, . As h,, is C? smooth, on X; cc
X, there exists a constant Cj,,,y > 0 such that C;;/Ieﬂ;l <lezln,, < Cjmlesl;,

for any e, € E,. Note that 0 < v;, (t) < %H(_t0_3+67_t0_6), e~? is smooth function
on X; and 0M,,, > 62log|F|. It follows from (2] that

/ v (U |[FFOLR < O sup(|F[2e ™) /_ IF2 < +o0.
Xi\Bm X X;n{w<—to}

By Lemma[0.14] X;\E,, carries a complete Kahler metric. Then it follows from
Lemma [0.10] that there exists

Um,m’ e, j S L2(Xj\Em, KX ® E, hmle_q)m),
Bt e € L2(X\Epmy N1 T*X @ E, hyre™®m),

such that Ot c.j + Prms (V210N180 3 + Ni A B ;) = A holds on X;\Ep,
where P, @ L*(Xj\Ep, N1 T*X ® E, hyye~®m) — KerD” is the orthogonal
projection, and

1
2 - 2 —d
= [
XN\E, 1T9 XA\Em

< / (B + (27bN1 58, + Ny, ) "M )
Xj\Em

S/ (W) FFR e < o
X\Em "

Assume that we can choose 77 and ¢ such that (n4-g=1)~! = e« (Ym)ele(—v (U,,)).
Then we have

/ tam 32 €< V)M o (0,,)) + / o e 2., €6=5Mnm
Xi\Em Xi\Em

<[ I F et < o,
Xj\Em "
(9.23)

By the construction of v.(t) and c(t)e~* is decreasing with respect to ¢, we know
c(—ve (¥, ))evs(¥m) has a positive lower bound on X; € X. By the constructions of
ve(t) and u, we know e~? = ¢~ (=v<(¥m)) has a positive lower bound on X; € X.
By the upper semi-continuity of M, , we know e~ %Mnm has a positive lower bound
on X; € M. Note that Ay, is C? smooth on X; € X. Hence it follows from

inequality (@.23)) that
Um,m’ e,j € L2(Xj7 KM ® E7 hm’eiém)v
hmmt e € L2(Xj, N T*M @ B, by ™).
It follows from Lemma [9.15] that we know

D"t e j + Prn (\/ 27ON130m + Nidm B c.j) = A (9.24)
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holds on X;. And we have
/.

< / o (W) [ fFYOR e 9=0Mam < oo,

J

|um,m/,€,j |}2Lm/ eve(\Pm)féM,,m C(_ve(\l/m)) + / |hm,m/,€,j |}21m/ ei(ﬁiéMnm
X;

(9.25)

Step 4: Letting m — +o0.
In the Step 4, we note that m/’ is fixed.
Note that sup,, supy, e~ % = sup,, Supy, em(ve¥m)) < 400 and e Mim <

e—02l0g |F|  Ag {U,, < —tg—€} C{¥,, < —to} C {¥ < —to}, we have

o 2 _
U;'(\Ifm)|fF1+5|%m,e =M < ECj’m, (supsupe ¢> (S)I{IP|F|2> ]I{‘Il<—to}|f|;gI
m ; P

J

holds on M. It follows from |, (w<—toynaz |? < +oo and dominated convergence
theorem that

. § —$—5
i jvé’(wman” i, €00 m

:/ Ué/(\ll)|fFl+6|i efu(fve(\I!))fémax{erT,Qlog\F|}'
X; "

Note that inf,, infx, ¢(—ve(¥p,))e " ¥m) > 0. It follows from Lemma
that M, < max{¢y, +T,2log|F|} + &=L < max {t), + T,2log|F|} +to — T<
max {¢1 + T, 2log |F|} +to—T. As 9 is a quasi-plurisubharmonic function on Xj,
we know max {1 + T, 2log|F|} is upper semi-continuous function on X;. Hence

inf inf e~ Mrm > inf ¢~ max {1+ T2l [Fl}—to (9.26)
m Xj Xj

Then it follows from inequality (@28) that

2
o [ fumcalf, <+
m X]‘

Therefore the solutions y, m/ 1,c,; are uniformly bounded with respect to m in
L*(X, Kpy hyy). Since the closed unit ball of the Hilbert space is weakly compact,
we can extract a subsequence of {um ms e} (also denoted by {wm m e ;}) weakly
convergent to s ¢ ; in L?(X;, Kar, hyy) as m — +oo0.

Note that sup,,, sup,, eve(m)e(—v (V) < +oo. As M, > max{¢,,+T,2log|F|} >
2log |F| and F has no zero points on M, we have sup,,, sup e~ Mnm
+00. Hence we know

1
< supyy, e <

sup sup e’ Ym) e(—v (U,,))e "M < 400,
m Mj

It follows from Lemma that we Know m ms e \/evf(‘l’ml)c(—vé(\llm))e_‘sMnm

weakly converges to s ¢ jv/evs (V) c(—v  (¥))e—d max{v+T210g [FI} in [2(X;, Kpr, hunt)
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as m — +oo . Hence we have

/ |Um/ Ej|i evé(‘ll)fzimax{quT,Qlog\F|}C(_U€(‘Ij))
X; !
<Hminf [ gl €0 70N e(—0d(80)

m—+oo ) m
. (9.27)
< lim inf Ug(\llm)|fF1+6|}21 le—u(—ve(‘l’m))—fsMnm

m——+00 X; m
S/ ’U;I(\IJ)|fF1+6|]2I e—u(—ve(\ll))—timax{w+T,2log|F\} < +00.
j

It follows from Lemma[@.9that we know that hy, p e ; weakly converges to Ry, c
in L2(X;, A" YT*M ® E, hypre=®") and then \/27bN100,m + N1 Ban.me e j weakly
converges to \/ Nl:\m/hm/,é,j in L2(X;, \""1T*M ® E, hy e ®1). Hence by Lemma
[0.9and the uniqueness of weak limit, we know that Py, ./ (\/27TbN1 88 + N1 hm,m’,e,j)
weakly converges to P, (\/ Nl:\m/hm/,é,j) in L2(Xj, AAIT*M @ E, hypre™®1).

It follows from infy, e~ = infy, e~*(=*(¥1)) > 0 and inequality (226) that
we have hy, e ; weakly converges to Ay, ¢ in L?(X;, A™'T*M ® E, hy,) and
Pm,m’ (\/QFleégm + N1 5\m’ hm,m’,e,j) Weakly converges to Pm/ (\/ N1 5\m’ hm’,e,j)
in L2(X;, N"YT*M ® E, hyy).

Note that sup,, supx e~u(=ve(¥m)) < 40 and sup,, supy; e Mam < sup |;‘2 <
+00. We know
supsup e~ e (¥m)) =M 4 o
m X]‘

It follows from Lemma @] that we have fy, e jVe u(=ve(¥m) =M, ig weakly
convergent to Ry g ¢ ; Vet (—ve(D)=dmax (W+T.210g [FI} in [2(X;, A" ' T* MRE, hy,)
as m — +00. Hence we have

/ |2 e~ (e (8)) ~0 max (4T 21og | FI}
j m
S ].lm lnf |hm m e ]|%7, e_u(_ve(‘pm))_[sMTMn
m—)+OO M £l 1&y ’VYLI

g (9.28)
< limi 1" 1+52 —u(—ve (¥ ))—0My,,
<t [ o FFR, e
S/ o ()| FFITOR v () —dmax (uHT210g I} o

J

Letting m — 400 in ([@24]), we have
D" tps e+ Pr (\) Nt o) = D" (1 = vL(®)) fEFF0) (9.29)

Step 5: Letting m' — +oo.
When ¥ < —tp—e < —tg, we have p—2log | F| < —T and then max {¢) + T, 2log | F|} =
2log |F|. Hence

/ Ué/(\ll)|fFl+5|}21mlefu(fve(\I/))f(;maX {yp+T,21log|F|} _ / Ué/(\I]”fF'}%m,efu(fve(‘ll))-

J J
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Note that supy, (emu(=v(M)y < 400, 0 < v/(t) < %H(_tO_B%)_to_e) and
lezln,, < |egg|hm,+1 <leg|p for any m’ € Z>. We have

2
ol (O)IFFLR,, e < sup(e T ) Zli g pyecwctg-al FFI (9:30)
. u

It follows from inequality (Z2]) and dominated convergence theorem that we have

lim vl (O)|FFf, e )

m’—+oo X,

= [ W @IfFRe ) < o,
Xi
Let C; := infy, eve(V)-omax{v+T.2log [Fl} (—y, (1)) be areal number and we note
that C; > 0. Then it follows from C; > 0, inequalities (027, (2.30) and (2.2)) that
we have
sup/ [Ums e 5], < 4o00.
m’ X; m

As lezln,, < lexln,,, , for any m' € Z>g, for any fixed i, we have

m/+1

sup/ |um/757j|,2” < 400.
m’ X;

Especially letting h; = hi, since the closed unit ball of the Hilbert space is weakly
compact, we can extract a subsequence u, . ; weakly convergent to u. ; in L? (M;, Kn®
E,hy) as m” — +oo. Note that

Ve (W
sup evé(‘ll)fémax{quT,Qlog ‘F|}C(—’U6(\I/)) < sup e ( )c(—ve(\ll))

< +o0.
X, X; |F[*

It follows from Lemma@Ilthat w,,» . j1/eve(We(—v (¥))e—d max{v+T,210g [FI} weakly
converges to U, j\/ev(We(—v (¥))e-dmax{v+T210s[FI} in [2(X;, Kx ® E, hy) as
m’ — +oo .

For fixed ¢ € Z>o, as hy and h; are both C? smooth hermitian metrics on
Xj and X; CC X, we know that the two norms in L?(X;, Kx ® F,h;) and
L*(X;,Kx ® E, h;) are equivalent. Note that sup,,, fXj [um e il < 4o00. Hence
we know that .« jv/eveWe(—v (V))e—d max{v+T.21og [FI} also weakly converges
to e jy/eve (M e(—v (0))edmax{¥+T.21og [FI} in [2(X;, Kx ® E, h;) as m” — +oc.
Then we have

/ |uEj|}21.evé(\11)75max{w+T,2log|F\}C(_v€(\11)>

X

< hmlnf/ |um//757j|}2”eve(\11)*5max{w+T,2log|F\}C(_UE(\I/))
X

T m/ —+o0

< liminf Ué/(\l/)|fF1+6|}2L //efu(fvé(‘ll))fémax{erTQlog|F\}
m' —+oo Jx m

< / ol (0)|f P26 < foc,

J
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Letting ¢ — +00, by monotone convergence theorem, we have

/ |u€yj|}2lev€(‘ll)75max{w+T,2log\F|}c(_ve(\1])) S/ Ué/(\l])|fF|}2Lefu(7ve(‘ll)) < +o0.
' ' (9.31)
Let C; = infx; e~ u(—ve(W)—0max{y+T2log |FI} and note that C; is a positive

number. Then it follows from C; > 0, inequalities (28), (30) and (Z2) that we

have

m'’

2
sup/ |hm~,€,j|hm,, < 400.
X

As lezln,, < lexln,,, , for any m' € Zq, for hi, we have

m/+1

Sup/ |hm”,€,j|i211 < +o00.
X

m'’

Since the closed unit ball of the Hilbert space is weakly compact, we can extract
a subsequence of {h,,~ ¢ ;} (also denote by hy, . ;) weakly convergent to h ; in
L3(X;,A"1T*M ® E,hq) as m” — +o00. As 0 < A < A+ 1 and X is relatively
compact in X, we know that

m'’

Sup/ Nl)\m”|hm”>5>j|}2lm// < +OO
X

It follows from Lemma [3.9] that we know that v/ N S\muhmu@j weakly converges to
some h j and P,/ (VN A A ;) weakly converges to P(ZLW») in L?(X;, A" T*M®
E, hy).

It follows from 0 < A,,» < XA+ 1, X, is relatively compact in X and Lemma [0.1]
that we know v/ NjApr Bt e,j weakly convergent to 0 in L2(X;, A"'T*M @ F, hy).
It follows from the uniqueness of weak limit that we know h. ; = 0. Then we have
P, (\/ Nlj\m/hm/)eyj) weakly converges to 0 = P(fLE,j) in L2(Xj7 A IT*MQE, h1)

Replace m’ by m” in [@29) and let m” go to +o0, we have

D"ucj= D" ((1 —v.(0))fFT). (9.32)

Denote F. ; := —u. ; + (1 — v.(¥)) fF*. Tt follows from (@32) and inequality
(@31) that we know F ; is an E-valued holomorphic (n,0) form on X; and

[ 1Py = (= s P e st tizios i)y, (w)

X.

7 (9.33)
< / o (B FF e < o,

X

Step 6: Letting € — 0.
Note that sup, supy, (e7u=veM)) < 400, 0 < v (t) < El(—ty—Bte,—to—e)- We
have

—u(—"v —u(—"v 2
o/ () Fle ) < supsup(e ) 21, pewe I FTR (934)
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It follows from inequality ([2:2) and dominated convergence theorem that we have

lim [ o (0)|fFfe )

e—0 X,

= [ wrlpppe

X

—u(—v 1
§<supe ( (‘I’))) Eﬂ{ftofB<‘ll<*to}|fF|i2l'

Combining with

Helf- lgf(lf eve(\Il)—é max{y+T,2 log ‘FI}C(—’UE(\IJ)) >0,
i

we have

sup/ |Fe;j—(1— ’Ué(\I/))fFlJrJh% < 4oc.
e Jx;

For any i € Z>, as h; < h, we have

sup [ |Fey = (1= oL (O)F, < +ov.
e Jx;

For any fixed i € Zx>(, note that Yj is compact and both h; and h are C? smooth

hermitian metrics on F, then there exists a constant ¢; > 0, such that h; < ciﬁ on
Xi. By (1)), we have

sup [ 10— oM, < alsupPP) [ Loyl <o
€ i J J

one can obtain that sup, [y |F.; 2 < +oo.
i :

Especially, we know sup, ka |Fe j|%, < 4o0. Note that hy is a C* hermitian
metric on E, X; CC X and F. ; is E-valued holomorphic (n,0) form on X, there
exists a subsequence of {F., j}. (also denoted by {F. ;}.) compactly convergent to
an E-valued holomorphic (n,0) form F; on X;.

It follows from Fatou’s lemma that we have

[ 1By = (1 b P st T ) )

=lim inf / |Fej— (1 — vl (0)) fFHO7 eve(D—omax{udD.2log[Fl} oy, (1))
K

e—0

< lim sup /K |F.j — (1 — vl (0)) fFIH0)2 eve(M—dmax{y+T.210g [Fl} o (g (1))

e—0

<lim sup / v (0) |fF|}21€fu(fve(\P))

e—0 j

—u(—v 1
S(S;(lpe ( (‘y))>/ E]I{—to—B<\I’<—to}|fF|i'

Ei X
(9.35)
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Letting ¢ — 400 in inequality (@35) and by monotone convergence Theorem, we

have
/ |Fj _ (1 _ b(\I,))fFl-‘ré|}2Lev(\ll)—6max{w+T,2log\F|}C(_,U(\I}))
K

—u(—v 1
§<s)1(1]pe ( (\P))> /Xj E]I{—to—B<\I/<—to}|fF|}2r

As K is any compact subset of X; and by monotone convergence Theorem, we

e

—u(—v 1
g(s;lépe ( (m)> /xj Sli—to-B<v<to}| [

know

|Fj _ (1 _ b(\IJ))fFl-‘ré|%ev(\P)—5max{w+T,2log|F\}c(_v(\11))
(9.36)

Step 7: Letting j — +o00.
It is easy to see that

—u(—v 1
(supe ( (‘I’))) / Eﬂ{ftofB<‘ll<fto}|fF|l2l
X X

—u(—v 1
§<Supe ( <\v>>) / Lt peveto}|FF2 < +oc.
X x B
For fixed j, as ev(¥)=dmax{y+T:2log|[FI} () (1)) has a positive lower bound on

any X, we have for j; > j,

sup [ 1B~ (1= b)FFR < e,
J1>3J X

For any i € Z>, as h; < h, we have

sup [ 15, (1= b)) FFH, < 4o

n>jJX;
Note that X; is compact and both h; and h are C? smooth hermitian metrics on
E, then there exists a constant ¢; > 0, such that h; < ¢;h on Xj. By (2], we have

J J

s s
[ 10 =b P, < elsup PP [ Laem |1 < oo,
Xj X; X
one can obtain that sup,, - ; fXj |Fj, |7, < 400. Especially
_sup_/ |Fj1|,211 < 4o00.
J1>3JX;
By diagonal method, there exists a subsequence F}» uniformly convergent on any

X; to an E-valued holomorphic (n,0)-form on X denoted by F. Tt follows from

Fatou’s lemma that we have
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/ |F _ (1 _ b(\P))fF1+6|}2LZ ev(\I/)fé max{y+7T,2log |F\}C(_v(‘lj))
X

< liminf/ |Fjr — (1 — b(‘ll))fF1+5| v(¥) =6 max{y+T,2log |F|} e(—v(D))

J'—=+too Jx

< limsup/ |Fj“ _ (1 _ b(\Ij))fFlJrJ|}21€v(‘11)76max{¢+T,2log|F\}c(_v(\11))
X

j!"——+o0 P

<lim sup/ |Ejir — (1 = b(W)) fFIH02 ev(W)mo max{yd T 2log [Fl} o (g (1))

7" —~+o0

(9.37)

. —u(—v 1
Shmsup(supe ( (‘I’)))/ El{ftng<\P<*to}|fF|%l

j" —+oo Xj//

—u(—v 1
§<supe ( (\P))) / EH{—tU—B<\I’<—tU}|fF|}2L < too.
X X

Letting ¢ — 400 in inequality ([@37), and by monotone convergence theorem, we
have

/ |F _ (1 _ b(\I/))fF1+5|;21€U(\P)75 max{y+T,2log |F‘}C(—’U(\I/))

X.

J 9.38
—u(—v(D)) 1 2 (9:38)

< 81)1{pe . E]I{—tO—B<\II<—to}|fF|h < +o0.

Letting j — 400 in inequality ([@.3]), and by monotone convergence theorem,
we have

/ | 1 _ b ))fFl—i-é|]2Iev(\ll)—6max{w+T,2 IOg‘Fl}C(—U(‘I/))
(9.39)
(supe u(=v(¥) )/ Sl to-B<w<— to}|fF|h<+°o

Step 9: ODE System.

Now we want to find 7 and ¢ such that (n +g¢~!) = e*“('l’m)e*‘ﬁm As
n=s(—v(V,,)) and ¢ = u(—v(¥,,)), we have (749~ 1)ev(Ymled = ((s + )e‘%“)o

(=0e(Vrn)).

Summarizing the above discussion about s and u, we are naturally led to a
system of ODEs:

1 2 hpu—t —
Js+ u”s—s”)e e(t)’

2)s" —su' =1,

(9.40)

when ¢ € (T, 4+00).
We solve the ODE system (@.40) and get u(t) = — log(}c (T)e_T—i—f; c(ty)etrdty)
S c(T)eiT—i-f c(ty)e N dty)dta+ L e(T)e "
and s(t) = 4** T T [p (e dt; :
It follows that s € C° ([T, +00)) satisfies s > 4+ and u € C*°([T, +00)) satisfies
u”’s —s" > 0.
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As u(t) = —log(tc T)e’T—Ff; c(t1)e 1 dty) is decreasing with respect to ¢, then
it follows from —T > v(t) > max{t, —t9 — By} > —to — Bo, for any ¢t < 0 that

1 to+B
supe ) < gqup e = —¢(T)e T —|—/ c(ty)e Mdt,. (9.41)
X t€[T to+B] g T

Combining with inequality (@39), we have

/ |F o (1 _ b(\p))fF1+6|%ev(\Il)—5max{w+T,2log IF‘}C(—U(\I/))
X

1 P 1 )
S gC(T)e_ +/ C(tl)e_tldtl / E]I{—to—B<\I’<—t0}|fF|h < +o00.
T X

We get Lemma 211
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