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Abstract

We investigate the resolution of parabolic PDEs via Extreme Learn-
ing Machine (ELMs) Neural Networks, which have a single hidden
layer and can be trained at a modest computational cost as com-
pared with Deep Learning Neural Networks. Our approach addresses
the time evolution by applying classical ODEs techniques and uses
ELM-based collocation for solving the resulting stationary elliptic
problems. In this framework, the 6-method and Backward Differ-
ence Formulae (BDF) techniques are investigated on some linear
parabolic PDEs that are challeging problems for the stability and
accuracy properties of the methods. The results of numerical exper-
iments confirm that ELM-based solution techniques combined with
BDF methods can provide high-accuracy solutions of parabolic PDEs.

arXiv

Keywords: Numerical Methods for Parabolic PDEs, Scientific Machine
Learning, Extreme Learning Machine, Physics-Informed Methods


http://arxiv.org/abs/2206.00452v1

2 Time discretization in the solution of parabolic PDEs with ANNs

1 Introduction

Mesh-based schemes are widely discussed numerical approaches for solving
Partial Differential Equations (PDEs). Finite Difference Methods (FDMs),
Finite Element Methods (FEMs), and Finite Volume Methods (FVMs) all
belong to this class of numerical methods [35]. They require the generation of
grid points or elements, usually the discretization of differential /integral for-
mulas, and the solution of discrete equations, often with iterative algorithms.
Mesh-based approaches suffer from several problems: firstly, the shape com-
plexity of the computational domain where the grid generation itself could
become very difficult or even infeasible; moreover, the problem discretization
could create a bias between the mathematical nature of the PDE and its
approximating model.

In recent years, starting from [31], Artificial Neural Networks (ANNs) have
been considered an interesting alternative methodology to overcome the draw-
backs of mesh-based numerical schemes. ANNs are adopted as basis functions
to compute solutions of PDEs, i.e. the approximate problem solutions are
determined by a learning approach that consists in defining an optimization
algorithm in which losses due to ANN approximations of PDEs and boundary
conditions (BCs) are minimized. This approach requires sampling points inside
the domain and on the boundary, which can be randomly selected. When the
numerical approximation of the unknown solution is guided by the resolution
of the underlying PDE, the methods are referred to as physics informed [9, 29].

Recently, it has been demonstrated that PDEs can be solved by consid-
ering a specific ANN called Extreme Learning Machine (ELM), see [25]. An
ELM is a feed-forward neural network with a single hidden layer that ran-
domly assigns the input layer weights and analytically determines the output
weights. Thanks to this architecture, the weights of the hidden layer need
not be learned. This makes ELMs faster than typical deep neural networks,
where optimization methods may lead to prohibitively slow learning speeds.
We point out that ELMs are variants of the random projection networks orig-
inally proposed in [39], and a discussion on the relation beween this and other
theories regarding random networks can be found in the review paper [6].
Overall, randomized Neural Networks boost the learning task with benefits
on the numerical scheme in terms of efficiency, while maintaining high accu-
racy. ELMs have been successfully applied for solving Ordinary Differential
Equations (ODEs) and stationary PDEs [5, 12, 13, 15, 38]. ELMs are mesh-
free methods and thus they can easily address complex geometries of PDE
domains [13]. Moreover, ELMs are universal approximators [26, 27] and hence
can potentially represent any continuous function.

In this paper we consider ELMs for the numerical resolution of a linear
parabolic equation. Following what is discussed in [5], we use collocation for
the resolution of stationary elliptic problems, but address separately the time
marching. The resolution of the elliptic problem has provided a very good accu-
racy with a modest computational cost in situations where classical methods
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fail to give good results. Moreover, it has very nice properties of generaliza-
tion and has been applied to nonlinear problems in [15]. As usually done in
time-dependent problems, we aim to separate the dependence on the time by
representing the unknown solution as a combination of stationary functions
where the coefficients of the combination change in time.

Now we show how collocation can be applied to our differential problem.
Let u(t, z) be a solution to the following:

ou

where L is intended as a linear elliptic operator acting only on the spatial vari-
ables, B is a boundary operator and f, g are given source and boundary data.
We are interested in the numerical resolution of equation (1), in particular in
a solution that can be written as an ANN of ELM-type in space:

u(t,z) ~ul(t,z) = sz(t)m(a:) (2)

The main assumption of our collocation method is that we are able to compute

L(oi(x)), B(oi(z))- (3)

We denote by {z;} the set of points where the previous quantities are evalu-
ated. Then, two strategies are possible for the time marching, and these lead
to different classes of methods, as specified next.

1. In the first class we focus on the unknown functions w;(t) after applying
the operator £ (or some approximation to it) to the functions o;. In
this case we make a semi-discretization in space and then solve a system
of ODEs, which is linear if the PDE is linear. In order to describe this
approach, we apply the operators % and L to the solution in (2):

%uh(t,ﬂf) = % (21: wv(ﬂ%@)) = zi:ai(x)%wi(t)v (4)

LuM(t,z)) =L (Z w7(t)01(3?)> = Zuh(t)ﬁ(m(x)) (5)

Now we impose that (4) and (5) solve exactly problem (1) at the given
points z;. Let G = (gi;) be the Gram matrix, where g;; = 0;(z;), and let
L = (l;;) be the matrix where l;; = L£(o;(x;)). With these positions, the
final resolution corresponds to solving

d
Gow(t) = Lw(t) + f(1) (6)
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where w(t) = (w;(t)); is the vector of the unknowns and f(t) = (f(¢,z;));
is the vector of the source terms. We refer to [42] for details.
2. In the second class of methods we define

i) = w i), (7)

where wl[n] = w;(t,) and {t,} is a discretization of the time interval with
fixed time spacing At. Then the unknowns are the coefficients wl[n], which
are computed by solving a boundary problem. In this case we first perform
a semi-discretization in time and then solve an elliptic stationary problem,
which is linear if the PDE is linear. As an example, let us consider the
well-known #-method, which includes the explicit Euler method for 6 = 0,
the backward (implicit) Euler method for # = 1 and the trapeziodal
(Crank-Nickolson) method for § = 1/2. At each time step, we look for
the function %™ (z) in the hypothesis that @~ (z) is known, i.e. given
or computed. Then, the method solves the following:

i) — a1 (@)
At

= 0 [LGE") + F(tn @) | +(1-6) [L@") + f(tar,)]
®)

that is

—oatL(a)+al (2) =
a" (@) + OALf (tn, ) + (1 — O)At [L’(ﬂ[nfu) + f(tn-1, ﬂf)] :

The last equation can be regarded as an elliptic equation.! The right-
hand side consists of given functions and quantities that can be explicitly
evaluated.

The first class is more natural for problems where the diffusion is dominated
by the transport, leading to hyperbolic-type behaviors, or where stiffness arises
in time. In these cases one can easily adopt different time discretizations.
Moreover, the first class of methods can be profitably applied when the matrix
involved in the problem has a structure that can be exploited. The introduction
and study of different time-marching procedures has been proposed also for
the parabolic case, for both traditional methods [16, 17] and newer ones, such
as Isogeometric Analysis [1, 2, 14] and Physics-Informed Neural Networks [9].

On the other hand, the differential problem that has to be solved in the
case of ELMs involves a usually dense (and not a-priori banded) matrix and
the properties of this matrix are difficult to establish. In the authors’ opinion,
the ELM collocation can be more succesfully applied in the second class of
time-marching methods, as we discuss in this paper. A main advantage is that
one can apply different strategies for the resolution of the elliptic problem at
different time steps, e.g. by changing the collocation points.

!Notice that it reveals to an explicit method — the forward Euler method — in the case 6 = 0.
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Our contribution. The aim of this work is to explore how the time approx-
imation affects the resolution of time-dependent parabolic PDEs when the
time marching is made according to the second class of methods described
before. We start from the above-mentioned 6-method and then apply Back-
ward Differentiation Formula (BDF) methods to overcome some difficulties,
see [7, 23]. BDF methods show good accuracy and nice convergence properties
while keeping the computational cost unchanged with respect to the implicit
f-method. Moreover, when the time step is chosen to be constant, they are
easy to implement.

The numerical tests fully confirm the reported results concerning stability
and order of convergence of the proposed time-discretization schemes also when
combined with the ELM-based collocation method. In the case of the parabolic
problems presented here, this reveals that BDF methods are to be preferred
to the well-established Backward Euler or Trapezoidal rules because the latter
are unable to deal with accuracy requirements, as they are slowly convergent
and can suffer from order reduction or numerical instabilities.

Structure of the paper and notation. The rest of this paper is orga-
nized as follows. In Section 2 we briefly discuss the use of Single hidden-Layer
Feedforward Networks (SLFNs) as function approximators, focusing on the
selection of the Activation Functions (AFs) and on the application of ELMs
as collocation methods for the solution of PDEs. In Section 3 we present BDF
solvers, which are used as time-marching methods in the ELM-based resolu-
tion. The results of numerical experiments, reported in Section 4, show that
our approach is able to provide accurate solutions to linear, but challenging,
parabolic PDE problems, according with the order of the time-marching pro-
cedure and the theoretical results on ELMs. Some conclusions are given in
Section 5.

In the following, vectors are written in boldface, i.e. v, while scalars are
written in lightface, i.e. v. The i-th entry of a vector v is denoted v; and the
scalar product of v and w is denoted v - w. Finally, || - || indicates either the
Euclidean norm of a vector or the L2-norm of a function.

2 Use of ANNs as approximators

Today many researchers agree that ANNs learn to approximate functions.
More in detail, ANNs are techniques for estimating an unknown function using
available observations or collocation points from the function domain [21, 34].
The function to be estimated, which transforms inputs to outputs, is often
referred to as the target function.

Here we discuss the application of SLFNs with random hidden nodes to a
differential problem. A SLFN with N hidden nodes and AFs ¢ : R — R is a
function F : R* — R™ defined as follows:

N N
F(z) = Zwﬂﬁi(m) = szfﬁ(ai ~x+ i), 9)
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where a; = (@1, iy, - . ., q) is the weight vector linking the input nodes to
the i-th hidden node, w; = (w;1, ws2, - . ., Wiy) is the weight vector linking the
i-th hidden node to the output nodes, and f; is a bias of the i-th hidden node.
Our aim is to study whether the SLFN F(«) fits the data. More formally,
given M arbitrary couples (x;, 7;), where

— d _ m
T = (le,xjg,...,xjd) € R%, Tj = (le,TjQ,...,ij) e R™,

and x; # x; for j # 4, these are M samples where the SLEN passes with zero
error:
.F(:Bj):’rj, j:1,2,...,M.

SLFNs, as a special case of ANNSs, are universal approximators in the sense that
a feedforward network with a linear output layer and at least one hidden layer
with any nonlinear activation function can approximate with good accuracy a
given function from a finite-dimensional space to another, provided that the
network has enough hidden nodes, see, e.g., [10, 22] and the recent review [30].
Here our main interest is on scalar functions, corresponding to m = 1. In this
case, the vectors 7; become the scalars 7; and function (9) reads

N N
F(z) = Zwi¢i(w) = Zwi¢(ai ~x+ i), (10)

where the weights w; are scalar too.
For the sake of completeness, we report next a version of the universal
approximation theorem for the SLFN (10), see [34, Theorem 3.1].

Theorem 1 Let F be a SLFN function as in (10), where ¢ is not a polynomial. For
any continuous function f : RY — R, any compact subset K C R? and any € > 0,
there exist weights and biases w;, a;, B; such that

max | F(z) — f(x) [<e. (11)

This result states that a single-layer network is enough to have universal
approximation. In order to get a good approximation, we attempt to minimize
the left-hand side of (11) or, more generally, a measure of the distance between
F and f, usually referred to as loss function.

Additional hidden layers can help model intricate nonlinear dynamics [33,
40]. In deep networks with many layers, an important role is played by Physics
Informed Neural Networks (PINNs), often adopted for solving real problems.
However, deep learning approaches are characterized by high training costs
and by efficiency issues, while we use shallow networks with random projection
neurons, leading to ELM networks.
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2.1 Selection of the activation functions

A crucial aspect of the learning approach is the selection of AFs, since they
can significantly affect the accuracy and efficiency of an ANN. Commonly
used AFs are ReLU, leaky ReLu, Sigmoid, Tanh (see, e.g., [18, 21]), but other
choices have been also discussed, e.g., in [8, 20, 41].

In many problems, it is necessary to rescale the PDE to a dimensionless
form. In this case, for the selection of an AF, it is recommended to pick a fixed
range, such as [0,1]%, rather than to consider the whole domain where the
problem is defined. Moreover, the regularity of an ANNs can be obtained by
utilizing smooth activation functions like the hyperbolic tangent or a sigmoid.
However, for all non-polynomial AFs an interpolation result can be stated [34,
Theorem 5.1].

Theorem 2 Let F be a SLFN function as in (10), where ¢ is not a polynomial.
For any M distinct points x; and associated data 7;, there exists a choice of M
coefficients a; = (i1, ..., 04q) € ]Rd, w; € R, B; € R such that

M

Zwi¢(ai'mj+ﬁi) =75, j=1,...,M.
=1

In other words, for an SLFN architecture with NV = M hidden nodes, it is
possible to approximate M samples with zero mean error.

In this work we choose the AF's in the class of sigmoid functions. A sigmoid
usually takes values between 0 and 1 and it is widely used for models where a
probability has to be predicted as an output. In our case, sigmoids are a good
choice on a collocation basis as they are differentiable. This means we can find
the slope of the sigmoid curve. Moreover, this function gives an interesting
advantage in terms of computational time for the training phase of the neural
network.

Specifically, our choice of the AF is the logistic sigmoid function:

1

oil®) = olei @+ ) = e T w = B)’

(12)

The derivatives of (12) with respect to the independent variable x can be easily
computed. Note that if one takes two functions o; and o, where at least one
of the parameters is different, then these functions are linearly independent,
see [28]. Moreover, each o; is a planar-wave Ridge function [34], so that the
behavior of the function can be derived easily as an extension of the univariate
case d = 1. With this simplification, we can state the following:

® o, has an inflection point at x = —&, which we call the center C; of the

Q;
sigmoid function;
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® ¢, is monotone, ’I'EIEIOO = 0 and limg; 4o = 1 if a; is positive, the other

way if «; is negative. Moreover, the range where the values are between
0.05 and 0.95 is [C; — 2212, ¢; 4+ 2082,
Notice that one obtains Heaviside-like functions if the internal weights «; are
large, or almost-linear functions if the «;’s are small. In our case, the use of both
kind of functions can help approximate steep gradients and global behaviors.
These functions are an example of AFs in the class of those that verify the
hypotheses of Theorems 1 and 2.

2.2 Shallow networks and ELMs

The aim of the overall network is to have nice properties of reproduction
while maintaining small the number of unknowns. Sparse neural networks
have been recently proposed instead of fully-connected architectures to over-
come some issues related to learning processes. A Physics-based interpretable
sparse neural network architecture for solving PDEs has been analyzed in [36].
It represents a successful tentative to link traditional Deep Neural Networks
(DNNs) and meshless methods. The proposed methodology is very efficient in
comparison with classical DNNs and it represents a generalized physics-based
approach, in the sense that the loss function depends directly on the PDE for-
mulation. Moreover, this model implicitly encodes mesh adaptivity as a part
of its training process, leading to novel hybrid algorithms for PDEs. The inter-
pretability of the model is due to a new class of sparse network architectures
that generalize traditional meshless methods exactly representing a DNN.

Many authors have suggested investigating shallow networks, e.g. single
hidden-layer networks with an increasing number of neurons in the hidden
layer. In the PINNs context, shallow ANNs have been considered a good choice
with respect to deep learning methodologies. Among these shallow networks,
ELMs [27] are the ones where internal parameters are fixed randomly and only
the external weights w; are trainable parameters. A fascinating combination of
PINNs and ELMs has been investigated in [13], where the authors implemented
a model called Physics Informed Extreme Learning Machine (PIELM) for the
resolution of stationary and time-dependent linear PDEs. The nice behavior
of such networks is related to the universal approximation result, that is valid
as for the general SLFNs seen previously.

In [27, Theorem 2.1] an approximation result needed in our setting is given.
We report it next.

Theorem 3 Let (x;,7;),i=1,...,M, be a set of points such that x; # x; if i # j,
and let uy () = Ef\;l w;oi(x) = Ziil wio(a;-x+06;) be an ELM network with N <
M neurons such that the internal weights a; and the biases 3; are randomly generated
independently from the data, according to any continuous probability distribution.
Then, for all € > 0 there exists a choice of the weights w; such that

[(un () — 75)ill < e with probability 1,
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where (un (x;) — 7;); denotes the vector with components un (x;) — 7;. Moreover, if
N =M then w;, i =1,...,N, can be found such that

[(un(x;) — 7%)ill| =0  with probability 1.

In particular, the above theorem states that if the number of hidden neurons
is equal to the number of data points, then the interpolation error is zero
with probability 1. Unlucky cases, i.e. with probability 0, are related to the
unisolvence of the points. In the case d = 1 the unisolvence hypothesis is
included in the request that the points are distinct.

The interpolation property of Theorem 2 can be extended to a convergence
result, as proved in [26] (see also [25, Theorem 2]).

Theorem 4 Let ¢ : R? = R be a continuous function. Then there exist a sequence
of ELM network functions uy () = Zfil wio(ay - @ + B;) such that:

li — =0.
Jiml6 — ux]

A fundamental challenge in all the works about neural networks is to find an
optimal choice of parameters that satisfies a desired tolerance. As commented
before, with ELMs it is possible to focus on the optimization of the external
weights w; only, reducing the computational cost and the training time. Thus,
the weights w; can be seen as the coeflicients of the linear combination defining
un (), while a; and §; are internal weights and biases that yield a variation
of the sigmoid function.

Firstly, we present the way in wich the parameters a; and ; are taken,
and then we discuss the computation of the weights w;. The internal weights
a; are chosen randomly and uniformly in a range that depends on the number
of neurons N. By fixing the domain of the differential problem to have unitary
length and following the analysis in [5], we choose

N —10 N —10
i = d — —47 4 5 1
a; = ran ({ 10 10 + }) (13)

where rand([a, b]) denotes for each i a vector with components sampled from
a uniform distribution in the interval [a,b]. The biases §3; are set so that the
functions o; are “non-flat” in the considered domain, as shown at the end of
Section 2.1.

The trainable parameters of the network are the weights w;. In general
ANNSs, the weights are computed by minimizing the loss function, e.g. by
applying stochastic gradient-based approaches that back-propagate the error
and adjust the weights through specific directions [4]. More recently, second-
order stochastic optimization methods have been widely investigated to get
better performances than first-order methods, especially when ill-conditioned
problems must be solved, see, e.g., [11] and the references therein. Nevertheless,
there are still difficulties in using these approaches, such as the setting of the
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so-called hyperparameters and the significant increase of computing time when
the number of nodes in the hidden layer grows.

In our case, by collocating the linear problem (1) we obtain a linear depen-
dence on the unknown weights w;. Following Theorems 3 and 4, we can choose
a number of equations smaller than the number of unknowns, obtaining an
underdetermined linear system that can be solved as a least squares prob-
lem, which plays the role of a loss function. By computing the minimum-norm
least squares solution [3] we not only obtain existence and uniqueness of the
weights, but also ensure minimum training error and the smallest norm of the
weight vector, which are important properties for an ELM [27]. This solution
can be obtained by using a Complete Orthogonal Decomposition (COD) [3] of
the collocation matrix C":

CP=QRZT,
where @) and Z are orthogonal matrices, R is an upper triangular matrix and
P is a permutation matrix. We note that COD has good stability properties
even in the case C has (numerical) rank r < N [24]. On the other hand, in
general COD does not tend to zero the entries of the solution, thus producing
functions uy where most of the coefficients w; are likely to be nonzero.

Alternative solutions to the undetermined linear system can be computed
by using, e.g., the QR factorization with column pivoting [3]:

CP = (@R,

where @ is an orthogonal matrix, R is an upper triangular matrix and P is a
permutation matrix. In this case, at least M — N coeflicients w; are set equal
to zero, generally yielding a sparser solution than in the previous case.

Preliminary numerical experiments have shown that the difference between
the PDE solutions obtained with the two approaches are practically negligible.
Therefore, in our tests we compute the minimum-norm least squares solution
to the underdetermined linear system.

3 Time-marching scheme

In the literature on numerical methods for diffusion equations much attention
has been paid to the construction and analysis of stable and accurate approx-
imation schemes [7, 16, 37]. In this work we compare the trapezoidal (8) and
BDF methods according to the second approach described in the introduction,
thus we follow the notation introduced in equation (7). Given

Wz), (@), ..., (), (14)
a k-step BDF applied to problem (1) can be written as

k—
Atb L(a" ) (1)) + apal" T (2 E A" () + Atbgf (tngr, z), (15)
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where n = 0,1,... and the coefficient a;, j = 0,...,k, and by are listed in
Table 1 for k¥ < 6. It is worth noting that the 1-step BDF is the Backward
Euler method.

BDF methods are L-stable for & = 1,2 and L(«)-stable for k = 3,...,6,
with stability angle a reported in the last column of Table 1. It is also well
known that they are not zero-stable for k > 6. Definitions and further details
can be found in [19]. The L-stability and L(«)-stability make the methods
suitable for ODEs whose solutions present high-frequency components. Fur-
thermore, since BDF methods involve the right-hand side evaluation only at
the right end of the current step, they allow the preservation of the elliptic
structure in the time-discretized operator. In particular, the elliptic operator
on the left-hand side is balanced by a source term involving known quantities
that will be referred to as right-hand side and denoted by RH S

In order to give an estimate of the error in time, we follow [43, Chapter 10]
and rewrite the BDF time discretization (15) of (1) as

o™ = (@) + fm,

with @l ~ u(nAt,z), f* = f(nAt x). Here 0 is the backward difference

Ak— J~n —7]

operator given by dpal™ = A7 Z . Letting u™ = u(nAt,z), we

have

Opu" = L(u™) + f* + 7",
with 77 = Jpu™ — dpu™ the consistency error. Then Lemma 10.1 and Theorem
10.1 in [43] provide the result reported next.

Theorem 5 Let k < 6 and assume that the solution u of (1) is sufficiently smooth.

Then
[u™ — al |<cZHu — a9 et /
7=0
where ¢ is a positive constant.

6k+1

T ds,

From Theorem 5 it is clear that if the starting values (14) are accurate enough,
then the k-step BDF method (15) has order k. Thus, a suitable strategy is
needed to provide the first £ — 1 approximations. We refer to this strategy as
starting procedure. The starting values (14) can be approximated by means of
a (k — 1)-step BDF method applied with a reduced stepsize At/m, with an
integer, suitably chosen m. As described in the previous sections, following [5]
we choose the ELM collocation at given points for the discretization of the
steady-state problems. The total error is then the time-marching error term
plus the contribution of the ELM collocation error.

In Algorithm 1 we describe the main steps required for the resolution. Since
in our experiments we consider d = 1, i.e. a scalar variable z, we focus on this
case. In principle the resolution at a fixed time step can be done with different
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Table 1 Coefficients and L(«)-stability angles for the BDF methods.

k| as as as as a2 ay ao b a
1 1 -1 1 90°
2 1 -5 3 5 o
5 1 _1s 2 -2 £ 86.03°
4 1 7% 36 -18 2 2 73.35°
5 1 7% % ,% % 7% % 51.84°
6| 1 360 450 _d00 225 _ 72 10 60 | j7g4°

Algorithm 1 ELM collocation for the parabolic PDE with a k-step BDF

Input: the starting values (14), the number of neurons N, the collocation
points z;, 7 =1,..., M.
> Initialization
1. Choose randomly «; and §;, i =1,..., N, according to (13).
> Discrete counterpart of the parabolic operator
2. Compute the collocation matrix C € RM*N by evaluating the left-hand
side in (15) at the internal collocation points and appending the collocated
boundary conditions.
> Time loop
for n=Fk: Nt do
3. Compute RH S € RM by evaluating the right-hand side in (15) at
the collocation points.
4. Find w™ € RY that solves the linear problem Cw™ = RH S™.
end for
Output: the external ELM weights wl[.n]7 with ¢ = 1,...,N and n =
k,...,Nt, which provide the collocated solution @™ (z) in (7).

methods, e.g. one can change the number or the parameters of the involved
AFs, or the number and the location of the collocation points. By the way, as
can be seen from the pseudo-code (statements 2-4), if no changes are made,
the linear problem that has to be solved at each time step involves the same
matrix, so that this has to be constructed only once.

4 Numerical experiments

Our test set consists of the following classes of problems:

(a) stiff parabolic equations,

(b) problems where the boundary conditions are discontinuous,
(c) problems where the solution decays very rapidly.
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To obtain these problems, we used the one-dimensional heat equation with
different diffusion coefficients and boundary conditions, which lead to challeg-
ing problems for the stability and accuracy properties of the methods [7]. The
exact solution of these problems is known and we computed the approximate
solution up to the final time ¢; using different values of the fixed time step
length At. For the resolution at each time step, we used collocation with an
ELM function consisting of N neurons. Collocation was done on M = N/2
equispaced points by evaluating the exact derivatives of the activation func-
tions, as in [5]. For computing the final error, we used the lo, norm of the
difference between the approximate and the exact solution evaluated on 5000
equispaced points in the spatial domain at the final time ¢;.

All the numerical experiments were performed using MATLAB R2021b.
The results were slightly affected by the choice of the parameters of the ELM
functions, which were randomly generated as described in Section 2.2. In our
computations, these random parameters were obtained by using the MAT-
LAB randn function. We found close behaviors with different initializations
of randn, thus we decided to present the results obtained with rng(1000) for
reproducibility issues, where rgn is the function specifying the seed for the
random number generator.

In the plots we report the errors with respect to the number Nt of sta-
tionary problems solved, which includes, for a fair comparison with one-step
methods, the computational effort due to the starting procedures for the BDF
methods. In the tests, we used the starting procedure described in Section 3,
with m = 8. We chose to report the number of stationary problems solved
because it represents the number of constructed underdetermined linear sys-
tems and hence it can be taken as representative of the overall computational
cost. Our tests compare the behavior of Backward Euler (BE), Trapezoidal
Rule (TR), and BDF of order 2-4 (referred to in the plots as BDF2-BDF4).
We did not consider the higher-order methods BDF5 and BDF6 because if a
modest number of collocation points is needed - as it is in our case - then the
cost of the starting procedure dominates the overall performance.

According with the discussion in Section 2.2, the minimum-morm least
squares solutions of the underdetermined linear systems were computed, by
using the MATLAB lsgminnorm function with rank tolerance 10~'%, which
implements the COD algorithm. Of course, if the size of the collocation matrix
C is very large, this choice may be computationally very expensive, in terms
of both time and memory. However, this is not the case of the experiments
reported in this work, which are aimed at a methodological investigation.

Test problem (a) is the following:

ou 9%u

at 9z’
u(z,0) = sin(mx) + sin(yrzx), w(0,t) = u(2,t) =0,

z €10,1], t €[0,1], (16)
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Fig. 1 Computed error for problem (16) with v = 3 at the final time. We use the BE,
BDF2 and BFD3 methods in time with tree different choices of At and solve the problem
by increasing the number of neurons N.
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Fig. 2 Computed error for problem (16) with v = 3 (left) and v = 5 (right) at the final
time. The solutions are computed with N = 40 neurons, decreasing At. In abscissae we
report the number Nt of linear systems solved, in ordinates the absolute value of exact error.

whose exact solution, with v as a parameter, is:
—m2t - —y2n2t
u(t,z) =e sin(mzx) + e sin(kmz).
When 7 increases, the second addend in the exact solution decays rapidly and

oscillates. For this reason, the problem is referred to as stiff when v > 5, while
it is a “standard” test problem in the other cases.
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The first numerical test that we present was carried out with v = 3 and
regards the convergence of the method used to solve the stationary problems,
i.e. the ELM collocation when increasing the number NV of neurons. In Figure 1
we present the error computed at the final time t;. In the different panels,
we consider three different time-marching methods to solve the problem. Two
facts can be noticed:

® the convergence is very fast: we can conjecture a spectral convergence,
compared also with the results obtained in [32];
® the error stops decreasing when it reaches the maximum accuracy of the
method in time: in that case, the latter begins to prevail.
The three lines correspond to three different choices of At and the fact that
they coincide for small numbers of neurons confirms that at the beginning
of the convergence history the error of the space discretizations prevails. The
overall accuracy can be compared with that reported in the error plot in the
left panel of Figure 2, where the same problem is solved. By looking also at the
right panel of Figure 2, corresponding to v = 5, we see that on these nonstiff
problems our procedure has the expected behavior: the order of convergence
is achieved; the TR method slightly overperforms BDF2 because of its smaller
error constant; the starting procedure for the BDF methods gives a shift of the
initial points, which is negligible when Nt grows; the error reaches its limit,
given by the accuracy of the resolution by collocation.

102  aaa " 102
\
104 104
= -6 = -6
o 10 o 10
g E
% Il %
S S
0 10 o 10
10—10 L 4 10—10 L
10-12 L L 10-12 L L
10t 102 10° 10* 10t 102 10° 10*

Nt Nt

Fig. 3 Computed error for problem (16) with v = 10 at the final time. The solutions are
calculated with N = 40 (left) and N = 50 neurons (right), decreasing At. In abscissae we
report the number Nt of linear systems solved, in ordinates the absolute value of the error.

In Figure 3 we report the errors obtained while solving Problem (16) with
v = 10. The errors in the left panel correspond to N = 40, while those in the
right panel to N = 50. This is a stiff problem, for which the trapezoidal method
gives poor performances in the case of larger At values, see also [7], while
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the BDF methods show a regular behavior because of their better stability
properties. This is also a difficult problem for the collocation method, being
the exact solution highly oscillating. For this reason the final accuracy is poor
for N = 40 and improves for N = 50.

Problem (b) (with discontinuous boundary conditions) is:

ou  0%*u
o g A el 1) (17)

u(z,0) =1, u(0,t) =u(2,t) =0.

The exact solution? to problem (17) is:

u(t,z) = i 1= (—1)"] 2 sin ("5 exp <ﬁ> .

nm
n=1

10! ;
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=0 ‘TR 07
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Fig. 4 Computed error for problem (17) (left panel) and for problem (18) (right panel) at
the final time. The solutions are calculated with N = 40 neurons, decreasing At. In abscissae

we report the number Nt of linear systems solved, in ordinates the absolute value of the
error.

Numerical results for this test case are reported in the left panel of Figure 4.
As already noticed in [7], the trapezoidal rule suffers from order reduction,
behaving as an order-1 method, while the BDF solvers behave as expected.
Moreover, the BDF accuracy in this case is much higher with the same
computational cost.

2The solution is given in the form of a series, but its terms decay very rapidly, so that for our
numerical tests the approximate solution obtained with 20 terms is exact up to machine precision.
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Problem (c) (with a solution that decays very rapidly) is:

ou_ o
ot " ox?’
u(x,0) = sin(wrz), u(0,t) =wu(l,t) =0,

z€10,1], t €[0,1],

and its solution is: )
u(t,r) = e °" tsin(rx).
Numerical results for this test case are reported in Figure 4, in the right
panel. One can observe once again that the methods can achieve very high
accuracy and maintain the properties seen in the standard test cases.

5 Conclusions and future work

Scientific Machine Learning (SML) is a research field in which Artificial Intel-
ligence methodologies have been employed to solve in innovative manners
problems modeled by PDEs. A large number of easy-to-use methods, based on
ANNS, allow researchers to deal with complex PDEs efficiently. In this paper,
we designed a numerical scheme belonging to the class of ELM methods for
solving time-dependent parabolic PDE problems. This can be considered as
a step towards rethinking meshless methods by using ANNs. The proposed
approach addresses the time evolution by applying time-marching techniques
and adopts the collocation for solving the resulting stationary elliptic problems.
Regarding the elliptic component of the PDE, we observed a good accuracy
with a limited computational costs in situations where classical methods fail
to give good results.

The main goal of this work was to explore how the time approximation
affects the resolution of time-dependent PDEs by ELM-based collocation, using
classical methods to discretize the problem in time. To this aim, some lin-
ear parabolic PDE that are challeging problems for the stability and accuracy
properties of the methods were considered. The #-method and BDF tech-
niques were investigated. We observed that BDF methods have good accuracy
and convergence properties while keeping the same computational cost as
the implicit #-method. Moreover, the time-discretization schemes used in the
space-collocation method have promising properties in terms of stability and
order of convergence, which are confirmed by numerical tests. We also con-
cluded that, in our numerical framework, BDF methods of order 2-4 were to
be preferred to Backward Euler or Trapezoidal rules, because the latter are
unable to deal with high accuracy requirements, as they are slowly convergent
and can suffer from order reduction or numerical instability.

SML methodologies to design novel numerical methods for solving PDEs
represent a fascinating research field for which contributions grow exponen-
tially. Among future improvements of the proposed approach we identified
two main directions: i) network architectural studies and ii) theoretical
results. Concerning direction i), how integrating ELMs with physics-informed
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approaches like PINNs is a challenging task; concerning ii), the adoption of
ANNSs as universal approximators of PDE solutions has to be supported by
theoretical results about errors in the learning process, such as a-priori bounds
related to stability and convergence rate.
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