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Abstract

Symbol-pair codes introduced by Cassuto and Blaum in 2010 are designed to protect against the

pair errors in symbol-pair read channels. One of the central themes in symbol-error correction is

the construction of maximal distance separable (MDS) symbol-pair codes that possess the largest

possible pair-error correcting performance. Based on repeated-root cyclic codes, we construct

two classes of MDS symbol-pair codes for more general generator polynomials and also give

a new class of almost MDS (AMDS) symbol-pair codes with the length l p. In addition, we

derive all MDS and AMDS symbol-pair codes with length 3p, when the degree of the generator

polynomials is no more than 10. The main results are obtained by determining the solutions of

certain equations over finite fields.

Keywords: MDS symbol-pair codes, AMDS symbol-pair codes, Minimum symbol-pair

distance, Repeated-root cyclic codes

1. Introduction

Cassuto and Blaum (2010) proposed a new coding framework called symbol-pair codes

to combat symbol-pair errors over symbol-pair read channels in [1] with the development of

high-density data storage technologies. For example, Blu-ray disc is a high-density data storage

symbol-pair read channels for the practical application. The seminal works [1]–[3] established

relationships between an error-correcting code’s minimum Hamming distance and the minimum

symbol-pair distance, discovered methods for code construction and decoding, and obtained

lower and upper bounds on code size. If a code C over Fn
p with length n contains M elements and

has the minimum symbol-pair distance dp, then C is referred as an (n,M,dp)p
symbol-pair code.

Finding symbol-pair codes with high symbol-pair error correcting performance has become a

significant theoretical challenge.

In 2012, Chee et al. [4] established the Singleton-type bound on symbol-pair codes. Similar

to the classical codes, the symbol-pair codes meeting the Singleton-type bound are called MDS

symbol-pair codes and almost MDS symbl-pair codes are denoted AMDS symbol-pair codes.

MDS symbol-pair codes are the most useful and interesting symbol-pair codes due to their op-

timality. Many researchers used various mathematical tools to try to obtain MDS symbol-pair
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codes. Constructing MDS symbol-pair codes is thus important both in theory and in practice.

However, because determining the exact values of symbol-pair distances of constacyclic codes

is a very complicated and difficult task in general, little work has been done on it.

In 2013, Chee et al. [5] obtained some MDS symbol-pair codes from classical MDS codes.

Between 2015 and 2018, researchers [6][7][8] constructed some MDS symbol-pair codes with

minimum symbol-pair distance 5 and 6 from constacyclic codes. In 2017, Chen et al. [9] pro-

posed to construct MDS symbol-pair codes by repeated-cyclic codes and obtained some length

3p MDS symbol-pair codes with symbol-pair distance 6 to 8 and MDS (l p,5)p symbol-pair

codes. In the next few years, MDS symbol-pair codes with some new parameters were found

by using repeated-root codes over Fp. In 2018, Dinh et al. [10] presented all MDS symbol-pair

codes with prime power lengths by repeated-root constacyclic codes. Two years later, Dinh et al.

[11] also constructed a families of MDS sympol-pair codes with length 2ps. In the next 2019 to

2021, Zhao [12] [13] constructed some MDS symbol-pair codes using repeated-root constacyclic

codes. In 2022, Ma et al. [14] obtained MDS (3p,10)p and MDS (3p,12)p sympol-pair codes.

Inspired by these works, in order to obtain longer and more flexible code length, as well as

a larger minimum symbol-pair distance, this paper proves that there are more general generator

polynomials for MDS (l p,6)p and MDS (l p,5)p symbol-pair codes by using repeated-cyclic

codes. Furthermore, the parameter AMDS (l p,7)p symbol-pair codes are obtained by using

repeated-cyclic codes. For length n = 3p, this paper gives all MDS and AMDS symbol-pair

codes from repeated-root cyclic codes C(r1,r2,r3), when the degree of the generator polynomial

g(r1,r2,r3)(x) is no more than 10, i.e., deg(g(r1,r2,r3)(x)) ≤ 10.

The rest of this paper is structured as follows. In Section 2, we introduce some basic notations

and results on symbol-pair codes. In Section 3, we derive some new classes of MDS symbol-pair

codes and AMDS symbol-pair codes from repeated-root cyclic codes. In section 4, we conclude

the paper.

2. Preliminaries

In this section, we introduce some notations and auxiliary tools on symbol-pair codes, which

will be used to prove our main results in the sequel. We donote that Fp and Fq are finite fields,

where p is an odd prime and q = pm. Then we denote F*
p is the cyclic group Fp\{0}. Let

x = (x0,x1, · · · ,xn−1)

be a vector in F
n
p. Then the symbol-pair read vector of x is

π(x) = [(x0,x1) ,(x1,x2) , · · · ,(xn−1,x0)] .

Similar to the Hamming weight ωH (x) and Hamming distance DH (x,y). The symbol-pair

weight ωp (x) of the symbol-pair vector x is defined as

ωp (x) = |{i |(xi,xi+1) 6= (0,0)}| .

The symbol-pair distance Dp (x,y) between any two vectors x,y is

Dp (x,y) = |{ i|(xi,xi+1) 6= (yi,yi+1)}| .

The minimum symbol-pair distance of a code C is

dp = min{Dp (x,y) | x,y ∈ C } ,
2



and we denote (n,k,dp)p a symbol-pair code with length n, dimension k and minimum symbol-

pair distance dp over Fp. For any code C of length n with 0 < dH(C ) < n, there is an important

inequality between dH(C ) and dp(C ) in [2]:

dH(C )+ 1 ≤ dp(C )≤ 2dH(C).

In this paper, we always regard the codeword c in C as the corresponding polynomial c(x).
The following lemmas will be applied in our later proofs.

Similar to classical error-correcting codes, the size of symbol-pair codes satisfies the follow-

ing Singleton bound. The symbol-pair code achieving the Singleton bound is called a maximum

distance separable (MDS) symbol-pair code.

Lemma 2.1. ([4])If C is a symbol-pair code with length n and minimum symbol-pair distance

dp over Fq, we call an (n,dp)p symbol-pair code of size qn−dp+2 maximum distance separable

(MDS) and an (n,dp)p symbol-pair code of size qn−dp+1 almost maximum distance separable

(AMDS) for q > 2.

Lemma 2.2. ([5]) Let q > 2 and 2 6 dp 6 n. If C is a symbol-pair code with length n and

minimum symbol-pair distance dp over Fq, then |C |6 qn−dp+2.

In some cases, the bound of minimum symbol-pair distance can be improved.

Lemma 2.3. ([9]) Let C be an [n,k,dH ] constacyclic code over Fq with 2 6 dH 6 n. Then we

have the following dp (C )> dH + 2 if and only if C is not an MDS code.

The next lemma will be used by the later proof of Proposition 3.14.

Lemma 2.4. ([9]) Let n= 3p with p≡ 1(mod 3). If C(3,2,1) is the cyclic code in Fp [x]/〈x
n − 1〉

generated by

g(3,2,1)(x) = (x− 1)3(x−ω)2(x−ω2),

then C(3,2,1) is an MDS (3p,8)p symbol-pair code, where ω is a primitive 3-th root of unity in Fp.

Researchers constructed some MDS symbol-pair codes with minimum symbol-pair distance

6 by repeated-root cyclic codes. The next lemma will be used by several parts of Theorem 3.1.

Lemma 2.5.

• [10] C =
〈
(x− 1)4

〉
is an MDS symbol-pair code.

• [11] C =
〈
(x− 1)i(x+ 1) j

〉
is an MDS symbol-pair code with dp = 6 over Fp, where

|i− j|6 2 and i, j ≤ p− 1.

• [12] C =
〈
(x− 1)3(x−ω)

〉
is an MDS (l p, 6)p symbol-pair code over Fp, where ω is a

primitive l-th root of unity in Fp.

The method for calculating the minimum Hamming distance about repeated-cyclic codes is

given in the following lemma.

Lemma 2.6. ([15]) Let C be a repeated-root cyclic code with length lpe over Fq generated by

g(x) = ∏mi
ei (x) , where l and e are positive integers with gcd(l, p) = 1. Then we have

dH(C ) = min
{

Pt ·dH

(
C t

)
|0 ≤ t ≤ l pe

}
,

where Pt = ωH

(
(x− 1)t

)
and C t =

〈
∏

ei>t
mi (x)

〉
.
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3. Constructions of MDS and AMDS Symbol-Pair Codes

In this section, we propose some MDS and AMDS symbol-pair codes by repeated-root cyclic

codes over Fp, where p is an odd prime and Fp is a p-ary finite field.

3.1. MDS and AMDS Symbol-Pair Codes with length lp

In this subsection, we prove that there exist more general generator polynomials about MDS

(l p,6)p and MDS (l p,5)p symbol-pair codes. Furthermore, the parameter AMDS (l p,7)p symbol-

pair codes are obtained by using repeated-cyclic codes.

Let C(r1,r2,r3) be the repeated-root cyclic code over Fp and the generator ploynomial of

C(r1,r2,r3) is

g(r1,r2,r3) (x) = (x− 1)r1 (x+ 1)r2 (x−ω)r3 ,

where ω is a primitive l-th root of unity in Fp and r1 + r2 + r3 = 4. Dinh [10] [11] discussed all

cases of l = 1 and l = 2, here we focus on the case of l > 2.

Theorem 3.1. Let C(r1,r2,r3) be an MDS symbol-pair code with dp = 6, if r1, r2 and r3 meet the

conditions in Table 1.

Table 1: MDS symbol-pair codes of Theorem 3.1

r1 r2 r3 (n,dp)p Reference or Proposition

4 0 0 (p,6)p Reference [10]

3 0 1 (l p,6)p Reference [12]

2 1 1 (klp,6)p Proposition 3.2

2 0 2 (l p,6)p Proposition 3.4

* When l even, (klp,6)p = (lp,6)p; When l odd, (klp,6)p =

(2lp,6)p .

* Let l be an odd number or l ≡ 0(mod 4), if (r1,r1,r1) ∈

S and S = {(0,1,3),(0,2,2),(0,3,1)}.

The proof of Theorem 3.1 needs Propositions 3.2 to Proposition 3.4. For the case of generator

polynomials with three factors (x− 1),(x+ 1) and (x−ω), we have the following proposition.

Proposition 3.2. Let C(r1,r2,r3) be an MDS symbol-pair code with dp = 6, if (r1,r2,r3) ∈ S1 and

S1 = {(2,1,1) ,(1,2,1) ,(1,1,2)}.

Proof. When (r1,r2,r3) = (2,1,1), let C(2,1,1) be the cyclic code over Fp and generated by

g(2,1,1) (x) = (x− 1)2 (x+ 1)(x−ω) .

By Lemma 2.6 , let gt(x) be the generator ploynomials of C t .

• If t = 0, then we have

g0(x) = (x− 1)(x+ 1)(x−ω).

It is easy to verify that the minimum Hamming diatance is 3 in C 0 and P0 = 1. Therefore,

this indicates P0 ·dH(C 0) = 3.
4



• If t = 1, then we have g1(x) = (x−1) and P1 = 2. Thus, one can derive that P1 ·dH(C 1) = 4.

• If 2 ≤ t ≤ p− 1, then we have gt(x) = 1 and Pt ≥ 2. This implies that Pt ·dH(C t)≥ 3.

Therefore, it can be verified that C is an [l p, l p− 4, 3] repeated-root cyclic code over Fp.

Lemma 2.3 yields that dp > 5, since C is not an MDS cyclic code.

If c ∈ C(2,1,1) has ωp = 5 with ωH = 4, then its certain cyclic shift must have the form

(⋆, ⋆, ⋆, ⋆,0s) ,

where each ⋆ denotes an element in F
*
p and 0s is all-zero vector with length s. Without loss of

generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2x2 + a3x3.

This is a contradiction for deg(c(x))≥ deg
(
g(2,1,1) (x)

)
.

If c ∈ C(2,1,1) has ωp = 5 with ωH = 3, then its certain cyclic shift must have the form

(⋆, ⋆, 0s1
, ⋆, 0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively. Without loss of generality, suppose that the constant term of c(x) is 1. We denote

that

c(x) = 1+ a1x+ a2xt .

When t is even, it can be verified that

{
1+ a1+ a2 = 0,
1− a1+ a2 = 0,

since c(1) = c(−1) = 0. This is impossible, since a1 6= 0 and p 6= 2.

Similarly, if t is odd, one can obtain that

{
1+ a1+ a2 = 0,
1− a1− a2 = 0,

which contradicts p odd.

Let y =−x,z = x
ω

, we can deduce the following results by deforming it,

g(2,1,1)(x) = (x− 1)2(x+ 1)(x−ω)

= (y+ 1)2(y− 1)(y+ω)

= g(1,2,1)(y)

= ω4(z−
1

ω
)2(z+

ω

ω
)(z−

ω

ω
)

= ω4g(1,1,2)(z).

Thus, we have C(2,1,1) = C(1,2,1) = C(1,1,2).
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We have the following two propositions, when the generator polynomials only have two of

these three factors (x− 1),(x+ 1) and (x−ω).

Proposition 3.3. Let C(r1,r2,r3) be an MDS symbol-pair code with dp = 6, if (r1,r2,r3) ∈ S2 and

S2 = {(1,0,3) ,(0,3,1) ,(0,1,3)}.

Proof. When (r1,r2,r3) = (1,0,3), let C(1,0,3) be a repeated-root cyclic code over Fp generated

by

g(1,0,3) (x) = (x− 1) (x−ω)3 .

By Lemma 2.6, we can derive dH = 3 and Lemma 2.3 implies that dp ≥ 5. With arguments

similar to the proof of Proposition 3.2, there are no codewords of C(1,0,3) with ωH = 4 such

that the 4 nonzero terms appear with consecutive coordinates. Next we show that there are no

codewords of C(1,0,3) with ωH = 3 in the form

(⋆, ⋆, 0s1
, ⋆, 0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively. Without loss of generality, suppose that the constant term of c(x) is 1. We denote

that

c(x) = 1+ a1x+ a2xt .

Then c(1) (ω) = c(2) (ω) = 0 induces that t −1 = kp for some positive integers k ≤ l−2, together

with c(ω) = 0, one can immediately get

{
1+ a1ω+ a2ωk+1 = 0,
a1 + a2ωk = 0.

By solving the system, we can derive a contradiction, since p is an odd prime.

For the case of (r1,r2,r3) ∈ S2, with similar to the proof of Proposition 3.2, we can deduce

C(1,0,3) = C(0,3,1) = C(0,1,3).

Proposition 3.4. C(r1,r2,r3) is an MDS symbol-pair code with dp = 6, when (r1,r2,r3) ∈ S3 and

S3 = {(2,0,2) ,(0,2,2)}.

Proof. When (r1,r2,r3) = (2,0,2), let C(2,0,2) be a cyclic code over Fp generated by

g(2,0,2) (x) = (x− 1)2 (x−ω)2 .

By Lemma 2.6, we can derive that the minimum Hamming distance of C(2,0,2) is dH = 3 and

Lemma 2.3 implies dp ≥ 5. With arguments similar to the proof of Proposition 3.2, there are

no codewords of C(2,0,2) with ωH = 4 such that the 4 nonzero terms appear with consecutive

coordinates. Next, we show that there are no codewords of C(2,0,2) with ωH = 3 in the form

(⋆, ⋆, 0s1
, ⋆, 0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively. Without loss of generality, suppose that the constant term of c(x) is 1. We denote

that

c(x) = 1+ a1x+ a2xt .
6



However, by c(1) (1) = c(1) (ω) = 0, we can deduce that l is a divisor of t − 1. Then combined

with c(1) = c(ω) = 0, we have

{
1+ a1+ a2 = 0,
1+ a1ω+ a2ω = 0.

This implies ω = 1, which is impossible, since ωl = 1 and l > 2.

When (r1,r2,r3) = (0,2,2), with similar to the proof of Proposition 3.2, we can deduce

C(2,0,2) = C(0,2,2).

This completes the proof of Theorem 3.1 from Proposition 3.2 to Proposition 3.4, Remark

3.5 to Remark 3.6 and Lemma 2.5. Therefore, we find all MDS symbol-pair codes containing

these three factors (x− 1), (x+ 1) and (x−ω) with minimum symbol-pair distance 6. In fact,

Lemma 2.5 is a special form of Proposition 3.3 and Proposition 3.4 for dp = 6, where ω is a
p−1

2
-th primitive element in Fp.

Remark 3.5. When l even, factor (x+ 1) is a divisor of xl − 1; when l odd, factor (x+ 1) is a

divisor of x2l − 1.

Remark 3.6. If l ≡ 2(mod 4) and (r1,r1,r1) ∈ S for S = {(0,1,3),(0,2,2),(0,3,1)}, the mini-

mum Hamming distance of C(r1,r2,r3) is 2.

In what follows, we obtain more general generator polynomials for symbol-pair codes with

length n = l p and minimum symbol-pair distance 5 or 6.

If m1 and m2 are two positive integers, then lcm[m1,m2] is the lowest common multiple of

m1 and m2, as well as gcd(m1,m2) is the greatest common divisor of m1 and m2. Let Ca and Cb

be the repeated-root cyclic codes over Fp and the generator ploynomial of Ca and Cb are

ga (x) =
(
x−ω0

t1
)r1

(
x−ω0

t2
)r2

and

gb (x) = (x− 1)2
(
x−ω0

t1
)(

x−ω0
t2
)

respectively, where t1 ≥ t2, ord(ω0
t1) = m1, ord(ω0

t2) = m2, lcm[m1,m2] = l, gcd(t1 − t2, l) =
1, 3 ≤ r1 + r2 ≤ 4 and ω0 is the primitive element in Fp.

Corollary 3.7. Let Ca be an MDS symbol-pair code, if r1 6= 0 and r2 6= 0.

Proof. There are three cases that need to be discussed, (r1,r2) = (2,1), (1,3) and (2,2). When

(r1,r2) = (1,2) and (3,1) is satisfied, it is similar to (r1,r2) = (2,1) and (1,3).

Case I. For the case of (r1,r2) = (2,1), if there exsits a nonzero codeword with ωH = 2 in Ca,

without loss of generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1xt ,

where a1 6= 0 and t 6= 0. It follows from c(ω0
t1) = c(ω0

t2) = 0 that

{
1+ a1ω0

tt1 = 0,
1+ a1ω0

tt2 = 0.
7



By solving the system, we have ω0
t(t1−t2) = 1. Together with c(1)(ω0

t1) = 0 and gcd(t1 − t2, l) =
1, one can immediately get l p is a divisor of t, which contradicts with the code length l p.

Thus, combined with Lemma 2.6, the minimum Hamming distance of Ca is dH = 3. By

Lemma 2.3, we have Ca is an MDS (l p,5)p symbol-pair code.

Case II. For the case of (t1, t2) = (3,1), we have the generator polynomial

ga (x) =
(
x−ω0

t1
)3 (

x−ω0
t2
)
.

By the proof of Case I, since Case II is a subcode of Case I, we can draw the conclusion that

the minimum Hamming distance of Ca is 3 in Case II, when (t1, t2) = (3,1).
If there is a codeword with Hamming weight 3 and symbol-pair weight 5. Then its certain

cyclic shift must be the following form

(⋆, ⋆, 0s1
, ⋆, 0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively. Then we have a codeword polynomial

c(x) = 1+ a1x+ a2xt .

However, it follows from c(1) (ω0
t1) = c(2) (ω0

t1) = 0 that

{
a1 + ta2ω0

(t−1)t1 = 0,

t(t − 1)a2ω0
(t−2)t1 = 0.

By solving the system, we have p | t − 1 . Then c(1) (ω0
t1) = c(ω0

t1) = 0 indicates

{
1+ a1ω0

t1 + a2ω0
t1t = 0,

a1 + a2ω0
t1(t−1) = 0.

Then, we can derive a contradiction, since p is an odd prime.

Therefore, there does not exsit a nonzero codeword with Hamming weight 3 and symbol-pair

weight 5. Then, Ca is an MDS (l p,6)p symbol-pair code, when (r1,r2) = (3,1).

Case III. For the case of (t1, t2) = (2,2), similarly, we have the generator polynomial

ga (x) =
(
x−ω0

t1
)2 (

x−ω0
t2
)2
,

by the proof of Case I, we can draw the conclusion that the minimum Hamming distance of Ca

is dH = 3. Similar to Case II, there is no codeword with Hamming weight 4 and symbol-pair

weight 5.

If there exsits a codeword with Hamming weight 3 and symbol-pair weight 5, the codeword

certain cyclic shift must have a form

(⋆, ⋆, 0s1,⋆,0s2) ,

where each ⋆ denotes an element in F
*
p and 0s1, 0s2 are all-zero vectors with lengths s1 and s2

respectively. Without loss of generality, suppose that the constant term of c(x) is 1. We denote

that

c(x) = 1+ a1x+ a2xt .
8



However, c(1) (ω0
t1) = c(1) (ω0

t2) = 0 induces that

{
a1 + ta2ω0

(t−1)t1 = 0,

a1 + ta2ω0
(t−1)t2 = 0.

By solving the system, we have ω0
(t−1)(t1−t2) = 1, since t 6= kp, otherwise a1 = 0. Together with

gcd(t1 − t2, l) = 1, one can immediately get l | t − 1 and a1 + ta2 = 0. Combined with

c
(
ω0

t1
)
= c

(
ω0

t2
)
= 0,

we have {
1+ a1ω0

t1 + a2ω0
t1 = 0,

1+ a1ω0
t2 + a2ω0

t2 = 0,

which implies a1 + a2 = 0. Thus, we have p |t − 1, which contradicts the code length l p.

As a consequence, we prove that there no exsits a codeword with Hamming weight 3 and

symbol-pair weight 5. Then, Ca is an MDS (l p,6)p symbol-pair code, when (r1,r2) = (2,2) and

gcd(t1 − t2, l) = 1.

Corollary 3.8. Cb is an MDS (l p,6)6 symbol-pair code.

Proof. By Lemma 2.6 and Lemma 2.3 the minimum Hamming distance of Cb is 3 and the mini-

mum symbol-pair distance dp(Cb)≥ 5, for the generator ploynomial Cb is

gb (x) = (x− 1)2
(
x−ω0

t1
)(

x−ω0
t2
)
.

Using techniques similar to those used in the proof of Proposition 3.2, we see that there are no

codewords of Cb with Hamming weight 4 such that the 4 nonzero terms appear with consecutive

coordinates.

If there exsits a codeword with Hamming weight 3 and symbol-pair weight 5, the codeword

certain cyclic shift must have a form

(⋆, ⋆, 0s1,⋆,0s2) ,

where each ⋆ denotes an element in F
*
p and 0s1, 0s2 are all-zero vectors with lengths s1 and s2

respectively. Without loss of generality, suppose that the constant term of c(x) is 1. We denote

that

c(x) = 1+ a1x+ a2xt .

It follows from c(1) = c(1) (1) = 0 that

{
1+ a1+ a2 = 0,
a1 + ta2 = 0,

By solving the system, we have a1 =
−t

t−1
and a2 =

1
t−1

. Then combined with c(1) = c(ω0
t1) = 0,

we have

t = ω0
t1(t−1)+ω0

t1(t−2)+ · · ·+ω0
t1 + 1.

By a1 =
−t

t−1
, a2 =

1
t−1

and c(ω0
t1) = 0, one can obtain that

t − 1− tω0
t1 +ω0

t1t = 0.
9



This implies that

ω0
t1(t−1)+ω0

t1(t−2)+ · · ·+ω0
t1 +ω0

t1t +ω0
t1(t−1)+ω0

t1(t−2)+ · · ·+ω0
t1 +ω0

t1t

= 2ω0
t1(ω0

t1(t−1)+ω0
t1(t−2)+ · · ·+ω0

t1) = 2tω0
t1 = 0,

which is a contradiction for c(1) (1) = 0.

This completes the proof of the Corollary 3.8.

Remark 3.9. Let ω0 be the primitive l-th root of unity in Fp , we can deduce

• Ca =
〈
(x−ω0

t1)2 (x−ω0
t2)
〉
=
〈
(x− 1)2(x−ω)

〉
;

• Ca =
〈
(x−ω0

t1)2 (x−ω0
t2)2

〉
=
〈
(x− 1)2(x−ω)2

〉
;

• Ca =
〈
(x−ω0

t1)3 (x−ω0
t2)
〉
=
〈
(x− 1)3(x−ω)

〉
,

Repeated-root cyclic code C =
〈
(x− 1)2(x−ω)

〉
is proposed in Chen [9]. In this paper,

C =
〈
(x− 1)3(x−ω)

〉
and C =

〈
(x− 1)2(x−ω)2

〉
are are two cases in Theorem 3.1.

We use an example to illustrate that the repeated-root cyclic codes of the generator polyno-

mials with the same forms in the above Corollary 3.7 are not all MDS symbol-pair codes.

Example 3.10. Let C and be a repeated-root cyclic code over F5 and the generator ploynomial

of C is

g(x) = (x− 2)2 (x− 3) ,

where ω = 3 is a primitive element in F5 and 2 = 33. Then we have the minimum Hamming

distance dH = 2 by a magma progarm. Therefore, C is not an MDS symbol-pair code.

Similarly, when the generator ploynomial of C is one of

g(x) = (x− 2)3 (x− 3)

and

g(x) = (x− 2)2 (x− 3)2 ,

C is still not an MDS symbol-pair code, since minimum Hamming distance is dH = 2.

Now we present a new class of AMDS symbol-pair codes with the minimum symbol-pair

distance 7.

Let C1 be the cyclic codes over Fp. The generator ploynomial of C1 is

g1 (x) = (x− 1)4 (x−ω)
(
x−ω2

)
,

where ω is a primitive l-th root of unity in Fp.

Theorem 3.11. C1 is an AMDS (l p, 7)p symbol-pair code, if l odd and l > 3.

Proof. C1 is the cyclic code over Fp generated by

g1 (x) = (x− 1)4 (x−ω)
(
x−ω2

)
.

10



By Lemma 2.6, one can derive that C1 is an [l p, l p− 6, 4] repeated-root cyclic codes code over

Fp. Lemma 2.3 yields that dp > 6, since C1 is not an MDS cyclic code. To prove that C1 is an

AMDS symbol-pair code with the minimum symbol-pair distance 7, it is sufficient to verify that

there is no a codeword in C1 with the symbol-pair weight 6.

If there are codewords in C1 with Hamming weight 5 and symbol-pair weight 6, then its

certain cyclic shift must have the form

(⋆, ⋆, ⋆, ⋆, ⋆,0s) ,

where each ⋆ denotes an element in F
*
p and 0s is all-zero vector of length s. Without loss of

generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2x2 + a3x3 + a4x4,

This leads to deg(c(x)) = 4 < 6 = deg(g(x)).
If c ∈ C has the symbol-pair weight 6 with the Hamming weight 4, then its certain cyclic

shift must have the forms

(⋆,⋆,⋆,0s1
,⋆,0s2

)

or

(⋆,⋆,0s1
,⋆,⋆,0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively.

Case I. For the case of

(⋆,⋆,⋆,0s1
,⋆,0s2

) ,

without loss of generality, we denote a codeword polynomial

c(x) = 1+ a1x+ a2x2 + a3xt .

It follows from c(1) (1) = c(2) (1) = 0 that

{
a1 + 2a2+ ta3 = 0,
2a2 + t(t − 1)a3 = 0.

By solving the system, we have t(t − 2)a3 = a1. By c(2) (1) = 0, we can conclude that





t − 2 6= kp,k < l,
t − 1 6= kp,k < l,
t 6= kp,k < l.

This is a contradiction for c(3) (1) = 0 and a3 ∈ F
*
p.

Case II. For the case of

(⋆,⋆,0s1
,⋆,⋆,0s2

) ,

without loss of generality, we denote

c(x) = 1+ a1x+ a2x2 + a3xt + a4xt+1.

11



It follows from c(1) = c(1) (1) = 0 that

{
1+ a1+ a2 + a3 = 0,
a1 + ta2 +(t + 1)a3 = 0,

one can derive that

(t − 1)a2 + ta3 − 1 = 0.

By c(2) (1) = 0, we have

t(t − 1)a2 + t(t + 1)a3 = 0.

This leads to t(a3 + 1) = 0. Therefore, we have t = kp,0 < k < l or a3 =−1.

If t = kp,0 < k < l, then {
1+ a1+ a2 + a3 = 0,
a1 + a3 = 0.

This indicates a1 =−a3 and a2 =−1. Combined with c(ω) = c
(
ω2

)
= 0, we have

{
a1ω(ωt − 1) = 1−ωt ,
a1ω2

(
ω2t − 1

)
= 1−ω2t .

By solving the system,we have ω2t = 1, which contradicts l odd.

If a3 = −1, by c(1) = 0, we can obtain that a1 = −a2. Combined with c(ω) = c
(
ω2

)
= 0,

we have {
a1ω

(
ωt−1 − 1

)
= 1−ωt+1,

a1ω2
(
ω2t−2 − 1

)
= 1−ω2t+2.

Since ω is a primitive l-th root of unity, then

ω
(
ωt−1 + 1

)(
1−ωt+1

)
= 1−ω2t+2.

This implies that ωt = 1. Thus, a1 =−1,a2 = 1. By

t(t − 1)a2 + t(t + 1)a3 = 0,

we have 2t = kp, which contradicts ωt = 1.

In order to prove that C1 is an AMDS symbol-pair code, we need to find a codeword with the

symbol-pair weight 7. Since

c(x) = (xp − 1)(xp−1− 1) = x2p−1 − xp − xp−1+ 1

is a codeword of C1 and ωp (c(x)) = 7, C1 is an AMDS (l p, 7)p symbol-pair code.

3.2. MDS and AMDS Symbol-Pair Codes with length 3p

In this subsection, we obtain all MDS symbol-pair codes of dp ≤ 12 and all AMDS symbol-

pair codes of dp < 12 from repeated-root cyclic codes with length 3p. Furthermore, we discuss

all minimum symbol-pair distance of the repeated-root cyclic codes with code length of 3p, when

the degree of generator ploynomials deg(g(r1,r2,r3)(x))≤ 10.

Let C(r1,r2,r3) be the repeated-root cyclic code over Fp and the generator ploynomial of

C(r1,r2,r3) is

g(r1,r2,r3) (x) = (x− 1)r1(x−ω)r2(x−ω2)r3 .

where ω is a primitive 3-th root of unity in Fp and ri ≤ p− 1, i = 1,2,3.

12



Remark 3.12. Let C(r1,r2,r3) =
〈
(x− 1)r1(x−ω)r2(x−ω2)

r3
〉

have the same minimum symbol-

pair distance, if the exponents of the three factors of the generator polynomial can be swapped.

Proof. We first prove that such repeated-root cyclic codes

C̃ =
〈
(x−ωi)

r1(x−ωi+1)
r2(x−ωi+2)

r3
〉

are the same codes for i = 0,1,2.

Without loss of generality, suppose that

g̃1 (x) = (x− 1)r1(x−ω)r2(x−ω2)r3 ,

g̃2 (x) = (x− 1)r3(x−ω)r1(x−ω2)r2

and

g̃3 (x) = (x− 1)r2(x−ω)r3(x−ω2)r1 .

We denote that g̃1 (x), g̃2 (x) and g̃3 (x) represent the generator polynomials of C̃1, C̃2 and C̃3,

respectively.

Let y = x
ω2 ,z =

x
ω

, for the generator polynomial g̃1 (x) of C̃1, we can deduce the following

results by deforming it.

g̃1(x) = (x− 1)r1(x−ω)r2(x−ω2)r3

= ω2(r1+r2+r3)(
x

ω2
−

1

ω2
)r1(

x

ω2
−

ω

ω2
)r2(

x

ω2
−

ω2

ω2
)r3

= ω2(r1+r2+r3)(y−ω)r1(y−ω2)r2(y− 1)r3

= ω2(r1+r2+r3)g̃2(y)

= ωr1+r2+r3(
x

ω
−

1

ω
)r1(

x

ω2
−

ω

ω
)r2(

x

ω
−

ω2

ω
)r3

= ωr1+r2+r3(z−ω2)r1(z− 1)r2(z−ω)r3

= ωr1+r2+r3 g̃3(z).

Thus, repeated-root cyclic codes C̃ are the same codes for i = 0,1,2.

Next, since ω and ω2 are primitive 3-th root of unity in Fp, we have C̃1 and C̃4 have the same

minimum symbol-pair distance, where the generator polynomial of C̃4 is

g̃4(x) = (x− 1)r1(x−ω)r3(x−ω2)r2 .

Therefore, all C̃ have the same minimum symbol-pair distance, when the exponents of the three

factors exchanged with each other.

The above Remark 3.12 shows that the exponential positions of the three factors x− 1, x−
ω and x −ω2 of the generator polynomial of C(r1,r2,r3) have the same minimum symbol-pair

distance. Without loss of generality, suppose that

p− 1 ≥ r1 ≥ r2 ≥ r3 ≥ 0

in the next part of this subsection. Then we have the following theorem.
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Theorem 3.13. C(r1,r2,r3) is an MDS symbol-pair codes over Fp, if one of the following two

conditions is true

1. r1 ≤ 5, 0 ≤ r2 − r3 ≤ 1 and r1 = r2 + r3,

2. r1 < 5, 0 ≤ r2 − r3 ≤ 1 and r1 = r2 + r3 + 1.

Researchers in [9] and [14] given some proofs of Theorem 3.13, and the Theorem 3.1 in the

previous paper also includes some proofs. Here we only need to prove that C(4,2,1) is an MDS

symbol-pair code.

Proposition 3.14. C(4,2,1) is an MDS (3p, 9)p symbol-pair code.

Proof. Since C(4,2,1) =
〈
(x− 1)4(x−ω)2(x−ω2)

〉
, for any codeword c ∈ C(4,2,1), we have

c(1) = c(ω) = c
(
ω2

)
= c(1) (1) = c(1) (ω) = c(2) (1) = c(3) (1) = 0.

By Lemma 2.6, C(4,2,1) is a [3p, 3p− 7, 5] cyclic code over Fp. Since C(4,2,1) is a subcode of

Lemma 2.4, we have dp > 8.

To prove that C(4,2,1) is an MDS (3p, 9)p symbol-pair code, it suffices to verify that there

does not exist codeword in C(4,2,1) with symbol-pair weight 8. Then we have three cases to

discuss.

Case I. If there are codewords with Hamming weight 5 and symbol-pair weight 8, then its certain

cyclic shift must be one of the following forms

(⋆,⋆,0s1
,⋆,⋆,0s2

,⋆,0s3
)

or

(⋆,⋆,⋆,0s1
,⋆,0s2

,⋆,0s3
) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
,0s3

are all-zero vectors with lengths s1, s2

and s3 respectively.

Subcase 1.1. For the case of

(⋆,⋆,0s1
,⋆,⋆,0s2

,⋆,0s3
) ,

without loss of generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2xl + a3xl+1 + a4xt .

When t ≡ 0(mod 3) and l ≡ 0(mod 3), it follows from c(1) = c(ω) = c
(
ω2

)
= 0 that





1+ a1+ a2 + a3 + a4 = 0,
1+ a1ω+ a2+ a3ω+ a4 = 0,
1+ a1ω2 + a2 + a3ω2 + a4 = 0.

By solving the system, we have a1 =−a3. However, c(1) (1) = c(1) (ω) = 0 induces that
{

a1 + ta2 +(t + 1)a3 + la4 = 0,
a1 + ta2ω2 +(t + 1)a3 + la4ω2 = 0.

Together with a1 =−a3, one can immediately get can get t(1−ω2)a3 = 0, which is impossible,

since t ≡ 0(mod 3) and the code length is 3p.

When l ≡ i(mod 3) and t ≡ j(mod 3), i, j = 0,1,2, values in all i and j of Subcase 1.1 are

shown in the following Table 2.
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Table 2: Summary of Subcase 1.1

i j Conditions Results Contradictory

0 0 [[1]] , [[2]] t(1−ω2)a3 = 0 t ≤ 3p− 2

0 1 [[1]] , [[2]] , [[3]] ω2 − 1 = 0 ω3 = 1

0 2 [[1]] , [[3]]
a1 + a3 + a4 = 0,
a1 + a3− a4 = 0

a4 ∈ F
*
p

1 0 [[1]] , [[3]]
a1 + a2 + a3 = 0,
a1 + a2− a3 = 0

a3 ∈ F
*
p

1 1 [[1]] , [[3]] 3 = 0 p 6= 3

1 2 [[1]] , [[3]] 3 = 0 p 6= 3

2 0 [[1]] , [[3]]
a1 − a2 = 0,

a1 + a2 = 0
a1,a2 ∈ F

*
p.

2 1 [[1]] , [[3]]
a1 + a2 + a4 = 0,
a1 − a2+ a4 = 0

a2 ∈ F
*
p

2 2 [[1]] , [[3]]
a1 + a2 + a4 = 0,
a1 − a2− a4 = 0

a1 ∈ F
*
p

* Conditions [[1]], [[2]] and [[3]] represent c(1) = c(ω) = c
(
ω2

)
= 0,

c(1) (1) = c(1) (ω) = 0 and c(1)+ c(ω)+ c
(
ω2

)
= 0, respectively.

Subcase 1.2. For the subcase of

(⋆,⋆,⋆,0s1
,⋆,0s2

,⋆,0s3
) ,

without loss of generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2x2 + a3xl + a4xt .

Suppose that l ≡ i(mod 3) and t ≡ j(mod 3), i, j = 0,1,2, similar to Subcase 1.1, we sum-

marize all i and j of Subcase 1.2 in the following Table 3.

Case II. If there are codewords with Hamming weight 6 and symbol-pair weight 8, then its certain

cyclic shift must be one of the following forms

(⋆,⋆,⋆,⋆,⋆,0s1
,⋆,0s2

) ,

(⋆,⋆,⋆,⋆,0s1
,⋆,⋆,0s2

)

or

(⋆,⋆,⋆,0s1
,⋆,⋆,⋆,0s2

) ,

where each ⋆ denotes an element in F
*
p and 0s1

, 0s2
are all-zero vectors with lengths s1 and s2

respectively.
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Table 3: Summary of Subcase 1.2

i j Conditions Results Contradictory

0 0 [[1]] , [[2]]
a1 − a2 = 0,

a1 + a2 = 0
a1,a2 ∈ F

*
p

0 1 [[1]] , [[2]]
a1 − a2 + a4 = 0,

a1 + a2 + a4 = 0
a2 ∈ F

*
p

0 2 [[1]] , [[2]]
a1 + a2 + a4 = 0,

a1 − a2 − a4 = 0
a1 ∈ F

*
p

1 1 [[1]] , [[2]] 3 = 0 p 6= 3

1 2 [[1]] , [[2]] 3 = 0 p 6= 3

2 2 [[1]] , [[2]] 3 = 0 p 6= 3

* Conditions [[1]] and [[2]] represent c(1) = c(ω) = c
(
ω2

)
= 0 and

c(1)+ c(ω)+ c
(
ω2

)
= 0, respectively.

Subcase 2.1. For the subcase of

(⋆,⋆,⋆,⋆,⋆,0s1
,⋆,0s2

) ,

without loss of generality, suppose that the constant term of c(x) is 1. We denote

c(x) = 1+ a1x+ a2x2 + a3x3 + a4x4 + a5xt .

When t ≡ 0(mod 3), it can be derived from

{
c(1) = c(ω) = c

(
ω2

)
= 0,

c(1)+ c(ω)+ c
(
ω2

)
= 0,

that {
a1 + a2 + a4 = 0,
a1 − a2 + a4 = 0,

which is impossible, since a2 ∈ F
*
p and p is an odd prime.

When t ≡ 1(mod 3), with arguments similar to t ≡ 0(mod 3), a contradiction can be ob-

tained from {
c(1) = c(ω) = c

(
ω2

)
= 0,

c(1)+ c(ω)+ c
(
ω2

)
= 0.

When t ≡ 2(mod 3), it follows from c(1) = c(ω) = c
(
ω2

)
= 0 that





1+ a1+ a2 + a3 + a4 + a5 = 0,
1+ a1ω+ a2ω2 + a3 + a4ω+ a5ω2 = 0,
1+ a1ω2 + a2ω+ a3+ a4ω2 + a5ω = 0.

By solving the system, we have 1+a3 = 0,a1+a4 = 0,a2+a5 = 0. Then c(1) (1) = c(1) (ω) = 0

indicates {
a1 + 2a2+ 3a3 + 4a4+ ta5 = 0,
a1 + 2a2ω+ 3a3ω2 + 4a4+ ta5ω2 = 0,
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which means that a5 = 3a3ω2

t−2
= 3a4ω

t−2
(since t ≡ 2(mod 3), then p is not a divisor of t − 2,

otherwise t − 2 ≥ 3p).

By c(2) (1) = 0, we have t = 3+ 2ω. Together with a5 =
3a3ω2

t−2
= 3a4ω

t−2
and c(3) (1) = 0, one can

derive that

6+ 24ω+ 3t(t− 1)ω2 = 0.

Then we have

2+ 8ω+(3+ 2ω)(2+2ω)ω2 = 0.

Combining with ω2 =−1−ω, we can obtain 3ω2 = 0. This is impossible.

Subcase 2.2. For the subcase of

(⋆,⋆,⋆,⋆,0s1
,⋆,⋆,0s2

) ,

without loss of generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2x2 + a3x3 + a4xt + a5xt+1.

When t ≡ 0(mod 3) and t ≡ 2(mod 3), with arguments similar to the previous t ≡ 0(mod 3)
of Subcase 2.1, a contradiction can be derived from c(1) = c(ω) = c

(
ω2

)
= 0 again.

When t ≡ 1(mod 3), with arguments similar to t ≡ 2(mod 3) of Subcase 2.1, 1+ a3 =
0,a1 + a4 = 0, and a2 + a5 = 0 can be obtained from c(1) = c(ω) = c

(
ω2

)
= 0.

Then a5 = a4ω = 3a3ω2

t−1
can be derived from c(1) (1) = c(1) (ω) = 0. c(2) (1) = 0 means t = −ω.

Finally, combined with c(3) (1) = 0, we have ω2 −ω = 0, a contradiction again.

Subcase 2.3. For the subcase of

(⋆,⋆,⋆,0s1
,⋆,⋆,⋆,0s2

) ,

without loss of generality, suppose that the constant term of c(x) is 1. We denote that

c(x) = 1+ a1x+ a2x2 + a3xt + a4xt+1 + a5xt+2.

When t ≡ 0(mod 3), it follows from c(1) = c(ω) = c
(
ω2

)
= 0 that





1+ a1+ a2 + a3 + a4 + a5 = 0,
1+ a1ω+ a2ω2 + a3 + a4ω+ a5ω2 = 0,
1+ a1ω2 + a2ω+ a3+ a4ω2 + a5ω = 0.

By solving the system, we have 1+a3 = 0,a1+a4 = 0,a2+a5 = 0. Then c(1) (1) = c(1) (ω) = 0

indicates {
a1 + 2a2+ ta3 +(t + 1)a4 +(t + 2)a5 = 0,
a1 + 2a2ω+ ta3ω2 +(t + 1)a4 +(t + 2)a5ω = 0,

which means that a5 = a4ω = a3ω2. Then c(2) (1) = 0 implies that

2a2 + t (t − 1)a3 + t (t + 1)a4 +(t + 1)(t + 2)a5 = 0,

which implies t(3ω2 +ω− 1 = 0). Since t ≡ 0(mod 3) ,ω = −ω2 − 1 and the code length 3p,

we have 2(ω2 − 1) = 0, a contradiction.
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When t ≡ 1(mod 3), with arguments similar to the t ≡ 0(mod 3) of Subcase 2.3, by

{
c(1) = c(ω) = c

(
ω2

)
= 0,

c(1) (1) = c(1) (ω) = 0,

we have a4 = a3ω = a5ω2(t+2)
t−1

. Together with c(2) (1) = 0, ω2 −ω = 0 can be derived, which is

impossible.

When t ≡ 2(mod 3), similarly, we can derive a5 = a4ω = a3ω2(t−2)
t+1

from

{
c(1) = c(ω) = c

(
ω2

)
= 0,

c(1) (1) = c(1) (ω) = 0.

Then, together with c(2) (1) = 0, we have t = p+ 1. It follows from c(1) (1) = c(1) (ω) = 0 that

{
(t − 1)a3 +(t + 1)a4 +(t + 1)a5 = 0,
(t − 1)a3ω+(t + 1)a4ω2 +(t + 1)a5 = 0.

Combined with t = p+ 1, we have ω2 = 1, which contradicts that ω is primitive 3-th root of

unity in Fp.

Case III. If there are codewords in C with Hamming weight 7 and symbol-pair weight 8, then its

certain cyclic shift must have the form

(⋆,⋆,⋆,⋆,⋆,⋆,⋆,0s) ,

where each ⋆ denotes an element in F
*
p and 0s is all-zero vector of length s. Without loss of

generality, suppose that the constant term of c(x) is 1. We denote

c(x) = 1+ a1x+ a2x2 + a3x3 + a4x4 + a5x5 + a6x6.

This leads to deg(c(x)) = 6 < 7 = deg(g(x)).
As a result, C(4,2,1) is an MDS (3p, 9)p symbol-pair code.

Based on Reference [9], [12], [14] , Remark 3.12, Proposition 3.14 to Proposition 3.16 and

Corollary 3.17 in this paper, all known MDS symbol-pair codes with n− k ≤ 10 from repeated-

root cyclic codes C(r1,r2,r3), which are listed in the following Table 4.

Next, we will explain that there is no MDS symbol pair code except in Table 4, when the

degree of generator polynomials g(r1,r2,r3)(x) does not exceed 10.

Similarly, all AMDS symbol-pair codes with dp < 12 can be deduced from the following

propositions. We list all AMDS symbol-pair codes in the following Table 5.

In what follows, let’s determine the minimum symbol-pair distance for C(r1,r2,r3) in the pre-

vious paper by using the following propositions.

Proposition 3.15.

1. The minimum distance of C(0,r2,0) is 4, when 2 ≤ r2 ≤ p− 1.

2. The minimum distance of C(2,1,0) is 5.

3. The minimum distance of C(r1,r2,0) is 6, when r1 + r2 ≥ 4,r2 ≥ 1.

4. The minimum distance of C(2,r2,r3) is 6, when 2 ≤ r2 + r3 ≤ 4.
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Table 4: All MDS symbol-pair codes with length 3p for dp ≤ 12

r1 r2 r3 (n− k,dp)p Reference or Proposition

0 2 0 (2,4)p Trivially(r1 = 0)

2 1 0 (3,5)p Reference [9]

2 1 1 (4,6)p Reference [9]

3 1 0 (4,6)p Reference [12]

3 1 1 (5,7)p Reference [9]

3 2 1 (6,8)p Reference [9]

4 2 2 (8,10)p Reference [14]

5 3 2 (10,12)p Reference [14]

2 2 0 (4,6)p Proposition 3.4

4 2 1 (7,9)p Proposition 3.14

* These MDS symbol-pair codes are constructed by repeated-

root cyclic codes.

Proof. For C(0,r2,0) = 〈(x−ω)r2〉, Lemma 2.6 shows dH(C(0,r2,0)) = 2, then one can obtain

dp(C(0,r2,0)) = 4 by Lemma 2.3.

Corollary 3.7 proves the minimum distance of C(2,1,0) is dp = 5.

Since C(r1,r2,0) is a subcode of Theorem 3.7 and Lemma 2.6 means dH(C(r1,r2,0)) = 3. Then

we have dp(C(r1,r2,0)) = 6.

Since C(2,r2,r3) is a subcode of C(2,1,1) and C(2,1,1) is an MDS symbol-pair code with the

mimnmum symbol-pair distance 6, when 2 ≤ r1 + r2 ≤ 4 and r1,r2 ∈ F
*
p. Then we can deduce

dp(C(2,r2,r3)) = 6.

We can obtain all MDS and AMDS symbol-pair codes with length 3p with a minimum

symbol-pair distance of 4 to 6 using Proposition 3.15. Then, we check for MDS and AMDS

symbol-pair codes with a symbol pair distance of 7 to 12.

Proposition 3.16.

1. The minimum distance of C(r1,1,1) is 7, when 3 ≤ r1 ≤ p− 1.

2. The minimum distance of C(3,r2,r3) is 8, when 3 ≤ r2 + r3 ≤ 6,r3 ≥ 1.

3. The minimum distance of C(r1,r2,1) is 9, when 2 ≤ r2 ≤ r1 ≤ p− 1,r1 ≥ 4.

4. The minimum distance of C(r1,r2,r3) is 10, when r1, r2 and r3 meet any of the following two

conditions

• 4 ≤ r1 ≤ p− 1 and r2 = r3 = 2,

• r1 = 4 and 4 ≤ r2 + r3 ≤ 8,r3 ≥ 1.

Proof. In reference [9], C(2,1,1), C(3,1,1) and C(3,2,1) are MDS symbol-pair codes with symbol-

pair distances of 6, 7 and 8, respectively. Reference [14] proved C(4,2,2) and C(5,3,2) are MDS

symbol-pair codes with symbol-pair distances of 10 and 12, respectively.
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Table 5: All AMDS symbol-pair codes with length 3p for dp < 12

r1 r2 r3 (n− k,dp)p Reference or Proposition

4 3 2 (9,10)p Reference [14]

0 3 0 (3,4)p Proposition 3.15

2 2 1 (5,6)p Proposition 3.15

3 2 0 (5,6)p Proposition 3.15

3 2 2 (7,8)p Proposition 3.16

3 3 1 (7,8)p Proposition 3.16

4 1 0 (5,6)p Proposition 3.15

4 1 1 (6,7)p Proposition 3.16

4 3 1 (8,9)p Proposition 3.16

5 2 1 (8,9)p Proposition 3.16

5 2 2 (9,10)p Proposition 3.16

* These AMDS symbol-pair codes are constructed by repeated-root

cyclic codes.

1. Since C(r1,1,1) is a subcode of C(3,1,1), we have dp(C(r1,1,1)) ≥ 7. Then the minimum

symbol-pair distance dp(C(r1,1,1)) = 7 can be obtained by ωp(c(x)) = 7, where

c(x) = 1− x− xp+ x2p+1

is a codeword of C(r1,1,1).

2. Reference [9] proved that C(3,2,1) is an MDS (3p,8)p symbol-pair code. Since 3≤ r2+r3 ≤
6, we have C(3,r2,r3) is subcode of C(3,2,1) and dp(C(3,r2,r3))≥ 8.

By Lemma 2.6, we can deduce that the minimum Hamming distance of C(3,r2,r3) is 4,

which implies dp(C(3,r2,r3))≤ 8.

Therefore, the minimum distance of C(3,r2,r3) is dp = 8, when 3 ≤ r2 + r3 ≤ 6,r3 ≥ 1.

3. With arguments similar as the proof of case, since C(4,2,1) is an MDS symbol-pair code

with the minimum symbol-pair distance 9, we can deduce that the minimum symbol-pair

distance of C(r1,r2,1) is dp(C(r1,r2,1)) ≥ 9. Next, we prove that there are symbol-pair code-

words with symbol-pair weight dp = 9 in C(r1,r2,1).

For the codeword

c(x) = (x− 1)p(x−ω)p(x−ω2) = x2p+1 −ω2x2p +ω2xp+1 −ωxp +ωx− 1,

it is easy to verify that c(x) is a codeword polynomial of C(r1,r2,1) with the symbol-pair

weight 9. Thus, we have dp(C(r1,r2,1)) = 9.

4. For 4 ≤ r1 ≤ p− 1 and r2 = r3 = 2, with arguments similar as the proof of case, since

C(4,2,2) is an MDS symbol-pair code with dp = 10 and C(r1,2,2) is a subcode of C(4,2,2), we

have dp(C(r1,2,2))≥ 10. Note that the codeword polynomial

c(x) = 1− x2 + 2xp+1+ xp+2 − x2p− 2x2p+1
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is a codeword of C(r1,2,2) and ωp(c(x)) = 10. Therefore, we derive the minimum symbol-

pair distance of C(r1,2,2) is 10.

For r1 = 4 and 4≤ r2+r3 ≤ 8, since C(4,r2,r3) is a subcode of C(4,2,2), we have dp(C(4,r2,r3))≥
10. However, Lemma 2.6 shows that dH(C(4,r2,r3)) = 5, which implies that dp(C(4,r2,r3))≤
10. Thus, we can deduce dp(C(4,r2,r3)) = 10.

According to Proposition 3.16, we can obtain all MDS and AMDS symbol-pair codes with

length 3p with a minimum symbol-pair distance of 7 to 10. We can also deduce that C(r1,r2,r3) is

an MDS symbol-pair code with dp = 12, iff (r1,r2,r3) = (5,3,2). Furthermore, there dose not

exist codeword with a minimum symbol pair distance of 11, when the degree of the generator

polynomials deg(g(r1,r2,r3)(x)) are 9 and 10. The following corollary can be drawn.

Corollary 3.17. The repeated-root cyclic code C(r1,r2,r3) must not be the MDS and the AMDS

symbol-pair code with a minimum symbol-pair distance 11.

Based on the above Proposition 3.14 to Proposition 3.16, Corollary 3.17 and Remark 3.12,

we complete the proof of Theorem 3.13. In addition, we also explain that the MDS symbol-

pair codes in Table 4 and the AMDS symbol-pair codes in Table 5 are all cases that meet the

requirements.

Proposion 3.16 shows that the condition does not satisfy Theorem 3.13, when r ≥ 5 and

r1 = r2 + r3 + 1. Next, we use an example to illustrate that the conditions of Theorem 3.13 are

also no longer applicable, when r > 5 and r1 = r2 + r3.

Example 3.18. Let C and be a repeated-root cyclic code over F7 and the generator ploynomial

of C is

g(x) = (x− 1)6(x− 2)3(x− 4)3,

where ω = 2 is a 3-th primitive element in F7 and 22 = 4.

Then we have the minimum Hamming distance dH = 7 by a magma progarm. Reference [14]

shows the symbol-pair distance dp ≥ 12. The magma program also shows that both vectors

a = [0 0 1 0 0 0 0 0 0 6 6 3 3 3 4 4 4 5 1 1 1]

and

b = [0 0 0 0 0 0 1 0 0 1 1 1 5 4 4 4 3 3 3 6 6]

are in C . Let c = a+b, we have

c = [0 0 1 0 0 0 1 0 0 0 0 4 1 0 1 1 0 1 4 0 0],

which is also in C . We can easily deduce ωp(c) = 13. Therefore, C is not an MDS symbol-pair

code.

4. Conclusion

In this paper, employing repeated-root cyclic codes, some new classes of MDS and AMDS

symbol-pair codes over Fp with lengths l p and 3p are provided. We give some more general

generator polynomials about MDS (l p,5)p and (l p,6)p symbol-pair codes. We also present a

class of AMDS (l p,7)p symbol-pair codes. For length 3p, we provide all MDS symbol-pair

codes with dp ≤ 12 and also provide all AMDS symbol-pair codes with dp < 12.
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