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Abstract

We study the symmetric monoidal 2-category of finite semisimple module categories
over a symmetric fusion category. In particular, we study E,-algebras in this 2-category
and compute their E,-centers for n = 0,1,2. We also compute the factorization homology
of stratified surfaces with coefficients given by E,-algebras in this 2-category for n = 0,1,2
satisfying certain anomaly-free conditions.
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1 Introduction

The mathematical theory of factorization homology is a powerful tool in the study of topo-
logical quantum field theories (TQFT). It was first developed by Lurie [L] under the name of
‘topological chiral homology’, which records its origin from Beilinson and Drinfeld’s theory
of chiral homology [BD) [FG]. It was further developed by many people (see for example
[CG|[AF1) [AFT1, IAFT2, [AFR| [BBJ1} BBJ2|]) and gained its current name from Francis [F].

Although the general theory of factorization homology has been well established, explicitly
computing the factorization homology in any concrete examples turns out to be a non-trivial
challenge. On a connected compact 1-dimensional manifold (or a 1-manifold), i.e. St the
factorization homology is just the usual Hochschild homology. On a compact 2-manifold,
the computation is already highly nontrivial (see for example [BBJ1} BBJ2, [AF2]). Motivated
by the study of topological orders in condensed matter physics, Ai, Kong and Zheng carried
out in [AKZ] the computation of perhaps the simplest (yet non-trivial) kind of factorization
homology, i.e. integrating a unitary modular tensor category (UMTC) A (viewed as an E,-
algebra) over a compact 2-manifold X, denoted by sz‘ In physics, the category A is the
category of anyons (or particle-like topological defects) in a 2d (spatial dimension) anomaly-
free topological order (see [W] for a review). The result of this integration is a global observable
defined on X. It turns out that this global observable is precisely the ground state degeneracy
(GSD) of the 2d topological order on X. This fact remains to be true even if we introduce
defects of codimension 1 and 2 as long as these defects are also anomaly-free. Mathematically,
this amounts to computing the factorization homology on a disk-stratified 2-manifold with
coefficient defined by assigning to each 2-cell a unitary modular tensor category, to each 1-cell
a unitary fusion category (an Ej-algebra) and to each O-cell an Ey-algebra, satisfying certain
anomaly-free conditions (see [AKZ), Sec. 4]).

If the category A is not modular, i.e. the associated topological order is anomalous,
the integral fz A gives a global observable beyond GSD. Mathematically, it is interesting to

compute sz for any braided monoidal category A. In this work, we focus on a special
situation that also has a clear physical meaning. It was shown in [LKW], a finite onsite
symmetry of a 2d symmetry enriched topological (SET) order can be mathematically described
by a symmetric fusion category &, and the category of anyons in this SET order can be
described by a UMTC over &, which is roughly a unitary braided fusion category with Mtiger
center given by & (see Def.5.6] for a precise definition). This motivates us to compute the
factorization homology on 2-manifolds but valued in the symmetric monoidal 2-category of
finite semisimple module categories over &, denoted by Cat’. The symmetric tensor product
in Cat® is defined by the relative tensor product ®e. We first study E;-algebras in Cats and
their E;-centers for i = 0,1,2. Then we derive the anomaly-free conditions for E;-algebras
in Cat® for i = 0,1,2. In the end, we compute the factorization homology on disk-stratified
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2-manifolds with coefficients defined by assigning anomaly-free E;-algebras in Cat® to each
i-cells for i = 0,1, 2. The main results of this work are Thm.[5.29] Thm.[5.30land Thm.[5.321

The layout of this paper is as follows. In Sec.2, we introduce the tensor product ®¢
and the symmetric monoidal 2-category Cat. In Sec.3, we study E;-algebras in Cat’ and
compute their E;-centers for i = 0,1,2. In Sec.4, we study the modules over a multifusion
category over & and modules over a braided fusion category over £. And we prove that
two fusion categories over & are Morita equivalent in Cat’s if and only if their E;-centers
are equivalent. In Sec.5, we recall the theory of factorization homology and compute the
factorization homology of stratified surfaces with coefficients given by E;-algebras in Cat’s for
i =0, 1,2 satisfying certain anomaly-free conditions.

Acknowledgement I thank Liang Kong for introducing me to this interesting subject. I also
thank Zhi-Hao Zhang for helpful discussion. I am supported by NSFC under Grant No.
11971219 and Guangdong Provincial Key Laboratory (Grant No.2019B121203002).

2 The symmetric monoidal 2-category Ca’cfgS

Notation 2.1. All categories considered in this paper are small categories. Let k be an alge-
braically closed field of characteristic zero. Let € be a symmetric fusion category over k with
a braiding r. The category Vec denotes the category of finite dimensional vector spaces over
k and k-linear maps.

Let A be a monoidal category. We denote A°P the monoidal category which has the same
tensor product of A, but the morphism space is given by Hom 4o (2, b) := Hom 4 (b, a) for any
objects a,b € A, and A™" the monoidal category which has the same underlying category
A but equipped with the reversed tensor product a ®<V b .= b®a for a,b € A. A monoidal
category A is rigid if every object a € A has a left dual a" and a right dual a®. The duality
functors 6 : a > al and 68 : a > a® induce monoidal equivalences A% ~ AV,

A braided monoidal category A is a monoidal category A equipped with a braiding
Cop:a®b — b®a for any a,b € A. We denote A the braided monoidal category which has the
same monoidal category of A but equipped with the anti-braiding ¢, , = cb‘;

A fusion subcategory of a fusion category we always mean a full tensor subcategory closed
under taking of direct summands. Any fusion category A contains a trivial fusion subcategory
Vec.

2.1 Module categories

Let Cat™ be the 2-category of finite semisimple k-linear abelian categories, k-linear functors,
and natural transformations. The 2-category Cat™ equipped with Deligne’s tensor product ®,
the unit Vec is a symmetric monoidal 2-category.

Let €, D be multifusion categories. We define the 2-category LMode(Cat®) as follows.

e Its objects are left C-modules in Cat®. A left -module M in Cat® is an object M
in Cat® equipped with a k-bilinear functor ® : € X M — M, a natural isomorphism
Acom 1 (c®Cc)Om = cO (¢’ ©m), and a unit isomorphism I, : 1¢ ©m =~ m for all
¢, ¢’ € C,m e M and the tensor unit 1¢ € € satisfying some natural conditions.

e Its 1I-morphisms are left C-module functors. For left C-modules M, N in Cat®, a left
C-module functor from M to N is a pair (F,sf), where F : M — N is a k-linear functor
and sff n FlcOm) =~ cOF(m), c € C, m € M, is a natural isomorphism, satisfying some
natural conditions.
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e Its 2-morphisms are left C-module natural transformations. A left C-module natural
transformation between two left G-module functors (F,sf), (G,s%) : M =3 N is a natural
transformation « : F = G such that the following diagram commutes for c € C,m € M:

F(c© m) —> ¢ ® F(m)
l lmn, 2.1)

Glcom) —= coG(m)

Similarly, one can define the 2-category RModn(Cat®) of right D-modules in Cat® and the
2-category BMode‘@(Catfs) of C-D bimodules in Cat®. We use Fun(M,N) to denote the
category of k-linear functors from M to N and natural transformations. We use Fune(M, N)
(or Funje(M, N)) to denote the category of left (or right) C-module functors from M to N and
left (or right) ¢-module natural transformations.

Remark 2.2. There is a bijective correspondence between k-linear categories (or k-linear
functors) and Vec-modules (or Vec-module functors). For objects €, M in Cat®, ifo: €xM —
M is a k-bilinear functor, it is a balanced Vec-module functor. And a k-bilinear functor

©: XM — M is equivalent to a k-linear functor € ® M — M by the universal functor
M:CxXM—-CrM.

2.2 Tensor product
The following definitions are standard (see for example [ENO, Def. 3.1], [KZ, Def.2.2.1]).

Definition 2.3. Let M € RMod¢ (Cat®), N € LMode(Cat®) and D € Cat®. A balanced &-
module functor is a k-bilinear functor F : M X N — D equipped with a natural isomorphism
buen : Fimoe,n) ~ F(m,e®On) form e M,n € N, e € &, called the balanced E-module structure on
F, such that the diagram

hm,zl ®ep 1t

Fmo (e1 ®e),n) F(m, (e1 ® e2) ©n)

zl l: 22)
meel £,1 bm,el £o0n

F(m©oe)©ey,n)——=F(m0Oey,e; ©n) —— F(m,e; © (e; © n))

commutes for ey, e; € &, me M, n € N.

A balanced E-module natural transformation between two balanced £-module functors F, G :
M x N =3 D is a natural transformation a : F = G such that the diagram

bfn[ﬂ
F(moe,n) —— F(m,e®©n)

QAmoe,n l lam,f@n

G(moe,n) TR G(m,e©n)

men

commutes for all m € M, e € & n € N, where bF and VC are the balanced &-module structures
on F and G respectively. We use Fun® (M, N; D) to denote the category of balanced &-module
functors from M X N to D, and balanced &-module natural transformations.
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Definition 2.4. Let M € RMod¢(Cat®) and N € LMod¢(Cat™). The tensor product of M
and N over & is an object M ®¢ N in Cat®, together with a balanced &-module functor
Re : M XN — MR¢ N, such that, for every object D in Cat®, composition with B¢ induces an

equivalence of categories Fun(M ®¢ N, D) ~ Fun'gal(M, N; D).

Remark 2.5. The tensor product of M and N over € is an object M ®¢ N in Cat®® unique up

to equivalence, together with a balanced €-module functor ®e : M X N — M R¢ N, such that

for every object D in Cat®, for any f € Fungal(M, N; D), there exists a pair (f, n) unique up to

isomorphism, such that f ~" f o B¢, i.e.

MxN—Es Mre N

SR

D

where f is a k-linear functor in Fun(M ®¢ N, D), and n: f = f o B¢ is a balanced E-module

natural transformation in Funtéal(M, N; D). The notation =" means that the natural isomor-
phism is induced by 1. Given two objects f, ¢ and a morphism a : f = g in Fun? (M, N; D),
there exist unique objects f, ¢ € Fun(M ®¢ N, D) such that f =7 f o ®e and g ~¢ goRg. For
any choice of (a,7, &, f, ), there exists a unique morphism b : f = ¢ in Fun(M ®¢ N, D) such
thatéoaon‘lzb*iag:. S

2.3 The symmetric monoidal 2-category Cat’

A left &-module M in Cat® is automatically a &-bimodule category with the right &-action
definedasm©e:=eOm,forme M, e € E.

Definition 2.6. The 2-category Catfgs consists of the following data.

e Its objects are left &-modules in Cat®.

Its 1-morphisms are left &-module functors.
e Its 2-morphisms are left E-module natural transformations.
e The identity 1-morphism 15 for each object M is identity functor 1.

e The identity 2-morphism 1 for each left &-module functor F : M — N is the identity
natural transformation 1r.

e The vertical composition is the vertical composition of left E-module natural transfor-
mations.

e Horizontal composition of 1-morphisms is the composition of left £-module functors.

e Horizontal composition of 2-morphisms is the horizontal composition of left E-module
natural transformations.

It is routine to check the above data satisfy the axioms (i)-(vi) of [JY} Prop. 2.3.4]. We define
a pseudo-functor ®¢ : Cat® x Cat® — Cat’s in Sec.[A2} And the following theorem is proved

in Sec.[A.2land Sec.[A.3]

Theorem 2.7. The 2-category Cat’s is a symmetric monoidal 2-category.
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3 Algebras and centers in Catfgs

In this section, Sec. 3.1, Sec. 3.2 and Sec. 3.3 study Eg-algebras, Eq-algebras and E,-algebras in
Catfgs, respectively. Sec. 3.4, Sec.3.5 and Sec. 3.6 study Eo-centers, E;-centers and E,-centers in
Catfgs, respectively.

3.1 Ej-algebras

Definition 3.1. We define the 2-category AlgEO(Catfgs) of Ep-algebras in Cat’ as follows.

e Its objects are Ey-algebras in Catfg‘. An Ep-algebra in Catfg‘ is a pair (A, A), where A is an
object in Cat and A : € — A is a 1-morphism in Cat.

e For two Ep-algebras (A, A) and (B, B), a 1-morphism F : (A, A) — (B, B) in Alg (Catfg) is
a 1-morphism F : A — B in Cat® and an invertible 2-morphism F° : B = F o A in Cat.

e For two 1-morphisms F, G : (A,A) = (B, B) in AlgEO(Catfg), a 2-morphism a : F = Gin
AlgEO(Catfg) is a 2-morphism a : F = G in Catf§ such that (a#14) o F* = GY, i.e.

e 2.4 e-A.a
P fa Cr
\<F\<:>>G = R\ lc (3.1)
P B

3.2 E;-algebras

Let A and B be two monoidal categories. A monoidal functor from A to B is a pair (F, JF),
where F : A — B is a functor and ]f:,y 1 F(x®y) =~ F(x)®F(y), x, y € A, is anatural isomorphism
such that F(14) = 13 and a natural diagram commutes. A monoidal natural transformation
between two monoidal functors (E, J¥), (G, J°) : A =3 B is a natural transformation a : F = G
such that the following diagram commutes for all x, y € A:

F@®y%—@>H@®FW)

“x@yl l“x'“y (32)
G ®y) — G ® G(y)

v

Given a monoidal category M, the Drinfeld center of M is a braided monoidal category
Z(M). The objects of Z(M) are pairs (x,z), wherex € Mand z,,, : x®@m =m®x,m € Mis a
natural isomorphism such that the following diagram commutes for m, m’ € M:

’ Zy,mem’ ,
X@mem mem &x
mexem

Recall the two equivalent definitions of a central functor in Def.[A.Tland Def.[A.2] The
definitions of a fusion category over € and a braided fusion category over € are in [DNO].

Definition 3.2. The 2-category Alg, (Cat%) consists of the following data.
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e Its objects are multifusion categories over €. A multifusion category over € is a multifusion
category A equipped with a k-linear central functor T4 : £ — A. Equivalently, a
multifusion category over € is a multifusion category A equipped with a k-linear braided
monoidal functor T/, : € — Z(A).

e Its 1-morphisms are monoidal functors over €. A monoidal functor over & between two
multifusion categories A, B over € is a k-linear monoidal functor (F, |) : A — B equipped
with a monoidal natural isomorphism u, : F(T4(¢)) = Tx(e) in B for each e € &, called
the structure of monoidal functor over € on F, such that the diagram

E(Ta(e) ® ) 2% F(T4(6) ® F(x) 1 Tis(0) ® F(x)

F(ZL’,.() l lfuf(x) (33)
JoT 400

F(x® Ta(0) —2 F(x) ® F(T4(e)) ~> F(x) ® T (¢)

commutes fore € £, x € A. Here z and 2 are the central structures of the central functors
Thp:E&—= Aand Tg : € — B respectively.

e Its 2-morphisms are monoidal natural transformations over €. A monoidal natural trans-
formation over € between two monoidal functors F,G : A =3 B over € is a monoidal
natural transformation « : F = G such that the following diagram commutes for e € €:

F(T () — 2> G(T a(e)) (3.4)

D

Tz(e)
where u and v are the structures of monoidal functors over € on F and G, respectively.

Remark 3.3. If A is a multifusion category over € such that T’, : & — Z(A) is fully faithful,
then A is a indecomposable. If £ = Vec, the functor Vec — Z(A) is fully faithful if and only if
A is indecomposable. The condition "€ — Z(A) — A is fully faithful” implies the condition
"€ — Z(A) is fully faithful”.

Lemma 3.4. Let A and B be two monoidal categories. Supposethat T4 : & = A, T : € = B
and F : A — B are monoidal functors,and u : FoT4 = T3 isamonoidal natural isomorphism.
Then A, B are left &-module categories, T4, Ts and F are left E-module functors, and u is a
left E-module natural isomorphism.

Proof. Theleft E-module structure on A is defined aseGa := T 4(e)®aforalle € Eanda € A. The
left E-module structure on T 4 is induced by the monoidal structure of T4. The left &-module

structure s” on Fis induced by F(e®a) = F(T 4(e)®a) — F(T 4(e))®F(a) e, Ty (e)®F(a) = eOF(a).

The left E&-module structure on F o T4 is induced by F(T4(€ ® €)) — F(T4(&) ® T(e)) LR
T3(@) ® F(T4(e)) = ¢ © F(Tal(e)) for e, € €. The natural isomorphism u satisfy the diagram
2.1) by the diagram (3.2) of the monoidal natural isomorphism . |

Remark 3.5. A monoidal functor F : A — B over € is a left &-module functor. If A is a
multifusion category over € and F : A — B is an equivalence of multifusion categories, B is a
multifusion category over €. The central structure o on the monoidal functor FoT4: & — B
is induced by

F(Ta(e)) ® b — F(Ta(e)) ® F(a) — F(Ta(e) ® )

Oep { O Fa) \LCW
v :

v
b® F(Ta(e)) <= F(a) ® F(Ta(e)) <—— Fa® Ta(e))
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fore € €,b € B, where c is the central structure of the functor T4 : € — A. Notice that for any
object b € B, there is an object a € A such that b =~ F(a) by the equivalence of F.

Example 3.6. If C is a multifusion category over &, €™ is a multifusion category over € by
the central functor & = € ~% Z(C) = Z(Crev),

Example 3.7. Let M be a left &-module in Cat®. Fung (M, M) is a multifusion category by
[EGNO, Cor.9.3.3]. Moreover, Fung (M, M) is a multifusion category over €. We define a
functor T : € — Fung (M, M), e — T¢ := e © —. The left E-module structure on T¢ is defined as

eO(Eom) - (e®e)om SN (é®e)om — 0 (e@m) foré € &, m € M. The monoidal structure T
on Tis induced by T = (e®¢’) 0 — ~e@ (e’ ©—) = T°o T fore, ¢’ € €. The central structure
oon Tisinduced by T¢ o G(m) = e© G(m) =~ G(e©m) = Go T*(m) foralle € €, G € Fung (M, M)
and m € M.

Example 3.8. Let C and D be multifusion categories over €. € ®¢ D is a multifusion category

over . We define a monoidal functor Teg,p : € =~ ERe € TeBeTo, CRe Dbyer eRe Le -

Te(e) Re Tp(le) = Te(e) Re 1o for e € €. And the central structure o on Teg, p is induced by

Tem,p(€) ® (cBe d) == (Te(e) Be 1p) ® (¢ ®e d) == (Te(e) @) Be (1 ®d)
O“e,cxgdé lze,clzein,p,d
(c®e d)®Tem,n(e) ——= (cRe d) ® (Te(e) Re 1p) —— (c® Te(e)) Re (d® 1)

foree€ &, cRe d € CRe D, where z and 2 are the central structures of the functors Te : € — C
and Tp : € — D respectively. Notice that Teg, p(e) = 1e Be Tp(e).

An algebra A in a tensor category A is called separable if the multiplication morphism
m:A®A — A splits as a morphism of A-bimodules. Namely, there is an A-bimodule map
e:A—>A®Asuchthatmoe =idg.

Example 3.9. Let C be a multifusion category over € and A a separable algebra in €. The
category 4C4 of A-bimodules in € is a multifusion category by [DMNO)] Prop.2.7]. Moreover,

AC4 is a multifusion category over €. We define a functor [ : € — 4Ca, e = Te(e) ® A. The
-1

left A-module structure on the right A-module Te(e) ® A is defined as A ® Te(e) ® A i)
Te(e) ®A®A — Te(e) ® A, where c is the central structure of the functor Te : € — €. The
monoidal structure on I is defined as Te(61®¢2)®A =~ Te(e1)®Te(e2)®A = Te(e1)®ARATe(e2)®A
for ey, e; € €. The central structure on I is induced by

¢,A® 4 x 1! 5_1
Ie)@ax=Te(e) ®A®a x Slonr, AR4x®Te(e) 2x®4 AQTe(e) AR x®4Te(e)®A =x®4 I(e)

fore e E,x € ACa.

3.3 E,-algebras

Let A be a subcategory of a braided fusion category C. The centralizer of A in C, denoted by
A’le, is defined by the full subcategory of objects x € C such that ¢, x 0 ¢y, = idyg, foralla € A,
where c is the braiding of €. The Miiger center of C, denoted by € or €’|¢, is the centralizer of
Cin C. Let B be a fusion category over € such that € — Z(B) is fully faithful. The centralizer
of € in Z(B) is denoted by Z(B, €) or &'|z(z).

Definition 3.10. The 2-category AlgEz(Catfgs) consists of the following data.
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e Itsobjects are braided fusion categories over €. A braided fusion category over € is a braided
fusion category A equipped with a k-linear braided monoidal embedding T4 : £ — A’.
A braided fusion category A over € is non-degenerate if T4 is an equivalence.

e Its 1-morphisms are braided monoidal functors over €. A braided monoidal functor over
& between two braided fusion categories A, B over € is a k-linear braided monoidal
functor F : A — B equipped with a monoidal natural isomorphism u, : F(T.4(e)) = Tx(e)
in B foralle € €.

e For two braided monoidal functors F, G : A =3 B over &, a 2-morphism from F to Gis a
monoidal natural transformation « : F = G such that the diagram (3.4) commutes.

Remark 3.11. Let A be a braided fusion category over € and 1 : A = B is an equivalence of
braided fusion categories. Then B is a braided fusion category over €.

Example 3.12. If D is a braided fusion category over &, D is a braided fusion category over &
by the braided monoidal embedding € =€ ~2 D’ = D',

Example 3.13. Let C be a fusion category over € such that & — Z(C) is fully faithful. Z(C, €)
is a non-degenerate braided fusion category over €. Next check that Z(C, )’ = €. On one
hand, if e € £, we have Te(e) € Z(C, ). On the other hand, since Z(C)" = Vec C &, we have
Z(C, &Y |ze,e) € Z(C, E) |ze) = (€lz(e)) |z(e) = €. The central structure on Tze¢) : € — Z(C, &)
is defined as Te.

If € is a non-degenerate braided fusion category over &, there is a braided monoidal

equivalence Z(C, £) = C &g Cover & by [DNO) Cor.4.4].

3.4 Ej-centers

A contractible groupoid is a non-empty category in which there is a unique morphism between
any two objects. An object X in a monoidal 2-category B is called a terminal object if for each
Y € B, the hom category B(Y, X) is a contractible groupoid. Here the hom category B(Y, X)
denotes the category of 1-morphisms from Y to X and 2-morphisms in B.

Definition 3.14. Let A = (A, A) € AlgEO(Catfg). A left unital A-action on X € Catfg‘ isa1-

morphism F : A Be X — X in Cats together with an invertible 2-morphism « in Cat® as
depicted in the following diagram:

ARe X

ARglx F
Ja \ ’
X

ERe X

where the unlabeled arrow is given by the left £-action on X.

Definition 3.15. Let X € CatS. The 2-category AlgEO(Catfgs)x of left unital actions on X in
AlgEO(Catfgs) is defined as follows.

e The objects are left unital actions on X.

o Let (A, A),F ay) be a left unital (A, A)-action on X and ((B, B), G, a3) be a left unital
(B, B)-actionon X. A 1-morphism (P, p) : (A, A),F,a4) — ((B,B),G,as)in AlgEO (Catfgf)x
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is a 1-morphism P : (A4,A) — (B,B) in AlgEO(Catfg), equipped with an invertible 2-
morphism p : G o (P ®e 1) = F in Cat¥, such that the following pasting diagram
equality holds.

BRe X

)
Prely G ngx

PRe! ARe X Jr = Bmelz \U/OCB\
ARg 1,
e UM\ Eme X X

ERe X X

BRg 1y

Here we choose the identity 2-morphism id : (P K¢ 1x) 0 (ARe 1x) = (P o A) Re 1y for
convenience.

e Given two 1-morphisms (P, p), (Q,0) : (A, A),Eas) = ((B,B),G,az), a 2-morphism
a:(Pp)=(Qo)in AlgEO(Catfg)x is a 2-morphism o : P = Qin AlgEO(Catfg) such that
the following pasting diagram equality holds.

Prelx Prely

— T T
ARe X Jome1  BRe X ARe X ——————> BRg X
— e
Qrelx = ﬂﬂ
F ﬂg G F G
X X

An Eg-center of the object X in Cat’s is a terminal object in AlgEo(Cat’fEs )x-

Theorem 3.16. The Ej-center of a category X € Catfgs is given by the multifusion category
Fung (X, X) over €E.

Proof. Suppose (A, A) is an Eg-algebra in Cat® and (F, u) as depicted in the following diagram

ARe X

AIXIgl% Uu X

ERe X X

is a unital A-action on X. In other words, F : A g X — X is a left &-module functor and
et F(A(e) Re x) = eOx, e € €, x € X is a natural isomorphism in Ca’cfgS .
Recall that (Fung (X, X), T) is an Ep-algebra in CatfgS by Expl.B.7

Fung(x, :X:) Re X

T&V Uv X

ERe X X

Define a functor
G:Pung(x,DC)lngCeDC, fxgx|—>f(x)

and a natural isomorphism
Upy = 1deey : G(T°Re x) = T(x) =eOx > eOx, ec& xelX.

Then ((Fung (X, X), T), G, v) is a left unital Fung (X, X)-action on X.
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We want to show that AlgEO(Catfg)x(A, Fung (X, X)) is a contractible groupoid. First we

want to show there exists a 1-morphism (P, p) : A — Fune (X, X) in Algg, (Catfg)x. We define
a functor P : A — Fung (X, X) by P(a) := F(a ®¢ —) for all a € A and an invertible 2-morphism
PY:T°=e@— = P(A(e)) = F(A(e) Re —) as u; ! for all e € €. The natural isomorphism p can
be defined by

Pax = idFm, ) : G(P(a) Be X) = P(a)(x) = Fa e x) — F(a B¢ x)
fora € A,x € X. Then it suffices to show that the composition of morphisms

(P)s=1ig}
—— F(A(e) B¢ X)

PAE)x=idFAEmE g x)

G(T'Re x) =eOx F(A(e) Re ) =55 e O x
is equal to v,y = ideey by the definitions of P* and p.

Then we want to show that if there are two 1-morphisms (Q;,0;) : A — Fung(X, X) in
AlgEO(Catfgs)x fori =1, 2, there is a unique 2-morphism f8 : (Q1,01) = (Qy,02) in AlgEO(Catfg)x.
The 2-morphism f in AlgEO(Catfgs)x is a natural isomorphism 8 : Q1 = Q» such that the
equalities

(TQ_i,,QloA&QZOA)z(T%QZOA) (3.5)
and
(Q@@ 25 Q@ 22 Fame 1) = (Qu@)x) 225 Fare x) (3.6)

hold fora € A, x € X. The second condition (.6) implies that (,)x = (02),+0(01)s,. This proves
the uniqueness of . For the existence of , we want to show that § satisfy the first condition
(3.5), i.e. B is a 2-morphism in AlgE (Catfs) Since (Q;, o) are 1-morphisms in AlgE (Cat N,
the composed morphism

(e (0i )A(e) x

e0x = T*(x) = Qi(A())(x) = F(A(e) Be x) —> e O x

is equal to v, x = id.oy. It follows that the composition of morphisms

eox D g A@)w T2,

is equal to ideoy, i.e. (Q9);1 © (Bace))x © (QY)ex = idex. This is precisely the first condition (B.5).
Hence the natural transformation 8 : Q1 = Q, defined by (8,)x = (02);}6 0 (01)a,x is the unique
2-morphism B : (Q1,01) = (Q2,02).

Finally, we also want to verify that the E;-algebra structure on the E;-center Fung (X, X)
coincides with the usual monoidal structure of Fung (X, X) defined by the composition of
functors. Recall that the E;-algebra structure is induced by the iterated action

A(z),\ (O

Qa(A(e))(x) —> eOx

(01 )A(L) x

— F(A(e) Rg x) — e

Fune (X, X) ®e Fune (X, X) 8e X =25 Fune (X, X) ®e X > X

By the construction given above, the induced tensor product Fung (X, X) B¢ Fung (X, X) —
Fung (X, X) is given by f Re g = G(f Re G(g Re —)) = f(g(—)) = f o g. Hence, the Ej-algebra
structure on Fung (X, X) is the composition of functors, which is the usual monoidal structure
on Fung (X, X). O
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3.5 E;-centers

Definition 3.17. Let X € Alg, (Cat¥). The Ej-center of X in Cat® is the Eo-center of X in
Alg, (Cat®).

Theorem 3.18. Let B be a multifusion category over &. Then the E;-center of B in Cat’ is the
braided multifusion category Z(B, ) over &.

Proof. Let A be a multifusion category over €. A left unital A-action on B in Alg, (Cat) is
a monoidal functor F : A B¢ B — B over € and a monoidal natural isomorphism u over &€
shown below:

ARe B
TV U,u \‘i\
ERe B 5 B

More precisely, F is a functor equipped with natural isomorphisms J* : F(a; B¢ b1) ® F(a2 Re
b) > F((a1 Re b1) ® (12 Re b)), 41,82 € A, by, by € B, and I' : 15 > F(14 Re 1) satisfying
certain commutative diagrams. The monoidal structure on the functor © : € B¢ B — B,

¢®: b > e0b = T (¢) ®bis induced by T (¢1 ®2) ® (b1 ®b2) = Ts(e1) ® Tos(e2) @ b1 @by 2275
Tx(e1) @ b1 @ Tg(e) ® by for eq,ex € E,b1,b, € B, where (T'g(e2),z) € Z(B). The structure of
monoidal functor over € on © is defined as O(Teg, 58(€)) = O(eRe 1) =eOlg = Tp(E) @1y ~
Tg(e). And u is a monoidal natural isomorphism u,; : F(T4(e) Be b) S e0b=TaE)®b,
e€ &b e B. Also one can show that I = ”il,ﬂg‘ The structure of monoidal functor over € on
Fisue, : F(Tam.5(e)) = F(Ta(e) Be 1) = Tp(e) ® 1s = Tx(e).

There is an obviously left unital Z(B, £)-action on B

Z(B,€)Re B

TV G
£me B g \3

defined by G: Z('B, 8) Re B i> Bre B g) B and Vep = idTB(g)®b : G(TB(e) Re b) = TB(E) ®
b—eob fore € b € B. The structure of monoidal functor over € on G is defined as
G(Tp(e)®e 13) = Tp(e)® 1y = Tx(e).

First we want to show that F(a Re 15) € Z(B,€) for a € A. Notice that F(14 Re b) =

F(Ta(1le) Re b) Zied, 1le ©b = b. Since F is a monoidal functor over €, it can be verified that
the natural transformation y (shown below)

-1
1,11Jle b

FaRe 13) ® b —2> F(a 8 15) ® F(Iy Be b) ——> F(a® 1.4) Be (1 ® b))

Yab l:’:
v

b®F(ll Ke ]]-B) fm F(]lA Ke b) ®F(ll Ke ]]-B) T F((]lA ®H) Ke (b® ]]-B))

is a half-braiding on F(a®Re 13) € B, fora € A, b € B. Itis routine to check that the composition
Te(e)®F(aRe 1) = FaRe 13)®Tx(e) = To(e)®F(aRe 1) equals to identity. Then Fa®e 1)
belongs to Z(B, €).

We define a monoidal functor P : A — Z(B,E) by P(a) = (F(a Be 18),y,-) with the
monoidal structure induced by that of F:

]P : (P(ﬂl)@P(ﬂz) = F(a1Re15)QF (1R 13) i F((a1®a2)Re (1a®13)) = F((a1®a2)Relp) = P(ll1®612))
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. (1193 L P18 1) = P(]lA))

The structure of monoidal functor over € on P is defined as 4, 1,, : P(Ta(e)) = F(Ta(e)Re 1) =
Tg(e) = Tz('B,g)(E) fore € €.
Then we show that there exists a 1-morphism (P, p) : A — Z(3B, €) in Alg, (Alg, (Catfg))g.
u—l
The invertible natural isomorphism P° : Tz = P o T, is defined by Tx(e) = e © 13 SEN
F(T4(e)me 1) = P(T 4(e)) for e € €. The monoidal natural isomorphism p: Go (PRe 13) = F
is defined by

1,u£l
Pap : FlaRe 13)®D el Fare 1) ® F(14 Re b) i F((a®1,4)Re (15 b)) = Fla®e b)

fora € A,b € B. Itis routine to check that the composition of 2-morphisms P°, p and u is equal
to the 2-morphism v.

Then we show thatif there are two 1-morphisms (Q;, 07) : A = Z(3B, €) in Algg (Alg, (Catfg))rg
fori = 1,2, then there exists a unique 2-morphismf : (Q1,01) = (Q2,02)in AlgEO (AlgEl (Cat’fgs )z
Such a § is a natural transformation  : Q1 = Q> such that the equalities

(Q@®b 25 0u@) © b 2 Fame b)) = (Qu@) b ™ Fawe b)) (.7)
and
%] pel &
(T'B = Q10Ty = Q20 TA) = <T93 = Qo TA) (3.8)

hold for a € A,b € B. The first condition (3.7) implies that f, : Q1(a) = Q»(a) is equal to the
composition

(01 )a,]l B

(Uz);}l,B
Qi(@) = Qi) ® 1z —— FaRe 1) =—= Qx(2) @ 15 = Qx(a)

This proves the uniqueness of . It is routine to check that 8, is a morphism in Z(B, €) and
satisfy the second condition (3.8).

Finally, we also want to verify that the E,-algebra structure on the E;-center Z(B, €)
coincides with the usual braiding structure on Z(3B, €). The Ej-algebra structure is given by
the monoidal functor H : Z(B, £)Re Z(B, £) — Z(B, £), which is induced by the iterated action

Z(B,&) ®e Z(B, &) Re B -5 Z(B,E)me B S B

with the monoidal structure given by

Yypb Yxp.y18b
x1®x2®y1®y2®b1®b2ﬂ)x1®x2®y1®b1®y2®b2 ﬂm@yl@bl ®x2®yz®b2

for x1 Re y1 Re by, xp Ke Yo Re by in Z(B, ) ®e Z(B, £) ®e B. Then by the construction given
above, the induced functor H : Z(B,€) ®g Z(B,€) — Z(B,E) maps x Re y to the object
G(1Re G)(xRe Yy Re 13)) = x® Yy ® 1 = x ® y with the half-braiding

xey®b L xebey b hoxey

Thus the functor H coincides with the tensor product of Z(B, £). For x; Re y1,x2 Be Y2 €
Z(B, &) me Z(B, €), the monoidal structure of H is induced by

H((x1 Ke y1)®(x2 Ke yz)) =xX10x0Y181> 7/*2_y1) X1QY1®@x2@ Y2 = H(x1 Ke y1)®H(x2 Re yz)

Equivalently, the braiding structure on Z(3B, ) is given by x ® AN y ® x, which is the usual
braiding structure on Z(B, €). O
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3.6 E,-centers

Definition 3.19. Let X € AlgEz(Catfg). The E-center of X in Cats is the Eg-center of X in
Alg, (Cat®).

Theorem 3.20. Let C be a braided fusion category over €. The E;-center of C is the symmetric
fusion category €’ over £.

Proof. Let A be a braided fusion category over €. A left unital A-action on € is a braided
monoidal functor F : ARg € — Cover € and a monoidal natural isomorphism u over € shown
below:

More precisely, F is a monoidal functor over & (recall the proof of Thm.[3.18) such that the
diagram

]F
F(a; Re x1) ® F(az Re x2) — F((a1 ® a2) Be (x1 ® x2))
CFaym g x7),F(1p8 ¢ x) l \Lfﬁ g /Cxy
F(a; ®e x2) ® F(a; Be x1) - F((az ® a1) Re (x2 ® x1))

commutes for aq,a, € A, x1, X2 € €, where ¢ and c are the half-braidings of A and C respectively.

The braided structure on £ Re € is defined as Te(e; ® €2) @ x1 @ x2 Te(ea®e1)®x @ x1,
fore; Re x1,60 Re xp € E Re C. Check that ©: € ®e € — € is a braided functor.
There is a left unital €’-action on €

Teqep/Cxp 29

¢’ ®e C

Te,1 G
Jo \

ERg C————C

givenby G: ¢’ Re € — C,(z,x) = z®x and v,y = ideoy : G(Te(e) Re x) = Te(e) ®x = e O x.
Next we want to show that there existsa 1-morphism (P, p) : A — €' inAlg; (Algy, (Catfg))e.
Since F is a braided monoidal functor over &, the commutative diagram

Lugt | r
Fla®e 16) ® x —2> Fa®e 1¢) ® F(14 Be x) ~— F(a B¢ x)

CFarg 1e)x l CFagg 1) F(1l 4 B¢ x) l \L
-1
u 1 F

Y ®F@aRe 1e) 2 F(14 B %) ® F@a Be 1¢) ~—> F(a R x) |1

-

FuRe 1e)®x T Flare 1e) ® F(14 Re x) I, Fare x)
u v

Tl x

CxFamg 1) l CF1 gmgx)Famg 1e) l

implies that the equality ¢y reme1c) © Crame1c)x = idr@me1c)ex holds for a € A, x € C, ie.
F(ame 1¢) € €. Then we define the functor P by P(a) := F(a®¢ 1¢), and the monoidal structure
of P is induced by that of F. The monoidal natural isomorphism p : G o (P Re 1¢) = Fis
defined by

1®u£1 . F
[ F(ﬂ Ke ]].(3) ®x — F(ﬂ Ke ]].(3) ®F(1A Xe x) ]—) F(ﬂ Ke x)
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Then (P, p) is a 1-morphism in Alg, (Alg,, (Catfg))e.
It is routine to check that if there are two 1-morphisms (Q;,0;) : A — €', i = 1,2, in
AlgEO(AIgEZ(Catfg))@, there exists a unique 2-morphism 8 : (Q1,01) = (Q2,02) inAlgEO(AlgEz(Catfg))@.
[m}

4 Representation theory and Morita theory in CatfgS

In this section, Sec. 4.1 and Sec. 4.2 study the modules over a multifusion category over € and
bimodules in Cat%. Sec.4.3 and Sec.4.4 prove that two fusion categories over & are Morita
equivalent in Cat’ if and only if their E;-centers are equivalent. Sec. 4.5 studies the modules
over a braided fusion category over €.

4.1 Modules over a multifusion category over &

Let € and D be multifusion categories over €. We use z and 2 to denote the central structures
of the central functors Te : € — Cand Tp : € — D respectively.

Definition 4.1. The 2-category LMode(Cat’) consists of the following data.

e A class of objects in LMode(Catfg). An object M € LMode(Catfg) is an object M € Catfg‘
equipped with a monoidal functor ¢ : € — Fung (M, M) over €.

Equivalently, an object M € LMode(Catfgs) is an object M both in Catf‘gs and LMode(Cat™)
equipped with a monoidal natural isomorphism u¢ : Te(e) © — =~ ¢ ® — in Fung (M, M)
for each e € &, such that the functor (c © —,5°") belongs to Fung (M, M) for each c € €,
and the diagram

(“ee )eo-

(Te(@)®@c)0o— ——=Te(@)©(cO-) ——=e0(cO®-)

Ze,clll/ lsﬁfﬂ‘ (41)
cC

(€®Te() ®— —> co (Te() © =) —~> c0 (¢ -)

commutes for e € ,c € €,— € M. We use a pair (M, u®) to denote an object M in
LMode(Cat5).

e Forobjects (M, u®), (N, 7¢) in LMode (Cat®), a 1-morphism F : M — Nin LMode(Cat®) is
both a left G-module functor (F,s") : M — N and a left &-module functor (F,t) : M — N
such that the following diagram commutes fore € &, m € M:

(ufe )V)I

F(Te(e) ©m) —— F(e ®m)

S};c ©m l l tom (4.2)
Te(e) © F(m) —— e © F(m)

@8 )e(m

e For 1-morphisms F,G : M =3 N in LMode(Catfgs), a 2-morphism from F to G is a left
C-module natural transformation from F to G. A left G-module natural transformation
is automatically a left E&-module natural transformation.

In the above definition, we take ¢(c) := cO—forc € C. Aleft D*"-module M is automatically
a right D-module, with the right D-action defined by m©d :=dom form € M,d € D.
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Definition 4.2. The 2-category RMod (Cat’) consists of the following data.

e A class of objects in RMod@(Catfg‘). An object M € RMod@(Catfg‘) is an object M € Catfg‘
equipped with a monoidal functor ¢ : D™V — Fung (M, M) over €.

Equivalently, an object M € RModp (Catfgs) is an object M both in Catfg‘ and RMod 5 (Cat®)
equipped with a monoidal natural isomorphism .’ : — ® T (e) ~ e © — in Fung (M, M)
for each e € € such that the functor (— © d,s®%) belongs to Fung (M, M) for each d € D,
and the diagram

")

—0@d®TpE) —= (—0d)0Tple) —=e@ (—Od)

1} l lsgfd (4.3)
-0 (Tple)®d) —— (—@T@(e))odW (eo-)od

commutes for e € £,d € D,— € M. We use a pair (M, u®)

RMod p (Cat®).

to denote an object M in

e For objects (M, u?), (N, #) in RMod (Cat%), a T-morphism F : M — N in RModp (Cat®)
is both a right D-module functor (F,§) : M — N and a left &-module functor (F, ) :
M — N such that the following diagram commutes for e € £, m € M:

(u;D )V)I

F(m® Tp(e)) — F(e ©m)
sf;,TD © l l tom (4.4)

F(m) © Tp(e) (T) e ®© F(m)
u; (m)
e For 1-morphisms F,G : M =3 N in RMod@(Catfg), a 2-morphism from F to G is a right

D-module natural transformation from F to G.

Remark 4.3. Let (M, u®) belongs to RMod@(Catfg). We explain the monoidal natural iso-

morphism u, : — O Tp(e) = e ® — in Fung(M,M). The monoidal structure on F : £ —
Fung (M, M),e — F¢ = — © Tple) is defined as J,,,, : F1®2 = — O Tpler ® e) fag o

Tplea ®e1) = (— O Tpler)) © Tpler) = F1 o F2, for e1,e, € €. The monoidal structure on
T:& — Fung(M, M), e > T¢ := e©— is defined as T*® = (e; ®e) O— — e10(e20—) = T¢ o T®,
for e,eo € €. For eache € &, u, : — O Tp(e) = e O — is an isomorphism in Fung (M, M).
That is, u. is a left £&-module natural isomorphism. The monoidal natural isomorphism
U, : — O Tp(e) — e © — satisfies the diagram

-0Tp(e1 ®er) LG Tp(ez ®e1) — (= O Tp(e2)) © Tpler)

u@1®32 l l ”51 *ugz

(61 ®€2)O— 6’1@(6’2@—)

where u,, * u,, is defined as

|
For o F = (= 0 T (e2)) © T (e1) ———> (20 =) © T (e1)
(”21 )’OT'D (ep) l \”51 *”52\ l (“el )620—

e10(—0Tpler)) ————e10(0—) =T 0o T

1;”62
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For any dq, d, € D, the functors (- ©dy,s7°), (- ©da, s7°%) and (- © (d1 ® dp), s °“1®%)) belong
to Fung (M, M). Consider the diagram:

—0(d; ®dy)
e (mo (d; ® da)) eom) o d d)
”l lA 45)
e (mod)od) — (eo(mod))od — ((eom)od)Od;

Semod; Sem "1
where AM is the module associativity constraint of M in RMod(Cat™). Since the diagrams
(4.3) and (A.I) commute and m © — : D — M is the functor for all m € M, the above diagram
commutes. Then the natural isomorphism — © (d1 ® d2) = (= © d1) © d, is the left E-module
natural isomorphism.

Let (M, u®) belong to LMode(Catfg). For any c¢1,¢, € €, the functors (c1 © —,5%°7), (c; ©
—,5297) and ((c1 ® c2) © —,5€1®2)°7) belong to Fung (M, M). Since the diagrams (@I) and
(AI) commutes and — ©m : € — M is the functor for all m € M, the natural isomorphism
(c1®c2) © = = c1 O (c2 © —) is the left E-module natural isomorphism.

Remark 4.4. Assume that (M, u”) belongs to RModp(Cat). The right &-module structure
on M is defined as m®e := m © Tp(e), Ym € M,e € €. The module associativity constraint
is defined as A}, ,, : m O Tple1 ® &) = m O (Tpler) ® Tonler)) = (m O Toler)) © Toler),
Vm € M,eq,e; € €. Another right E-module structure on M is defined as m ©e = eOm,

Ve € &,m € M. The module associativity constraint is defined as A%, , : m O (e ® &) =

Teq e A
(e1®e)Om —25 (2 ®e1)Om — e, 0 (e Om) = (mOe) ey, Vm € M, eq,e; € E.
Check that the identity functor id : M — M equipped with the natural isomorphism

sid, 1 id(mGe) = mO Tp(e) W, Om = id(m) ©eis a right E-module functor by the monoidal

natural isomorphism u? : —© Tp(e) = e ® —.

Proposition 4.5. Let (M, u®) belong to LMode(Cat®). The diagram

1/(6(‘1"1,_, ~
E@(T@(e)cam)u—)>e®(e®m)—>(e®e)®m

sie Wl lrz,f,l (4.6)
Te(e)O(EQm)e—)>e®(é®m)—>(e®é)®m

(e eom

commutes for e, & € €, m € M. Let (M, u”) belong to RMod@(Catfg). The diagram

(”éD)Bom
eom)OTp() —=¢Eé0(eOm) — (E®@e)Om

s;iT'D (@] l \L Te 1 (47)

eO(moOTp(E) —=e0(EoOm ——=(e®)Om

1;(“? Im

commutes for e, € &, m € M. Here the functors (Te(e) © —,s7¢@°7) and (- @ Tp (@), s ©T»@)
belong to Fung (M, M).
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Proof. Consider the diagram:
~ 1!(“’5)"( -~ -~
0 (Te(e) om) ————=é0(eOmM) ——= (E®e)Om

(&} (&4
T (”g )T(i (e)om Usge

T@(E) © (T@(E) © m) -~ (T@(é) ® T@(E)) om=<— T@(é@ 6’) om
sle(@o- 25T (o) \L Tee,l Tge 1

em

TeE) O (Te(@)om)<=— (Te(e)@Te(@)Om<=—"Te(e®8) Om

\Ll,(u.e Y ul,

Te(e)G(EOm)—>e®(e®m)—>(e®é)®m

)Lom

The top and bottom hexagon diagrams commute by the monoidal natural isomorphism
ul : Te(e) © — ~ e ® —. The leftmost hexagon commutes by the diagram (£I). The middle-
right square commutes by the central functor Te : € — €. The rightmost square commutes
by the naturality of u¢. Then the outward diagram commutes. One can check the diagram
@) commutes. O

For objects M, Nin LMod@(CathS) (or RModp (Catfgs)), we use Fung(M, N) (or Funl‘%)(M, N))
to denote the category of 1-morphisms M — N, 2-morphismsin LMode (Catfgs) (orRModp (CatfgS ))-

Example 4.6. Funé (M, M) is a multifusion category by [EGNO) Cor. 9.3.3]. Moreover, Pun(‘% (M, M)
is a multifusion category over €. A functor T': & — Fung(M, M) is defined ase > T° := Te(e)®

—. The left -module structure on T¢ is defined as s, : Te(e) © (c @ m) — (Te(e) ® c)Om el
(c®Tele)om — ¢ O (Te (e) ©@m) for c € C, m € M. The left E-module structure on 7° is defined

e
Uz )m e(f) m (”g )TG (e)om
_—

as Te(e)©(EOm) e 2N Te(e)©(Te(@) @m) —— Te(@)o(Te(e)om)
foré e & m e M. Then T* belongs to Pune(M M).

The monoidal structure on T is induced by Te(e1 ® e2) © - = (Te(er) ® Te(e)) © — =
Te(e1) © (Te(ez) © —) for e1,e2 € €. The central structure on T is a natural isomorphism
Te,g : T¢ 0 g(m) = Te(e) © g(m) = g(Te(e) ©m) = go T¢(m) for any e € €, g € Fun§(M, M), m € M.
The left (or right) &-module structure on Puné(M, M) is defined as (e © f)(—) := Te(e) © f(-),
(or (f@e)(-) = f(Te(e) ©-)), fore € &, f € Fun5(M, M) and — € M.

Proposition 4.7. Let (M, u) and (N, i1) belong to LMode(Catfgs). f:M — Nisal-morphism in
LMode(Cat®). Then f belongs to LMode(Cat®).

Proof. Notice that for a 1-morphism f : M — N in LMode(Catfg), the left C-action on f is
compatible with the left E-action on f. Assume ( f s) M — Nis a left C-module functor. The

left E-module structure on f is given by f(e ©m) e, f(Te(e)om) —— Helm, Te(e) O f(m) ——
e o f(m). O

Remark 4.8. The forgetful functor f : Funé(M, N) = Fune(M,N), (f,s,t) = (f,s) induces

an equivalence in Cat®, where s and t are the left G-module structure and the left &-module
structure on f respectively. Notice that t equals to the composition of u™!,s and .
Let (M, u) and (M, id) belong to LMode(Catfg). Then the identity functor idy : (M, u) —

(M, id) induces an equivalence in LMode(Catfg).

0 (Te(e) Om)

() f(rn)

Example 4.9. Let A be a separable algebra in C. We use C4 to denote the category of right A-
modules in €. By [DMNO), Prop.2.7], the category €4 is a finite semisimple abelian category.
Ca has a canonical left C-module structure. The left E&-module structure on G4 is defined as
eOx =Te(e)®xforanye € €, x € C4. Then (C4, id) belongs to LMode(Catfgs



Representation theory and Morita theory in Cat's 19

We use 4C4 to denote the category of A-bimodules in €. By Prop.[A.5] Fune(Cy, C4) is
equivalent to (4€4)™" as multifusion categories over €.

Proposition 4.10. Let M € LMode(Catt). There is a separable algebra A in € such that M = €4
in LMode(Cat5).

Proof. By [EGNO, Thm. 7.10.1], there is an equivalence 1 : M =~ €4 in LMod¢(Cat®) for some
separable algebra A in C. By Prop..7] 1 is an equivalence in LMode(Cat®). ]

Definition 4.11. An object M in LModg(Catfg) is faithful if there exists m € M such that
1, @ m # 0 for every nonzero subobject 1|, of the unit object 1¢.

Remark 4.12. Notice that 1 ©m =~ Te(lg) ©m = 1¢ ©m # 0. If € is an indecomposable
multifusion category over £, any nonzero M in LMode (Cat®) is faithful.

Proposition 4.13. Suppose M is a faithful object in LMode(Catf). There is an equivalence

- € e .
C= FunFung (M/M)(M, M) of multifusion categories over €.

Proof. By Prop.[A.10] there is a separable algebra A in € such that M ~ C4. By [EGNO|
Thm.7.12.11], the category Fungun.ovi,n)(M, M) is equivalent to the category of AR @ A-
bimodules in the category of A-bimodules. The latter category is equivalent to the category
AroaCarga Of AR ® A-bimodules. Then the functor @ : € — argACarga, X = AR®x® A is an
equivalence by the faithfulness of M. The monoidal structure on @ is defined as

Px0y)=AR®x@Y® A~ AR@x® A @ gy AR® Y® A = D(x) @rgus ()
for x, y € €, where the equivalence is due to A ®4rga AR ~ 1,. Recall the central structure on
the monoidal functor I : € — 4rgaCarga in Expl.B.Il The structure of monoidal functor over &
z71 o1
on @ is induced by ®(Te(e)) = AR® Te(e) ® A = Te(e)® AR® A = I(¢) fore € €.
By Rem.[4.8land Prop.[A.5 we have the equivalences Fun® (M, M) = Fungan, v, v (M, M) =

Fun§ (M,M)
AreACarga = C of multifusion categories over €. O

4.2 Bimodules in Cat’

Let € and D be multifusion categories over €. We use z and 2 to denote the central structures
of the central functors Te : € = Cand Tp : € — D respectively.

Definition 4.14. The 2-category BMod e (Cat) consists of the following data.

e A class of objects in BModem(Catfg). An object M € BModem(Catfg) is an object M

both in Catf and BMode;n(Cat®) equipped with monoidal natural isomorphisms 1S :

Te(e) @ —~e®—and u? : — @ Tp(e) ~ e ® — in Fung (M, M) for each e € € such that the
functor (c® — ©d, s°~°%) belongs to Fung (M, M) for each ¢ € C,d € D, and the diagrams

(”E )eo—ad

(Te(@)®c)0o—0d ——=Te(@)0(cO-0d) —=e0(cO—-0d)
Ze,cll,ll lscood (48)
(c®Te(e))o—@d—>c®(Te(e)®—)®dif’1>c®(e®—)®d

”;D )eo-od

cO-0d®Tn(E) — (cO-0d) 0 Tne) "0 (co-o0d)
112} l lsc@_@d (4.9)
1uP 1

cO-0(Tple)®d) ——=cO(—0Tp()0d —=cO(e®-)0d

D
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commute for alle € €,c € €,d € D. We use a triple (M, u®, u”) to denote an object M in
BModep (Cat®).

e For objects (M, u®,u?), N, a%,a?) in BMode@(Cat{;), a 1-morphism F : M — N in
BMode@(Catfg) is a 1I-morphism F : M — N both in Catfg‘ and BMod ¢ (Cat™®) such that
the diagrams (4.2) and (4.4) commute.

e For I-morphisms F,G : M =3 N in BMode@(Catfgs), a 2-morphism from F to G is a C-D
bimodule natural transformation from F to G.
For objects M, N in BMode@(Catfgs), we use Funng(M,J\D to denote the category of 1-
morphisms M — N, 2-morphisms in BMod e (Cat5).
Let (M, u®, u®), (N, 7€, a?) belong to BMode@(Catfs) A monoidal natural isomorphism
v™M is defined as v : Te(e) © — => o - % O Tple) fore € €, — € M. Similarly, a

monoidal natural isomorphism v” is defined as v}¥ := (#”)~! o 1. A 1-morphism F: M — N
in BMod e (Cat) satisfies the following dlagram for e€&,meM:

E(Te(e) ©m) % F(m 0 T (©))

]

Te(e) © F(m) P F(m) © Tp(e)

Remark 4.15. Plugging ¢ = 1¢ into the diagram and d = 1y into the diagram (@.9), the
diagrams

Te(e)O(mod) —— (Te(e) Om) o d (com)©Tple) —=cO (mo Tn(e))
(ue(‘i )m@dl l(uf )rml (u;D )c@m l llr(u;D )m (4'11)
eO(mod) ——(eOm)od eO(c@m)T>c®(e®m)
S

commute for m € M. Since the diagrams (4.11) and (4.6) commute, the diagram

(Te(e)Om)(DTD(e) (e@m)@T@(e)—>e®(e®m)—>(e®e)®m

J/ J/m 4.12)

Te(e)e(mOT@(e))—>Te(e)G)(e@m)(—>e®(e®m)—>(e®e)®m

Lle éom
commutes fore, & € €, m € M. Since the diagrams (4.11), (4.1) and (.3) commute, the diagrams

)mod

Te(e)G)(mOd) mod)oTple) —=m o (A Tp(e))

5-1
l l 1,Ze'd

(Te(e)om)od W Mmoo Tp()od —=mo (Tple) ®d)

( )C(Dm

(Te(e)®@c)om ——Te(e) @ (cOmM) —— (c©m) © Tp(e)

-] |

(c®Te(e)) Om ——=c O (Te(e) ©m) W cO(mo Tple))
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commute foree &,d € D,ce C,me M.

Proposition 4.16. Let A, B be multifusion categories over €. There is an equivalence of
2-categories
LMod 4, 5 (Cats) ~ BMod 45 (Cat®)

Proof. An object M € LMod 45, Brev (Catfgs) is an object M € Catfgs equipped with a monoidal
functor ¢ : A Be B™ — Fung(M, M) over €. Given an object M in LMod 45 EBrev(Cath), we
want to define an object (M, u*, u®) in BMod 45 (Cat5). The left A-action on M is defined as
aom = qb“g@ﬂ'B (m) fora € A, m € M, and the unit 1 € B"Y. And the right B-action on M
is defined as m © b = ¢p14%¥(m) for b € B, m € M, and the unit 14 € A. By Expl.B.8, we
have Tag, sev(e) = Ta(e) Re 1 and Tag, rv(e) =~ 14 Re T(e). Recall the central structure
onT : & — Fung (M, M) in ExplB.7Zl The structure of monoidal functor over € on ¢ gives
the monoidal natural isomorphisms u* and u® and the commutativity of diagrams @.8) and
@9).

Given objects M, N and a 1-morphism f : M — N in LMod 4g, Brv (Catfgf), f satisfy the
diagrams @.2) and @.4). For two 1-morphisms f,g : M = N in LMod g, B (Catfg), a 2-
morphism « : f = gin LMod 4g, ‘Brev(Catfg) is a left A ®¢ B™-module natural transformation.
If B = €, a is a left A-module natural transformation. If A = &, o is a right B-module
natural transformation.

Conversely, given an object (M, u*, u®) in BMod 45 (Cat5), we want to define a monoidal
functor ¢ : A Rg BV — Fung(M, M) over €. For a Re b € A Rg B™, we define qb“gfb =
@R D)0 — =a0—-0bfor — € M. For ;4 Re by, a; Re by € A Re B™, the monoidal
structure on ¢ is defined as pRebE@ReDL) = H@SRR01S™) = (3 ® 37) © — © (by ® by) =
OO —-—0b)ob = ¢“1Eebl o qb“zg@bz. The structure of monoidal functor over € on ¢ is
defined as ¢pT4ze 2 ) = pTa@Bels = T () © - O 1y Y o0 lg ~e®@— =T fore € €.

Given an object (N, i, 7®?) and a 1-morphism f : M — N in BMod A|93(Catf§), we want to
define a 1-morphism f in LMod 4g, Brv (Catfgs). The left A ®¢ B™¥-module structure on f is
defined as f(@®e b)Oom) = faomob) B ao fnob) 25 4o fm)ob = @8: b) o f(m)
forame b € AR B, m € M, where s/ and #/ are the left A-module structure and the right
B-module structure on f respectively. It is routine to check that f satisfy the diagram {@.2).

For 1-morphisms f, g : M = NinBMod A‘B(Catfgs),az-morphisma : f = ginBMod A|93(Catf§)
is an A-B bimodule natural transformation. It is routine to check that a : f = g is a left
A Re B™-module natural transformation. m|

Example 4.17. Let C be a multifusion category over €. The left E&-module structure on C is
defined ase®c¢ := Te(e)®cfore € &, c € C. For ¢ € C, the functor (c®—,5°®7) : € — €belongs to

Fung (€, €), where the natural isomorphism s;°~ : c® (e©~) = c®Te(e) ® - ﬁ) Te(e)®@c®— =
e®(c®-). Then (€,id, : Te(e) ® — = e © —) belongs to LMode(Cat?).

For ¢ € @, the functor (- ® ¢,s7%) : € — € belongs to Fung(C, €), where the natural
isomorphism s;%: (e©@ —) ®c = (Te(e) ® —) ® ¢ S Te(e)®(-®c) =e O (- ®c). The category C

-1
equipped with the monoidal natural isomorphism u, : —® Te(e) =, Te(e)® — = e©—belongs
to RMode(Catfgs).

For ¢, ¢ € €, the functor c® —® ¢ : € — € equipped with the natural isomorphism

B z 111 . -
52 c®E0-)®i=c®Te(0)®-QF—— Te(e) ®c®—-®F=e0(C®-®7)

beongs to Fung (M, M). Then (€, id,, u.) belongs to BMode\@(Catfg).
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Theorem 4.18. Let € be a multifusion category over € such that &€ — Z(C) is fully faithful.
There is an equivalence of multifusion categories over €:

Fung¢(C, €) ~ Z(C, €)

Proof. Let us recall the proof of a monoidal equivalence Funeger(C, €) = Z(€) in [EGNO,
Prop.7.13.8]. Let F belong to Funege~ (C, €). Since F is a right C-module functor, we have
F =d® - for some d € C. Since F is a left C-module functor, we have a natural isomorphism

10 (x®y) =Fx®y) -5 x®F1) =x®d®Yy) x,y€C

Taking y = ¢, we obtain a natural isomorphism y; = s_;, : d® — — —®d. The compatibility
conditions of y; correspond to the axioms of module functors. Then (d, y4) belongs to Z(C).
And the composition of €-bimodule functors of € corresponds to the tensor product of objects
of Z(C).

Moreover, F belongs to Funae((i, ©). Taking m = 1¢,F = d ® — in the diagram (@.10), the
following square commutes:

1726,11 e

d®(Te(e) ® Le) d® (Le ® Tele))
yd'l\b Zedol \L
Te(e)® (d ® 1e) -c (d®1e)® Tele)

Ze1 @

eds1 1
o Ad®Te(e) ® 1e

The triangle commutes by the diagram (A.). Then we obtain z. 4 0 y4 = idagre (), i-€. (d, ya) €
Z(C, ). It is routine to check that the functor Funéle(e, @) — Z(C, &) is a monoidal functor
over E. O

Example 4.19. Let A, B be separable algebras in a multifusion category C over £. We use ACp
to denote the category of A-B bimodules in €. The left &-module structure on 4Cp is defined as
eOx = Te(e)®xfore € &, x € ACp. We use g and p, to denote the left A-action and right B-action

on x respectively. The right B-action on Te(e) ® x is induced by Te(e) ® x ® B N Te(e) ® x.

-1
The left A-action on Te(e) ® x is induced by A ® Te(e) ® x i Te(e) ®A®x Lo, Te(e) ® x.
The module associativity constraint is given by Ae, ex : (61 ® €2) O x = Te(e1 ® €2) ® x —
Te(e1) ® Te(e) ®x = e1 © (62 ©x), for eg,ex € E,x € ACp. The unit isomorphism is given by
I :1e ©x =Te(leg) ® x = 1e¢ ® x — x. Check that A, ¢, » and I, belong to ACp.

The right E-action on 4Cp is defined as x©e := x® Te(e), € € &, x € 4Cp. The left A-action on

x® Te(e)is defined as A®x Q@ Te(e) LGN x® Te(e). The right B-action on x ® Te(e) is defined as

xQTe(e)®B LN x®@B®Te(e) LN x ® Te(e). The module associativity constraint is defined
as Aye, e, X0 (1 ®€) = x®@Te(e1 ®ex) = x® Teler) ® Te(e) = (x©eq) ©ey, for x € ACp,
e1, e € €. The unitisomorphism is defined asry : xO1e = x®Te(le) = x®1e — x. Check that
Axere, and ry belong to 4Cp. Check that 4Cp equipped with the monoidal natural isomorphism

v : Te(e) ®x 25 Te(e) belongs to BModg\g(Catfg‘).
Also one can check that 4€ belongs to BMode|e(Cat) and €5 belongs to BModee (Cat?).

Example 4.20. Let M belongs to RModD(Catfgs). Then M belongs to BMOdg‘@(Catfg). The &-D
s*@d -1

bimodule structure on M is defined as (e@m)©d L> e@(mod)foranye € &, m € M. Since

(- @d,s~®) belongs to Fung (M, M) and the diagram (.5) commutes, M is an €-D bimodule

category.
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The functor e ® —©d : M — M equipped with the natural isomorphism s:>* : ¢ ©
She0-

5971
(e0-)od) — (0 (e0-)0d — (e@ (€0 -)) 0d is a left &-module functor, where
sgfa_‘ 160(0-)~ (6Re)O— N (e®8) 00— =e0(E0—)foré € . The object M both in Catf§ and
BMod¢|n (Cat®) equipped with the monoidal natural isomorphisms uf =id : e®@ - = e® -

and uP : — @ Tp(e) ~ e ® — belongs to BModgw(Catg). The monoidal natural isomorphism
u? satisfies the diagram (£.9) by the diagrams (£.3) and ({.2).

Example 4.21. Let €, D be multifusion categories over € and (M, u®, u®) € BMode@(Catf;).
The D-C bimodule structure on the category MI°PL is defined as d ot m @ ¢ := - o m o d*
ford € D,c € €,m € M. Then (MHPL 7P 7€) belongs to BMod@‘e(Catfgs). The left &-module

structure on MUPIL is defined as e ®F m = eL @ m for e € &, m € M. The monoidal natural
D

u
isomorphism 1 is defined as Ty (¢) L m = m O Top(e)- =~ m O Top(ek) == ek ©m. The monoidal
u(?
natural isomorphism i€ is defined as m O Te(e) = Te(e)- © m =~ Te(ek) ©m —= ek o m.

Example 4.22. Let €, D, P be multifusion categories over £, and (M, u®,u®) e BModen (Catfgf),
(N, 7%, 7”) € BMod ejp(Catf). Then (Fung (M, N), i, #”) belongs to BModpjp(Cats). The left
&-module structure on Fung(M, N) is defined as (e © f)(=) = Te(e) © f(-), fore € &, f €
Fung(M, N). The D-P bimodule structure on Fung(M, N) is defined as (d © f © p)(-) =
f(-od)opforanyde D,p e P. Letv)' == ) oul and v} := (@))! o . The monoidal
natural isomorphism 2 is defined as (T (¢) © f)(=) = f(= © To()) Yo F(Te(e) © —)
Te(e) © f(-) = (e® f)(-). The monoidal natural isomorphism #” is defined as (f @ Ty (e))(—) =

F) 0 Toe) 25 Te(e) 0 f(=) = (0 f)(-).

4.3 Invertible bimodules in Cat’s

Definition 4.23. Let C be a multifusion category over &, and (M, u™) € RMode(Catfg),
N, uN) € LMod@(CathS) and D € Catfg. A balanced C-module functor F : M XN — D in
Cat® consists of the following data.

e F: M xN — D is an &-bilinear bifunctor. That is, for each n € N, (F(=,n),s") : M — D
is a left &-module functor, where

st tFleom,n)~e0F(m,n), Yee&meM

is a natural isomorphism. For each g: n — n"in N, F(—,g) : F(—,n) = F(—,n’) is a left
&-module natural transformation. And for each m € M, (F(m,—),s) : N — D is a left
&-module functor, where

sf,i:F(m,e@n) ~eO®F(m,n), Veel,neN

is a natural isomorphism. For each f :c — ¢’ in C, F(f,-) : F(c,—) = F(c’, ) is a left
&-module natural transformation.

e [ : MXN — D is abalanced &-module functor (recall Def.2.3), where the balanced
&-module structure on F is defined as

F1 F2y-1
B Sem (se,n )

buen : Fim©e,n) = Fle®m,n) — e ® F(m,n) —— F(m,e O n).
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e F: MXxN — D isabalanced C-module functor (recall Def.2.3), where by, ., : F(m®c¢, n) =~
F(m,con), Ym e M,c € C,n € N, is the balanced C-module structure on F. And by, , is
a left &-module natural isomorphism. That is, the following diagram commutes

F1
e,moc

F(e@(m@c),n)s—>e®l-"(m®c,n)

—OcC
se,m 71 \L

F(leom)oc,n) L b (4.13)

ha@m,c,n \L

Fleom,con) —=eOF(m,cOn)

e,m

where the functor (— ® ¢, s7°%) € Fung (M, M), Yc € C.

such that the followng diagram commutes

bm,Tc (e)/1

F(m ® Te(e), n) F(m,Te(e) ©n)

(MZN[ )m/ll E')I,g'” llr(ugw)n (4.14)
//—\
Fleom,n) ———e©F(m,n) ——>F(m,eOn)

F2y\-1
e,m en

We use Funléa”g(M, N; D) to denote the category of balanced G-module functors in Cat’, and
natural transformations both in Funtéal(M, N; D) and Catfgs.

The tensor product of M and N over € is an object M ®¢ N in Cat®, together with a balanced
C-module functor e : M X N - M e N in Catfgs, such that, for every object D in Catfgs,
composition with ®e induces an equivalence Fung (M Re N, D) ~ Fun'éal‘g (M, N; D).

Proposition 4.24. For e, e; € £, m € M, n € N, the following diagram commutes

Fl
Se

M 1’552,11
Fe1 ©m, e, © n) ——= e1 @ F(m, e, ® n) — e, © e, © F(mm, n)

SFZ
n Teq,ep 1

ey © F(e; ©m, n) S ey ©ep © F(m,n)

72eq,m

Proof. Since F : M X N — D is a balanced €-module functor, the following outward diagram
commutes.

S§1®€ m (s§2®e ,M)_l
F((e1 ® ) © m,n) —> (1 ® e2) © F(m, n) —> F(im, (e1 ® €2) © 1)
n}wz,ll’ F1 l/nl,gz 1,552
se eq ,1m rmepm
Fle; @ 1 © m, 1) —% ¢, @ e1 © F(m, n) 62,00

F1
S
2/010m \L 1/5511,1)1

ey © F(e; ©m, n) T);F(ﬁ Om,e, On) —a O F(m,e; ©n)
ey 1 eq,m
The two triangles commute since (F(—,n),sf!) : M — D and (F(m,-),s) : N - D are
left &-module functors. The square commutes by the naturality of s'!. Then the pentagon
commutes. O
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Proposition 4.25. Fore € £,m € M, c € €,n € N, the diagram

b eOm,c,n bm,e,c@n

F(eom)oc,n) ——=FleoOm,coOn) —— F(m,e® (c ©n))
Gom) ™ l lSEﬁ‘ (4.15)
Feo(moc),n) —=F(moc,eOn) b—>F(m,c®(eOn))

moc,en m,c.eon

commutes, where the functors (—©c, s7%) € Fung (M, M) and (c©—,s°7) € Fung (N, N), Yc € C.

Proof. Consider the following diagram:

Z(‘/l
F(m © (Te(e) ® ¢), n) —> F(m © (c ® Te(e)), n)
(ue:M )m/l (HSV[ )m@ml

F((eom)Oc,n) W Fleo(moc),n)
Sf,m

hzom,c,n gmoc,e,n
b T @scn Fleom,coOn) Fmoc,eoOn) bincaTe @ (4.16)
Bm,@,con hm,c,f@n

CO—
Sen

F(m,e® (c ©n)) ——— F(m,c© (e O n))
1/("‘3\[)6071 1!(“2N)r1

E(m, (Te(e) ® ) ©m)) = F(m, (c® Te(e)) ©n))

Here z is the central structure of the central functor Te : € — €. The middle-top and middle-
down squares commute by the diagrams (4.1} and (4.3). The leftmost diagram commutes by
the diagram

bm,T e (@®cn

Fm o (Te(e) ®c), n) F(m,(Te(e) ®c) O n)
l/ meTG(Z),(‘,YI bm,TG (e),con l/
F(moTe(e)) ©c,n) —= F(m © Te(e),c ©n) —= F(m, Te(e) © (c © n))
(uBM" )mrl\L \L(”gw YL \LL(”E\[ )eon
F(eom)oc,n) —— Fle®Om,cOn) —— F(m,e ® (c © n))

bt@m,r,n

me,con

The top pentagon commutes by the balanced C-module functor F : MXN — D. The left-down
square commutes by the naturality of the balanced C-module structure b on F. The right-down
square commutes by the diagram @.I4). One can check that the rightmost diagram of (£.16)
commutes. Then the middle hexagon of (£.16) commutes. |

Corollary 4.26. By the commutativities of the diagrams (4.13) and (4.15), the following dia-
gram commutes
F2

Fmoc,eoOn) Ae@l—"(m@c,n)
F(m,c o (eon)) Lbmen
L(éﬁi’)'li

F(m,e® (c ©n)) sT>e®l—"(m,c®n)

e,con



Representation theory and Morita theory in Cat's 26

Example 4.27. Let C,D,P be multifusion categories over &, (M, u®,u®) € BModep(Cat®)
and (N, #®,4”) € BModpjp(Cats). Then (M mp N, ¢, ") belongs to BModejp(Catf). The
left E&-module structure on M R, N is defined as e © (m ®p n) = (e ®@ m) Rp n, fore € &,
mRp n € MRp N. The C-P bimodule structure on M ®p N is defined as c© (m Rp 1) O p =
(com)Rp (nOp), for c € €,p € P. The monoidal natural isomorphism #® is induced by

¢ "1/1 .
Tele) ©(mRp n) = (Te(e) ©m) Rp n ACRIN (eom)®pn = e® (mRp n). The monoidal
1,(a ) 1,@P);
? is induced by (m &y 1) © T(e) = mBp (10 T(e)) —= m &y (e© 1) — s
-1
m,Tq) (e)n (H;D )m 71

mRyp (Tp(e) On) moTple) Rpn — (eOm)®p 1 =e @ (mRp n), where b is the
balanced D-module structure on Kp : M XN — M &p N.

isomorphism

Let € be a multifusion category over & and M € LMode(Cats). Then M is enriched in
C. That is, there exists an object [x, y]le € € and a natural isomorphism Homy(c © x, y) =
Home(c, [x, yle) for c € €, x,y € M. The category C4 is enriched in € and we have [x, y]e =
(x®4 YR for x, y € C4 by [EGNO), Expl.7.9.8]. By Prop.[A4] the diagram

CB,X® R
Te(e) ® x ®4 YR —2> x®4 YR ® Te(e)

Ces1 \L T 1,CWR

x®Te(e) ®a YR —= x®4 Te(e) ® YR

commutes fore € &, x, y € C4, where cis the central structure of the central functor Te : € — C.
Let € be a multifusion category over & and A, B be separable algebras in C. By Prop.[A.6
we have the following statements.

e There is an equivalence 4C K¢ Cp S ACp, X Re Yy x®yin BMOdg‘g(Catg-s).

e Thereis an equivalence Fune(C4, Cp) S G, e f(A)in BMOdg|g(Cat’f§), whose inverse
is defined as x —» — ®4 x.

Proposition 4.28. Let C, B, D be multifusion categories over £ and M € BMod@|93(Catf§) and
N € BMode|p (Cat) . The functor @ : MHPL ge N — Fun§ (M, N), m&e n - [, m]f ©n,is an
equivalence of B-D-bimodules in Catfgs.

Proof. There are equivalences of categories MHPl me N =~ Fune(M, N) = Fun$(M, N) by [KZ,
Cor.2.2.5] and Rem.[4.8 The B-D bimodule structure on ® is induced by

(bom)Re(nod) = (mEbHRe(nod) - [-, mobRo(ned) ~ ([-ob, mIRon)ed = bo([-, m]Ron)od
form e M,n € N,b € B,d € D, where the equivalence is due to the canonical isomorphisms
Home(c, [-,m © bt]e) =~ Homy(c ©@ —, m @ b*) =~ Homy(c @ — © b, m) =~ Home(c, [- © b, m]e)

for ¢ € C. The left &-module structure on @ is induced by the left B-module structure on .
Recall Expl.4.21} B.27land 4.22] Tt is routine to check that @ satisfy the diagram (£.10). o

Definition 4.29. Let €, D be multifusion categories over & and M € BModgp(Cats). M is
right dualizable, if there exists an N € BModme(Catfgs) equipped with bimodule functors
U:D->NReMandv: MRp N — Cin Ca’ffgs such that the composed bimodule functors

IvRpu Re 1y

M2MRp D —— MR NRe M —> CRe M =M

uRp 1 IxRev

N2DRpN— S NRe MEp N —> NRe Cx=N

in Cat’s are isomorphic to the identity functor. In this case, the D-C bimodule N in Cat? is left
dualizable.
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Proposition 4.30. The right dual of M in BModejp (Cats) is given by a D-C bimodule MM
in Catfgs equipped with two maps u and v defined as follows:

u:D — FuneM, M) =~ MHPLl me M,  di —0d,
v Mrp MHPE ¢, xmpy e [x YR (4.17)
Proof. By [AKZ, Thm. 4.6], the object MUPI in BModpje(Cat™), equipped with the maps u

and v, are the right dual of M in BMod e (Cat®). It is routine to check that u is a D-bimodule
functor in Cat and v is a C-bimodule functor in Cat. ]

Definition 4.31. Let €, D be multifusion categories over &. AnM € BMode‘@(Catfgs) isinvertible
if there is an equivalence D™ ~ Fun§(M, M) of multifusion categories over €. If such an
invertible M exists, € and D are said to be Morita equivalent in Cat’.

Proposition 4.32. Let M belong to BModew(Catfg). The following conditions are equivalent.
(i) M is invertible,

(ii)) The functor D™V — Funé(M, M),d — — ©d is an equivalence of multifusion categories
over €&,

(iii) The functor € — PunfD (M, M), c = ¢ © — is an equivalence of multifusion categories

over €.
Proof. We obtain (i) ¢ (ii) by the Def.[4.31] Since Funiung o M)(M’ M) and € are equivalent as
multifusion categories over & by Prop 413, we obtain (ii) < (iii). m|

4.4 Characterization of Morita equivalence in Cat®

Convention 4.33. Throughout this subsection, we consider multifusion categories C over &£
with the property that &€ — Z(€) is fully faithful.

Let € and D be multifusion categories over €. We use  and y to denote the central
structures of the central functors Te : € — Cand Tp : € — D respectively.

Theorem 4.34. Let M be invertible in BModew(Catfgs). The left action of Z(C, €) and the right
action of Z(D, €) on FunéID (M, M) induce an equivalence of multifusion categories over &

Z(€,€) 5 Funf, (M, M) & Z(D, €)
Moreover, Z(C, €) and Z(D, ) are equivalent as braided multifusion categories over €.

Proof. Since M is invertible, the functor € — Funpr (M, M), z = z © — is a monoidal equiva-

lence over €. Then the induced monoidal equivalence L : Z(C, £) iimind i FunéD (M, M)

is constructed as follows.

e An object z € Z(C, €) is an object z € €, equipped with a half-braiding .. : z®c = c®z

for all ¢ € €, such that the composition z ® Te(e) Fereo, Te(e)®z Frees, z®Tel(e),e€ &,

equals to identity.
e Anobjectz® —in FunéD(M, M) is an object z ® — in Fun,...(M, M) for z € €, equipped

with a natural isomorphism z©c© - E) c®z0®—force C,— € M. The left &-module
structure on z © — is induced by Prop.7l Notice that z © — satisfies the diagram (4.10)

by the last diagram in Rem.E.T5and the equality fre()- = B, o
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It is routine to check that L is a monoidal functor over €. By the same reason, the functor

R: Z(D,&) =~ Z(D, &) > Funng(M, M) is defined by (a,Va-) — (= @ a,),-), where the

second y, - is a natural isomorphism —©a©d 2y _odoaford e D. Thus Z(C, &) ~Z(D,¢).

Suppose R™1 o L : Z(C, &) — Z(D, &) carries z,z’ to d, d’, respectively. The diagram

20 0x) —= (Z 0x)0d —= (x0d')od

Boz Ly l l = \L Loyaa

Z0zox)—=20(x0d) — (xod)od

commutes for x € M. Since the isomorphism z @ — =~ — © d is a left ¢-module natural
isomorphism, the left square commutes. Since the isomorphism z’ © — ~ —© d’ is a right
D-module natural isomorphism, the right square commutes. Then the commutativity of
the outer square implies that the equivalence R™! o L preserves braidings. The equivalence

BM
R7'oL, equipped with the monoidal natural isomorphism L(T¢(e)) = Te(e)©0— — —OTn(e) =
R(Tp(e)), is the braided equivalence over £. |

Lemma 4.35. Let C be a fusion category over € such that the central functor Te : € — Cis
fully faithful. Let f : Z(C,€) — € and Ie : C — Z(C, €) denote the forgetful functor and its
right adjoint.

(1) There is a natural isomorphism Ie(x) = [Le, x]zec,e) for all x € C.

(2) The object A := Ie(1e) is a connected étale algebra in Z(C, €); moreover for any x € €,
the object I¢(x) has a natural structure of a right A-module.

(3) The functor I¢ induces an equivalence of fusion categories C =~ Z(C, £)4 over E. Notice
that Z(C, €)4 is the category of right A-modules in Z(C, £).

Proof. For any z € Z(C, £), x € C, we have the equivalences Homyzc ¢)(z, Ie(x)) = Home(z, x) =
Homyzc,e)(z, [Le, X]ze,¢))- By Yoneda lemma, we obtain Ie(x) = [Le, x]zc,¢)-

Since Te : € — C is fully faithful, the forgetful functor f : Z(C, €) — € is surjective by
[DNO, Lem. 3.12]. By [DMNO), Lem. 3.5], the object A is a connected étale algebra and there
is a monoidal equivalence € = Z(C, £)4. More explicitly, for any object x € C, the object
Ie(x) = [1e, x]ze,¢) is a right A-module and the monoidal functor

Ie =[1e,~1z@c,e): € = Z(C,€)a
is a monoidal equivalence. The left A-module structure on I¢(x) is given by A ® Ie(x) Paicw

Ie(x) ® A — Ie(x). One can check that for x = f(z) € C with z € Z(C, ), one have [¢(x) 2 z® A
(as A-modules). The monoidal structure on I¢ is induced by

pry : le(x®y) = [1e, £(2) ® ylze,e) = 2@ [1e, Ylze,e) = 2@ A ®a le(y) = Ie(x) ®a Ie(y)

for x,y € C. Since f is surjective, u, , is always an isomorphism. Z(C, £)4 can be identified
with a subcategory of the fusion category 4Z(C, €) 4. Recall the central structure on the functor
& — 4Z(C, &), by Ex.B.9l The structure of monoidal functor over & on I¢ is induced by
le(Te(e) = [1e, Te(e)lze,e) = Tele) ® A. o

Lemma 4.36. Let C and D be fusion categories over £ such that the central functors Te :
€ = Cand Tp : € — D are fully faithful. Suppose that Z(C, €) is equivalent to Z(D, £)
as braided fusion categories over £. We have FPdim(C) = FPdim(D) and FPdim(le(1e)) =

FPdim(Ip(1p)) = %ﬁg, where FPdim is the Frobenius-Perron dimension.



Representation theory and Morita theory in Cat's 29

Proof. Z(C, €) is a subcategory of Z(C). By [DGNO, Thm. 3.14], we obtain the equation
FPdim(Z(C, £))FPdim(Z(C, £)) = FPdim(Z(C))FPdim(Z(C, &) N Z(C)")

Since the equations Z(C, &)’ = &, Z(C)’ = Vec and FPdim(Z(€)) = FPdim(€)? (recall [EGNO,
Thm. 7.16.6]) hold, we get the equation

FPdim(C)>

FPdim(Z(€, €)) = FPdim(€)

(4.18)

Since Z(C, €) = Z(D, €) and the numbers FPdim(€) and FPdim(D) are positive, FPdim(C) =
FPdim(D).
Since f : Z(C, £) — C is surjective, we get the equation

. _ FPdim(Z(C, &) _ FPdim(C)
FPdim(le(Te)) = —ppgin@) ~ FPdim(e)

by [EGNO) Lem. 6.2.4] and the equation (4.18). Then we have FPdim(I¢(L¢)) = FPdim(In(1p)).
O

Lemma 4.37. Suppose that f : Z(C) = Z(D) is an equivalence of braided multifusion cate-
gories and u, : f(Te(e)) = Tp(e) is a monoidal natural isomorphism in Z(D) for all e € €. Then
f induces an equivalence Z(C, €) ~ Z(D, €) of braided multifusion categories over €.

Proof. Suppose that f : Z(C) — Z(D) maps (x, By,-) to (f(x), V' w),-)- If the object (x, ;- ) belongs
to Z(C, €), the object (f(x), 7 fw),-) belongs to Z(D, €) by the commutativity of the following
diagram.

Fr®Te() —> f(x) ® f(Te(e) > f(x) ® T (e)
ﬁx,Te (e) \L \L?’f(X),f(Te(f)) l?’f(X)yTvD (e)
F(Te(e) ® x) — f(Te(e) ® F(x) > Ton(e) ® f(x)
ﬁTG(B),xl lVf(Te(f)),f(X) l)’T«D ©.f(x)
Fr®Te(e) — f()® f(Te(e)) ~~> f(x) ® T (e)

Since f is the braided functor, the left two squares commute. The right-upper square com-
mutes by the naturality of yf()-. The right-down square commutes by reason that u, is a
natural isomorphism in Z(D). Since the equation fr,()x © By 1. = id holds, we obtain the
equation Yr,, ), f(x) © ¥ f),T»( = id. Then f induces an equivalence Z(C, €) ~ Z(D, €). |

Example 4.38. Let C be a fusion category over £ and A a separable algebra in C. By [EGNO,
Rem. 7.16.3], there is a monoidal equivalence @ : Z(C) — Z(4Ca), (z, Bz-) = (2®A, Bzga), Where
Bze4 is induced by

Z,X 1’[7);1
z®A®AxEz®xﬁ—'>x®zgx®AA®z—A>x®Az®A, VYx € ACa

® induces the monoidal equivalence Z(C, €) = &'|z¢) = €|z(e.) = Z(4Ca, €). Recall the central
structure on the functor I : & — 4C4 in Ex.B.9 We obtain ®(Te(e)) = Te(e) ® A = I(e). Then
Z(C, &) = Z(ACa, €) is the monoidal equivalence over €.

Let €4 be an indecomposable left @-module in Cat®. By [EGNO, Prop.8.5.3], @ : Z(C) ~
Z(4C4) is the equivalence of braided fusion categories. By Lem/4.37, @ : Z(C, &) =~ Z(4C4, &) is
the equivalence of braided fusion categories over £.
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Lemma 4.39. Let C be a fusion category over € and M an indecomposable left C-module in
Cat®®. Then FPdim(€) = FPdim(Fune (M, M)).

Proof. Since M is a left G-module in Cat™, there is a separable algebra A in € such that M ~ C,4.
Recall the equivalences Z(C, &) =~ Z(4Cx, &) in Expl.4.38and 4€4 ~ Fune(Ca, C4)™ in Prop.[A5l
Then we get the equations

FPdim(C)>
FPdim(€)

FPdim(AGA)Z _ FPdim(Pune(GA, eA))2
FPdim(&) FPdim(€)

= FPdim(Z(C, &)) = FPdim(Z(.Cy, &)) =

The first and third equations are due to the equation (4.18). Since the Frobenius-Perron
dimensions are positive, the result follows. m|

Thm. 8.12.3 of [EGNQ] says that two finite tensor categories C and D are Morita equivalent
if and only if Z(C) and Z(D) are equivalent as braided tensor categories. The statement and
the proof idea of Thm.[4.40 comes from which of Thm. 8.12.3 in [EGNO].

Theorem 4.40. Let Cand D be fusion categories over € such that the central functors Te : € — €
and Tp : € — D are fully faithful. € and D are Morita equivalent in Catfgs if and only if Z(C, €)
and Z(D, €) are equivalent as braided fusion categories over €.

Proof. The ”only if” direction is proved in Thm.[4.34
Let C, D be fusion categories over ¢ such that there is an equivalence a : Z(C, €) = Z(D, &)

as braided fusion categories over €. Since Ip(1p) is a connected étale algebra in Z(D, €),
L :=a ' (Ip(1p)) is a connected étale algebra in Z(C, €). By Lem.[.35) there is an equivalence

D =~ Z(G, E)L

of fusion categories over €.

By [DMNO, Prop.2.7], the category Cr. of L-modules in € is semisimple. Note that the
algebra L is indecomposable in Z(C, £) but L might be decomposable as an algebra in C, i.e.
the category ;C; is a multifusion category. It has a decomposition

L = @ (LGL)ij

ije]

where | is a finite set and each (LG L)ﬁ is a fusion category. LetL = . ; Li be the decomposition

of L such that Cr, ~ (LGL)ii' Here L;,i € |, are indecomposable algebras in € such that the
multiplication of L is zeroon L; ® Lj, i # j.
Next we want to show that there is an equivalence Z(C, €);. =~ 1 Cy, of fusion categories over

€. Consider the following commutative diagram of monoidal functors over &:

Z—2Z®L,;

Z(C,¢) Z(1Cr,, €)

Zb—>z®Ll lf

Z(C,E)r c1Z(C E) 1L ——— 18,

f

7; is projection and 7;(x ® L) = ¥ ® L;. The top arrow is the equivalence by Expl.4.38 Next we
calculate the Frobenius-Perron dimensions of the categories Z(C, £);. and .Cy,:

_ FPdim(Z(C, €))

FPdlm(Z(G’, 8)L) = W = FPdlm(G’) = FPdim(LIGLI)
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The first equation is due to [DMNO), Lem. 3.11]. The second equation is due to FPdim(L) =
FPdim(I¢(1e)) = FPdim(Z(C, €))/FPdim(C) by Lem.l.36 The third equationis due to Lem.
Since m; o f is also surjective, 7; o f is an equivalence. Then we have monoidal equivalences
over & D ~ Z(G, S)L ~ L,-GL, ~ Fune(GLi, GLI)reV. O

4.5 Modules over a braided fusion category over &

Let € and D be braided fusion categories over €. In this subsection, fusion categories M over
& with the property that &€ — Z(M) is fully faithful.

Definition 4.41. The 2-category LMode(Alg(Cat®)) consists of the following data.

e A class of objects in LMod@(AIg(Catfg)). An object M € LMode(Alg(Catfgs)) is a fusion
category M over & equipped with a braided monoidal functor ¢x : € — Z(M, ) over
E.

e For objects M, N in LMod(Alg(Cat5)), a T-morphism F : M — N in LMode(Alg(Cats))
is a monoidal functor F : M — N equipped with a monoidal isomorphism u™
F o ¢t = ¢ such that the diagram

MN

F(di(0) ® ) —— E(rnc(€)) ® E(m)"*—2> () ® Flm)
ﬁ“l lﬁ (4.19)
Fm @ 0(©) —— FOm) ® F(aa(©) = FOm) © 9x(0)

commutes for ¢ € €, m € M, where (pe(c), B) € Z(M, &) and (P (c), ) € Z(N, &).

e For 1-morphisms F,G : M =2 N in LMode(Alg(CathS)), a 2-morphism « : F = G in
LMode(Alg(Catfg‘)) is a monoidal isomorphism «a such that the diagram

Appe(©)

F(p(c)) ———— G(Pa(0))

uCMN\\ /ﬁCMJ\

P (c)

M

commutes for ¢ € €, where u™N and 7™ are the monoidal isomorphisms on F and G

respectively.

Remark 4.42. If F : M — Nisa l-morphism in LMod@(AIg(Catg)), Fis aleft -module functor
and a monoidal functor over &. By Lem.B4] the left C-module structure s on F is defined as
MMN —
F(com) = F(pm(c) ® m) — F(pai(c)) ® F(m) LN Pn(c)®F(m) = cOF(m)forallc e C,me M.
Let u®™M : ¢ 0 Te = Ty and u®N : ¢ o Te = To be the structures of monoidal functors

over € on ¢y and ¢y respectively. The structure of monoidal functor over € on F is induced

. 1,(u(‘32M")—1 1IMN,1 u(‘?N
by the compositionv: FoT)y =——= Fo ¢y o Te =—= PN o0 Te = Tx.

The 2-category RModp (Alg(Cat®)) consists of the following data.

e An object M € RModn(Alg(Cats)) is a fusion category M over & equipped with a
braided monoidal functor ¢ : D — Z(M, €) over €.

¢ 1-morphisms and 2-morphisms are similar with which in the Def.4.41]
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And the 2-category BModep (Alg(Catfg‘)) consists of the following data.

e An object M € BModejp(Alg(Cat¥)) is a fusion category M over & equipped with a

braided monoidal functor ¢y : CrReD — Z(M, &) over &. An object M € BMode@(Alg(CathS))
is closed if ¢y is an equivalence.

e 1-morphisms and 2-morphisms are similar with which in the Def.[.41]

5 Factorization homology

In this section, Sec.5.1 recalls the definitions of unitary categories, unitary fusion categories
and unitary modular tensor categories over € (see [LKW, Def. 3.15, 3.16, 3.21]). Sec. 5.2 recalls
the theory of factorization homology. Sec.5.3 and Sec. 5.4 compute the factorization homology
of stratified surfaces with coefficients given by UMTC ¢ ’s.

5.1 Unitary categories

Definition 5.1. A *-category C is a C-linear category equipped with a functor » : € — C°P
which acts as the identity map on objects and is anti-linear and involutive on morphisms.
More explicitly, for any objects x, y € C, there is a map * : Home(x, y) — Home(y, x), such that

©of)y=fog, AN =Af, (f)y=f

for f:u—v,9:v—>wh:x—y, A e C*. Here C denotes the field of complex numbers.

A *functor between two *-categories € and D is a C-linear functor F : € — D such that
F(f*) = F(f)" for all f € Home(x,y). A #-category is called unitary if it is finite and the
+-operation is positive, i.e. f o f* = 0 implies f = 0.

Definition 5.2. A unitary fusion category C is both a fusion category and a unitary category
such that * is compatible with the monoidal structures, i.e.

(g®h)'=g¢g'®h, Vg:v-owh:x—>y
Wpye =y V=V Pr= 0%

forx,y,z,v,w € C, where a, y, p are the associativity, the left unit and the right unit constraints
respectively. A unitary braided fusion category is a unitary fusion category € with a braiding
csuch thatc;, = c;, forany x,y € C.

A monoidal »-functor between unitary fusion categories is a monoidal functor (£, ]) : € — D,
such that Fis a »-functorand J} , = |, 1y forx, y € C. A braided +-functor between unitary braided
fusion categories is both a monoidal *-functor and a braided functor.

Remark 5.3. Let € be a unitary fusion category. € admits a canonical spherical structure. The
unitary center Z*(C) is defined as the fusion subcategory of the Drinfeld center Z(C), where
(x,¢x-) € Z°(C) if ¢, _ = c;}_. Z*(€) is a unitary braided fusion category and Z*(C) is braided
equivalent to Z(C) by [GHR)| Prop. 5.24].

Definition 5.4. A unitary E-module category C is an object € in Catf§ such that € is a unitary
category, and the * is compatible with the £-module structure, i.e.

(o) =iof, Mg=As, L=L
fori:e—>¢é€¢€,j:x — yeC where A and | are the module associativity and the unit
constraints respectively. Notice that symmetric fusion categories are all unitary.

Let C, D be unitary £-module categories. An E-module *-functor is an E-module functor

(F;s) : € > D such that F is a »-functor and s}, = s, 1 fore € &,x € C.
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Remark 5.5. Let € be an indecomposable unitary €-module category. Then the full subcat-
egory Fun?(C, C) c Fung(C, C) of E-module *-functors is a unitary fusion category. And the
embedding Fun’ (€, €) — Fung(C, €) is the monoidal equivalence by [GHR| Thm, 5.3].

Definition 5.6. A unitary fusion category over € is a unitary fusion category A equipped with
a braided #-functor T’; : & — Z(A) such that the central functor & — A is fully faithful. A
unitary braided fusion category over € is a unitary braided fusion category € equipped with a
braided *-embedding Te : € — €. A unitary modular tensor category over & (or UMTC ¢ ) is a
unitary braided fusion category € over € such that ¢’ = £.

Let C be a unitary fusion category.

Definition 5.7. Let (A,m: A® A — A,n:1e — A)be an algebra in C. A *-Frobenius algebra in
Cis an algebra A in € such that the comultiplication m* : A - A ® A is an A-bimodule map.
Let A be a *-Frobenius algebra in € and M a unitary left C-module category. A left +-A-module
in M is a left A-module (M, g : A® M — M) such thatg" : M — A® M is a left A-module map.

Remark 5.8. A #-Frobenius algebra in € is separable. The full subcategory sJM* C sM of
left *-A-modules in M is a unitary category. The embedding sM* — M is an equivalence.
Similarly, one can define M, and AM,.

If the object (xl,evy : xl ® x — 1¢,coev, : 1¢ — x ® x) is a left dual of x in €, then
(b, coevy : x @ xt — 1g,evy : 1e — x! ® x) is the right dual of x in €. Here we choose the
duality maps ev, and coev, are normalized. That is, the induced composition

Home(le, x® —) SAEN Hom@(xL, -) RALN Home(le, — ®x)

is an isometry. Then the normalized left dual x" is unique up to canonical unitary isomor-
phism. Let (A, m, 1) be a *-Frobenius algebra in €. The object (A,n"om: A®A — le,m" on:
le — A® A)is the left (or right) dual of A in C.

Definition 5.9. A +Frobenius algebra A in € is symmetric if the two morphisms ®; = @, in
Home(A, AL), where

Dy :=[(n"om)®idyr] o (ids ® coeva) and @D, :=[idy ® (7" o m)] o (ev), ®idx)
The following proposition comes from Hao Zheng’s lessons.

Proposition 5.10. Let M be a unitary left C-module category. Then there exists a symmetric
+-Frobenius algebra A such that M ~ €, as unitary left C-module categories.

5.2 Factorization homology for stratified surfaces
The theory of factorization homology (of stratified spaces) is in [AF1} [AFT2, [AF2].

Definition 5.11. Let Mfld;," be the topological category whose objects are oriented n-manifolds
withoutboundary. For any two oriented n-manifolds M and N, the morphism space Homyqaqor (M, N)
is the space of all orientation-preserving embeddings ¢ : M — N, endowed with the compact-

open topology. We define Mfld;" to be the symmetric monoidal co-category associated to the
topological category Mfld;". The symmetric monoidal structure is given by disjoint union.

Definition 5.12. The symmetric monoidal co-category Disk)" is the full subcategory of Mfldy"
whose objects are disjoint union of finitely many n-dimensional Euclidean spaces [[; R"
equipped with the standard orientation.
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Definition 5.13. Let V be a symmetric monoidal co-category. An n-disk algebra in V is a
symmetric monoidal functor A : Disk;” — V.

Let Vyuy be the symmetric monoidal (2,1)-category of unitary categories. The tensor
product of Vyy is Deligne tensor product ®. Expl. 3.5 of [AKZ]] gives examples of 0-, 1-, 2-disk
algebras in V. A unitary braided fusion category gives a 2-disk algebra in V. A 1-disk
algebra in Vyy is a unitary monoidal category. A 0-disk algebra in Vyy is a pair (P, p), where
P is a unitary category and p € P is a distinguished object. We guess that the n-disk algebra
in Vyiy equipped with the compatible £-module structure, is the n-disk algebra both in Vyy

and Cat®, forn = 0,1,2.

Assumption 5.14. Let Vity be the symmetric monoidal (2,1)-category of unitary &-module
categories. We assume that a unitary braided fusion category over € gives a 2-disk algebra in
Vi, @ unitary fusion category over € gives a 1-disk algebra in V{, , and a unitary &-module

uty’
category equipped with a distinguished object gives a 0-disk algebra in Vity.

Definition 5.15. An (oriented) stratified surface is a pair (X, X 5 {0,1,2}) where L is an oriented
surface and 7t is a map. The subspace ¥; := 7t71(i) is called the i-stratum and its connected
components are called i-cells. These data are required to satisfy the following properties.

(1) Xp and Xo U X are closed subspaces of L.

(2) For each point x € X1, there exists an open neighborhood U of x such that (L[, UNE;, UN
o) = (R%, R, 0).

(3) For each point x € L, there exists an open neighborhood V of x and a finite subset
I c SY, such that (V, VN X1,V N Ep) = (R?, C(I)\{cone point}, {cone point}), where C(I) is
the open cone of I defined by C(I) =1 x[0,1)/I x {0}.

(4) Each 1-cell is oriented, and each 0-cell is equipped with the standard orientation.
There are three important types of stratified 2-disks shown in [AKZ] Expl. 3.14].

Definition 5.16. We define Mfld®" to be the topological category whose objects are stratified
surfaces and morphism space between two stratified surfaces M and N are embeddings
e : M — N that preserve the stratifications, and the orientations on 1-, 2-cells. We define
MfId®™ to be the symmetric monoidal co-category associated to the topological category
Mfld*". The symmetric monoidal structure is given by disjoint union.

Definition 5.17. Let M be a stratified surface. We define Disk} to be the full subcategory of
MfId*" consisting of those disjoint unions of stratified 2-disks that admit at least one morphism
into M.

Definition 5.18. LetV be a symmetric monoidal co-category. A coefficient on a stratified surface
M is a symmetric monoidal functor A : Diskj; — V.

A coefficient A provides a map from each i-cell of M to an i-disk algebrain V.

Definition 5.19. Let V be a symmetric monoidal co-category, M a stratified surface, and
A : Disky] — V a coefficient. The factorization homology of M with coefficient in A is an object
of V defined as follows:

f A := Colim((Disk§ih) m - Diskiy = V)
M

where (Disk3y),m is the over category of stratified 2-disks embedded in M. And the notation

Colim((@iskf‘\ff) M Aoy V) denotes the colimit of the functor A o i.
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Definition 5.20. A collar-gluing for an oriented n-manifold M is a continuous map f : M —
[-1,1] to the closed interval such that restriction of f to the preimage of (-1, 1) is a manifold
bundle. We denote a collar-gluing f : M — [-1,1] by the open cover M_ Upxg My =~ M,
where M_ = f1([-1,1)), M, = f1((-1,1]) and My = f1(0).

Theorem 5.21. ([AF1] Lem. 3.18). Suppose V is presentable and the tensor product® : VXV —
V preserves small colimits for both variables. Then the factorization homology satisfies ®-
excision property. That is, for any collar-gluing M_ Upxr M+ = M, there is a canonical

equivalence:
A= f A f A
Ja 2 ® ),

Dt
Remark 5.22. If U is contractible, there is an equivalence qu ~Ain V.

Generalization of the ®-excision property is the pushforward property. Let M be an oriented
m-manifold, N an oriented #-manifold, possibly with boundary, and A an m-disk algebra in
a ®-presentable co-category V. Let f : M — N be a continuous map which fibers over the
interior and the boundary of N. There is a pushforward functor f. sends an m-disk algebra
A on M to the n-disk algebra f.A on N. Given an embedding e : U — N where U = R" or
R""1x[0,1), an n-disk algebra f.A is defined as (£.A)(U) : ) A. Then there is a canonical

equivalence in V

- ff‘l(e(u)

fN A= L A (.1)

Lemma 5.23. Let C be a multifusion category over € such that &€ — Z(C) is fully faithful. Then
the functor € Rz e ¢) € — Fung(C,C) given by a Ry ey b = a® — ® b is an equivalence of
multifusion categories over €.

5.3 Preparation

Proof. €™V and € are the same as categories. The composed equivalence (as categories):

idmze,e)0"
(¢ Nze,e) (¢ &) ¢ Nze,e) ©op l) erev Re C

carries ARz e b > aRzee bt - [a, bL]Iérevlzg o» Where vis induced by Thm.@.I8and Eq. @12).
Notice that the object € in LModewvw, ¢ (Cat®) is faithful. The composed equivalence

rev 6R|Zgid 0
C ng—>prgG—>Fung(€,G)

cRe d > R Egdl—)[—,CR]?Od

maps|a, bL]Iém,me toa functor f € Fung(C, €). Note that Home([x, c*]¥od, y) ~ Home ([x, X%, [d, y]e) =

Home (1e, [d, y]le ®[x, cR]e) ~ Homewg, e(c® Re d, x Re y) ~ Homervg, e(c Re d, x" B¢ y), which
implies

Home(f(x), y) ~ Homerevg, c([a, bL]Zérevlzg @r 1= y) ~ Home(@®x®b,y)

ie. f ~a®—®b. Here the second equivalence above holds by the equivalence (x B¢ y) ®
[0, ewm. e = [a, (" Be y) © VHewm, e = [0,y @ D" @ ¥ ewa, e

Then the functor ® : € Ryee) € — Fung(C,C),a Rzee b — a® — ® b is a monoidal
equivalence. Recall the central structures of the functors Teg, . ex : € = CRyzee) € and
T : &€ — Fung(C, C) in Expl.B.8 and Expl.B.Z respectively. The structure of monoidal functor
over € on @ is induced by @ o Teg, . crv(e) = Te(e) ® —® 1e = Te(e) ® — = T¢. O
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Lemma 5.24. Let € be a multifusion category over € such that & — Z(C) is fully faithful and
X a left C-module. There is an equivalence in Catfgs

e Nze,e) Fune(x, :X:) ~ Fung (DC, :X:)
Proof. Corollary 3.6.18 of [Sul says that there is an equivalence
Fune(DC, :X:) = Funegg Qrev (G’, Fung (DC, :X:))

Wehave equivalences CRz e ¢)C™ Rerr CPReg, erv Fung (X, X) = Fung (€, C)Reg, ervFung (X, X) =
CP Re C Reg, erv Fung (X, X) = Fung (X, X). The first equivalence holds by the Lem.5.23 O

Lemma 5.25. Let C be a semisimple finite left £-module. There is an equivalence C° Bgyn, (¢,¢)
€ =~ & in Cat®.

Proof. The left Fung(C, C)-action on € is defined as f © x := f(x) for f € Fung(C, €),x € C. The
composed equivalence

C REung ,e) € = € Rpun, (e,eye CP = &

carries 4 Rpun,(c,e) b — b Rpung ey 4 > [b, a]’é, where the second equivalence is due to

Thm.4.13and Eq. @17). |

5.4 Computation of factorization homology

Modules over a fusion category over £ and modules over a braided fusion category over
€ can be generalized to the unitary case automatically. Let C be a unitary fusion category
over £. A closed object in LMode(Vy,) is an object M € V{,  equipped with a monoidal

equivalence (¢, u) : € — Fung (M, M) over & such that ¢ is a monoidal *-functor and u} = u;!
for e € £. Let A and B be unitary braided fusion categories over £. A closed object in
BMod 48 (Alg(Vfty)) is a unitary fusion category M over € equipped with a braided monoidal

equivalence (¢, u) : ARe B — Z(M, &) over & such that ¢ is a braided *-functor and u} = u;!
fore e €.

Definition 5.26. A coefficient system A : Diskj; — Vf;ty on a stratified surface M is called
anomaly-free in Cat’s if the following conditions are satisfied:

o The target label for a 2-cell is given by a UMTC .

o The target label for a 1-cell between two adjacent 2-cells labeled by A(left) and B(right)
is given by a closed object in BMod 4 (Alg(V,))-

e The target label for a 0-cell as the one depicted in Figure[Ilis given by a 0-disk algebra

(P,p)in Vﬁty, where the unitary -module category P is equipped with the structure of

a closed left fM\ o A-module, i.e.

f A =~ Fung (P, P)
M\{0}

Example 5.27. A stratified 2-disk M is shown in Fig.[l An anomaly-free coefficient system A
on M in Cat’ is determined by its target labels shown in Fig.[I]

o The target labels for 2-cells: A, B and D are UMTC/¢’s.
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D

L

Figure 1: The figure depicts a stratified 2-disk with an anomaly-free coefficient system A in
Cat® determined by its target labels.

e The target labels for 1-cells: £ is a closed object in BMod 4p(Alg(VE, ), M a closed

uty

object in BModp5 (Alg(VE,,)) and N is a closed object in BMod 45 (Alg(VE,.)).

uty uty
o The target labels for 0-cells: (P, p) is a closed left module over £ ®grevg, o (M Rz N™V).

The data of the coefficient system A : Disk}y — Vﬁty shown in Fig.[dlare denoted as

A=(A,B,D;L,MN;(P,p)

Example 5.28. Let C be a UMTC/¢. Consider an open disk D with two 0-cells p1, po. And a
coefficient system assigns € to the unique 2-cell and assigns (C, x1), (C, x2) to the 0-cells p1, p2,
respectively. By the ®-excision property, we have

f o (E0;(Cx), (€)= (€05 (€, x1) ®e (€,x2)) = (€03 (€, x1 © x0))
(D;0;p1Up2)

Notice the equivalence C ®¢ € = € is defined as x ®c y = x ® y, whose inverse is defined as
m le ®c mforx,y,me C.

Consider an open disk D with finitely many 0-cells p1,...,p,. And a coefficient system
assigns C to the unique 2-cell and assigns (C, x1), ..., (C, x,) to the O-cells py, . . ., pn, respectively.
We have

f (G/ 01 (G/ xl)/ ceay (e/ xn)) = (e/ 0/ (e/ X1 ®---Q xn))
(O:0:p1,-...n)

Theorem 5.29. Let Cbea UMTC ¢ and xy, ..., x, € C. Consider the stratified sphere S2 without
1-stratum but with finitely many O-cells py, ..., p,. Suppose a coefficient system assigns € to
the unique 2-cell and assigns (C, x1), ..., (€, x,,) to the O-cells p, .. ., p, respectively. We have

f (e/ 0/ (G,X1),. "/(e;xn)) = (8/ []]-C/xl ®- ”®xn]8) (52)
(S%0:p1,---1Pn)

Proof. If we map the open stratified disk (;0;ps, . ..,px) to the open stratified disk (; 0; p)
and map the points py, ..., p, to the point p. We have the following equivalence by Expl.[5.28]

f (C;0;(C,x1),...,(C,xp)) = f (C0;,(Cx1®---®xy))
(O0:p1,-...) (D:0;p)

On the stratified sphere (5% 0;p), we add an oriented 1-cell S! \ p from p to p, labelled
by the 1-disk algebra C obtained by forgetting its 2-disk algebra structure. We project the
stratified sphere (S%; S! \ p; p) directly to a closed stratified 2-disk (D; S \ p;p) as shown in
Fig.[2l (a). Notice that this projection preserves the stratification. Applying the pushforward
property (5.I) and the ®-excision property, we reduce the problem to the computation of the
factorization homology of the stratified 2-disk.

f (©0;(C,x1), ..., (€, X)) :f (CmeECExne-®1))
(S%0:p1,--.1Pn) (D;S"\pip)
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¢
Fung (G, ©)
Cx®...xy) (C lg)e—r—=(C,x1® - ®xy)
G
(a) (b)

Figure 2: The figure depicts the two steps in computing the factorization homology of a sphere
with the coefficient system given by a UMTC¢.

Notice that C B C =~ Z(C, &). Next we project the stratified 2-disk vertically onto the closed
interval [-1, 1] as shown in Fig.2l(b). Notice that € Rz ¢) €*¥ =~ Fung(C, €). The final result
is expressed as a tensor product:

f (C0;(C x1),...,(C x,)) = ((:’ Rrune (€,¢) € le Beung (e,e) (X1 ® -+ ®xn))
(S%50;p1,-Pn)

By Lem.5.25/and Lem.[A.9] the composed equivalence
€ Rrune (e,¢) € = C%P Rpun, (e,¢) C = C BEung (e,eyer CF = €

carries X Rrun (¢,€) ¥ — XX Rune (€,€) ¥ > Y REung (e X< > [1, xR]Ié = [xR, y]e. Taking x = 1¢
and y = x; ® --- ® x,, in the above composed equivalence, we obtain Eq. (5.2). o

Theorem 5.30. Let C be a UMTC/¢ and x1,...,x, € C. Let ¢ be a closed stratified surface
of genus g without 1-stratum but with finitely many 0-cells py, ..., p,. Suppose a coefficient
system assigns € to the unique 2-cell and assigns (C, x1),...,(C, x,) to the 0-cells p1,...,px,
respectively. We have

f (©0;(Cx1), ..., (€ x) = (& [Le, 118+ ® 2, ® (T(A) ®1(a) N (A)N*]e)  (5.3)
(Zg;@;plr~-~rpr1)

where A is a symmetric +-Frobenius algebra in € such that there exists an equivalencen : € = €4
inV¢ and T: & — € is the braided embedding.

uty

Proof. Since € is a unitary &-module category, there exists a symmetric *-Frobenius algebra
A in € such that € =" £, in Vﬁty. Notice that Eq. (5.3) holds for genus ¢ = 0 by Thm.[5.29

Now we assume ¢ > 0. The proof of Thm.[5.29implies that lek € =~ Fung(C, €). By ProplA.6]
Lem.[AZland Lem.[A.§] the composed equivalence of categories

Fune(€4,E4) =~ 464 = AE R €4 = EA Re Ea

carries id —» A > pRe § — P Re §, where j Re § = colim((A ®A)R: A 3 AR A). Then
the equivalence Fung(C, €) = € Re C carries ide = p Re g = Colim(n‘l(A ®A) R N7Y(A) 3
1 (A) 8 171(A)).

Therefore, we have fslx[R C =~ ((3 e C,p Re q). As a consequence, when we compute the
factorization homology, we can replace a cylinder S! X R by two open 2-disks with two 0-cells
as shown on the Fig.[3] both of which are labelled by (G Re C,pRe q), or labelled by (C, p) and
(€ q)-
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k0 (o= =<l)

(a) (b)

Figure 3: Figure (a) shows a stratified cylinder with a coefficient system (C; M; 0), where C is
a UMTC,¢ and M is closed in BMode|e(A1g(\7§ty)). Figure (b) shows a disjoint union of two

open disks with 2-cells labeled by €, 1-cells labeled by M and M™", and 0-cells labeled by X
and X°P.

In this way, the genus is reduced by one. By induction, we obtain the equation

[ @oEn..ean= | (€03 (€, x1), -, (€, %), (€ ), (€,0)
(Zg;0:p1,-0n)

(Zg-150:p1,- P a1 Pris2)
~ f (€0; (€ x),.... (€ x), (€ ®e € p&e )°)
(Z0;0;01 Py Prv2g—1,Pn2g)
~ (8, [le,x1® - ®x, @(p® l/])®g]5)
where the notation (C ®¢ C,p ®¢ )¢ denotes g copies of (CR¢ C,p Re g) and

p@q = Colim(n(A® A7 (4) 3 17 (A) @ 17 (4)
= Colim(n ™ (A) ® T(A) & 17 (4) 3 7 (A) @ 1171(4))
%Y ®r14) 7' (A)

Since factorization homology and p ¢ g are both defined by colimits, we exchange the order
of two colimits in the first equivalence. The second equivalence is induced by the composed
equivalence 17 (A® A) ~ AonY(A) = T(A)®n1(A) ~ 17 (A) ® T(A). Since T(A) is an algebra
in €, we obtain the last equivalence. O

Example 5.31. The unitary category H denotes the category of finite dimensional Hilbert
spaces. Let &€ = H and C = UMTC. We want to choose an algebra A € H such that C =T H,.
Suppose that n71(A) = A and T(A) = A. Then 171 (A) ®ru) 17 H(A) = A®s A = Aand

f (e/ 0/ (e/ xl)/ LRy (e/ xﬂ)) = (IHI Hom(]le, X1Q- - ®@x;, ® A®g))
(Zg;0:p1,-Pn)

The set O(C) denotes the set of isomorphism classes of simple objects in €. If n7'(A) =
®icoe)i*®i = T(A), the distinguished object is Hom(1e, x1®- - -®x,®(®iik ®1)®%). If A = @ic0(e)C
and 171(A) = @ico(e)i = T(A), the distinguished object is Hom(Le, x1 ® - - - ® (®ico(e)i)*%).

Theorem 5.32. Let (S! X R; R) be the stratified cylinder shown in Fig.Bl in which the target
label € is a UMTC/¢ and the target label M is closed in BMod@|e(A1g(V§ty)). We have

f (C; M; @) ~ Fung (X, X)
(S'XR;R)

where X is the unique (up to equivalence) left C-module in CatfgS such that M = Fune(X, X).
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Proof. By the equivalences Z(M™, ) ~ C R¢ C =~ Z(C, &), there exists a C-module X such
that M =~ Fune(X, X) by Thm.B.40 Therefore, we have f(SIX[R.R)(G; M;0) =~ CRyeey M =

€ ®ze,e) Fune(X, X) = Fung (X, X), which maps 1e¢ RBze,e) 1 to idx. The last equivalence is
due to Thm.[5.24 O

Conjecture 5.33. Given any closed stratified surface X and an anomaly-free coefficient system
Ain Catfg on X, we have fz A = (&, uyx), where uy is an object in €.

A  Appendix

A.1 Central functors and other results
Let D be a braided monoidal category with the braiding c and M a monoidal category.

Definition A.1. A central structure of a monoidal functor F : D — M is a braided monoidal
functor F’ : D — Z(M) such that F = f o F’, where f : Z(M) — M is the forgetful functor.

A central functor is a monoidal functor equipped with a central structure. For any monoidal
functor F : D — M, the central structure of F given in Def.[A]lis equivalent to the central
structure of F given in the Def.[A.2]

Definition A.2. A central structure of a monoidal functor F : D — M is a natural isomorphism
Ogm : Fd)®@m — m® F(d), d € D, m € M which is natural in both variables such that the
diagrams

Od,mem’

Fdyemeom’' m®m’ @ F(d)
Al
m®F(d)@m’

m

F(d) ® F(d) ® m ~2 F(d) @ m ® F(d') <> m @ F(d) ® F(d)
]d,d’/ll/ llzjd,d’ (Az)
Fded)®m meFded)

Odgd’ m

P(d)®F(d’) o rded)
vwwl lF(cd,m (A.3)
F(d') ® F(d) 24~ F(@' ® d)

commute for any d,d’ € D and m, m’ € M, where | is the monoidal structure of F.

Proposition A.3. Suppose F : D — M is a central functor. For any d € D, m € M, the following
two diagrams commute

F(d) ® Tng —=> 15 ® F(d) F(lp) ® m —2"% 1 ® F(1.p)
\ / \ / (A4)
TF(d) Ir(a) L Tm
F(d) m

Herel, : Fllp)@m =1 ®m —» mand 1y, : m® F(1lp) = m @ 1y — m, m € M are the unit
isomorphisms of the monoidal category M.
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Proof. Consider the diagram:

Fd)® 1y ® 1M —%lm ® 1) ® F(d)

[ o

rE@),1 Iy, ceF
(F(d) ® ) ® Tt — 2> F(d) ® Tt — 2+ 1 @ F(d) <2 1,0 © (1 ® F(d)

IFaye1
Ir@)1 @t
m T @ \ 10,111M

(I ® F(d)) ® Loy — Lt ® (F(d) ® 1onr)

The outward hexagon commutes by the diagram (A.I). The left-upper, right-upper and
middle-bottom triangles commute by the monoidal category M. The middle-up square
commutes by the naturality of the central structure 04, : F(d)®m — m®F(d), ¥d € D,m € M.
The right-down square commutes by the naturality of the unit isomorphism I, : 1 ® m =~
m, m € M. Then the left-down triangle commutes. Since — ® 1y =~ idy is the natural
isomorphism, the left triangle of (A.4) commutes.

Consider the diagram:

me F(]lj) ® ]l@)

1] I1y @1y m
Lray,
1

TR
m® F(1p) ® F(1p) — 2 m ® F(1p) F(lp ®1p)®m

T'm@F(1 )
Otqy,m

UJIDm P(ﬂ.@ ®m

rF(II. D )em ’/F(]l "D) 1
1 m "’

F(lp)®m® F(1p) F(lp)®F(lp)®@m

1,014 m

The outward diagram commutes by the diagram (A.2). The right-upper square commutes
by the naturality of the central structure ¢4,, : F(d) ® m — m ® F(d), d € D,m € M. The
left square commutes by the naturality of the unit isomorphism 7,, : m ® 1t = m, m € M.
The left-upper and right-down triangles commute by the monoidal functor F. Three parallel
arrows equal by the triangle diagrams of the monoidal category M. Then the bottom triangle
commutes. Since F(1p) ® — = 1 ® — = idy is the natural isomorphism, the right triangle of
(A.4) commutes. O

Let A be a separable algebra in a multifusion category C over €. We use AC (or Ca, AC4) to
denote the category of left A-modules (or right A-modules, A-bimodules) in €.

Proposition A.4. Let € be a multifusion category over € and A a separable algebra in €. Then
the diagram

Cox® yR
Te(e) ® x ®4 YR S @y yR® Tele)
ce,x,ll TLCWR
x® Te(e) ®a YR ——=x®1 Te(0)® yR
commutes fore € &, x, y € C4, where c is the central structure of the central functor Te : € — C.

Proof. The functor y > yR defines an equlvalence of right C-modules (C4)°PL ~ 4C. Forx € Cy4,
we use p, to denote the right A-action on x. For y® € 4C, we use g, to denote the left A-action

on yR. Obviously, Te(e) ® x belongs to C4 and yR ® Te(e) belongs to 4C. The right A-action on
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x® Te(e) is induced by x ® Te(e) ® A L, Xx®@A®Te(e) LGN x ® Te(e). The left A-action on

il Lq . .
Te(e) ® YR is induced by A ® Te(e) ® YR —=— Te(e) ® A ® yR AN Te(e) ® yR. Tt is routine to
check that c, , is a morphism in €4 and Ceyr iS @ morphism in 4C.
The morphism ¢, 5, is induced by

L1
Te(e)®@x®AQ YR —= Te(e) x @ YR —— Te(e) ® x ®4 YR

11
1,49 yR
Ce,x@A@}/R CB,x®yR Ce,x@ A yR
Px,1,1

x®ARYR® Te(e) — = x®@ YR @ Te(e) —= x @4 YR ® Te(e)
1,9,r,1

qy
The composition (1, ®4 Cg’yR) oho(cr®al yR) is induced by

1,p:,1

Te(e) ®x®A® YR —= Te(e) @ X ® YR —— Te(e) ® x ®4 YR
1,1,qy1<
Cex1,1 Cox/1 Cex/1
px@TG(B)
x®Te(e)@A® YR — = x® Tel(e) ® YR —— x @ Te(e) ®4 YR
1,1,qu
Ce,x®A®yR Leea 1 h
P11
x®A®Te(e) ® YR —= x® Tele) ® YR —— x @4 Tele) ® YR
AT (@oyR
1’1’Ce,yR 1’Ce,yR 1’Ce,yR
P11

x®A®YR® Te(e)1:>>1 x® YR ® Te(e) — x®4 YR ® Tel(e)
,qu,

Since ¢, gk = (1x ® ) © (Cex ® 1,x), the composition (1 ®4 ¢, x) © 1 0 (cex ®a 1,x) equals to
Cens,yk by the universal property of coequalizers. |

Proposition A.5. Let C be a multifusion category over € and A a separable algebra in C. There
is an equivalence Fune(Ca, €4) = (4€a)™" of multifusion categories over €.

Proof. By [EGNO, Prop.7.11.1], the functor @ : (4€4)"" — Fune(Ca, C4) is defined as x —
—®4 x and the inverse of @ is defined as f +— f(A). The monoidal structure on ® is defined as

DB y) =~ ®4 (y®4x) = (- B4 Y) B4 x = Dx) 0 D(y)

for x, y € (4Ca)™". Recall the central structures on the functors [ : € — (4C4)™¥ and T:8 >
Fune(Cy, C4) in Expl.B.9land Expl.A.6respectively. The structure of monoidal functor over &
on @ is induced by

D(I(e)) = D(Te(e) ® A) = — @4 (A®Te(e)) = - @ Tele) =, Te(e)®—=T¢

for e € &, where ¢ is the central structure of the functor Te : &€ — CG. Next we want to check
that @ is a monoidal functor over €. Consider the diagram fore € £, x € (4Ca)"™":

D(I(e) & x) —— D(I(e)) 0 D(x) — T* 0 D(x)

q’(“‘e,x) l l Te,d(x)

D(x & I(e) — D(x) 0 B(I(e)) — D(x) o T*
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Coo o,
The central structure o, is induced by x®4 A®Te(e) oAt Te(E)®x@sA = Te(e)®ARAX ﬂ>
A®Te(e)®4 x. The central structure &, oy is induced by Te(e) ® (—®4x) = (Te(e)®—)®4 x. The
commutativity of the above diagram is due to the commutativity of the following diagram

Lo a C;1®Ax®AA
- Q4 T@(€)®X®AA—>—®AX®AA®TQ(6)—>T@(€)®—®AX®AA

= l D(o,x) l =
v

—®AT@(e)®A®Axrl>—®AA®Te(e)®Ax_l—>1T@(e)®—®AA®Ax
sLe,Ar C

B,—®AA’

-1

The upper horizontal composition ¢,” ¢ .

o (1®a c.) is induced by
p-,1,1
- @AQTe(e)®@x —=-®Tele)®x —— —®4 Te(e) ®x

1L47¢ (@ex "
11,600 l l Lcex 11 l 1cex
P11 o

2ol —®A®x®Tele) — = -0x3Tele) —_}>—®Ax®Te(e)

1,g:1 :
_ - B -1
Cf,£®A®x l l Ce,l®x l Co@px
1p-1 ’s

Te(@)@—QAx —=<XTe(e) @ —Q@x —Te(e) ® —®4 X
1,1

Ax

C

Here (—,p-) and (A, m) belong to C4 and (x, px, qx) belong to ACa. Gr.()ex is defined as A ®

il 1,45 . "
Te(e)®@x ~5 Te(e) ®A®x SN Te(e)®x. The lower horizontal composition ce‘f o4 0 (184 Ccn)
is induced by

pr-,1,1
- QAQTe(e) ®A—Z —QTe(e) ®A —— -4 Te(e) A
1,47 (e)ea -
1,1,c0a l l 1,cca C;'l,l l 1cea
p-11 !
ol —~ ®ARA®Te(e) —=x-0A®Te(e) —=—-®4AQTe(e)
1,m,1
C;1®A®Al lC;,l@A lcu_,loa 4 A
1p-1 i
Te@)®—QARA—T—=Te(e) ®—QA——Te(e) ®—®4 A
1,1,m

Since x ®1 A = x = A®, x, the compositions c;£®Ax®AA 0 (1®4 Cexp,4) and (C;@AA ®aly)o(1®a
Ce.a ®4 1) are equal by the universal property of cokernels. ]

Proposition A.6. Let C be a multifusion category over € and A, B be separable algebras in C.
(1) There is an equivalence 4C Re Cp 5 ACp, X Re Yy x®yin BMOdg‘g(Catfg).

(2) Thereisanequivalence Fune(Ca, Cp) S ACh, f = f(A)in BModag(CathS), whose inverse
is defined as x —» — ®4 x.

Proof. (1) The functor @ : .CRe Cp — ACB, XRe ¥ = x®y is an equivalence by [KZ| Thm.2.2.3].
Recall the €-€ bimodule structure on 4Cp and ACRe Cp by Expl.d.19and Expl.d.27]respectively.
The left &-module structure on @ is defined as

Do (xBey) = P(Te(e)®x)Be y) = (Te(e)®x) @Yy = Te(e) @ (x® y) = e O P(x Be y)
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fore € €, x Be y € AC Be Cp. The right E-module structure on @ is defined as
(¥ Re ¥) 06) = D e (y® Te(@) = x® (¥ @ Te(e) = (x@ ) ® Te(e) = D Me y) Oe
Check that O satisfies the diagram (@.10).

bire ey

O((Te(e) ®x) Re ) Sy D((x® Te(e)) Be y) — P(x Be (Tele) ® y)) Ty O(x®e (y®Tele))

| |

Te(e) ® O(x Re y) D(xRe y) ® Tele)

Cex®y

Here c is the central structure of the central functor Te : € — €. The above diagram commutes
by the diagram (A.T).

(2) Since €4 and Cp belongs to BModeje (Catfss), the category Fune(C4, Cp) belongs to
BModg|e (Catfgs). The &-€ bimodule structure on Fune(Cy4, Cp) in Expl.A22is defined as

0 foo)(-) = f(-=®Te(e) ®Te(@)

fore,é € €, f € Fune(Cy, Cp) and — € Ca.
The functor W : 4€p — Fune(Cy, Cp), x = W := —®, x is an equivalence by [KZ| Cor.2.2.6].
The left &-module structure on WV is defined as

YWY = — @4 (Te(e) ®x) = (— @ Te(e)) ®4 x = V(- ®@Te(e) = e © W*
The right £&-module structure on W* is defined as
P = — @4 (x®@Te(e)) = (-4 x) @ Tele) = P Oe
Recall the monoidal natural isomorphism (v)y: : e © W* = W* © ¢ in Expl.4.22

CeW¥(-)

(e0W*)(-) = W (-8Te(e)) =, W (Te(e)®-) = Te(e)@¥* (=) —— W (-)®Te(e) = (Voe)(-)
Check V satisfies the diagram (£.10).

Weor = — @, (Te(e) ® x) — (- ® Te(e)) ®4 x = W¥(— @ Te(e))

\chl,l

1cex T@(E) ® — ®A X

\L Ce-®x

W = — @4 (x®Te(e)) —= (- ®a %) @ Te(e) = W¥(-) ® Tele)
The above diagram commutes by Prop.[A.4l o

Lemma A.7. Let M and N be separable algebras in €. The functor @ : y€ Re En — MEN,
XRe iy = x® Yy is an equivalence of categories. The inverse of ® is defined as z — Colim((M ®

M)Re z 3 M Re z) for any z € pmEn.
Proof. The inverse of ® is denoted by V.

Wo d(xme y) = W(x @ y) = Colim( me (MM, x®y) 3 B:(M,x8Y))
~ Colim( e (MOM®x,y) 3R (M®x,1)) = B(M®y X, ) = ¥ Be ¥



Appendix 45

The first equivalence is due to the balanced £-module functor ®¢. The second equivalence
holds because the functor K¢ preserves colimits.
® o W(z) = O(Colim((M ® M) ®e z 3 M &, z)) = Colim(D((M & M) ®e 2) =3 DM B¢ 2))
~ Colim((M®M) @z 3 M®z) > M®@yz =~z

The first equivalence holds because @ preserves colimits. o

Lemma A.8. Let A be a separable algebra in €. There is an equivalence 4 =~ €4 of right
&-module categories.

Proof. We define a functor F : 4€ — €4, (X,gx : A®x = X) > (X, px : X QA T Aex 5 X)

and a functor G: €4 — A&, (y,py: Y®A - yY) > (y,9,: A®Y N Y®A LN y), where r is the
braiding of €. Since 7y, o 1yx = idygy forallx,y € €, then Fo G =id and G o F = id.
The right E-action on €4 is defined as (y, p,)®e = (y®e, pye. : YRe®A EER YRA®e LN y®e).
T'x®e,A

,\‘/1 x,l
We have F((x, gx)®¢€) = F(x®e, Jxge : AQX®e AN x®e) = (X®e, Prae 1 XRE®A —> ARX®e LN

x®e)and F(x,qx) ®e = (x,px) Qe = (xQe, Pxee : XQeQA Lrea, XR®A®e LN AQx®e LGN x®e).
Then the right £&-module structure on F is the identity natural isomorphism F((x,q.) ® ) =
F(x,qx) ®e. O

Lemma A.9. Let € and M be pivotal fusion categories and M a left €-module in Cat®. There
are isomorphisms [x, y]’é = [y, xle =[x, y]é for x,y € M.

Proof. Since M is a pivotal fusion category, there is a one-to-one correspondence between
traces on M and natural isomorphisms

1]2,’; : Homy(x, y) —» Homyy (y, x)°
for x,y € M by [S, Prop.4.1]. Here both Homy(—,—) and Hom(—, —)* are functors from
MOP x M — Vec. For c € €, we have composed natural isomorphisms
M
Home(c, [*, y]e) = Homy(c © x, y) T, Homy(y,cOx)" = Homy(ct y,x)*

. . ( G)—l
~ Home(c", [y, x]e)* = Home([y, x]%, ©)* ~—— Home(c, [y, xIX),

M
Home(c, [x, y]le) = Homy(c © x, y) =~ Homyy(x, Ro Y) T, HomM(cR Qy,x)

~ Home(c®, [, x]e)” - Home([y, ¥le, ) = Home(c, [y, x1L)

By Yoneda lemma, we obtain [x, y]’é = [y, x]e =[x, y]é. O

A.2 The monoidal 2-category Cat®

For objects M, N in a 2-category B, the hom category B(M, N) denotes the category of 1-
morphisms from M to N in B and 2-morphisms in B. For 1-morphisms f, g € B(M, N), the set
B(M, N)(f, g) denotes the set of all 2-morphisms in B with domain f and codomain g.

Definition A.10. The product 2-category CatsxCat’ is the 2-category defined by the following
data:
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e The objects are pairs (A, B) for A, B € Catfss.

e For objects (A, B), (C, D) € CatfsS X Catfss, a I-morphism from (A, B) to (C, D) is a pair (f, g)
where f: A — Cand g: B — D are 1-morphisms in CatfsS .

e The identity 1-morphism of an object (A, B) is 1(4,8) := (14, 13).

e For 1-morphisms (f, g), (v, q) € (Cat’fgs X Catfg)((fl, B), (€, D)), a 2-morphism from (f, g) to
(p,q) is a pair (a, f) where a : f = pand f: ¢ = q are 2-morphisms in Cat®.

e For 1-morphisms (f,g), (p,q),(m,n) € (CatfgS X Catfgs)((.A, B), (€, D)), and 2-morphisms
(a, B) € (CatxCatg)((4, B), (€, DI((f, 8), (p, 1), and (y, 0) € (CatgxCaty)((A, B), (€, D)((p, 4), (m,m),
the vertical composition is (y, 6) o (a, ) == (y o, 0 0 ).

e For 1-morphisms (f, g) € (Cat’sxCat¥)((4, B), (€, D)), (p, 9) € (CatsxCat5)((C, D), (M, N)),
the horizontal composition of 1-morphisms is (p,q) o (f,g) = (po f,g° g).

e For 1-morphisms (f, g), (f/, &) € (Cats x CatS)((A4, B), (C, D)), and (p, g), (v',7') € (Cat’s x
Cat)((€, D), (M, N)),and 2-morphisms (a, B) € (CatExCat)((4, B), (€, D)((f, 8), (f, &),
and (y,0) € (Catfgs X Catfgs)(((:’, D), (M, N)((p,q), (¥",q")), the horizontal composition of 2-
morphisms is (y, 6) * (o, ) = (Y *a, 6 * ).

It is routine to check that the above data satisfy the axioms (i)-(vi) of [JY, Prop.2.3.4].
Next, we define a pseudo-functor ®¢ : Cat® x Catf — Cat’s as follows.

e For each object (A, B) € Catfg‘ X Catfss, an object A B¢ B in Catf§ exists (unique up to
equivalence).

e For a 1I-morphism (f, g) € (Catfgs X Catfgs)((A, B), (€, D)), a l-morphism fRe g : ARe B —
CRe Din CatfsS is induced by the universal property of the tensor product ®e:

AXB 25 Ame B
f,gl eg lﬂ!f&eg

CXD——=CRe D
Re

Notice that for all x € A,e € €,y € B, the balanced £-module structure on the functor
Re o (f X g) is induced by

ry-1
f() 8(y)

Fro0) @E g) o () 06) Be g(1) 0, Fx)me (€O g(Y) —o f(x)me g(eOY)

where (g, sfq) : B — D is the left E-module functor, (f, s;) : A — Cis the right &-module

functor, and the natural isomorphism b°? is the balanced €-module structure on the
functor g : C XD - CRe D.

For a 2-morphism (a,8) : (f,g) = (p,9) in (Cat’fgs X Catfg)((A,B), (€, D)), a 2-morphism
a®e f: fRe g = pRe qin Cats is defined by the universal property of Re:

AXB 25 Ame B

A
fgl :ﬁfmgclm >PM = f,z<
C

GX@—>€®3

—>A®gB

B
>pq pmq

xD —>(§’®g

X
a,p
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It is routine to check that ®¢ : (Cat® x Cat®)((A4, B), (C, D)) — CatS(A ®e B,C®e D) is
a local functor. That is, for 2-morphisms («, ) : (f, g) = (p,q) and (6 7): (p,q) = (m,n)
in (Cat® x Catf)((4, B), (€, D)), The equations (6 o a) ®e (T 0 f) = (6 e T) o (@ ®e f) and
1f Re 1g = 1fg8g hold.

e For all 1-morphisms fRe g : ARg B - CRe D, pRe g: CRe D > MRg NinCatfg,

the lax functoriality constraint (p Re ) o (f Re §) =" (p o f) ®e (o g) is defined by the
universal property of R¢:

AXB—L5 ARe B AXB—Ls Ame B
P
3'f'288
el toras
CxD s Re D = | popme(gog) = C XD pof.qog = Fi(pof)me (908)
frg AlpReg
x = \E P4
MXNTMEgN MXN?EME((;N

where the identity 2-morphism is always abbreviated.

e For 1-morphisms 14 Rg 1 : ARe B - ARg B in Catfss, the lax unity constraint
14 Re 1 =M% 144, 5 is defined by the universal property of R¢:

X
AXB —>AR: B AxXB —>Ang
t
1A,1r5< :> 1A8515<\?$>1Axt5 = 1x 15\( >1A><B id 1AE5'B
AXBT;Ang AXB —>Ang

where we choose the identity 2-morphismid : Rg 01448 = 14g, 8 ©®e for convenience.

It is routine to check that the above data satisfy the lax associativity, the lax left and right
unity of [JY} (4.1.3),(4.1.4)].

Remark A.11. The left (or right) £&-module structure on A R¢ B is induced by

EXAXB L ex Ame B AxBxeE2L Am. Bxe
O,ll/ fas ) lazo 1,ol ey la!e
AX‘BT.AE{{B AX‘BT.AE&B

The n-fold product 2-category Cats x --- x Cat® is written as (Cat%)" such that Cat’s
has a set of objects. The 2-category Catps((Catfg)”,Catfg) contains pseudofunctors (Catfg)” -

Catfgs as objects, strong transformations between such pseudofunctors as 1-morphisms, and
modifications between such strong transformations as 2-morphisms.

Lemma A.12. We claim that Cat’s is a monoidal 2-category.
Proof. A monoidal 2-category Cats consists of the following data.

i The 2-category CatfgS is equipped with the pseudo-functor ®¢ : CatfsS X Catfgs - CatfsS and
the tensor unit €.
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ii The associator is a strong transformation a : K¢ o (Re X id) = K¢ o (id X R¢) in the
2-cateogry Catps((Catf§)3,Catf§). For each (A,B,C) € (Catf§)3, a contains an invertible
1-morphism a4 8,¢ : (A Re B)Re € = ARe (B Re €) induced by

Reo(®e xid

AXBXGI;L(A&B)EEG
d(;mse/?l lmaﬁ,g,e

Reo(idXRe

ARe ('B Xe G)

For each 1-morphism (fi, f2, f3) : (A, B,€) — (A’,B’,¢")in (Catf§)3, a contains an invertible
2-morphism ay, r, 7, : (fi Re (f2 Re f3)) 0 an,3,e = aa,s,e o ((fi Be f2) Re f3) induced by

AXBxC 2L (Ame B)x € e (ARe B) ®e €

1 d(;{ﬁeﬂ aA,|'B,(-3 1Re f2)Re f3
Me . n »
fufofs AX(BRe €) —> ARe (BRe C) = A’ Re B)Re ©

1f1,tf2f3/7; fl,ﬁ%gfs thts g fime (f}mf%
)

A XB X —= A’ X (B' e €') = A’ Be (B’ Re €
1,Rxe Re

[
Re,1 Re
AXBXC— (AR B)XC—> (ARe B)re C

tr g ,1 .
fpf| TS (A Re B X € = (A’ ®e B') ®e €

Re,l A% g er
Wpr pr, 0

A X B XE == A X (B R €) o A’ Be (B B €)

iii The left unitor and right unitor are strong transformations/ : ERg— = —andr: —Rg¢ & = —
in CatP(Catfs, Cats). For each A € Catf, I and r contain invertible 1-morphisms 14 :
ERg A— Aandry : ARe & — A respectively.

EXA s eme A AxE 2 Ame €
dlAﬂ drﬁﬂ
EEOEE
A A

For each 1-morphism f : A — B in Catfgs, I and r contain invertible 2-morphisms ,Bi, :
folg=Igo(leg Re f)and ,B’f : forg = re o(f Re 1¢) respectively.

EXA s eme A ExXA s eme A

!
S]

A = EReB = 1ef ERe B

= lf/ i&/

le,f



Appendix 49

AxE%AxES AxE 2 ARme €

© g

= Bre& = fle He Bre &

A
i f/ g/
B

B BxE

© ©

file

BxéE

where (f, s’f) : A — B is aleft E&-module functor and (f, s}) : A — B is aright E&-module
functor.

iv The pentagonator is a modification 7 in Catps((Catfg)‘*, Catfg). For each A, B,C,D € Catfg,
7t consists of an invertible 2-morphism 74 5,¢,p : (14 Re as,e,0) © @4, Br.c,D © (¥A4,B,c Re

1p) = aa,8.cr.D © dar, B,c,0 induced by (where, for example, A ®e B is abbreviated to
AB):

Re,1,1

AxBxCxDEL 4B xexD 2 (AB)e x D 2 (AB)C)D

XAB.CD
s, 1 tag 5,011
ABe/ 1D /B,C
£ aq,s,elp ﬂ 1
1re,1 aa,seRelp

AXBE XD —> A(BE) x D —— (A(BE))D (AB)(ED)

Re,l
Ara,s.e»
1,1,Re 1,&gl d(fq,'g (?,'Dﬁ\ au,Be,D =

Hadber 4o (BE)D 2 A((BE)D)

XA, B,D

1.A/05‘B,(‘3,’Dl tlA""TnG,‘J)f}‘ laReas,e»

A X B(CD)

1,Re Re

AXBxCD

A(B(ED))

I
AxBxCxDEL 4B xexD 2 (AB)e x D 2 (AB)C)D

1,1,Egl 1,&gl dﬁg,e,@f) laﬁg,e,@

AXBXED ———= AB X €D = (AB)(ED)
Er
R di{,’B,@'Dﬁ‘ laA,'B,G'D
A X B(CD) = A(B(CD))

v The middle 2-unitor u is a modification in Catps((CathS)z, Catfgs). For each (B, A) € (Catfgs)z,
u consists of an invertible 2—morphism Us,A : (13 Re ZA) cCape A = 1'Bg8A o (1’3 Re 1A)
induced by

BxEXA L BRe & x AL (Bre &) Be A

das, . aAp e A
Be &,
1,Esl 4 rpRelq

Xe E”HT»,.A
BXERe A=>BRe (ERg A) = Bre A

11, A by
2CA 1, B Ipmg.a
1aRely

BxA Bre A

15,0
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BxEX AL B R & xAZ(Bre &) ®e A

dly 1y by a
A \LY’BJA )B:>A lf'slzel,q

O,1la
13,0 BxA Bxe A
b2 w llmgﬁ
Re
BxA Bre A

Re
where b2# is the balanced &-module structure on the functor Ke : B x A — B e A.
vi The left 2-unitor A is a modification in CatP>((Cat)?, Catfs). For each (B, A) € (Cat%)?, A
consists of an invertible 2-morphism Ag 4 : lgg,4 © ag,8,4 = I8 Re 14 induced by

Re,l Re
EXBXA>ER BXA>(ERe B)®e A ExBxAL e m: BxAZ(E R B)Re A

d(zBJ{ﬂ ae B,A "
d?»'llflﬂ
eI t 14

X
EXBR: A=ERe (BRg A) =) = sia B |smels

t d o1
B \g llBESJ{
IpRel
BHEE LA - BEEA
&

BXA4>B®5A BxA

1Re

o1

vii The right 2-unitor p is a modification in CatP*((Cat%)?, Cat®). For each (B, A) in (Cat5)?, p
consists of an invertible 2-morphism ps,4 : (18 e ¥4) © @B,4,¢ = rsr..4 induced by

Re,l Re
BXAXE=DBR AXE > (BRe A0y € BxAxXELBre AxEZ(Bre A) e €
d{‘vBJ{Eﬂ lag,f{,g

1Re

. d'p, g
BXARe &= BRe (ARe €) =) = o 24
11%% ll,u tlgﬂ llﬁ&su
'Brg A
BxA B A BxA s Bme A

It is routine to check that «, /, r satisfy the lax unity and the lax naturality of [JY| Def.4.2.1],
and 7, y, A, p satisfy the modification axiom of [JY, Def. 4.4.1]. It is routine to check that the
above data satisfy the non-abelian 4-cocycle condition, the left normalization and the right
normalization of [JY| (11.2.14), (11.2.16), (11.2.17)]. |

A.3 The symmetric monoidal 2-category Cat®

Let (Catfss, ®e, & a,l, 1,1, u,A, p) be the monoidal 2-category. For objects A, B € Catfgs, the
braiding 7 consists of an invertible 1-morphism 74,5 : A B¢ B — B K¢ A defined as

AXB 25 Ame B

SA,fBl d:‘lr'B/ﬂ lH!TAT,
BxA = Bxe A
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where s switches the two objects. For objects A, B, € € Cat¥, the left hexagonator R___ and
the right hexagonator R___ consist of invertible 2-morphisms R 4,3 ¢ and R 4, 5|c respectively.

AXBXC 0 Ame BxC 2% (ARe B)Re €

1,= Tan,l

Samxe AXBRe € — ARe (B R C) (BRe A)Re €
TA,ngcl d;{,‘BG//\ TA,Bag € HIRégB'e la‘B,A,(‘E
'BXGXAIZ—EJ>BIZIE;GX.A£>('BIZIE;G)IZI5A B Re (AR C)

da
B,C,A ag,e,A

Bxexgﬂ—mgﬁxg(exgﬂ)
I

AxBxeﬂﬂngxeg(ﬂng)xge

S.A,Twll dTA?’% lTA‘Brl t”/? Ta,s,1
Re,l Re
SA,BxC BXAXC—>BRg AXC—> (BReg A)Re C
1,Re a
LSA'el me d'B,A,e//\ as.ae
14 . Re
BxCxA =2 BxARe C—> BRe (AR C)
Lrae it 1Ltae
1,Re l e //\ e

'BXG@S.A—EE>"B®3(G®3.A)

AXBXC L AxBr: €2 ARe (BRe €)
a1 1,13,
®e,1 @m0 am,c =
saxsc ARe BXC—5 (ARe B) R C ARe (CRe B)
SAmg B,C l a’y B,e//\ TAmg B¢ HIRQ';W lajyeyg
CXAXB 2L ex AR B—% Cre (AR B) (ARe C)Re B
a_l —
Bod de,A,'B//\ (Xel,A%

eEg.AX'B—E;-(GEg.A)Eg'B
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AXBXG&AXBE‘EG&AE@(B&EG)

1,Srgl(~ji 1’d"rB,€ﬂ lLTB'G terﬂ L3,
1,xe e
SAxB,e AXCXB —AXCRg B——= ARe (CRe B)
Re,l a1
SA,(?/ll q dA,e,'B//\ “;{1,@/5
e Re
CXAXB =% ARgCXB —> (AR C)Re B
Tae,l 23} T pl
e 1 l A,e //‘ Ae

eEgAXBT(GEg.A)Eg'B

For objects A, B € Catfgf, the syllepsis v consists of an invertible 2-morphism v 4,5 defined as

AXB—> Ame B AXB—> Are B
SA,’Bl d;‘rﬁ/j{ lTA,’B SA,%\L
Va5

E|
BX.AT‘BEE‘A = laggs = BXA Jlaxs Lawg 5

d
SB,A BA TB,A SB,A

AXBTg.AEg‘B AXBT.AE&B

where we choose the identity 2-morphism id : g 0 14x8 = lam.s © K¢ for convenience.

It is routine to check that (Catfg, T,R——,R___,v) is a symmetric monoidal 2-category [JY|
Def.12.1.6,12.1.15,12.1.19].
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