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Abstract

We study the symmetric monoidal 2-category of finite semisimple module categories
over a symmetric fusion category. In particular, we study En-algebras in this 2-category
and compute their En-centers for n = 0, 1, 2. We also compute the factorization homology
of stratified surfaces with coefficients given by En-algebras in this 2-category for n = 0, 1, 2
satisfying certain anomaly-free conditions.
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1 Introduction

The mathematical theory of factorization homology is a powerful tool in the study of topo-
logical quantum field theories (TQFT). It was first developed by Lurie [L] under the name of
‘topological chiral homology’, which records its origin from Beilinson and Drinfeld’s theory
of chiral homology [BD, FG]. It was further developed by many people (see for example
[CG, AF1, AFT1, AFT2, AFR, BBJ1, BBJ2]) and gained its current name from Francis [F].

Although the general theory of factorization homology has been well established, explicitly
computing the factorization homology in any concrete examples turns out to be a non-trivial
challenge. On a connected compact 1-dimensional manifold (or a 1-manifold), i.e. S1, the
factorization homology is just the usual Hochschild homology. On a compact 2-manifold,
the computation is already highly nontrivial (see for example [BBJ1, BBJ2, AF2]). Motivated
by the study of topological orders in condensed matter physics, Ai, Kong and Zheng carried
out in [AKZ] the computation of perhaps the simplest (yet non-trivial) kind of factorization
homology, i.e. integrating a unitary modular tensor category (UMTC) A (viewed as an E2-

algebra) over a compact 2-manifold Σ, denoted by
∫

Σ
A. In physics, the category A is the

category of anyons (or particle-like topological defects) in a 2d (spatial dimension) anomaly-
free topological order (see [W] for a review). The result of this integration is a global observable
defined on Σ. It turns out that this global observable is precisely the ground state degeneracy
(GSD) of the 2d topological order on Σ. This fact remains to be true even if we introduce
defects of codimension 1 and 2 as long as these defects are also anomaly-free. Mathematically,
this amounts to computing the factorization homology on a disk-stratified 2-manifold with
coefficient defined by assigning to each 2-cell a unitary modular tensor category, to each 1-cell
a unitary fusion category (an E1-algebra) and to each 0-cell an E0-algebra, satisfying certain
anomaly-free conditions (see [AKZ, Sec. 4]).

If the category A is not modular, i.e. the associated topological order is anomalous,

the integral
∫

Σ
A gives a global observable beyond GSD. Mathematically, it is interesting to

compute
∫

Σ
A for any braided monoidal category A. In this work, we focus on a special

situation that also has a clear physical meaning. It was shown in [LKW], a finite onsite
symmetry of a 2d symmetry enriched topological (SET) order can be mathematically described
by a symmetric fusion category E, and the category of anyons in this SET order can be
described by a UMTC over E, which is roughly a unitary braided fusion category with Müger
center given by E (see Def. 5.6 for a precise definition). This motivates us to compute the
factorization homology on 2-manifolds but valued in the symmetric monoidal 2-category of

finite semisimple module categories over E, denoted by Catfs
E

. The symmetric tensor product

in Catfs
E

is defined by the relative tensor product ⊠E. We first study Ei-algebras in Catfs
E

and
their Ei-centers for i = 0, 1, 2. Then we derive the anomaly-free conditions for Ei-algebras

in Catfs
E

for i = 0, 1, 2. In the end, we compute the factorization homology on disk-stratified



The symmetric monoidal 2-category Catfs
E

3

2-manifolds with coefficients defined by assigning anomaly-free Ei-algebras in Catfs
E

to each
i-cells for i = 0, 1, 2. The main results of this work are Thm. 5.29, Thm. 5.30 and Thm. 5.32.

The layout of this paper is as follows. In Sec. 2, we introduce the tensor product ⊠E
and the symmetric monoidal 2-category Catfs

E
. In Sec. 3, we study Ei-algebras in Catfs

E
and

compute their Ei-centers for i = 0, 1, 2. In Sec. 4, we study the modules over a multifusion
category over E and modules over a braided fusion category over E. And we prove that

two fusion categories over E are Morita equivalent in Catfs
E

if and only if their E1-centers
are equivalent. In Sec. 5, we recall the theory of factorization homology and compute the

factorization homology of stratified surfaces with coefficients given by Ei-algebras in Catfs
E

for
i = 0, 1, 2 satisfying certain anomaly-free conditions.

Acknowledgement I thank Liang Kong for introducing me to this interesting subject. I also
thank Zhi-Hao Zhang for helpful discussion. I am supported by NSFC under Grant No.
11971219 and Guangdong Provincial Key Laboratory (Grant No.2019B121203002).

2 The symmetric monoidal 2-category Catfs
E

Notation 2.1. All categories considered in this paper are small categories. Let k be an alge-
braically closed field of characteristic zero. Let E be a symmetric fusion category over k with
a braiding r. The category Vec denotes the category of finite dimensional vector spaces over
k and k-linear maps.

Let A be a monoidal category. We denote Aop the monoidal category which has the same
tensor product of A, but the morphism space is given by HomAop (a, b) ≔ HomA(b, a) for any
objects a, b ∈ A, and Arev the monoidal category which has the same underlying category
A but equipped with the reversed tensor product a ⊗rev b ≔ b ⊗ a for a, b ∈ A. A monoidal
category A is rigid if every object a ∈ A has a left dual aL and a right dual aR. The duality
functors δL : a 7→ aL and δR : a 7→ aR induce monoidal equivalences Aop ≃ Arev.

A braided monoidal category A is a monoidal category A equipped with a braiding

ca,b : a⊗ b→ b⊗ a for any a, b ∈ A. We denote A the braided monoidal category which has the
same monoidal category of A but equipped with the anti-braiding c̄a,b = c−1

b,a
.

A fusion subcategory of a fusion category we always mean a full tensor subcategory closed
under taking of direct summands. Any fusion categoryA contains a trivial fusion subcategory
Vec.

2.1 Module categories

Let Catfs be the 2-category of finite semisimple k-linear abelian categories, k-linear functors,

and natural transformations. The 2-category Catfs equipped with Deligne’s tensor product ⊠,
the unit Vec is a symmetric monoidal 2-category.

Let C,D be multifusion categories. We define the 2-category LModC(Catfs) as follows.

• Its objects are left C-modules in Catfs. A left C-module M in Catfs is an object M

in Catfs equipped with a k-bilinear functor ⊙ : C ×M → M, a natural isomorphism
λc,c′,m : (c ⊗ c′) ⊙ m ≃ c ⊙ (c′ ⊙ m), and a unit isomorphism lm : 1C ⊙ m ≃ m for all
c, c′ ∈ C,m ∈M and the tensor unit 1C ∈ C satisfying some natural conditions.

• Its 1-morphisms are left C-module functors. For left C-modules M, N in Catfs, a left
C-module functor from M to N is a pair (F, sF), where F : M → N is a k-linear functor
and sF

c,m : F(c ⊙ m) ≃ c ⊙ F(m), c ∈ C, m ∈ M, is a natural isomorphism, satisfying some
natural conditions.
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• Its 2-morphisms are left C-module natural transformations. A left C-module natural
transformation between two left C-module functors (F, sF), (G, sG) : M ⇒ N is a natural
transformation α : F⇒ G such that the following diagram commutes for c ∈ C,m ∈M:

F(c ⊙m)
sF

//

αc⊙m

��

c ⊙ F(m)

1⊙αm

��
G(c ⊙m)

sG
// c ⊙ G(m)

(2.1)

Similarly, one can define the 2-category RModD(Catfs) of right D-modules in Catfs and the

2-category BModC|D(Catfs) of C-D bimodules in Catfs. We use Fun(M,N) to denote the
category of k-linear functors from M to N and natural transformations. We use FunC(M,N)
(or Fun|C(M,N)) to denote the category of left (or right) C-module functors from M to N and
left (or right) C-module natural transformations.

Remark 2.2. There is a bijective correspondence between k-linear categories (or k-linear

functors) and Vec-modules (or Vec-module functors). For objects C,M in Catfs, if ⊙ : C×M→
M is a k-bilinear functor, it is a balanced Vec-module functor. And a k-bilinear functor
⊙ : C ×M → M is equivalent to a k-linear functor C ⊠M → M by the universal functor
⊠ : C ×M→ C ⊠M.

2.2 Tensor product

The following definitions are standard (see for example [ENO, Def. 3.1], [KZ, Def. 2.2.1]).

Definition 2.3. Let M ∈ RModE(Catfs), N ∈ LModE(Catfs) and D ∈ Catfs. A balanced E-
module functor is a k-bilinear functor F : M × N → D equipped with a natural isomorphism
bm,e,n : F(m⊙ e, n) ≃ F(m, e⊙ n) for m ∈M, n ∈ N, e ∈ E, called the balanced E-module structure on
F, such that the diagram

F(m ⊙ (e1 ⊗ e2), n)
bm,e1⊗e2 ,n //

≃

��

F(m, (e1 ⊗ e2) ⊙ n)

≃

��
F((m ⊙ e1) ⊙ e2, n)

bm⊙e1 ,e2 ,n // F(m ⊙ e1, e2 ⊙ n)
bm,e1 ,e2⊙n// F(m, e1 ⊙ (e2 ⊙ n))

(2.2)

commutes for e1, e2 ∈ E,m ∈M, n ∈ N.

A balanced E-module natural transformation between two balanced E-module functors F,G :
M ×N⇒ D is a natural transformation α : F⇒ G such that the diagram

F(m ⊙ e, n)
bF

m,e,n //

αm⊙e,n

��

F(m, e ⊙ n)

αm,e⊙n

��
G(m ⊙ e, n)

bG
m,e,n

// G(m, e ⊙ n)

commutes for all m ∈ M, e ∈ E, n ∈ N, where bF and bG are the balanced E-module structures
on F and G respectively. We use Funbal

E
(M,N;D) to denote the category of balanced E-module

functors from M ×N to D, and balanced E-module natural transformations.
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Definition 2.4. Let M ∈ RModE(Catfs) and N ∈ LModE(Catfs). The tensor product of M

and N over E is an object M ⊠E N in Catfs, together with a balanced E-module functor

⊠E : M×N→M⊠E N, such that, for every object D in Catfs, composition with ⊠E induces an

equivalence of categories Fun(M ⊠E N,D) ≃ Funbal
E

(M,N;D).

Remark 2.5. The tensor product of M and N over E is an object M ⊠E N in Catfs unique up
to equivalence, together with a balanced E-module functor ⊠E : M × N→M ⊠E N, such that

for every object D in Catfs, for any f ∈ Funbal
E

(M,N;D), there exists a pair ( f , η) unique up to

isomorphism, such that f ≃η f ◦ ⊠E, i.e.

M ×N
⊠E //

f
%%❑❑

❑❑❑
❑❑

❑❑❑
❑ M ⊠E N

∃! f

��
D

☛☛☛☛
AIη

where f is a k-linear functor in Fun(M ⊠E N,D), and η : f ⇒ f ◦ ⊠E is a balanced E-module

natural transformation in Funbal
E

(M,N;D). The notation ≃η means that the natural isomor-

phism is induced by η. Given two objects f , g and a morphism a : f ⇒ g in Funbal
E

(M,N;D),
there exist unique objects f , g ∈ Fun(M ⊠E N,D) such that f ≃η f ◦ ⊠E and g ≃ξ g ◦ ⊠E. For

any choice of (a, η, ξ, f , g), there exists a unique morphism b : f ⇒ g in Fun(M ⊠E N,D) such

that ξ ◦ a ◦ η−1 = b ∗ id⊠E .

2.3 The symmetric monoidal 2-category Catfs
E

A left E-module M in Catfs is automatically a E-bimodule category with the right E-action
defined as m ⊙ e ≔ e ⊙m, for m ∈M, e ∈ E.

Definition 2.6. The 2-category Catfs
E

consists of the following data.

• Its objects are left E-modules in Catfs.

• Its 1-morphisms are left E-module functors.

• Its 2-morphisms are left E-module natural transformations.

• The identity 1-morphism 1M for each object M is identity functor 1M.

• The identity 2-morphism 1F for each left E-module functor F : M → N is the identity
natural transformation 1F.

• The vertical composition is the vertical composition of left E-module natural transfor-
mations.

• Horizontal composition of 1-morphisms is the composition of left E-module functors.

• Horizontal composition of 2-morphisms is the horizontal composition of left E-module
natural transformations.

It is routine to check the above data satisfy the axioms (i)-(vi) of [JY, Prop. 2.3.4]. We define

a pseudo-functor ⊠E : Catfs
E
× Catfs

E
→ Catfs

E
in Sec. A.2. And the following theorem is proved

in Sec. A.2 and Sec. A.3.

Theorem 2.7. The 2-category Catfs
E

is a symmetric monoidal 2-category.
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3 Algebras and centers in Catfs
E

In this section, Sec. 3.1, Sec. 3.2 and Sec. 3.3 study E0-algebras, E1-algebras and E2-algebras in

Catfs
E

, respectively. Sec. 3.4, Sec. 3.5 and Sec. 3.6 study E0-centers, E1-centers and E2-centers in

Catfs
E

, respectively.

3.1 E0-algebras

Definition 3.1. We define the 2-category AlgE0
(Catfs

E
) of E0-algebras in Catfs

E
as follows.

• Its objects are E0-algebras in Catfs
E

. An E0-algebra in Catfs
E

is a pair (A,A), where A is an

object in Catfs
E

and A : E→ A is a 1-morphism in Catfs
E

.

• For two E0-algebras (A,A) and (B,B), a 1-morphism F : (A,A)→ (B,B) in AlgE0
(Catfs

E
) is

a 1-morphism F : A→ B in Catfs
E

and an invertible 2-morphism F0 : B⇒ F ◦A in Catfs
E

.

• For two 1-morphisms F,G : (A,A) ⇒ (B,B) in AlgE0
(Catfs

E
), a 2-morphism α : F ⇒ G in

AlgE0
(Catfs

E
) is a 2-morphism α : F⇒ G in Catfs

E
such that (α ∗ 1A) ◦ F0 = G0, i.e.

E
A //

B **

⑧⑧⑧⑧
;CF0

A

G
��

F
��
❴❴❴❴ +3
α

B

=

E
A //

B ��❄
❄❄

❄❄
❄❄

⑧⑧⑧⑧
;CG0
A

G
��
B

(3.1)

3.2 E1-algebras

Let A and B be two monoidal categories. A monoidal functor from A to B is a pair (F, JF),
where F : A→ B is a functor and JF

x,y : F(x⊗ y) ≃ F(x)⊗F(y), x, y ∈ A, is a natural isomorphism
such that F(1A) = 1B and a natural diagram commutes. A monoidal natural transformation
between two monoidal functors (F, JF), (G, JG) : A⇒ B is a natural transformation α : F⇒ G
such that the following diagram commutes for all x, y ∈ A:

F(x ⊗ y)
JF
x,y //

αx⊗y

��

F(x) ⊗ F(y)

αx,αy

��
G(x ⊗ y)

JG
x,y

// G(x) ⊗ G(y)

(3.2)

Given a monoidal category M, the Drinfeld center of M is a braided monoidal category
Z(M). The objects of Z(M) are pairs (x, z), where x ∈ M and zx,m : x ⊗ m ≃ m ⊗ x,m ∈ M is a
natural isomorphism such that the following diagram commutes for m,m′ ∈M:

x ⊗m ⊗m′
zx,m⊗m′ //

zx,m,1 ''PP
PPP

PP
m ⊗m′ ⊗ x

m ⊗ x ⊗m′
1,zx,m′

77♥♥♥♥♥♥♥

Recall the two equivalent definitions of a central functor in Def. A.1 and Def. A.2. The
definitions of a fusion category over E and a braided fusion category over E are in [DNO].

Definition 3.2. The 2-category AlgE1
(Catfs

E
) consists of the following data.
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• Its objects are multifusion categories over E. A multifusion category over E is a multifusion
category A equipped with a k-linear central functor TA : E → A. Equivalently, a
multifusion category overE is a multifusion categoryA equipped with a k-linear braided
monoidal functor T′

A
: E→ Z(A).

• Its 1-morphisms are monoidal functors over E. A monoidal functor over E between two
multifusion categoriesA, B overE is a k-linear monoidal functor (F, J) : A→ B equipped
with a monoidal natural isomorphism ue : F(TA(e)) → TB(e) in B for each e ∈ E, called
the structure of monoidal functor over E on F, such that the diagram

F(TA(e) ⊗ x)
JTA (e),x//

F(ze,x)

��

F(TA(e)) ⊗ F(x)
ue,1 // TB(e) ⊗ F(x)

ẑe,F(x)

��
F(x ⊗ TA(e))

Jx,TA (e)// F(x) ⊗ F(TA(e))
1,ue // F(x) ⊗ TB(e)

(3.3)

commutes for e ∈ E, x ∈ A. Here z and ẑ are the central structures of the central functors
TA : E→ A and TB : E→ B respectively.

• Its 2-morphisms are monoidal natural transformations over E. A monoidal natural trans-
formation over E between two monoidal functors F,G : A ⇒ B over E is a monoidal
natural transformation α : F⇒ G such that the following diagram commutes for e ∈ E:

F(TA(e))
αTA(e) //

ue $$❍
❍❍

❍❍
G(TA(e))

vezz✉✉✉
✉✉✉

TB(e)

(3.4)

where u and v are the structures of monoidal functors over E on F and G, respectively.

Remark 3.3. If A is a multifusion category over E such that T′
A

: E → Z(A) is fully faithful,
then A is a indecomposable. If E = Vec, the functor Vec→ Z(A) is fully faithful if and only if
A is indecomposable. The condition ”E → Z(A) → A is fully faithful” implies the condition
”E→ Z(A) is fully faithful”.

Lemma 3.4. Let A and B be two monoidal categories. Suppose that TA : E→ A, TB : E→ B

and F : A→ B are monoidal functors, and u : F◦TA ⇒ TB is a monoidal natural isomorphism.
Then A,B are left E-module categories, TA,TB and F are left E-module functors, and u is a
left E-module natural isomorphism.

Proof. The leftE-module structure onA is defined as e⊙a ≔ TA(e)⊗a for all e ∈ E and a ∈ A. The
left E-module structure on TA is induced by the monoidal structure of TA. The left E-module

structure sF on F is induced by F(e⊙a) = F(TA(e)⊗a)→ F(TA(e))⊗F(a)
ue ,1
−−→ TB(e)⊗F(a) = e⊙F(a).

The left E-module structure on F ◦ TA is induced by F(TA(ẽ ⊗ e)) → F(TA(ẽ) ⊗ TA(e))
sF

−→

TB(ẽ) ⊗ F(TA(e)) = ẽ ⊙ F(TA(e)) for e, ẽ ∈ E. The natural isomorphism u satisfy the diagram
(2.1) by the diagram (3.2) of the monoidal natural isomorphism u. �

Remark 3.5. A monoidal functor F : A → B over E is a left E-module functor. If A is a
multifusion category over E and F : A→ B is an equivalence of multifusion categories, B is a
multifusion category over E. The central structure σ on the monoidal functor F ◦ TA : E→ B

is induced by

F(TA(e)) ⊗ b

σe,b

��

≃ // F(TA(e)) ⊗ F(a) //

σe,F(a)

��

F(TA(e) ⊗ a)

ce,a

��
b ⊗ F(TA(e)) F(a) ⊗ F(TA(e))

≃
oo F(a ⊗ TA(e))oo
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for e ∈ E, b ∈ B, where c is the central structure of the functor TA : E→ A. Notice that for any
object b ∈ B, there is an object a ∈ A such that b ≃ F(a) by the equivalence of F.

Example 3.6. If C is a multifusion category over E, Crev is a multifusion category over E by

the central functor E = E
TC

−−→ Z(C) � Z(Crev).

Example 3.7. Let M be a left E-module in Catfs. FunE(M,M) is a multifusion category by
[EGNO, Cor. 9.3.3]. Moreover, FunE(M,M) is a multifusion category over E. We define a
functor T : E→ FunE(M,M), e 7→ Te

≔ e ⊙ −. The left E-module structure on Te is defined as

e⊙ (ẽ⊙m)→ (e⊗ ẽ)⊙m
re,ẽ ,1
−−−→ (ẽ⊗e)⊙m→ ẽ⊙ (e⊙m) for ẽ ∈ E, m ∈M. The monoidal structure JT

on T is induced by Te⊗e′ = (e⊗ e′)⊙− ≃ e⊙ (e′ ⊙−) = Te ◦ Te′ for e, e′ ∈ E. The central structure
σ on T is induced by Te ◦G(m) = e⊙G(m) ≃ G(e⊙m) = G ◦Te(m) for all e ∈ E,G ∈ FunE(M,M)
and m ∈M.

Example 3.8. Let C and D be multifusion categories over E. C ⊠E D is a multifusion category

over E. We define a monoidal functor TC⊠ED : E ≃ E ⊠E E
TC⊠ETD

−−−−−−→ C ⊠E D by e 7→ e ⊠E 1E 7→

TC(e) ⊠E TD(1E) = TC(e) ⊠E 1D for e ∈ E. And the central structure σ on TC⊠ED is induced by

TC⊠ED(e) ⊗ (c ⊠E d)

σe,c⊠Ed

��

(TC(e) ⊠E 1D) ⊗ (c ⊠E d) (TC(e) ⊗ c) ⊠E (1D ⊗ d)

ze,c⊠E ẑ1D ,d

��
(c ⊠E d) ⊗ TC⊠ED(e) (c ⊠E d) ⊗ (TC(e) ⊠E 1D) (c ⊗ TC(e)) ⊠E (d ⊗ 1D)

for e ∈ E, c ⊠E d ∈ C ⊠E D, where z and ẑ are the central structures of the functors TC : E→ C

and TD : E→ D respectively. Notice that TC⊠ED(e) ≃ 1C ⊠E TD(e).

An algebra A in a tensor category A is called separable if the multiplication morphism
m : A ⊗ A → A splits as a morphism of A-bimodules. Namely, there is an A-bimodule map
e : A→ A ⊗ A such that m ◦ e = idA.

Example 3.9. Let C be a multifusion category over E and A a separable algebra in C. The
category ACA of A-bimodules in C is a multifusion category by [DMNO, Prop. 2.7]. Moreover,

ACA is a multifusion category over E. We define a functor I : E → ACA, e 7→ TC(e) ⊗ A. The

left A-module structure on the right A-module TC(e) ⊗ A is defined as A ⊗ TC(e) ⊗ A
c−1

e,A
,1

−−−→

TC(e) ⊗ A ⊗ A → TC(e) ⊗ A, where c is the central structure of the functor TC : E → C. The
monoidal structure on I is defined as TC(e1⊗e2)⊗A ≃ TC(e1)⊗TC(e2)⊗A � TC(e1)⊗A⊗ATC(e2)⊗A
for e1, e2 ∈ E. The central structure on I is induced by

I(e)⊗A x = TC(e)⊗A⊗A x
ce,A⊗Ax

−−−−→ A⊗A x⊗ TC(e) � x⊗A A⊗ TC(e)
1,c−1

e,A
−−−→ x⊗A TC(e)⊗A = x⊗A I(e)

for e ∈ E, x ∈ ACA.

3.3 E2-algebras

Let A be a subcategory of a braided fusion category C. The centralizer of A in C, denoted by
A′|C, is defined by the full subcategory of objects x ∈ C such that ca,x ◦ cx,a = idx⊗a for all a ∈ A,
where c is the braiding of C. The Müger center of C, denoted by C′ or C′|C, is the centralizer of
C in C. Let B be a fusion category over E such that E→ Z(B) is fully faithful. The centralizer
of E in Z(B) is denoted by Z(B,E) or E′|Z(B).

Definition 3.10. The 2-category AlgE2
(Catfs

E
) consists of the following data.
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• Its objects are braided fusion categories overE. A braided fusion category overE is a braided
fusion category A equipped with a k-linear braided monoidal embedding TA : E→ A′.
A braided fusion category A over E is non-degenerate if TA is an equivalence.

• Its 1-morphisms are braided monoidal functors over E. A braided monoidal functor over
E between two braided fusion categories A,B over E is a k-linear braided monoidal
functor F : A→ B equipped with a monoidal natural isomorphism ue : F(TA(e)) ≃ TB(e)
in B for all e ∈ E.

• For two braided monoidal functors F,G : A⇒ B over E, a 2-morphism from F to G is a
monoidal natural transformation α : F⇒ G such that the diagram (3.4) commutes.

Remark 3.11. Let A be a braided fusion category over E and η : A ≃ B is an equivalence of
braided fusion categories. Then B is a braided fusion category over E.

Example 3.12. If D is a braided fusion category over E, D is a braided fusion category over E

by the braided monoidal embedding E = E
TD

−−→ D′ = D
′
.

Example 3.13. Let C be a fusion category over E such that E → Z(C) is fully faithful. Z(C,E)
is a non-degenerate braided fusion category over E. Next check that Z(C,E)′ = E. On one
hand, if e ∈ E, we have TC(e) ∈ Z(C,E)′. On the other hand, since Z(C)′ = Vec ⊂ E, we have
Z(C,E)′|Z(C,E) ⊂ Z(C,E)′|Z(C) = (E′|Z(C))

′|Z(C) = E. The central structure on TZ(C,E) : E→ Z(C,E)′

is defined as TC.
If C is a non-degenerate braided fusion category over E, there is a braided monoidal

equivalence Z(C,E) ≃ C ⊠E C over E by [DNO, Cor. 4.4].

3.4 E0-centers

A contractible groupoid is a non-empty category in which there is a unique morphism between
any two objects. An object X in a monoidal 2-category B is called a terminal object if for each
Y ∈ B, the hom category B(Y,X) is a contractible groupoid. Here the hom category B(Y,X)
denotes the category of 1-morphisms from Y to X and 2-morphisms in B.

Definition 3.14. Let A = (A,A) ∈ AlgE0
(Catfs

E
). A left unital A-action on X ∈ Catfs

E
is a 1-

morphism F : A ⊠E X → X in Catfs
E

together with an invertible 2-morphism α in Catfs
E

as
depicted in the following diagram:

A ⊠E X

F

##●
●●

●●
●●

●

E ⊠E X

A⊠E1X
99rrrrrrrr

//

✤✤ ✤✤
�� α

X

,

where the unlabeled arrow is given by the left E-action on X.

Definition 3.15. Let X ∈ Catfs
E

. The 2-category AlgE0
(Catfs

E
)X of left unital actions on X in

AlgE0
(Catfs

E
) is defined as follows.

• The objects are left unital actions on X.

• Let ((A,A), F, αA) be a left unital (A,A)-action on X and ((B,B),G, αB) be a left unital
(B,B)-action on X. A 1-morphism (P, ρ) : ((A,A), F, αA)→ ((B,B),G, αB) in AlgE0

(Catfs
E

)X
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is a 1-morphism P : (A,A) → (B,B) in AlgE0
(Catfs

E
), equipped with an invertible 2-

morphism ρ : G ◦ (P ⊠E 1X) ⇒ F in Catfs
E

, such that the following pasting diagram
equality holds.

B ⊠E X

G

��

A ⊠E X

F

##❋
❋❋

❋❋
❋❋

❋❋

P⊠E1X

OO

✤✤ ✤✤
�� ρ

E ⊠E X //

B⊠E1X

66

A⊠E1X

99sssssssss
✤✤ ✤✤
�� αA

❋❋❋❋ �'P0⊠E1

X

=

B ⊠E X

G

##❋
❋❋

❋❋
❋❋

❋❋

E ⊠E X

B⊠E1X

99sssssssss
//

✤✤ ✤✤
�� αB

X

Here we choose the identity 2-morphism id : (P ⊠E 1X) ◦ (A ⊠E 1X)⇒ (P ◦ A) ⊠E 1X for
convenience.

• Given two 1-morphisms (P, ρ), (Q, σ) : ((A,A), F, αA) ⇒ ((B,B),G, αB), a 2-morphism

α : (P, ρ) ⇒ (Q, σ) in AlgE0
(Catfs

E
)X is a 2-morphism α : P ⇒ Q in AlgE0

(Catfs
E

) such that
the following pasting diagram equality holds.

A ⊠E X

P⊠E1X
,,

Q⊠E1X

33
✤✤ ✤✤
�� α⊠E1

F
##●

●●
●●

●●
●●

✓✓✓✓� σ

B ⊠E X

G
{{✇✇
✇✇
✇✇
✇✇
✇

X

=

A ⊠E X
P⊠E1X //

F
##●

●●
●●

●●
●● ✓✓✓✓� ρ

B ⊠E X

G
{{✇✇
✇✇
✇✇
✇✇
✇

X

An E0-center of the object X in Catfs
E

is a terminal object in AlgE0
(Catfs

E
)X.

Theorem 3.16. The E0-center of a category X ∈ Catfs
E

is given by the multifusion category
FunE(X,X) over E.

Proof. Suppose (A,A) is an E0-algebra in Catfs
E

and (F, u) as depicted in the following diagram

✤✤ ✤✤
�� u

A ⊠E X
F

##❍
❍❍

❍❍
❍

E ⊠E X //

A⊠E1X
88qqqqqq

X

is a unital A-action on X. In other words, F : A ⊠E X → X is a left E-module functor and
ue,x : F(A(e) ⊠E x)→ e ⊙ x, e ∈ E, x ∈ X is a natural isomorphism in Catfs

E
.

Recall that (FunE(X,X),T) is an E0-algebra in Catfs
E

by Expl. 3.7.

✤✤ ✤✤
�� v

FunE(X,X)⊠E X

G

''❖❖
❖❖❖

❖❖❖
❖

E ⊠E X

T⊠E1X
66❧❧❧❧❧❧❧❧

// X

Define a functor
G : FunE(X,X)⊠E X→ X, f ⊠E x 7→ f (x)

and a natural isomorphism

ve,x = ide⊙x : G(Te
⊠E x) = Te(x) = e ⊙ x→ e ⊙ x, e ∈ E, x ∈ X.

Then ((FunE(X,X),T),G, v) is a left unital FunE(X,X)-action on X.
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We want to show that AlgE0
(Catfs

E
)X(A, FunE(X,X)) is a contractible groupoid. First we

want to show there exists a 1-morphism (P, ρ) : A → FunE(X,X) in AlgE0
(Catfs

E
)X. We define

a functor P : A→ FunE(X,X) by P(a) ≔ F(a ⊠E −) for all a ∈ A and an invertible 2-morphism
P0

e : Te = e ⊙ − ⇒ P(A(e)) = F(A(e) ⊠E −) as u−1
e for all e ∈ E. The natural isomorphism ρ can

be defined by

ρa,x = idF(a⊠Ex) : G(P(a) ⊠E x) = P(a)(x) = F(a ⊠E x)→ F(a ⊠E x)

for a ∈ A, x ∈ X. Then it suffices to show that the composition of morphisms

G(Te
⊠E x) = e ⊙ x

(P0
e )x=u−1

e,x
=======⇒ F(A(e) ⊠E x)

ρA(e),x=idF(A(e)⊠Ex)

============⇒ F(A(e) ⊠E x)
ue,x
==⇒ e ⊙ x

is equal to ve,x = ide⊙x by the definitions of P0 and ρ.
Then we want to show that if there are two 1-morphisms (Qi, σi) : A → FunE(X,X) in

AlgE0
(Catfs

E
)X for i = 1, 2, there is a unique 2-morphism β : (Q1, σ1)⇒ (Q2, σ2) in AlgE0

(Catfs
E

)X.

The 2-morphism β in AlgE0
(Catfs

E
)X is a natural isomorphism β : Q1 ⇒ Q2 such that the

equalities
(

T
Q0

1
==⇒ Q1 ◦ A

β∗1A
===⇒ Q2 ◦ A

)

=
(

T
Q0

2
==⇒ Q2 ◦ A

)

(3.5)

and
(

Q1(a)(x)
(βa)x
−−−→ Q2(a)(x)

(σ2)a,x
−−−−→ F(a ⊠E x)

)

=
(

Q1(a)(x)
(σ1)a,x
−−−−→ F(a ⊠E x)

)

(3.6)

hold for a ∈ A, x ∈ X. The second condition (3.6) implies that (βa)x = (σ2)−1
a,x◦(σ1)a,x. This proves

the uniqueness of β. For the existence of β, we want to show that β satisfy the first condition

(3.5), i.e. β is a 2-morphism in AlgE0
(Catfs

E
). Since (Qi, σi) are 1-morphisms in AlgE0

(Catfs
E

)X,
the composed morphism

e ⊙ x = Te(x)
(Q0

i
)e,x

−−−−→ Qi(A(e))(x)
(σi)A(e),x
−−−−−→ F(A(e) ⊠E x)

ue,x
−−→ e ⊙ x

is equal to ve,x = ide⊙x. It follows that the composition of morphisms

e ⊙ x
(Q0

1
)e,x

−−−−→ Q1(A(e))(x)
(σ1)A(e),x
−−−−−→ F(A(e) ⊠E x)

(σ2)−1
A(e),x

−−−−−→ Q2(A(e))(x)
(Q0

2
)−1
e,x

−−−−→ e ⊙ x

is equal to ide⊙x, i.e. (Q0
2
)−1
e,x ◦ (βA(e))x ◦ (Q0

1
)e,x = ide⊙x. This is precisely the first condition (3.5).

Hence the natural transformation β : Q1 ⇒ Q2 defined by (βa)x = (σ2)−1
a,x ◦ (σ1)a,x is the unique

2-morphism β : (Q1, σ1)⇒ (Q2, σ2).
Finally, we also want to verify that the E1-algebra structure on the E1-center FunE(X,X)

coincides with the usual monoidal structure of FunE(X,X) defined by the composition of
functors. Recall that the E1-algebra structure is induced by the iterated action

FunE(X,X)⊠E FunE(X,X)⊠E X
1⊠EG
−−−−→ FunE(X,X)⊠E X

G
−→ X

By the construction given above, the induced tensor product FunE(X,X) ⊠E FunE(X,X) →
FunE(X,X) is given by f ⊠E g 7→ G( f ⊠E G(g ⊠E −)) = f (g(−)) = f ◦ g. Hence, the E1-algebra
structure on FunE(X,X) is the composition of functors, which is the usual monoidal structure
on FunE(X,X). �
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3.5 E1-centers

Definition 3.17. Let X ∈ AlgE1
(Catfs

E
). The E1-center of X in Catfs

E
is the E0-center of X in

AlgE1
(Catfs

E
).

Theorem 3.18. Let B be a multifusion category over E. Then the E1-center of B in Catfs
E

is the
braided multifusion category Z(B,E) over E.

Proof. Let A be a multifusion category over E. A left unital A-action on B in AlgE1
(Catfs

E
) is

a monoidal functor F : A ⊠E B → B over E and a monoidal natural isomorphism u over E

shown below:

✤✤ ✤✤
�� u

A ⊠E B
F

$$❍
❍❍

❍❍
❍

E ⊠E B
⊙

//

TA,1
88qqqqqq

B

More precisely, F is a functor equipped with natural isomorphisms JF : F(a1 ⊠E b1) ⊗ F(a2 ⊠E

b2)
≃
−→ F((a1 ⊠E b1) ⊗ (a2 ⊠E b2)), a1, a2 ∈ A, b1, b2 ∈ B, and IF : 1B

≃
−→ F(1A ⊠E 1B) satisfying

certain commutative diagrams. The monoidal structure on the functor ⊙ : E ⊠E B → B,

e⊠E b 7→ e⊙ b = TB(e)⊗ b is induced by TB(e1 ⊗ e2)⊗ (b1⊗ b2) ≃ TB(e1)⊗TB(e2)⊗ b1⊗ b2

1,ze2 ,b1
,1

−−−−−→

TB(e1) ⊗ b1 ⊗ TB(e2) ⊗ b2 for e1, e2 ∈ E, b1, b2 ∈ B, where (TB(e2), z) ∈ Z(B). The structure of
monoidal functor over E on ⊙ is defined as ⊙(TE⊠EB(e)) = ⊙(e⊠E 1B) = e ⊙ 1B = TB(e)⊗ 1B ≃

TB(e). And u is a monoidal natural isomorphism ue,b : F(TA(e) ⊠E b)
≃
−→ e ⊙ b ≔ TB(e) ⊗ b,

e ∈ E, b ∈ B. Also one can show that IF = u−1
1E,1B

. The structure of monoidal functor over E on
F is ue,1B

: F(TA⊠EB(e)) = F(TA(e) ⊠E 1B) ≃ TB(e) ⊗ 1B ≃ TB(e).
There is an obviously left unital Z(B,E)-action on B

✤✤ ✤✤
�� v

Z(B,E) ⊠E B

G

&&▼▼
▼▼▼

▼▼▼

E ⊠E B
⊙

//

TB,1
66♥♥♥♥♥♥♥

B

defined by G : Z(B,E) ⊠E B
f,1
−→ B ⊠E B

⊗
−→ B and ve,b ≔ idTB(e)⊗b : G(TB(e) ⊠E b) = TB(e) ⊗

b → e ⊙ b, for e ∈ E, b ∈ B. The structure of monoidal functor over E on G is defined as
G(TB(e) ⊠E 1B) = TB(e) ⊗ 1B ≃ TB(e).

First we want to show that F(a ⊠E 1B) ∈ Z(B,E) for a ∈ A. Notice that F(1A ⊠E b) =

F(TA(1E) ⊠E b)
u1E ,b

−−−→ 1E ⊙ b = b. Since F is a monoidal functor over E, it can be verified that
the natural transformation γ (shown below)

F(a ⊠E 1B) ⊗ b
1,u−1

1E ,b //

γa,b

��

F(a ⊠E 1B) ⊗ F(1A ⊠E b)
JF

// F((a ⊗ 1A) ⊠E (1B ⊗ b))

≃,≃

��
b ⊗ F(a ⊠E 1B) F(1A ⊠E b) ⊗ F(a ⊠E 1B)

u1E ,b ,1
oo F((1A ⊗ a) ⊠E (b ⊗ 1B))

JF

oo

is a half-braiding on F(a⊠E1B) ∈ B, for a ∈ A, b ∈ B. It is routine to check that the composition
TB(e)⊗F(a⊠E1B)→ F(a⊠E1B)⊗TB(e)→ TB(e)⊗F(a⊠E1B) equals to identity. Then F(a⊠E1B)
belongs to Z(B,E).

We define a monoidal functor P : A → Z(B,E) by P(a) ≔ (F(a ⊠E 1B), γa,−) with the
monoidal structure induced by that of F:

JP :
(

P(a1)⊗P(a2) = F(a1⊠E1B)⊗F(a2⊠E1B)
JF

−→ F((a1⊗a2)⊠E(1B⊗1B)) = F((a1⊗a2)⊠E1B) = P(a1⊗a2)
)
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IP :
(

1B

IF

−→ F(1A ⊠E 1B) = P(1A)
)

The structure of monoidal functor over E on P is defined as ue,1B
: P(TA(e)) = F(TA(e)⊠E1B) ≃

TB(e) = TZ(B,E)(e) for e ∈ E.

Then we show that there exists a 1-morphism (P, ρ) : A→ Z(B,E) in AlgE0
(AlgE1

(Catfs
E

))B.

The invertible natural isomorphism P0 : TB ⇒ P ◦ TA is defined by TB(e) = e ⊙ 1B

u−1
e,1B
−−−−→

F(TA(e)⊠E 1B) = P(TA(e)) for e ∈ E. The monoidal natural isomorphism ρ : G ◦ (P⊠E 1B)⇒ F
is defined by

ρa,b : F(a ⊠E 1B) ⊗ b
1,u−1

1E ,b

−−−−−→ F(a ⊠E 1B) ⊗ F(1A ⊠E b)
JF

−→ F((a ⊗ 1A) ⊠E (1B ⊗ b)) = F(a ⊠E b)

for a ∈ A, b ∈ B. It is routine to check that the composition of 2-morphisms P0, ρ and u is equal
to the 2-morphism v.

Then we show that if there are two 1-morphisms (Qi , σi) : A→ Z(B,E) in AlgE0
(AlgE1

(Catfs
E

))B

for i = 1, 2, then there exists a unique 2-morphismβ : (Q1, σ1)⇒ (Q2, σ2) in AlgE0
(AlgE1

(Catfs
E

))B.
Such a β is a natural transformation β : Q1 ⇒ Q2 such that the equalities

(

Q1(a) ⊗ b
βa,1
−−→ Q2(a) ⊗ b

(σ2)a,b
−−−−→ F(a ⊠E b)

)

=
(

Q1(a) ⊗ b
(σ1)a,b
−−−−→ F(a ⊠E b)

)

(3.7)

and
(

TB

Q0
1
==⇒ Q1 ◦ TA

β∗1
==⇒ Q2 ◦ TA

)

=
(

TB

Q0
2
==⇒ Q2 ◦ TA

)

(3.8)

hold for a ∈ A, b ∈ B. The first condition (3.7) implies that βa : Q1(a) → Q2(a) is equal to the
composition

Q1(a) = Q1(a) ⊗ 1B

(σ1)a,1B
−−−−−→ F(a ⊠E 1B)

(σ2)−1
a,1B

======⇒ Q2(a) ⊗ 1B = Q2(a)

This proves the uniqueness of β. It is routine to check that βa is a morphism in Z(B,E) and β
satisfy the second condition (3.8).

Finally, we also want to verify that the E2-algebra structure on the E1-center Z(B,E)
coincides with the usual braiding structure on Z(B,E). The E2-algebra structure is given by
the monoidal functor H : Z(B,E)⊠E Z(B,E)→ Z(B,E), which is induced by the iterated action

Z(B,E) ⊠E Z(B,E) ⊠E B
1,G
−−→ Z(B,E) ⊠E B

G
−→ B

with the monoidal structure given by

x1 ⊗ x2 ⊗ y1 ⊗ y2 ⊗ b1 ⊗ b2

γy2 ,b1
−−−→ x1 ⊗ x2 ⊗ y1 ⊗ b1 ⊗ y2 ⊗ b2

γx2 ,y1⊗b1
−−−−−→ x1 ⊗ y1 ⊗ b1 ⊗ x2 ⊗ y2 ⊗ b2

for x1 ⊠E y1 ⊠E b1, x2 ⊠E y2 ⊠E b2 in Z(B,E) ⊠E Z(B,E) ⊠E B. Then by the construction given
above, the induced functor H : Z(B,E) ⊠E Z(B,E) → Z(B,E) maps x ⊠E y to the object
G((1 ⊠E G)(x ⊠E y ⊠E 1B)) = x ⊗ y ⊗ 1B = x ⊗ y with the half-braiding

x ⊗ y ⊗ b
γy,b

−−→ x ⊗ b ⊗ y
γx,b
−−→ b ⊗ x ⊗ y

Thus the functor H coincides with the tensor product of Z(B,E). For x1 ⊠E y1, x2 ⊠E y2 ∈

Z(B,E) ⊠E Z(B,E), the monoidal structure of H is induced by

H((x1 ⊠E y1)⊗ (x2 ⊠E y2)) = x1 ⊗ x2 ⊗ y1 ⊗ y2

γx2 ,y1
−−−−→ x1 ⊗ y1 ⊗ x2 ⊗ y2 = H(x1 ⊠E y1)⊗H(x2 ⊠E y2)

Equivalently, the braiding structure on Z(B,E) is given by x ⊗ y
γx,y

−−→ y ⊗ x, which is the usual
braiding structure on Z(B,E). �
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3.6 E2-centers

Definition 3.19. Let X ∈ AlgE2
(Catfs

E
). The E2-center of X in Catfs

E
is the E0-center of X in

AlgE2
(Catfs

E
).

Theorem 3.20. Let C be a braided fusion category over E. The E2-center of C is the symmetric
fusion category C′ over E.

Proof. Let A be a braided fusion category over E. A left unital A-action on C is a braided
monoidal functor F : A⊠EC→ C over E and a monoidal natural isomorphism u over E shown
below:

✤✤ ✤✤
�� u

A ⊠E C
F

##●
●●

●●
●

E ⊠E C
⊙

//

TA,1
88qqqqqq

C

More precisely, F is a monoidal functor over E (recall the proof of Thm. 3.18) such that the
diagram

F(a1 ⊠E x1) ⊗ F(a2 ⊠E x2)
JF

//

cF(a1⊠Ex1),F(a2⊠Ex2)

��

F((a1 ⊗ a2) ⊠E (x1 ⊗ x2))

c̃a1 ,a2
,cx1 ,x2

��
F(a2 ⊠E x2) ⊗ F(a1 ⊠E x1)

JF

// F((a2 ⊗ a1) ⊠E (x2 ⊗ x1))

commutes for a1, a2 ∈ A, x1, x2 ∈ C, where c̃ and c are the half-braidings ofA and C respectively.

The braided structure on E⊠E C is defined as TC(e1 ⊗ e2)⊗ x1⊗ x2

re1 ,e2
,cx1 ,x2

−−−−−−−→ TC(e2 ⊗ e1)⊗ x2⊗ x1,
for e1 ⊠E x1, e2 ⊠E x2 ∈ E ⊠E C. Check that ⊙ : E ⊠E C→ C is a braided functor.

There is a left unital C′-action on C

✤✤ ✤✤
�� v

C′ ⊠E C

G

##❍
❍❍

❍❍
❍

E ⊠E C

TC,1
88qqqqqq

// C

given by G : C′ ⊠E C→ C, (z, x) 7→ z ⊗ x and ve,x ≔ ide⊙x : G(TC(e) ⊠E x) = TC(e) ⊗ x→ e ⊙ x.

Next we want to show that there exists a 1-morphism (P, ρ) : A→ C′ in AlgE0
(AlgE2

(Catfs
E

))C.
Since F is a braided monoidal functor over E, the commutative diagram

F(a ⊠E 1C) ⊗ x

cF(a⊠E1C),x

��

1,u−1
1E ,x // F(a ⊠E 1C) ⊗ F(1A ⊠E x)

cF(a⊠E1C),F(1A⊠Ex)

��

JF

// F(a ⊠E x)

��
1

��

x ⊗ F(a ⊠E 1C)

cx,F(a⊠E1C)

��

u−1
1E ,x,1 // F(1A ⊠E x) ⊗ F(a ⊠E 1C)

cF(1A⊠Ex),F(a⊠E1C)

��

JF

// F(a ⊠E x)

��
F(a ⊠E 1C) ⊗ x

1,u−1
1E ,x

// F(a ⊠E 1C) ⊗ F(1A ⊠E x)
JF

// F(a ⊠E x)

implies that the equality cx,F(a⊠E1C) ◦ cF(a⊠E1C),x = idF(a⊠E1C)⊗x holds for a ∈ A, x ∈ C, i.e.
F(a⊠E1C) ∈ C′. Then we define the functor P by P(a) ≔ F(a⊠E1C), and the monoidal structure
of P is induced by that of F. The monoidal natural isomorphism ρ : G ◦ (P ⊠E 1C) ⇒ F is
defined by

ρe,x : F(a ⊠E 1C) ⊗ x
1⊗u−1

1E ,x

−−−−−→ F(a ⊠E 1C) ⊗ F(1A ⊠E x)
JF

−→ F(a ⊠E x)
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Then (P, ρ) is a 1-morphism in AlgE0
(AlgE2

(Catfs
E

))C.
It is routine to check that if there are two 1-morphisms (Qi, σi) : A → C′, i = 1, 2, in

AlgE0
(AlgE2

(Catfs
E

))C, there exists a unique 2-morphismβ : (Q1, σ1)⇒ (Q2, σ2) in AlgE0
(AlgE2

(Catfs
E

))C.
�

4 Representation theory and Morita theory in Catfs
E

In this section, Sec. 4.1 and Sec. 4.2 study the modules over a multifusion category over E and

bimodules in Catfs
E

. Sec. 4.3 and Sec. 4.4 prove that two fusion categories over E are Morita

equivalent in Catfs
E

if and only if their E1-centers are equivalent. Sec. 4.5 studies the modules
over a braided fusion category over E.

4.1 Modules over a multifusion category over E

Let C and D be multifusion categories over E. We use z and ẑ to denote the central structures
of the central functors TC : E→ C and TD : E→ D respectively.

Definition 4.1. The 2-category LModC(Catfs
E

) consists of the following data.

• A class of objects in LModC(Catfs
E

). An object M ∈ LModC(Catfs
E

) is an object M ∈ Catfs
E

equipped with a monoidal functor φ : C→ FunE(M,M) over E.

Equivalently, an object M ∈ LModC(Catfs
E

) is an object M both in Catfs
E

and LModC(Catfs)
equipped with a monoidal natural isomorphism uC

e : TC(e) ⊙ − ≃ e ⊙ − in FunE(M,M)
for each e ∈ E, such that the functor (c ⊙ −, sc⊙−) belongs to FunE(M,M) for each c ∈ C,
and the diagram

(TC(e) ⊗ c) ⊙ − //

ze,c ,1

��

TC(e) ⊙ (c ⊙ −)
(uC

e )c⊙− // e ⊙ (c ⊙ −)

sc⊙−
e,−

��
(c ⊗ TC(e)) ⊙ − // c ⊙ (TC(e) ⊙ −)

1,uC
e // c ⊙ (e ⊙ −)

(4.1)

commutes for e ∈ E, c ∈ C,− ∈ M. We use a pair (M, uC) to denote an object M in

LModC(Catfs
E

).

• For objects (M, uC), (N, ūC) in LModC(Catfs
E

), a 1-morphism F : M→ N in LModC(Catfs
E

) is
both a left C-module functor (F, sF) : M→ N and a left E-module functor (F, tF) : M→ N

such that the following diagram commutes for e ∈ E,m ∈M:

F(TC(e) ⊙m)
(uC

e )m //

sF
TC(e),m

��

F(e ⊙m)

tF
e,m

��
TC(e) ⊙ F(m)

(ūC
e )F(m)

// e ⊙ F(m)

(4.2)

• For 1-morphisms F,G : M ⇒ N in LModC(Catfs
E

), a 2-morphism from F to G is a left
C-module natural transformation from F to G. A left C-module natural transformation
is automatically a left E-module natural transformation.

In the above definition, we takeφ(c) ≔ c⊙− for c ∈ C. A leftDrev-moduleM is automatically
a right D-module, with the right D-action defined by m ⊙ d ≔ d ⊙m for m ∈M, d ∈ D.



Representation theory and Morita theory in Catfs
E

16

Definition 4.2. The 2-category RModD(Catfs
E

) consists of the following data.

• A class of objects in RModD(Catfs
E

). An object M ∈ RModD(Catfs
E

) is an object M ∈ Catfs
E

equipped with a monoidal functor φ : Drev → FunE(M,M) over E.

Equivalently, an objectM ∈ RModD(Catfs
E

) is an objectMboth in Catfs
E

and RModD(Catfs)
equipped with a monoidal natural isomorphism uD

e : − ⊙ TD(e) ≃ e ⊙ − in FunE(M,M)
for each e ∈ E such that the functor (− ⊙ d, s−⊙d) belongs to FunE(M,M) for each d ∈ D,
and the diagram

− ⊙ (d ⊗ TD(e)) //

1,ẑ−1
e,d

��

(− ⊙ d) ⊙ TD(e)
(uD

e )−⊙d // e ⊙ (− ⊙ d)

s−⊙d
e,−

��
− ⊙ (TD(e) ⊗ d) // (− ⊙ TD(e)) ⊙ d

uD
e ,1

// (e ⊙ −) ⊙ d

(4.3)

commutes for e ∈ E, d ∈ D,− ∈ M. We use a pair (M, uD) to denote an object M in

RModD(Catfs
E

).

• For objects (M, uD), (N, ūD) in RModD(Catfs
E

), a 1-morphism F : M→ N in RModD(Catfs
E

)
is both a right D-module functor (F, s̃F) : M → N and a left E-module functor (F, tF) :
M→ N such that the following diagram commutes for e ∈ E,m ∈M:

F(m ⊙ TD(e))
(uD

e )m //

s̃F
m,TD (e)

��

F(e ⊙m)

tF
e,m

��
F(m) ⊙ TD(e)

(ūD
e )F(m)

// e ⊙ F(m)

(4.4)

• For 1-morphisms F,G : M ⇒ N in RModD(Catfs
E

), a 2-morphism from F to G is a right
D-module natural transformation from F to G.

Remark 4.3. Let (M, uD) belongs to RModD(Catfs
E

). We explain the monoidal natural iso-
morphism ue : − ⊙ TD(e) ≃ e ⊙ − in FunE(M,M). The monoidal structure on F : E →

FunE(M,M), e 7→ Fe
≔ − ⊙ TD(e) is defined as Je1,e2

: Fe1⊗e2 = − ⊙ TD(e1 ⊗ e2)
re1 ,e2
−−−→ − ⊙

TD(e2 ⊗ e1) → (− ⊙ TD(e2)) ⊙ TD(e1) = Fe1 ◦ Fe2 , for e1, e2 ∈ E. The monoidal structure on
T : E→ FunE(M,M), e 7→ Te

≔ e⊙− is defined as Te1⊗e2 = (e1⊗e2)⊙− → e1⊙ (e2⊙−) = Te1 ◦Te2 ,
for e1, e2 ∈ E. For each e ∈ E, ue : − ⊙ TD(e) → e ⊙ − is an isomorphism in FunE(M,M).
That is, ue is a left E-module natural isomorphism. The monoidal natural isomorphism
ue : − ⊙ TD(e)→ e ⊙ − satisfies the diagram

− ⊙ TD(e1 ⊗ e2)
re1 ,e2 //

ue1⊗e2

��

− ⊙ TD(e2 ⊗ e1) // (− ⊙ TD(e2)) ⊙ TD(e1)

ue1
∗ue2

��
(e1 ⊗ e2) ⊙ − // e1 ⊙ (e2 ⊙ −)

where ue1
∗ ue2

is defined as

Fe1 ◦ Fe2 = (− ⊙ TD(e2)) ⊙ TD(e1)

ue1
∗ue2

❲❲❲❲
❲❲❲

++❲❲❲❲
❲❲❲❲

ue2
,1

//

(ue1
)−⊙TD (e2)

��

(e2 ⊙ −) ⊙ TD(e1)

(ue1
)e2⊙−

��
e1 ⊙ (− ⊙ TD(e2))

1,ue2

// e1 ⊙ (e2 ⊙ −) = Te1 ◦ Te2
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For any d1, d2 ∈ D, the functors (−⊙ d1, s
−⊙d1 ), (−⊙ d2, s

−⊙d2 ) and (−⊙ (d1⊗ d2), s−⊙(d1⊗d2)) belong
to FunE(M,M). Consider the diagram:

e ⊙ (m ⊙ (d1 ⊗ d2))
s
−⊙(d1⊗d2)
e,m //

1,λM
m,d1 ,d2

��

(e ⊙m) ⊙ (d1 ⊗ d2)

λM
e⊙m,d1 ,d2

��
e ⊙ ((m ⊙ d1) ⊙ d2)

s
−⊙d2
e,m⊙d1

// (e ⊙ (m ⊙ d1)) ⊙ d2
s
−⊙d1
e,m ,1

// ((e ⊙m) ⊙ d1) ⊙ d2

(4.5)

where λM is the module associativity constraint of M in RModD(Catfs). Since the diagrams
(4.3) and (A.1) commute and m ⊙ − : D→M is the functor for all m ∈M, the above diagram
commutes. Then the natural isomorphism − ⊙ (d1 ⊗ d2) ⇒ (− ⊙ d1) ⊙ d2 is the left E-module
natural isomorphism.

Let (M, uC) belong to LModC(Catfs
E

). For any c1, c2 ∈ C, the functors (c1 ⊙ −, s
c1⊙−), (c2 ⊙

−, sc2⊙−) and ((c1 ⊗ c2) ⊙ −, s(c1⊗c2)⊙−) belong to FunE(M,M). Since the diagrams (4.1) and
(A.1) commutes and − ⊙ m : C → M is the functor for all m ∈ M, the natural isomorphism
(c1 ⊗ c2) ⊙ − ⇒ c1 ⊙ (c2 ⊙ −) is the left E-module natural isomorphism.

Remark 4.4. Assume that (M, uD) belongs to RModD(Catfs
E

). The right E-module structure
on M is defined as m⊙̄e ≔ m ⊙ TD(e), ∀m ∈ M, e ∈ E. The module associativity constraint
is defined as λ1

m,e1,e2
: m ⊙ TD(e1 ⊗ e2) → m ⊙ (TD(e1) ⊗ TD(e2)) → (m ⊙ TD(e1)) ⊙ TD(e2),

∀m ∈ M, e1, e2 ∈ E. Another right E-module structure on M is defined as m ⊙ e ≔ e ⊙ m,
∀e ∈ E,m ∈ M. The module associativity constraint is defined as λ2

m,e1,e2
: m ⊙ (e1 ⊗ e2) =

(e1 ⊗ e2) ⊙m
re1 ,e2

,1
−−−−→ (e2 ⊗ e1) ⊙m→ e2 ⊙ (e1 ⊙m) = (m ⊙ e1) ⊙ e2, ∀m ∈M, e1, e2 ∈ E.

Check that the identity functor id : M → M equipped with the natural isomorphism

sid
m,e : id(m⊙̄e) = m⊙TD(e)

(uD
e )m
−−−−→ e⊙m = id(m)⊙ e is a right E-module functor by the monoidal

natural isomorphism uD
e : − ⊙ TD(e)→ e ⊙ −.

Proposition 4.5. Let (M, uC) belong to LModC(Catfs
E

). The diagram

ẽ ⊙ (TC(e) ⊙m)
1,(uC

e )m //

s
TC(e)⊙−

ẽ,m

��

ẽ ⊙ (e ⊙m) // (ẽ ⊗ e) ⊙m

rẽ,e,1

��
TC(e) ⊙ (ẽ ⊙m)

(uC
e )ẽ⊙m

// e ⊙ (ẽ ⊙m) // (e ⊗ ẽ) ⊙m

(4.6)

commutes for e, ẽ ∈ E, m ∈M. Let (M, uD) belong to RModD(Catfs
E

). The diagram

(e ⊙m) ⊙ TD(ẽ)
(uD

ẽ )e⊙m //

s
−⊙TD(ẽ)
e,m

��

ẽ ⊙ (e ⊙m) // (ẽ ⊗ e) ⊙m

rẽ,e ,1

��
e ⊙ (m ⊙ TD(ẽ))

1,(uD

ẽ )m

// e ⊙ (ẽ ⊙m) // (e ⊗ ẽ) ⊙m

(4.7)

commutes for e, ẽ ∈ E,m ∈ M. Here the functors (TC(e) ⊙ −, sTC(e)⊙−) and (− ⊙ TD(ẽ), s−⊙TD(ẽ))
belong to FunE(M,M).
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Proof. Consider the diagram:

ẽ ⊙ (TC(e) ⊙m)

s
TC(e)⊙−

ẽ,m

&&

1,(uC
e )m // ẽ ⊙ (e ⊙m) // (ẽ ⊗ e) ⊙m

rẽ,e,1

||

TC(ẽ) ⊙ (TC(e) ⊙m)

(uC

ẽ )TC (e)⊙m

OO

(TC(ẽ) ⊗ TC(e)) ⊙m

zẽ,TC (e)

��

oo TC(ẽ ⊗ e) ⊙m

uC

ẽ⊗e

OO

rẽ,e ,1
��

oo

TC(e) ⊙ (TC(ẽ) ⊙m)

1,(uC

ẽ )m

��

(TC(e) ⊗ TC(ẽ)) ⊙moo TC(e ⊗ ẽ) ⊙m

uC

e⊗ẽ
��

oo

TC(e) ⊙ (ẽ ⊙m)
(uC

e )ẽ⊙m

// e ⊙ (ẽ ⊙m) // (e ⊗ ẽ) ⊙m

The top and bottom hexagon diagrams commute by the monoidal natural isomorphism
uC

e : TC(e) ⊙ − ≃ e ⊙ −. The leftmost hexagon commutes by the diagram (4.1). The middle-
right square commutes by the central functor TC : E → C. The rightmost square commutes
by the naturality of uC

e . Then the outward diagram commutes. One can check the diagram
(4.7) commutes. �

For objects M,N in LModC(Catfs
E

) (or RModD(Catfs
E

)), we use FunE

C
(M,N) (or FunE

|D(M,N))

to denote the category of 1-morphismsM → N, 2-morphisms in LModC(Catfs
E

) (or RModD(Catfs
E

)).

Example 4.6. FunE

C
(M,M) is a multifusion category by [EGNO, Cor. 9.3.3]. Moreover, FunE

C
(M,M)

is a multifusion category over E. A functor T̂ : E→ FunE

C
(M,M) is defined as e 7→ T̂e

≔ TC(e)⊙

−. The left C-module structure on T̂e is defined as sc,m : TC(e) ⊙ (c ⊙m)→ (TC(e) ⊗ c) ⊙m
ze,c ,1
−−−→

(c⊗TC(e))⊙m→ c⊙ (TC(e)⊙m) for c ∈ C, m ∈M. The left E-module structure on T̂e is defined

as TC(e)⊙ (ẽ⊙m)
1,(uC

ẽ )−1
m

−−−−−→ TC(e)⊙ (TC(ẽ)⊙m)
sTC(ẽ),m

−−−−−→ TC(ẽ)⊙ (TC(e)⊙m)
(uC

ẽ )TC (e)⊙m

−−−−−−−→ ẽ⊙ (TC(e)⊙m)
for ẽ ∈ E,m ∈M. Then T̂e belongs to FunE

C
(M,M).

The monoidal structure on T̂ is induced by TC(e1 ⊗ e2) ⊙ − ≃ (TC(e1) ⊗ TC(e2)) ⊙ − ≃
TC(e1) ⊙ (TC(e2) ⊙ −) for e1, e2 ∈ E. The central structure on T̂ is a natural isomorphism

σe,g : T̂e ◦ g(m) = TC(e)⊙ g(m) ≃ g(TC(e)⊙m) = g ◦ T̂e(m) for any e ∈ E, g ∈ FunE

C
(M,M), m ∈M.

The left (or right) E-module structure on FunE

C
(M,M) is defined as (e ⊙ f )(−) ≔ TC(e) ⊙ f (−),

(or ( f ⊙ e)(−) ≔ f (TC(e) ⊙ −) ), for e ∈ E, f ∈ FunE

C
(M,M) and − ∈M.

Proposition 4.7. Let (M, u) and (N, ū) belong to LModC(Catfs
E

). f : M→ N is a 1-morphism in

LModC(Catfs). Then f belongs to LModC(Catfs
E

).

Proof. Notice that for a 1-morphism f : M → N in LModC(Catfs
E

), the left C-action on f is
compatible with the left E-action on f . Assume ( f , s) : M→ N is a left C-module functor. The

left E-module structure on f is given by f (e⊙m)
(u−1

e )m
−−−−→ f (TC(e)⊙m)

sTC(e),m

−−−−−→ TC(e)⊙ f (m)
(ūe) f (m)

−−−−−→

e ⊙ f (m). �

Remark 4.8. The forgetful functor f : FunE

C
(M,N) → FunC(M,N), ( f , s, t) 7→ ( f , s) induces

an equivalence in Catfs
E

, where s and t are the left C-module structure and the left E-module
structure on f respectively. Notice that t equals to the composition of u−1, s and ū.

Let (M, u) and (M, id) belong to LModC(Catfs
E

). Then the identity functor idM : (M, u) →

(M, id) induces an equivalence in LModC(Catfs
E

).

Example 4.9. Let A be a separable algebra in C. We use CA to denote the category of right A-
modules in C. By [DMNO, Prop. 2.7], the category CA is a finite semisimple abelian category.
CA has a canonical left C-module structure. The left E-module structure on CA is defined as
e ⊙ x ≔ TC(e) ⊗ x for any e ∈ E, x ∈ CA. Then (CA, id) belongs to LModC(Catfs

E
).
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We use ACA to denote the category of A-bimodules in C. By Prop. A.5, FunC(CA,CA) is
equivalent to (ACA)rev as multifusion categories over E.

Proposition 4.10. LetM ∈ LModC(Catfs
E

). There is a separable algebra A in C such thatM ≃ CA

in LModC(Catfs
E

).

Proof. By [EGNO, Thm. 7.10.1], there is an equivalence η : M ≃ CA in LModC(Catfs) for some

separable algebra A in C. By Prop. 4.7, η is an equivalence in LModC(Catfs
E

). �

Definition 4.11. An object M in LModC(Catfs
E

) is faithful if there exists m ∈ M such that
1i
C
⊙m ; 0 for every nonzero subobject 1i

C
of the unit object 1C.

Remark 4.12. Notice that 1E ⊙ m ≃ TC(1E) ⊙ m = 1C ⊙ m ; 0. If C is an indecomposable

multifusion category over E, any nonzero M in LModC(Catfs
E

) is faithful.

Proposition 4.13. Suppose M is a faithful object in LModC(Catfs
E

). There is an equivalence

C ≃ FunE

FunE

C
(M,M)

(M,M) of multifusion categories over E.

Proof. By Prop. 4.10, there is a separable algebra A in C such that M ≃ CA. By [EGNO,
Thm. 7.12.11], the category FunFunC(M,M)(M,M) is equivalent to the category of AR ⊗ A-
bimodules in the category of A-bimodules. The latter category is equivalent to the category

AR⊗ACAR⊗A of AR ⊗ A-bimodules. Then the functor Φ : C → AR⊗ACAR⊗A, x 7→ AR ⊗ x ⊗ A is an
equivalence by the faithfulness of M. The monoidal structure on Φ is defined as

Φ(x ⊗ y) = AR ⊗ x ⊗ y ⊗ A ≃ AR ⊗ x ⊗ A ⊗AR⊗A AR ⊗ y ⊗ A = Φ(x) ⊗AR⊗A Φ(y)

for x, y ∈ C, where the equivalence is due to A ⊗AR⊗A AR ≃ 1C. Recall the central structure on
the monoidal functor I : E→ AR⊗ACAR⊗A in Expl. 3.9. The structure of monoidal functor over E

on Φ is induced by Φ(TC(e)) = AR ⊗ TC(e) ⊗ A
z−1

e,AR
,1

−−−−→ TC(e) ⊗ AR ⊗ A = I(e) for e ∈ E.

By Rem. 4.8 and Prop. A.5, we have the equivalences FunE

FunE

C
(M,M)

(M,M) ≃ FunFunC(M,M)(M,M) ≃

AR⊗ACAR⊗A ≃ C of multifusion categories over E. �

4.2 Bimodules in Catfs
E

Let C and D be multifusion categories over E. We use z and ẑ to denote the central structures
of the central functors TC : E→ C and TD : E→ D respectively.

Definition 4.14. The 2-category BModC|D(Catfs
E

) consists of the following data.

• A class of objects in BModC|D(Catfs
E

). An object M ∈ BModC|D(Catfs
E

) is an object M

both in Catfs
E

and BModC|D(Catfs) equipped with monoidal natural isomorphisms uC
e :

TC(e) ⊙ − ≃ e ⊙ − and uD
e : − ⊙ TD(e) ≃ e ⊙ − in FunE(M,M) for each e ∈ E such that the

functor (c⊙−⊙ d, sc⊙−⊙d) belongs to FunE(M,M) for each c ∈ C, d ∈ D, and the diagrams

(TC(e) ⊗ c) ⊙ − ⊙ d //

ze,c,1,1

��

TC(e) ⊙ (c ⊙ − ⊙ d)
(uC

e )c⊙−⊙d// e ⊙ (c ⊙ − ⊙ d)

sc⊙−⊙d

��
(c ⊗ TC(e)) ⊙ − ⊙ d // c ⊙ (TC(e) ⊙ −) ⊙ d

1,uC
e ,1 // c ⊙ (e ⊙ −) ⊙ d

(4.8)

c ⊙ − ⊙ (d ⊗ TD(e)) //

1,1,ẑ−1
e,d

��

(c ⊙ − ⊙ d) ⊙ TD(e)
(uD

e )c⊙−⊙d// e ⊙ (c ⊙ − ⊙ d)

sc⊙−⊙d

��
c ⊙ − ⊙ (TD(e) ⊗ d) // c ⊙ (− ⊙ TD(e)) ⊙ d

1,uD
e ,1 // c ⊙ (e ⊙ −) ⊙ d

(4.9)
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commute for all e ∈ E, c ∈ C, d ∈ D. We use a triple (M, uC, uD) to denote an object M in

BModC|D(Catfs
E

).

• For objects (M, uC, uD), (N, ūC, ūD) in BModC|D(Catfs
E

), a 1-morphism F : M → N in

BModC|D(Catfs
E

) is a 1-morphism F : M→ N both in Catfs
E

and BModC|D(Catfs) such that
the diagrams (4.2) and (4.4) commute.

• For 1-morphisms F,G : M ⇒ N in BModC|D(Catfs
E

), a 2-morphism from F to G is a C-D
bimodule natural transformation from F to G.

For objects M,N in BModC|D(Catfs
E

), we use FunE

C|D(M,N) to denote the category of 1-

morphisms M→ N, 2-morphisms in BModC|D(Catfs
E

).

Let (M, uC, uD), (N, ūC, ūD) belong to BModC|D(Catfs
E

). A monoidal natural isomorphism

vM is defined as vM
e : TC(e) ⊙ −

uC
e
==⇒ e ⊙ −

(uD
e )−1

=====⇒ − ⊙ TD(e) for e ∈ E, − ∈ M. Similarly, a

monoidal natural isomorphism vN is defined as vN
e := (ūD

e )−1 ◦ ūC
e . A 1-morphism F : M→ N

in BModC|D(Catfs
E

) satisfies the following diagram for e ∈ E,m ∈M:

F(TC(e) ⊙m)
(vMe )m //

��

F(m ⊙ TD(e))

��
TC(e) ⊙ F(m)

(vNe )F(m)

// F(m) ⊙ TD(e)

(4.10)

Remark 4.15. Plugging c = 1C into the diagram (4.8) and d = 1D into the diagram (4.9), the
diagrams

TC(e) ⊙ (m ⊙ d) //

(uC
e )m⊙d

��

(TC(e) ⊙m) ⊙ d

(uC
e )m,1

��
e ⊙ (m ⊙ d)

s−⊙d

// (e ⊙m) ⊙ d

(c ⊙m) ⊙ TD(e) //

(uD
e )c⊙m

��

c ⊙ (m ⊙ TD(e))

1,(uD
e )m

��
e ⊙ (c ⊙m)

sc⊙−
// c ⊙ (e ⊙m)

(4.11)

commute for m ∈M. Since the diagrams (4.11) and (4.6) commute, the diagram

(TC(e) ⊙m) ⊙ TD(ẽ)

��

(uC
e )m ,1// (e ⊙m) ⊙ TD(ẽ)

(uD

ẽ )e⊙m // ẽ ⊙ (e ⊙m) // (ẽ ⊗ e) ⊙m

re,ẽ,1

��
TC(e) ⊙ (m ⊙ TD(ẽ))

1,(uD

ẽ )m

// TC(e) ⊙ (ẽ ⊙m)
(uC

e )ẽ⊙m

// e ⊙ (ẽ ⊙m) // (e ⊗ ẽ) ⊙m

(4.12)

commutes for e, ẽ ∈ E, m ∈M. Since the diagrams (4.11), (4.1) and (4.3) commute, the diagrams

TC(e) ⊙ (m ⊙ d)
(vMe )m⊙d//

��

(m ⊙ d) ⊙ TD(e) // m ⊙ (d ⊗ TD(e))

1,ẑ−1
e,d

��
(TC(e) ⊙m) ⊙ d

(vMe )m ,1

// (m ⊙ TD(e)) ⊙ d // m ⊙ (TD(e) ⊗ d)

(TC(e) ⊗ c) ⊙m //

ze,c ,1

��

TC(e) ⊙ (c ⊙m)
(vMe )c⊙m// (c ⊙m) ⊙ TD(e)

��
(c ⊗ TC(e)) ⊙m // c ⊙ (TC(e) ⊙m)

1,(vMe )m

// c ⊙ (m ⊙ TD(e))
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commute for e ∈ E, d ∈ D, c ∈ C,m ∈M.

Proposition 4.16. Let A,B be multifusion categories over E. There is an equivalence of
2-categories

LModA⊠EBrev (Catfs
E

) ≃ BModA|B(Catfs
E

)

Proof. An object M ∈ LModA⊠EBrev (Catfs
E

) is an object M ∈ Catfs
E

equipped with a monoidal

functor φ : A ⊠E Brev → FunE(M,M) over E. Given an object M in LModA⊠EBrev (Catfs
E

), we

want to define an object (M, uA, uB) in BModA|B(Catfs
E

). The left A-action on M is defined as
a ⊙ m ≔ φa⊠E1B(m) for a ∈ A, m ∈ M, and the unit 1B ∈ Brev. And the right B-action on M

is defined as m ⊙ b ≔ φ1A⊠Eb(m) for b ∈ B, m ∈ M, and the unit 1A ∈ A. By Expl. 3.8, we
have TA⊠EBrev (e) = TA(e) ⊠E 1B and TA⊠EBrev (e) ≃ 1A ⊠E TB(e). Recall the central structure
on T : E → FunE(M,M) in Expl.3.7. The structure of monoidal functor over E on φ gives
the monoidal natural isomorphisms uA and uB and the commutativity of diagrams (4.8) and
(4.9).

Given objects M,N and a 1-morphism f : M → N in LModA⊠EBrev(Catfs
E

), f satisfy the

diagrams (4.2) and (4.4). For two 1-morphisms f , g : M ⇒ N in LModA⊠EBrev (Catfs
E

), a 2-

morphism α : f ⇒ g in LModA⊠EBrev (Catfs
E

) is a left A⊠EBrev-module natural transformation.
If Brev = E, α is a left A-module natural transformation. If A = E, α is a right B-module
natural transformation.

Conversely, given an object (M, uA, uB) in BModA|B(Catfs
E

), we want to define a monoidal
functor φ : A ⊠E Brev → FunE(M,M) over E. For a ⊠E b ∈ A ⊠E Brev, we define φa⊠Eb

≔

(a ⊠E b) ⊙ − ≔ a ⊙ − ⊙ b for − ∈ M. For a1 ⊠E b1, a2 ⊠E b2 ∈ A ⊠E Brev, the monoidal
structure on φ is defined as φ(a1⊠Eb1)⊗(a2⊠Eb2) = φ(a1⊗a2)⊠E(b1⊗

revb2) = (a1 ⊗ a2) ⊙ − ⊙ (b2 ⊗ b1) ≃
a1 ⊙ (a2 ⊙ − ⊙ b2) ⊙ b1 = φ

a1⊠Eb1 ◦ φa2⊠Eb2 . The structure of monoidal functor over E on φ is

defined as φTA⊠EBrev (e) = φTA(e)⊠E1B = TA(e) ⊙ − ⊙ 1B

uA,1
−−−→ e ⊙ − ⊙ 1B ≃ e ⊙ − = Te for e ∈ E.

Given an object (N, ūA, ūB) and a 1-morphism f : M→ N in BModA|B(Catfs
E

), we want to

define a 1-morphism f in LModA⊠EBrev (Catfs
E

). The left A ⊠E Brev-module structure on f is

defined as f ((a ⊠E b) ⊙ m) = f (a ⊙ m ⊙ b)
s f

−→ a ⊙ f (m ⊙ b)
1,t f

−−→ a ⊙ f (m) ⊙ b = (a ⊠E b) ⊙ f (m)
for a ⊠E b ∈ A ⊠E Brev, m ∈ M, where s f and t f are the left A-module structure and the right
B-module structure on f respectively. It is routine to check that f satisfy the diagram (4.2).

For 1-morphisms f , g : M⇒ N in BModA|B(Catfs
E

), a 2-morphismα : f ⇒ g in BModA|B(Catfs
E

)
is an A-B bimodule natural transformation. It is routine to check that α : f ⇒ g is a left
A ⊠E Brev-module natural transformation. �

Example 4.17. Let C be a multifusion category over E. The left E-module structure on C is
defined as e⊙ c ≔ TC(e)⊗ c for e ∈ E, c ∈ C. For c ∈ C, the functor (c⊗−, sc⊗−) : C→ C belongs to

FunE(C,C), where the natural isomorphism sc⊗−
e,− : c⊗ (e⊙−) = c⊗TC(e)⊗−

z−1
e,c ,1
−−−→ TC(e)⊗ c⊗− =

e ⊙ (c ⊗ −). Then (C, ide : TC(e) ⊗ − = e ⊙ −) belongs to LModC(Catfs
E

).
For c ∈ C, the functor (− ⊗ c, s−⊗c) : C → C belongs to FunE(C,C), where the natural

isomorphism s−⊗c
e,− : (e ⊙ −) ⊗ c = (TC(e) ⊗ −) ⊗ c

≃
−→ TC(e) ⊗ (− ⊗ c) = e ⊙ (− ⊗ c). The category C

equipped with the monoidal natural isomorphism ue : −⊗TC(e)
z−1

e,−
−−→ TC(e)⊗− = e⊙− belongs

to RModC(Catfs
E

).
For c, c̃ ∈ C, the functor c ⊗ − ⊗ c̃ : C→ C equipped with the natural isomorphism

sc⊗−⊗c̃
e,− : c ⊗ (e ⊙ −) ⊗ c̃ = c ⊗ TC(e) ⊗ − ⊗ c̃

z−1
e,c ,1,1
−−−−→ TC(e) ⊗ c ⊗ − ⊗ c̃ = e ⊙ (c ⊗ − ⊗ c̃)

beongs to FunE(M,M). Then (C, ide, ue) belongs to BModC|C(Catfs
E

).



Representation theory and Morita theory in Catfs
E

22

Theorem 4.18. Let C be a multifusion category over E such that E → Z(C) is fully faithful.
There is an equivalence of multifusion categories over E:

FunE

C|C(C,C) ≃ Z(C,E)

Proof. Let us recall the proof of a monoidal equivalence FunC⊠Crev (C,C) ≃ Z(C) in [EGNO,
Prop. 7.13.8]. Let F belong to FunC⊠Crev (C,C). Since F is a right C-module functor, we have
F = d ⊗ − for some d ∈ C. Since F is a left C-module functor, we have a natural isomorphism

d ⊗ (x ⊗ y) = F(x ⊗ y)
sx,y

−−→ x ⊗ F(y) = x ⊗ (d ⊗ y) x, y ∈ C

Taking y = 1C, we obtain a natural isomorphism γd = s−,1C
: d⊗−

≃
−→ −⊗ d. The compatibility

conditions of γd correspond to the axioms of module functors. Then (d, γd) belongs to Z(C).
And the composition of C-bimodule functors of C corresponds to the tensor product of objects
of Z(C).

Moreover, F belongs to FunE

C|C(C,C). Taking m = 1C, F = d ⊗ − in the diagram (4.10), the
following square commutes:

d ⊗ (TC(e) ⊗ 1C)
γd,1 ��

1,ze,1C // d ⊗ (1C ⊗ TC(e))

��
TC(e) ⊗ (d ⊗ 1C)

ze,d⊗1C //

ze,d,1
**❚❚❚

❚❚❚❚
(d ⊗ 1C) ⊗ TC(e)

d ⊗ TC(e) ⊗ 1C

1,ze,1C

44❥❥❥❥❥❥❥

The triangle commutes by the diagram (A.1). Then we obtain ze,d ◦ γd = idd⊗TC(e), i.e. (d, γd) ∈

Z(C,E). It is routine to check that the functor FunE

C|C(C,C) → Z(C,E) is a monoidal functor
over E. �

Example 4.19. Let A,B be separable algebras in a multifusion category C over E. We use ACB

to denote the category of A-B bimodules in C. The left E-module structure on ACB is defined as
e⊙x ≔ TC(e)⊗x for e ∈ E, x ∈ ACB. We use qx and px to denote the left A-action and right B-action

on x respectively. The right B-action on TC(e) ⊗ x is induced by TC(e) ⊗ x ⊗ B
1,px
−−→ TC(e) ⊗ x.

The left A-action on TC(e) ⊗ x is induced by A ⊗ TC(e) ⊗ x
z−1

e,A
,1

−−−→ TC(e) ⊗ A ⊗ x
1,qx
−−→ TC(e) ⊗ x.

The module associativity constraint is given by λe1,e2,x : (e1 ⊗ e2) ⊙ x = TC(e1 ⊗ e2) ⊗ x →
TC(e1) ⊗ TC(e2) ⊗ x = e1 ⊙ (e2 ⊙ x), for e1, e2 ∈ E, x ∈ ACB. The unit isomorphism is given by
lx : 1E ⊙ x = TC(1E) ⊗ x = 1C ⊗ x→ x. Check that λe1,e2,x and lx belong to ACB.

The right E-action on ACB is defined as x⊙ e≔ x⊗TC(e), e ∈ E, x ∈ ACB. The left A-action on

x⊗ TC(e) is defined as A⊗ x⊗ TC(e)
qx,1
−−→ x⊗ TC(e). The right B-action on x⊗TC(e) is defined as

x ⊗ TC(e) ⊗ B
1,ze,B
−−−→ x ⊗ B ⊗ TC(e)

px,1
−−→ x ⊗ TC(e). The module associativity constraint is defined

as λx,e1,e2
: x ⊙ (e1 ⊗ e2) = x ⊗ TC(e1 ⊗ e2) → x ⊗ TC(e1) ⊗ TC(e2) = (x ⊙ e1) ⊙ e2, for x ∈ ACB,

e1, e2 ∈ E. The unit isomorphism is defined as rx : x⊙1E = x⊗TC(1E) = x⊗1C → x. Check that
λx,e1,e2

and rx belong to ACB. Check that ACB equipped with the monoidal natural isomorphism

ve : TC(e) ⊗ x
ze,x
−−→ x ⊗ TC(e) belongs to BModE|E(Catfs

E
).

Also one can check that AC belongs to BModE|C(Catfs
E

) and CB belongs to BModC|E(Catfs
E

).

Example 4.20. Let M belongs to RModD(Catfs
E

). Then M belongs to BModE|D(Catfs
E

). The E-D

bimodule structure on M is defined as (e⊙m)⊙ d
(s−⊙d

e,m )−1

−−−−−→ e⊙ (m⊙ d) for any e ∈ E,m ∈M. Since
(− ⊙ d, s−⊙d) belongs to FunE(M,M) and the diagram (4.5) commutes, M is an E-D bimodule
category.
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The functor e ⊙ − ⊙ d : M → M equipped with the natural isomorphism se⊙−⊙d
ẽ,− : ẽ ⊙

((e ⊙ −) ⊙ d)
s−⊙d

ẽ,e⊙−
−−−→ (ẽ ⊙ (e ⊙ −)) ⊙ d

se⊙−
ẽ,− ,1
−−−−→ (e ⊙ (ẽ ⊙ −)) ⊙ d is a left E-module functor, where

se⊙−
ẽ,− : ẽ⊙ (e⊙−) ≃ (ẽ⊗ e)⊙−

rẽ,e
−−→ (e⊗ ẽ)⊙− ≃ e⊙ (ẽ⊙−) for ẽ ∈ E. The object M both in Catfs

E
and

BModE|D(Catfs) equipped with the monoidal natural isomorphisms uE
e = id : e ⊙ − = e ⊙ −

and uD
e : − ⊙ TD(e) ≃ e ⊙ − belongs to BModE|D(Catfs

E
). The monoidal natural isomorphism

uD
e satisfies the diagram (4.9) by the diagrams (4.3) and (4.7).

Example 4.21. Let C,D be multifusion categories over E and (M, uC, uD) ∈ BModC|D(Catfs
E

).
The D-C bimodule structure on the category ML|op|L is defined as d ⊙L m ⊙L c ≔ cL ⊙ m ⊙ dL

for d ∈ D, c ∈ C,m ∈ M. Then (ML|op|L, ũD, ũC) belongs to BModD|C(Catfs
E

). The left E-module
structure on ML|op|L is defined as e ⊙L m ≔ eL ⊙ m for e ∈ E, m ∈ M. The monoidal natural

isomorphism ũD is defined as TD(e)⊙L m = m⊙TD(e)L ≃ m⊙TD(eL)
uD

eL

−−→ eL⊙m. The monoidal

natural isomorphism ũC is defined as m ⊙L TC(e) = TC(e)L ⊙m ≃ TC(eL) ⊙m
uC

eL

−−→ eL ⊙m.

Example 4.22. LetC,D,P be multifusion categories over E, and (M, uC, uD) ∈ BModC|D(Catfs
E

),

(N, ūC, ūP) ∈ BModC|P(Catfs
E

). Then (FunE

C
(M,N), ũD, ũP) belongs to BModD|P(Catfs

E
). The left

E-module structure on FunE

C
(M,N) is defined as (e ⊙ f )(−) ≔ TC(e) ⊙ f (−), for e ∈ E, f ∈

FunE

C
(M,N). The D-P bimodule structure on FunE

C
(M,N) is defined as (d ⊙ f ⊙ p)(−) ≔

f (− ⊙ d) ⊙ p for any d ∈ D, p ∈ P. Let vM
e ≔ (uD

e )−1 ◦ uC
e and vN

e ≔ (ūP
e )−1 ◦ ūC

e . The monoidal

natural isomorphism ũD is defined as (TD(e) ⊙ f )(−) = f (− ⊙ TD(e))
(vMe )−1

−−−−−→ f (TC(e) ⊙ −)
s f

−→

TC(e)⊙ f (−) = (e⊙ f )(−). The monoidal natural isomorphism ũP is defined as ( f ⊙TP(e))(−) =

f (−) ⊙ TP(e)
(vNe )−1

−−−−→ TC(e) ⊙ f (−) = (e ⊙ f )(−).

4.3 Invertible bimodules in Catfs
E

Definition 4.23. Let C be a multifusion category over E, and (M, uM) ∈ RModC(Catfs
E

),

(N, uN) ∈ LModC(Catfs
E

) and D ∈ Catfs
E

. A balanced C-module functor F : M × N → D in

Catfs
E

consists of the following data.

• F : M × N → D is an E-bilinear bifunctor. That is, for each n ∈ N, (F(−, n), sF1) : M→ D

is a left E-module functor, where

sF1
e,m : F(e ⊙m, n) ≃ e ⊙ F(m, n), ∀e ∈ E,m ∈M

is a natural isomorphism. For each g : n → n′ in N, F(−, g) : F(−, n) ⇒ F(−, n′) is a left
E-module natural transformation. And for each m ∈ M, (F(m,−), sF2) : N → D is a left
E-module functor, where

sF2
e,n : F(m, e ⊙ n) ≃ e ⊙ F(m, n), ∀e ∈ E, n ∈ N

is a natural isomorphism. For each f : c → c′ in C, F( f ,−) : F(c,−) ⇒ F(c′,−) is a left
E-module natural transformation.

• F : M × N → D is a balanced E-module functor (recall Def. 2.3), where the balanced
E-module structure on F is defined as

b̂m,e,n : F(m ⊙ e, n) = F(e ⊙m, n)
sF1

e,m
−−→ e ⊙ F(m, n)

(sF2
e,n)−1

−−−−→ F(m, e ⊙ n).
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• F : M×N→ D is a balancedC-module functor (recall Def. 2.3), where bm,c,n : F(m⊙c, n) ≃
F(m, c ⊙ n), ∀m ∈M, c ∈ C, n ∈ N, is the balanced C-module structure on F. And bm,c,n is
a left E-module natural isomorphism. That is, the following diagram commutes

F(e ⊙ (m ⊙ c), n)
sF1

e,m⊙c //

s−⊙c
e,m ,1

��

e ⊙ F(m ⊙ c, n)

1,bm,c,n

��

F((e ⊙m) ⊙ c, n)

be⊙m,c,n

��
F(e ⊙m, c ⊙ n)

sF1
e,m

// e ⊙ F(m, c ⊙ n)

(4.13)

where the functor (− ⊙ c, s−⊙c) ∈ FunE(M,M), ∀c ∈ C.

such that the followng diagram commutes

F(m ⊙ TC(e), n)
bm,TC (e),n //

(uM
e )m ,1

��

F(m,TC(e) ⊙ n)

1,(uN
e )n

��
F(e ⊙m, n)

sF1
e,m

//

b̂m,e,n

,,
e ⊙ F(m, n)

(sF2
e,n)−1

// F(m, e ⊙ n)

(4.14)

We use Funbal|E
C

(M,N;D) to denote the category of balanced C-module functors in Catfs
E

, and

natural transformations both in Funbal
C

(M,N;D) and Catfs
E

.

The tensor product of M and N over C is an object M ⊠C N in Catfs
E

, together with a balanced

C-module functor ⊠C : M × N → M ⊠C N in Catfs
E

, such that, for every object D in Catfs
E

,

composition with ⊠C induces an equivalence FunE(M ⊠C N,D) ≃ Funbal|E
C

(M,N;D).

Proposition 4.24. For e1, e2 ∈ E, m ∈M, n ∈ N, the following diagram commutes

F(e1 ⊙m, e2 ⊙ n)
sF1

e1 ,m //

sF2
e2 ,n

��

e1 ⊙ F(m, e2 ⊙ n)
1,sF2

e2 ,n // e1 ⊙ e2 ⊙ F(m, n)

re1 ,e2
,1

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

e2 ⊙ F(e1 ⊙m, n)
1,sF1

e1 ,m

// e2 ⊙ e1 ⊙ F(m, n)

Proof. Since F : M ×N → D is a balanced E-module functor, the following outward diagram
commutes.

F((e1 ⊗ e2) ⊙m, n)
sF1

e1⊗e2 ,m//

re1 ,e2
,1
��

(e1 ⊗ e2) ⊙ F(m, n)

re1 ,e2

��

(sF2
e1⊗e2 ,n

)−1

// F(m, (e1 ⊗ e2) ⊙ n)

F(e2 ⊙ e1 ⊙m, n)
sF1

e2⊗e1 ,m //

sF1
e2 ,e1⊙m

��

e2 ⊙ e1 ⊙ F(m, n)

e2 ⊙ F(e1 ⊙m, n)
(sF2

e2 ,n
)−1

//
1,sF1

e1 ,m

55❥❥❥❥❥❥❥❥❥❥❥❥
F(e1 ⊙m, e2 ⊙ n)

sF1
e1 ,m

// e1 ⊙ F(m, e2 ⊙ n)

(sF2
e1 ,e2⊙n)−1

OO

1,sF2
e2 ,n

ii

The two triangles commute since (F(−, n), sF1) : M → D and (F(m,−), sF2) : N → D are
left E-module functors. The square commutes by the naturality of sF1. Then the pentagon
commutes. �
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Proposition 4.25. For e ∈ E,m ∈M, c ∈ C, n ∈ N, the diagram

F((e ⊙m) ⊙ c, n)
be⊙m,c,n //

(s−⊙c
e,m )−1

��

F(e ⊙m, c ⊙ n)
b̂m,e,c⊙n // F(m, e ⊙ (c ⊙ n))

sc⊙−
e,n

��
F(e ⊙ (m ⊙ c), n)

b̂m⊙c,e,n

// F(m ⊙ c, e ⊙ n)
bm,c,e⊙n

// F(m, c ⊙ (e ⊙ n))

(4.15)

commutes, where the functors (−⊙c, s−⊙c) ∈ FunE(M,M) and (c⊙−, sc⊙−) ∈ FunE(N,N), ∀c ∈ C.

Proof. Consider the following diagram:

F(m ⊙ (TC(e) ⊗ c), n)
ze,c ,1 //

(uM
e )m ,1

��

bm,TC (e)⊗c,n

$$

F(m ⊙ (c ⊗ TC(e)), n)

bm,c⊗TC (e),n

zz

(uM
e )m⊙c,1

��
F((e ⊙m) ⊙ c, n)

be⊙m,c,n

��

(s−⊙c
e,m )−1

// F(e ⊙ (m ⊙ c), n)

b̂m⊙c,e,n
��

F(e ⊙m, c ⊙ n)

b̂m,e,c⊙n
��

F(m ⊙ c, e ⊙ n)

bm,c,e⊙n

��
F(m, e ⊙ (c ⊙ n))

sc⊙−
e,n // F(m, c ⊙ (e ⊙ n))

F(m, (TC(e) ⊗ c) ⊙ n))
1,ze,c

//

1,(uN
e )c⊙n

OO

F(m, (c ⊗ TC(e)) ⊙ n))

1,(uN
e )n

OO

(4.16)

Here z is the central structure of the central functor TC : E→ C. The middle-top and middle-
down squares commute by the diagrams (4.1) and (4.3). The leftmost diagram commutes by
the diagram

F(m ⊙ (TC(e) ⊗ c), n)
bm,TC (e)⊗c,n //

��

F(m, (TC(e) ⊗ c) ⊙ n)

��
F((m ⊙ TC(e)) ⊙ c, n)

bm⊙TC (e),c,n//

(uM
e )m ,1

��

F(m ⊙ TC(e), c ⊙ n)
bm,TC (e),c⊙n//

(uM
e )m ,1

��

F(m,TC(e) ⊙ (c ⊙ n))

1,(uN
e )c⊙n

��
F((e ⊙m) ⊙ c, n)

be⊙m,c,n

// F(e ⊙m, c ⊙ n)
b̂m,e,c⊙n

// F(m, e ⊙ (c ⊙ n))

The top pentagon commutes by the balancedC-module functor F : M×N→ D. The left-down
square commutes by the naturality of the balancedC-module structure b on F. The right-down
square commutes by the diagram (4.14). One can check that the rightmost diagram of (4.16)
commutes. Then the middle hexagon of (4.16) commutes. �

Corollary 4.26. By the commutativities of the diagrams (4.13) and (4.15), the following dia-
gram commutes

F(m ⊙ c, e ⊙ n)
sF2

e,n //

bm,c,e⊙n

��

e ⊙ F(m ⊙ c, n)

1,bm,c,n

��

F(m, c ⊙ (e ⊙ n))

1,(sc⊙−
e,n )−1

��
F(m, e ⊙ (c ⊙ n))

sF2
e,c⊙n

// e ⊙ F(m, c ⊙ n)
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Example 4.27. Let C,D,P be multifusion categories over E, (M, uC, uD) ∈ BModC|D(Catfs
E

)

and (N, ūD, ūP) ∈ BModD|P(Catfs
E

). Then (M ⊠D N, ũC, ũP) belongs to BModC|P(Catfs
E

). The
left E-module structure on M ⊠D N is defined as e ⊙ (m ⊠D n) ≔ (e ⊙ m) ⊠D n, for e ∈ E,
m ⊠D n ∈ M ⊠D N. The C-P bimodule structure on M ⊠D N is defined as c ⊙ (m ⊠D n) ⊙ p ≔
(c ⊙ m) ⊠D (n ⊙ p), for c ∈ C, p ∈ P. The monoidal natural isomorphism ũC is induced by

TC(e) ⊙ (m ⊠D n) = (TC(e) ⊙ m) ⊠D n
(uC

e )m ,1
−−−−−→ (e ⊙ m) ⊠D n = e ⊙ (m ⊠D n). The monoidal

isomorphism ũP is induced by (m⊠D n)⊙TP(e) = m⊠D (n⊙TP(e))
1,(ūP

e )n
−−−−−→ m⊠D (e⊙n)

1,(ūD
e )−1

n
−−−−−−→

m ⊠D (TD(e) ⊙ n)
b−1

m,TD (e),n

−−−−−−→ (m ⊙ TD(e)) ⊠D n
(uD

e )m ,1
−−−−−→ (e ⊙m) ⊠D n = e ⊙ (m ⊠D n), where b is the

balanced D-module structure on ⊠D : M ×N→M ⊠D N.

Let C be a multifusion category over E and M ∈ LModC(Catfs
E

). Then M is enriched in
C. That is, there exists an object [x, y]C ∈ C and a natural isomorphism HomM(c ⊙ x, y) ≃
HomC(c, [x, y]C) for c ∈ C, x, y ∈ M. The category CA is enriched in C and we have [x, y]C =
(x ⊗A yR)L for x, y ∈ CA by [EGNO, Expl. 7.9.8]. By Prop. A.4, the diagram

TC(e) ⊗ x ⊗A yR
ce,x⊗A yR

//

ce,x ,1

��

x ⊗A yR ⊗ TC(e)

x ⊗ TC(e) ⊗A yR // x ⊗A TC(e) ⊗ yR

1,ce,yR

OO

commutes for e ∈ E, x, y ∈ CA, where c is the central structure of the central functor TC : E→ C.
Let C be a multifusion category over E and A,B be separable algebras in C. By Prop. A.6,

we have the following statements.

• There is an equivalence AC ⊠C CB
≃
−→ ACB, x ⊠C y 7→ x ⊗ y in BModE|E(Catfs

E
).

• There is an equivalence FunC(CA,CB)
≃
−→ ACB, f 7→ f (A) in BModE|E(Catfs

E
), whose inverse

is defined as x 7→ − ⊗A x.

Proposition 4.28. Let C,B,D be multifusion categories over E and M ∈ BModC|B(Catfs
E

) and

N ∈ BModC|D(Catfs
E

) . The functor Φ : ML|op|L ⊠C N→ FunE

C
(M,N), m⊠C n 7→ [−,m]R

C
⊙ n, is an

equivalence of B-D-bimodules in Catfs
E

.

Proof. There are equivalences of categories ML|op|L ⊠C N ≃ FunC(M,N) ≃ FunE

C
(M,N) by [KZ,

Cor. 2.2.5] and Rem. 4.8. The B-D bimodule structure on Φ is induced by

(b⊙Lm)⊠C(n⊙d) = (m⊙bL)⊠C(n⊙d) 7→ [−,m⊙bL]R
C
⊙(n⊙d) ≃ ([−⊙b,m]R

C
⊙n)⊙d = b⊙([−,m]R

C
⊙n)⊙d

for m ∈ M, n ∈ N, b ∈ B, d ∈ D, where the equivalence is due to the canonical isomorphisms
HomC(c, [−,m ⊙ bL]C) ≃ HomM(c ⊙ −,m ⊙ bL) ≃ HomM(c ⊙ − ⊙ b,m) ≃ HomC(c, [− ⊙ b,m]C)
for c ∈ C. The left E-module structure on Φ is induced by the left B-module structure on Φ.
Recall Expl. 4.21, 4.27 and 4.22. It is routine to check that Φ satisfy the diagram (4.10). �

Definition 4.29. Let C,D be multifusion categories over E and M ∈ BModC|D(Catfs
E

). M is

right dualizable, if there exists an N ∈ BModD|C(Catfs
E

) equipped with bimodule functors

u : D→ N ⊠C M and v : M ⊠D N→ C in Catfs
E

such that the composed bimodule functors

M ≃M ⊠D D
1M⊠Du
−−−−−→M ⊠D N ⊠C M

v⊠C1M
−−−−−→ C ⊠C M ≃M

N ≃ D ⊠D N
u⊠D1N
−−−−−→ N ⊠C M ⊠D N

1N⊠Cv
−−−−−→ N ⊠C C ≃ N

in Catfs
E

are isomorphic to the identity functor. In this case, the D-C bimodule N in Catfs
E

is left
dualizable.
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Proposition 4.30. The right dual of M in BModC|D(Catfs
E

) is given by a D-C bimodule ML|op|L

in Catfs
E

equipped with two maps u and v defined as follows:

u :D→ FunC(M,M) ≃ML|op|L
⊠C M, d 7→ − ⊙ d,

v :M ⊠D ML|op|L → C, x ⊠D y 7→ [x, y]R
C

(4.17)

Proof. By [AKZ, Thm. 4.6], the object ML|op|L in BModD|C(Catfs), equipped with the maps u

and v, are the right dual of M in BModC|D(Catfs). It is routine to check that u is a D-bimodule

functor in Catfs
E

and v is a C-bimodule functor in Catfs
E

. �

Definition 4.31. LetC,Dbe multifusion categories overE. AnM ∈ BModC|D(Catfs
E

) is invertible

if there is an equivalence Drev ≃ FunE

C
(M,M) of multifusion categories over E. If such an

invertible M exists, C and D are said to be Morita equivalent in Catfs
E

.

Proposition 4.32. Let M belong to BModC|D(Catfs
E

). The following conditions are equivalent.

(i) M is invertible,

(ii) The functor Drev → FunE

C
(M,M), d 7→ − ⊙ d is an equivalence of multifusion categories

over E,

(iii) The functor C → FunE

|D(M,M), c 7→ c ⊙ − is an equivalence of multifusion categories
over E.

Proof. We obtain (i)⇔ (ii) by the Def. 4.31. Since FunE

FunE

C
(M,M)

(M,M) and C are equivalent as

multifusion categories over E by Prop.4.13, we obtain (ii)⇔ (iii). �

4.4 Characterization of Morita equivalence in Catfs
E

Convention 4.33. Throughout this subsection, we consider multifusion categories C over E

with the property that E→ Z(C) is fully faithful.

Let C and D be multifusion categories over E. We use β and γ to denote the central
structures of the central functors TC : E→ C and TD : E→ D respectively.

Theorem 4.34. Let M be invertible in BModC|D(Catfs
E

). The left action of Z(C,E) and the right

action of Z(D,E) on FunE

C|D(M,M) induce an equivalence of multifusion categories over E

Z(C,E)
L
−→ FunE

C|D(M,M)
R
←− Z(D,E)

Moreover, Z(C,E) and Z(D,E) are equivalent as braided multifusion categories over E.

Proof. Since M is invertible, the functor C→ FunDrev (M,M), z 7→ z ⊙ − is a monoidal equiva-

lence overE. Then the induced monoidal equivalence L : Z(C,E)
(z,βz,−)7→(z⊙−,βz,−)
−−−−−−−−−−−−−→ FunE

C|D(M,M)
is constructed as follows.

• An object z ∈ Z(C,E) is an object z ∈ C, equipped with a half-braiding βz,c : z ⊗ c→ c ⊗ z

for all c ∈ C, such that the composition z ⊗ TC(e)
βz,TC (e)

−−−−→ TC(e) ⊗ z
βTC(e),z

−−−−→ z ⊗ TC(e), e ∈ E,
equals to identity.

• An object z ⊙ − in FunE

C|D(M,M) is an object z ⊙ − in FunE

Drev (M,M) for z ∈ C, equipped

with a natural isomorphism z ⊙ c ⊙ −
βz,c
−−→ c ⊙ z ⊙ − for c ∈ C,− ∈ M. The left E-module

structure on z ⊙ − is induced by Prop. 4.7. Notice that z ⊙ − satisfies the diagram (4.10)
by the last diagram in Rem. 4.15 and the equality βTC(e),z = β

−1
z,TC(e)

.
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It is routine to check that L is a monoidal functor over E. By the same reason, the functor

R : Z(D,E) ≃ Z(D,E)rev ≃
−→ FunE

C|D(M,M) is defined by (a, γa,−) 7→ (− ⊙ a, γa,−), where the

second γa,− is a natural isomorphism −⊙ a⊙ d
γa,d
−−→ −⊙ d⊙ a for d ∈ D. Thus Z(C,E) ≃ Z(D,E).

Suppose R−1 ◦ L : Z(C,E)→ Z(D,E) carries z, z′ to d, d′, respectively. The diagram

z ⊙ (z′ ⊙ x)
≃ //

βz,z′ ,1x

��

(z′ ⊙ x) ⊙ d

≃

��

≃ // (x ⊙ d′) ⊙ d

1x,γd′,d

��
z′ ⊙ (z ⊙ x)

≃
// z′ ⊙ (x ⊙ d)

≃
// (x ⊙ d) ⊙ d′

commutes for x ∈ M. Since the isomorphism z ⊙ − ≃ − ⊙ d is a left C-module natural
isomorphism, the left square commutes. Since the isomorphism z′ ⊙ − ≃ − ⊙ d′ is a right
D-module natural isomorphism, the right square commutes. Then the commutativity of
the outer square implies that the equivalence R−1 ◦ L preserves braidings. The equivalence

R−1◦L, equipped with the monoidal natural isomorphism L(TC(e)) = TC(e)⊙−
vMe
−−→ −⊙TD(e) =

R(TD(e)), is the braided equivalence over E. �

Lemma 4.35. Let C be a fusion category over E such that the central functor TC : E → C is
fully faithful. Let f : Z(C,E) → C and IC : C → Z(C,E) denote the forgetful functor and its
right adjoint.

(1) There is a natural isomorphism IC(x) � [1C, x]Z(C,E) for all x ∈ C.

(2) The object A ≔ IC(1C) is a connected étale algebra in Z(C,E); moreover for any x ∈ C,
the object IC(x) has a natural structure of a right A-module.

(3) The functor IC induces an equivalence of fusion categories C ≃ Z(C,E)A over E. Notice
that Z(C,E)A is the category of right A-modules in Z(C,E).

Proof. For any z ∈ Z(C,E), x ∈ C, we have the equivalences HomZ(C,E)(z, IC(x)) ≃ HomC(z, x) ≃
HomZ(C,E)(z, [1C, x]Z(C,E)). By Yoneda lemma, we obtain IC(x) � [1C, x]Z(C,E).

Since TC : E → C is fully faithful, the forgetful functor f : Z(C,E) → C is surjective by
[DNO, Lem. 3.12]. By [DMNO, Lem. 3.5], the object A is a connected étale algebra and there
is a monoidal equivalence C ≃ Z(C,E)A. More explicitly, for any object x ∈ C, the object
IC(x) = [1C, x]Z(C,E) is a right A-module and the monoidal functor

IC = [1C,−]Z(C,E) : C→ Z(C,E)A

is a monoidal equivalence. The left A-module structure on IC(x) is given by A ⊗ IC(x)
βA,IC(x)

−−−−−→

IC(x) ⊗ A→ IC(x). One can check that for x = f(z) ∈ C with z ∈ Z(C,E), one have IC(x) � z ⊗ A
(as A-modules). The monoidal structure on IC is induced by

µx,y : IC(x ⊗ y) = [1C, f(z) ⊗ y]Z(C,E) ≃ z ⊗ [1C, y]Z(C,E) = z ⊗ A ⊗A IC(y) = IC(x) ⊗A IC(y)

for x, y ∈ C. Since f is surjective, µx,y is always an isomorphism. Z(C,E)A can be identified
with a subcategory of the fusion category AZ(C,E)A. Recall the central structure on the functor
E → AZ(C,E)A by Ex. 3.9. The structure of monoidal functor over E on IC is induced by
IC(TC(e)) = [1C,TC(e)]Z(C,E) ≃ TC(e) ⊗ A. �

Lemma 4.36. Let C and D be fusion categories over E such that the central functors TC :
E → C and TD : E → D are fully faithful. Suppose that Z(C,E) is equivalent to Z(D,E)
as braided fusion categories over E. We have FPdim(C) = FPdim(D) and FPdim(IC(1C)) =

FPdim(ID(1D)) =
FPdim(C)
FPdim(E) , where FPdim is the Frobenius-Perron dimension.
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Proof. Z(C,E) is a subcategory of Z(C). By [DGNO, Thm. 3.14], we obtain the equation

FPdim(Z(C,E))FPdim(Z(C,E)′) = FPdim(Z(C))FPdim(Z(C,E) ∩ Z(C)′)

Since the equations Z(C,E)′ = E, Z(C)′ = Vec and FPdim(Z(C)) = FPdim(C)2 (recall [EGNO,
Thm. 7.16.6]) hold, we get the equation

FPdim(Z(C,E)) =
FPdim(C)2

FPdim(E)
(4.18)

Since Z(C,E) ≃ Z(D,E) and the numbers FPdim(C) and FPdim(D) are positive, FPdim(C) =
FPdim(D).

Since f : Z(C,E)→ C is surjective, we get the equation

FPdim(IC(1C)) =
FPdim(Z(C,E))

FPdim(C)
=

FPdim(C)

FPdim(E)

by [EGNO, Lem. 6.2.4] and the equation (4.18). Then we have FPdim(IC(1C)) = FPdim(ID(1D)).
�

Lemma 4.37. Suppose that f : Z(C)
≃
−→ Z(D) is an equivalence of braided multifusion cate-

gories and ue : f (TC(e)) ≃ TD(e) is a monoidal natural isomorphism in Z(D) for all e ∈ E. Then
f induces an equivalence Z(C,E) ≃ Z(D,E) of braided multifusion categories over E.

Proof. Suppose that f : Z(C)→ Z(D) maps (x, βx,−) to ( f (x), γ f (x),−). If the object (x, βx,−) belongs
to Z(C,E), the object ( f (x), γ f (x),−) belongs to Z(D,E) by the commutativity of the following
diagram.

f (x ⊗ TC(e))

βx,TC(e)

��

// f (x) ⊗ f (TC(e))
1,ue //

γ f (x), f (TC(e))

��

f (x) ⊗ TD(e)

γ f (x),TD(e)

��
f (TC(e) ⊗ x)

βTC(e),x

��

// f (TC(e)) ⊗ f (x)
ue ,1 //

γ f (TC(e)), f (x)

��

TD(e) ⊗ f (x)

γTD(e), f (x)

��
f (x ⊗ TC(e)) // f (x) ⊗ f (TC(e))

1,ue // f (x) ⊗ TD(e)

Since f is the braided functor, the left two squares commute. The right-upper square com-
mutes by the naturality of γ f (x),−. The right-down square commutes by reason that ue is a
natural isomorphism in Z(D). Since the equation βTC(e),x ◦ βx,TC(e) = id holds, we obtain the
equation γTD(e), f (x) ◦ γ f (x),TD(e) = id. Then f induces an equivalence Z(C,E) ≃ Z(D,E). �

Example 4.38. Let C be a fusion category over E and A a separable algebra in C. By [EGNO,
Rem. 7.16.3], there is a monoidal equivalenceΦ : Z(C)→ Z(ACA), (z, βz,−) 7→ (z⊗A, βz⊗A), where
βz⊗A is induced by

z ⊗ A ⊗A x � z ⊗ x
βz,x
−−→ x ⊗ z � x ⊗A A ⊗ z

1,β−1
z,A

−−−→ x ⊗A z ⊗ A, ∀x ∈ ACA

Φ induces the monoidal equivalence Z(C,E) = E′|Z(C) ≃ E′|Z(ACA) = Z(ACA,E). Recall the central
structure on the functor I : E → ACA in Ex. 3.9. We obtain Φ(TC(e)) = TC(e) ⊗ A = I(e). Then
Z(C,E) ≃ Z(ACA,E) is the monoidal equivalence over E.

Let CA be an indecomposable left C-module in Catfs. By [EGNO, Prop. 8.5.3], Φ : Z(C) ≃
Z(ACA) is the equivalence of braided fusion categories. By Lem.4.37, Φ : Z(C,E) ≃ Z(ACA,E) is
the equivalence of braided fusion categories over E.
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Lemma 4.39. Let C be a fusion category over E and M an indecomposable left C-module in

Catfs. Then FPdim(C) = FPdim(FunC(M,M)).

Proof. Since M is a left C-module in Catfs, there is a separable algebra A in C such that M ≃ CA.
Recall the equivalences Z(C,E) ≃ Z(ACA,E) in Expl. 4.38 and ACA ≃ FunC(CA,CA)rev in Prop. A.5.
Then we get the equations

FPdim(C)2

FPdim(E)
= FPdim(Z(C,E)) = FPdim(Z(ACA,E)) =

FPdim(ACA)2

FPdim(E)
=

FPdim(FunC(CA,CA))2

FPdim(E)

The first and third equations are due to the equation (4.18). Since the Frobenius-Perron
dimensions are positive, the result follows. �

Thm. 8.12.3 of [EGNO] says that two finite tensor categories C and D are Morita equivalent
if and only if Z(C) and Z(D) are equivalent as braided tensor categories. The statement and
the proof idea of Thm. 4.40 comes from which of Thm. 8.12.3 in [EGNO].

Theorem 4.40. LetCandDbe fusion categories overE such that the central functors TC : E→ C

and TD : E→ D are fully faithful. C and D are Morita equivalent in Catfs
E

if and only if Z(C,E)
and Z(D,E) are equivalent as braided fusion categories over E.

Proof. The ”only if” direction is proved in Thm. 4.34.

Let C,D be fusion categories over E such that there is an equivalence a : Z(C,E)
≃
−→ Z(D,E)

as braided fusion categories over E. Since ID(1D) is a connected étale algebra in Z(D,E),
L ≔ a−1(ID(1D)) is a connected étale algebra in Z(C,E). By Lem. 4.35, there is an equivalence

D ≃ Z(C,E)L

of fusion categories over E.
By [DMNO, Prop. 2.7], the category CL of L-modules in C is semisimple. Note that the

algebra L is indecomposable in Z(C,E) but L might be decomposable as an algebra in C, i.e.
the category LCL is a multifusion category. It has a decomposition

LCL =
⊕

i, j∈J

(

LCL

)

i j

where J is a finite set and each
(

LCL

)

ii
is a fusion category. Let L =

⊕

i∈J
Li be the decomposition

of L such that Li
CLi
≃
(

LCL

)

ii
. Here Li, i ∈ J, are indecomposable algebras in C such that the

multiplication of L is zero on Li ⊗ L j, i , j.
Next we want to show that there is an equivalence Z(C,E)L ≃ Li

CLi
of fusion categories over

E. Consider the following commutative diagram of monoidal functors over E:

Z(C,E)
z 7→z⊗Li //

z 7→z⊗L

��

Z(Li
CLi
,E)

f

��
Z(C,E)L ⊂ LZ(C,E)L

f
//
LCL πi

//
Li
CLi

πi is projection and πi(x⊗ L) = x⊗ Li. The top arrow is the equivalence by Expl. 4.38. Next we
calculate the Frobenius-Perron dimensions of the categories Z(C,E)L and Li

CLi
:

FPdim(Z(C,E)L) =
FPdim(Z(C,E))

FPdim(L)
= FPdim(C) = FPdim(Li

CLi
)
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The first equation is due to [DMNO, Lem. 3.11]. The second equation is due to FPdim(L) =
FPdim(IC(1C)) = FPdim(Z(C,E))/FPdim(C) by Lem. 4.36. The third equation is due to Lem. 4.39.
Since πi ◦ f is also surjective, πi ◦ f is an equivalence. Then we have monoidal equivalences
over E: D ≃ Z(C,E)L ≃ Li

CLi
≃ FunC(CLi

,CLi
)rev. �

4.5 Modules over a braided fusion category over E

Let C and D be braided fusion categories over E. In this subsection, fusion categories M over
E with the property that E→ Z(M) is fully faithful.

Definition 4.41. The 2-category LModC(Alg(Catfs
E

)) consists of the following data.

• A class of objects in LModC(Alg(Catfs
E

)). An object M ∈ LModC(Alg(Catfs
E

)) is a fusion

category M over E equipped with a braided monoidal functor φM : C → Z(M,E) over
E.

• For objects M,N in LModC(Alg(Catfs
E

)), a 1-morphism F : M→ N in LModC(Alg(Catfs
E

))
is a monoidal functor F : M → N equipped with a monoidal isomorphism uMN :
F ◦ φM ⇒ φN such that the diagram

F(φM(c) ⊗m) //

βMc,m

��

F(φM(c)) ⊗ F(m)
uMN

c ,1 // φN(c) ⊗ F(m)

βN
c,F(m)

��
F(m ⊗ φM(c)) // F(m) ⊗ F(φM(c))

1,uMN
c

// F(m) ⊗ φN(c)

(4.19)

commutes for c ∈ C,m ∈M, where (φM(c), βM) ∈ Z(M,E) and (φN(c), βN) ∈ Z(N,E).

• For 1-morphisms F,G : M ⇒ N in LModC(Alg(Catfs
E

)), a 2-morphism α : F ⇒ G in

LModC(Alg(Catfs
E

)) is a monoidal isomorphism α such that the diagram

F(φM(c))
αφM(c) //

uMN
c

$$■
■■

■■
G(φM(c))

ũMN
c

zz✉✉✉
✉✉✉

φN(c)

commutes for c ∈ C, where uMN and ũMN are the monoidal isomorphisms on F and G
respectively.

Remark 4.42. If F : M→ N is a 1-morphism in LModC(Alg(Catfs
E

)), F is a leftC-module functor

and a monoidal functor over E. By Lem. 3.4, the left C-module structure sF on F is defined as

F(c⊙m) = F(φM(c)⊗m)→ F(φM(c))⊗ F(m)
uMN

c ,1
−−−−−→ φN(c)⊗ F(m) = c⊙ F(m) for all c ∈ C,m ∈M.

Let uCM : φM ◦ TC ⇒ TM and uCN : φN ◦ TC ⇒ TN be the structures of monoidal functors
over E on φM and φN respectively. The structure of monoidal functor over E on F is induced

by the composition v : F ◦ TM

1,(uCM)−1

=======⇒ F ◦ φM ◦ TC

uMN ,1
=====⇒ φN ◦ TC

uCN

===⇒ TN.

The 2-category RModD(Alg(Catfs
E

)) consists of the following data.

• An object M ∈ RModD(Alg(Catfs
E

)) is a fusion category M over E equipped with a
braided monoidal functor φM : D→ Z(M,E) over E.

• 1-morphisms and 2-morphisms are similar with which in the Def. 4.41.
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And the 2-category BModC|D(Alg(Catfs
E

)) consists of the following data.

• An object M ∈ BModC|D(Alg(Catfs
E

)) is a fusion category M over E equipped with a

braided monoidal functorφM : C⊠ED→ Z(M,E) overE. An objectM ∈ BModC|D(Alg(Catfs
E

))
is closed if φM is an equivalence.

• 1-morphisms and 2-morphisms are similar with which in the Def. 4.41.

5 Factorization homology

In this section, Sec. 5.1 recalls the definitions of unitary categories, unitary fusion categories
and unitary modular tensor categories over E (see [LKW, Def. 3.15, 3.16, 3.21]). Sec. 5.2 recalls
the theory of factorization homology. Sec. 5.3 and Sec. 5.4 compute the factorization homology
of stratified surfaces with coefficients given by UMTC/E’s.

5.1 Unitary categories

Definition 5.1. A ∗-category C is a C-linear category equipped with a functor ∗ : C → Cop

which acts as the identity map on objects and is anti-linear and involutive on morphisms.
More explicitly, for any objects x, y ∈ C, there is a map ∗ : HomC(x, y)→ HomC(y, x), such that

(g ◦ f )∗ = f ∗ ◦ g∗, (λ f )∗ = λ̄ f ∗, ( f ∗)∗ = f

for f : u→ v, g : v→ w, h : x→ y, λ ∈ C×. Here C denotes the field of complex numbers.
A ∗-functor between two ∗-categories C and D is a C-linear functor F : C → D such that

F( f ∗) = F( f )∗ for all f ∈ HomC(x, y). A ∗-category is called unitary if it is finite and the
∗-operation is positive, i.e. f ◦ f ∗ = 0 implies f = 0.

Definition 5.2. A unitary fusion category C is both a fusion category and a unitary category
such that ∗ is compatible with the monoidal structures, i.e.

(g ⊗ h)∗ = g∗ ⊗ h∗, ∀g : v→ w, h : x→ y

α∗x,y,z = α
−1
x,y,z, γ∗x = γ

−1
x , ρ∗x = ρ

−1
x

for x, y, z, v,w ∈ C, where α, γ, ρ are the associativity, the left unit and the right unit constraints
respectively. A unitary braided fusion category is a unitary fusion category C with a braiding
c such that c∗x,y = c−1

x,y for any x, y ∈ C.
A monoidal ∗-functor between unitary fusion categories is a monoidal functor (F, J) : C→ D,

such that F is a ∗-functor and J∗x,y = J−1
x,y for x, y ∈ C. A braided ∗-functor between unitary braided

fusion categories is both a monoidal ∗-functor and a braided functor.

Remark 5.3. Let C be a unitary fusion category. C admits a canonical spherical structure. The
unitary center Z∗(C) is defined as the fusion subcategory of the Drinfeld center Z(C), where
(x, cx,−) ∈ Z∗(C) if c∗x,− = c−1

x,−. Z∗(C) is a unitary braided fusion category and Z∗(C) is braided
equivalent to Z(C) by [GHR, Prop. 5.24].

Definition 5.4. A unitary E-module category C is an object C in Catfs
E

such that C is a unitary
category, and the ∗ is compatible with the E-module structure, i.e.

(i ⊙ j)∗ = i∗ ⊙ j∗, λ∗e,ẽ,x = λ
−1
e,ẽ,x, l∗x = l−1

x

for i : e → ẽ ∈ E, j : x → y ∈ C, where λ and l are the module associativity and the unit
constraints respectively. Notice that symmetric fusion categories are all unitary.

Let C,D be unitary E-module categories. An E-module ∗-functor is an E-module functor
(F, s) : C→ D such that F is a ∗-functor and s∗e,x = s−1

e,x for e ∈ E, x ∈ C.
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Remark 5.5. Let C be an indecomposable unitary E-module category. Then the full subcat-
egory Fun∗

E
(C,C) ⊂ FunE(C,C) of E-module ∗-functors is a unitary fusion category. And the

embedding Fun∗
E

(C,C)→ FunE(C,C) is the monoidal equivalence by [GHR, Thm, 5.3].

Definition 5.6. A unitary fusion category over E is a unitary fusion category A equipped with
a braided ∗-functor T′

A
: E → Z(A) such that the central functor E → A is fully faithful. A

unitary braided fusion category over E is a unitary braided fusion category C equipped with a
braided ∗-embedding TC : E → C′. A unitary modular tensor category over E (or UMTC/E) is a
unitary braided fusion category C over E such that C′ ≃ E.

Let C be a unitary fusion category.

Definition 5.7. Let (A,m : A ⊗ A→ A, η : 1C → A) be an algebra in C. A ∗-Frobenius algebra in
C is an algebra A in C such that the comultiplication m∗ : A → A ⊗ A is an A-bimodule map.
Let A be a ∗-Frobenius algebra in C and M a unitary left C-module category. A left ∗-A-module
in M is a left A-module (M, q : A ⊗M→M) such that q∗ : M→ A ⊗M is a left A-module map.

Remark 5.8. A ∗-Frobenius algebra in C is separable. The full subcategory AM
∗ ⊂ AM of

left ∗-A-modules in M is a unitary category. The embedding AM
∗ → AM is an equivalence.

Similarly, one can define M∗
A

and AM
∗
A

.

If the object (xL, evx : xL ⊗ x → 1C, coevx : 1C → x ⊗ xL) is a left dual of x in C, then
(xL, coev∗x : x ⊗ xL → 1C, ev∗x : 1C → xL ⊗ x) is the right dual of x in C. Here we choose the
duality maps evx and coevx are normalized. That is, the induced composition

HomC(1C, x ⊗ −)
evx
−−→ HomC(xL,−)

ev∗x
−−→ HomC(1C,− ⊗ x)

is an isometry. Then the normalized left dual xL is unique up to canonical unitary isomor-
phism. Let (A,m, η) be a ∗-Frobenius algebra in C. The object (A, η∗ ◦m : A ⊗ A→ 1C,m

∗ ◦ η :
1C → A ⊗ A) is the left (or right) dual of A in C.

Definition 5.9. A ∗-Frobenius algebra A in C is symmetric if the two morphisms Φ1 = Φ2 in
HomC(A,AL), where

Φ1 ≔ [(η∗ ◦m) ⊗ idAL ] ◦ (idA ⊗ coevA) and Φ2 ≔ [idAL ⊗ (η∗ ◦m)] ◦ (ev∗A ⊗ idA)

The following proposition comes from Hao Zheng’s lessons.

Proposition 5.10. Let M be a unitary left C-module category. Then there exists a symmetric
∗-Frobenius algebra A such that M ≃ C∗

A
as unitary left C-module categories.

5.2 Factorization homology for stratified surfaces

The theory of factorization homology (of stratified spaces) is in [AF1, AFT2, AF2].

Definition 5.11. Let Mfldor
n be the topological category whose objects are oriented n-manifolds

without boundary. For any two oriented n-manifolds M and N, the morphism space HomMfldor
n

(M,N)
is the space of all orientation-preserving embeddings e : M→ N, endowed with the compact-
open topology. We define Mfldor

n to be the symmetric monoidal∞-category associated to the
topological category Mfldor

n . The symmetric monoidal structure is given by disjoint union.

Definition 5.12. The symmetric monoidal∞-category Diskor
n is the full subcategory of Mfldor

n

whose objects are disjoint union of finitely many n-dimensional Euclidean spaces
∐

I R
n

equipped with the standard orientation.
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Definition 5.13. Let V be a symmetric monoidal ∞-category. An n-disk algebra in V is a
symmetric monoidal functor A : Diskor

n → V.

Let Vuty be the symmetric monoidal (2,1)-category of unitary categories. The tensor
product of Vuty is Deligne tensor product ⊠. Expl. 3.5 of [AKZ] gives examples of 0-, 1-, 2-disk
algebras in Vuty. A unitary braided fusion category gives a 2-disk algebra in Vuty. A 1-disk
algebra in Vuty is a unitary monoidal category. A 0-disk algebra in Vuty is a pair (P, p), where
P is a unitary category and p ∈ P is a distinguished object. We guess that the n-disk algebra
in Vuty equipped with the compatible E-module structure, is the n-disk algebra both in Vuty

and Catfs
E

, for n = 0, 1, 2.

Assumption 5.14. Let VE

uty be the symmetric monoidal (2,1)-category of unitary E-module

categories. We assume that a unitary braided fusion category over E gives a 2-disk algebra in
VE

uty, a unitary fusion category over E gives a 1-disk algebra in VE

uty, and a unitary E-module

category equipped with a distinguished object gives a 0-disk algebra in VE

uty.

Definition 5.15. An (oriented) stratified surface is a pair (Σ,Σ
π
−→ {0, 1, 2}) where Σ is an oriented

surface and π is a map. The subspace Σi ≔ π−1(i) is called the i-stratum and its connected
components are called i-cells. These data are required to satisfy the following properties.

(1) Σ0 and Σ0 ∪ Σ1 are closed subspaces of Σ.

(2) For each point x ∈ Σ1, there exists an open neighborhood U of x such that (U,U∩Σ1,U∩
Σ0) � (R2,R1, ∅).

(3) For each point x ∈ Σ0, there exists an open neighborhood V of x and a finite subset
I ⊂ S1, such that (V,V ∩ Σ1,V ∩ Σ0) � (R2,C(I)\{cone point}, {cone point}), where C(I) is
the open cone of I defined by C(I) = I × [0, 1)/I × {0}.

(4) Each 1-cell is oriented, and each 0-cell is equipped with the standard orientation.

There are three important types of stratified 2-disks shown in [AKZ, Expl. 3.14].

Definition 5.16. We define Mfldstr to be the topological category whose objects are stratified
surfaces and morphism space between two stratified surfaces M and N are embeddings
e : M → N that preserve the stratifications, and the orientations on 1-, 2-cells. We define
Mfldstr to be the symmetric monoidal ∞-category associated to the topological category
Mfldstr. The symmetric monoidal structure is given by disjoint union.

Definition 5.17. Let M be a stratified surface. We define Diskstr
M to be the full subcategory of

Mfldstr consisting of those disjoint unions of stratified 2-disks that admit at least one morphism
into M.

Definition 5.18. LetV be a symmetric monoidal∞-category. A coefficient on a stratified surface
M is a symmetric monoidal functor A : Diskstr

M → V.

A coefficient A provides a map from each i-cell of M to an i-disk algebra in V.

Definition 5.19. Let V be a symmetric monoidal ∞-category, M a stratified surface, and
A : Diskstr

M → V a coefficient. The factorization homology of M with coefficient in A is an object
of V defined as follows:

∫

M

A := Colim
(

(Diskstr
M )/M

i
−→ Diskstr

M

A
−→ V
)

where (Diskstr
M )/M is the over category of stratified 2-disks embedded in M. And the notation

Colim
(

(Diskstr
M )/M

A◦i
−−→ V

)

denotes the colimit of the functor A ◦ i.
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Definition 5.20. A collar-gluing for an oriented n-manifold M is a continuous map f : M →
[−1, 1] to the closed interval such that restriction of f to the preimage of (−1, 1) is a manifold
bundle. We denote a collar-gluing f : M → [−1, 1] by the open cover M− ∪M0×R M+ ≃ M,
where M− = f−1([−1, 1)), M+ = f−1((−1, 1]) and M0 = f−1(0).

Theorem 5.21. ([AF1] Lem. 3.18). SupposeV is presentable and the tensor product⊗ : V×V→
V preserves small colimits for both variables. Then the factorization homology satisfies ⊗-
excision property. That is, for any collar-gluing M− ∪M0×R M+ ≃ M, there is a canonical
equivalence:

∫

M

A ≃

∫

M−

A
⊗

∫

M0×R
A

∫

M+

A

Remark 5.22. If U is contractible, there is an equivalence
∫

U
A ≃ A in V.

Generalization of the ⊗-excision property is the pushforward property. Let M be an oriented
m-manifold, N an oriented n-manifold, possibly with boundary, and A an m-disk algebra in
a ⊗-presentable ∞-category V. Let f : M → N be a continuous map which fibers over the
interior and the boundary of N. There is a pushforward functor f∗ sends an m-disk algebra
A on M to the n-disk algebra f∗A on N. Given an embedding e : U → N where U = Rn or

Rn−1× [0, 1), an n-disk algebra f∗A is defined as ( f∗A)(U) ≔
∫

f−1(e(U))
A. Then there is a canonical

equivalence in V
∫

N

f∗A ≃

∫

M

A (5.1)

5.3 Preparation

Lemma 5.23. Let C be a multifusion category over E such that E→ Z(C) is fully faithful. Then
the functor C ⊠Z(C,E) C

rev → FunE(C,C) given by a ⊠Z(C,E) b 7→ a ⊗ − ⊗ b is an equivalence of
multifusion categories over E.

Proof. Crev and C are the same as categories. The composed equivalence (as categories):

C ⊠Z(C,E) C
id⊠Z(C,E)δ

L

−−−−−−−−→ C ⊠Z(C,E) C
op v
−→ Crev

⊠E C

carries a⊠Z(C,E) b 7→ a⊠Z(C,E) bL 7→ [a, bL]R
Crev⊠EC

, where v is induced by Thm. 4.18 and Eq. (4.17).

Notice that the object C in LModCrev⊠EC(Catfs
E

) is faithful. The composed equivalence

Crev
⊠E C

δR⊠Eid
−−−−−→ Cop

⊠E C→ FunE(C,C)

c ⊠E d 7→ cR
⊠E d 7→ [−, cR]R

E
⊙ d

maps [a, bL]R
Crev⊠EC

to a functor f ∈ FunE(C,C). Note that HomC([x, cR]R
E
⊙d, y) ≃ HomE([x, cR]R

E
, [d, y]E) ≃

HomE(1E, [d, y]E⊗ [x, cR]E) ≃ HomCop⊠EC(cR ⊠E d, x⊠E y) ≃ HomCrev⊠EC(c⊠E d, xL⊠E y), which
implies

HomC( f (x), y) ≃ HomCrev⊠EC([a, bL]R
Crev⊠EC

, xL
⊠E y) ≃ HomC(a ⊗ x ⊗ b, y)

i.e. f ≃ a ⊗ − ⊗ b. Here the second equivalence above holds by the equivalence (xL ⊠E y) ⊗
[a, bL]Crev⊠EC ≃ [a, (xL ⊠E y) ⊙ bL]Crev⊠EC = [a, y ⊗ bL ⊗ xL]Crev⊠EC.

Then the functor Φ : C ⊠Z(C,E) C
rev → FunE(C,C), a ⊠Z(C,E) b 7→ a ⊗ − ⊗ b is a monoidal

equivalence. Recall the central structures of the functors TC⊠Z(C,E)C
rev : E → C ⊠Z(C,E) C

rev and
T : E → FunE(C,C) in Expl. 3.8 and Expl. 3.7 respectively. The structure of monoidal functor
over E on Φ is induced by Φ ◦ TC⊠Z(C,E)C

rev (e) = TC(e) ⊗ − ⊗ 1C ≃ TC(e) ⊗ − = Te. �
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Lemma 5.24. Let C be a multifusion category over E such that E→ Z(C) is fully faithful and

X a left C-module. There is an equivalence in Catfs
E

C ⊠Z(C,E) FunC(X,X) ≃ FunE(X,X)

Proof. Corollary 3.6.18 of [Su] says that there is an equivalence

FunC(X,X) ≃ FunC⊠ECrev (C, FunE(X,X))

We have equivalencesC⊠Z(C,E)C
rev⊠CrevCop⊠C⊠ECrev FunE(X,X) ≃ FunE(C,C)⊠C⊠ECrev FunE(X,X) ≃

Cop ⊠E C ⊠C⊠ECrev FunE(X,X) ≃ FunE(X,X). The first equivalence holds by the Lem. 5.23. �

Lemma 5.25. Let C be a semisimple finite left E-module. There is an equivalence Cop⊠FunE(C,C)

C ≃ E in Catfs
E

.

Proof. The left FunE(C,C)-action on C is defined as f ⊙ x ≔ f (x) for f ∈ FunE(C,C), x ∈ C. The
composed equivalence

Cop
⊠FunE(C,C) C ≃ C ⊠FunE(C,C)rev Cop ≃ E

carries a ⊠FunE(C,C) b 7→ b ⊠FunE(C,C)rev a 7→ [b, a]R
E

, where the second equivalence is due to
Thm. 4.13 and Eq. (4.17). �

5.4 Computation of factorization homology

Modules over a fusion category over E and modules over a braided fusion category over
E can be generalized to the unitary case automatically. Let C be a unitary fusion category
over E. A closed object in LModC(VE

uty) is an object M ∈ VE

uty equipped with a monoidal

equivalence (ψ, u) : C→ FunE(M,M) over E such that ψ is a monoidal ∗-functor and u∗e = u−1
e

for e ∈ E. Let A and B be unitary braided fusion categories over E. A closed object in
BModA|B(Alg(VE

uty)) is a unitary fusion category M over E equipped with a braided monoidal

equivalence (φ, u) : A ⊠E B→ Z(M,E) over E such that φ is a braided ∗-functor and u∗e = u−1
e

for e ∈ E.

Definition 5.26. A coefficient system A : Diskstr
M → VE

uty on a stratified surface M is called

anomaly-free in Catfs
E

if the following conditions are satisfied:

• The target label for a 2-cell is given by a UMTC/E.

• The target label for a 1-cell between two adjacent 2-cells labeled by A(left) and B(right)
is given by a closed object in BModA|B(Alg(VE

uty)).

• The target label for a 0-cell as the one depicted in Figure 1 is given by a 0-disk algebra
(P, p) in VE

uty, where the unitary E-module category P is equipped with the structure of

a closed left
∫

M\{0}
A-module, i.e.

∫

M\{0}

A ≃ FunE(P,P)

Example 5.27. A stratified 2-disk M is shown in Fig. 1. An anomaly-free coefficient system A

on M in Catfs
E

is determined by its target labels shown in Fig. 1

• The target labels for 2-cells: A, B and D are UMTC/E’s.
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L

MD

A

B

N

(P, p)

Figure 1: The figure depicts a stratified 2-disk with an anomaly-free coefficient system A in

Catfs
E

determined by its target labels.

• The target labels for 1-cells: L is a closed object in BModA|D(Alg(VE

uty)), M a closed

object in BModD|B(Alg(VE

uty)) and N is a closed object in BModA|B(Alg(VE

uty)).

• The target labels for 0-cells: (P, p) is a closed left module over L ⊠Arev⊠ED (M ⊠B Nrev).

The data of the coefficient system A : Diskstr
M → VE

uty shown in Fig. 1 are denoted as

A = (A,B,D;L,M,N; (P, p))

Example 5.28. Let C be a UMTC/E. Consider an open disk D̊ with two 0-cells p1, p2. And a
coefficient system assigns C to the unique 2-cell and assigns (C, x1), (C, x2) to the 0-cells p1, p2,
respectively. By the ⊗-excision property, we have

∫

(D̊;∅;p1⊔p2)

(C; ∅; (C, x1), (C, x2)) ≃
(

C; ∅; (C, x1) ⊗C (C, x2)
)

≃
(

C; ∅; (C, x1 ⊗ x2)
)

Notice the equivalence C ⊗C C ≃ C is defined as x ⊗C y 7→ x ⊗ y, whose inverse is defined as
m 7→ 1C ⊗C m for x, y,m ∈ C.

Consider an open disk D̊ with finitely many 0-cells p1, . . . , pn. And a coefficient system
assigns C to the unique 2-cell and assigns (C, x1), . . . , (C, xn) to the 0-cells p1, . . . , pn, respectively.
We have

∫

(D̊;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃
(

C; ∅; (C, x1 ⊗ · · · ⊗ xn)
)

Theorem 5.29. LetC be a UMTC/E and x1, . . . , xn ∈ C. Consider the stratified sphere S2 without
1-stratum but with finitely many 0-cells p1, . . . , pn. Suppose a coefficient system assigns C to
the unique 2-cell and assigns (C, x1), . . . , (C, xn) to the 0-cells p1, . . . , pn, respectively. We have

∫

(S2;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃
(

E, [1C, x1 ⊗ · · · ⊗ xn]E
)

(5.2)

Proof. If we map the open stratified disk (D̊; ∅; p1, . . . , pn) to the open stratified disk (D̊; ∅; p)
and map the points p1, . . . , pn to the point p. We have the following equivalence by Expl. 5.28

∫

(D̊;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃

∫

(D̊;∅;p)

(C; ∅; (C, x1 ⊗ · · · ⊗ xn))

On the stratified sphere (S2; ∅; p), we add an oriented 1-cell S1 \ p from p to p, labelled
by the 1-disk algebra C obtained by forgetting its 2-disk algebra structure. We project the
stratified sphere (S2; S1 \ p; p) directly to a closed stratified 2-disk (D; S1 \ p; p) as shown in
Fig. 2 (a). Notice that this projection preserves the stratification. Applying the pushforward
property (5.1) and the ⊗-excision property, we reduce the problem to the computation of the
factorization homology of the stratified 2-disk.

∫

(S2;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃

∫

(D;S1\p;p)

(

C ⊠E C;C; (C, x1 ⊗ · · · ⊗ xn)
)
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C

C

(C, x1 ⊗ . . .xn)
FunE(C,C)

(C, x1 ⊗ · · · ⊗ xn)(C, 1C)

(a) (b)

Z(C,E)

Figure 2: The figure depicts the two steps in computing the factorization homology of a sphere
with the coefficient system given by a UMTC/E.

Notice that C ⊠E C ≃ Z(C,E). Next we project the stratified 2-disk vertically onto the closed
interval [−1, 1] as shown in Fig. 2 (b). Notice that C ⊠Z(C,E) C

rev ≃ FunE(C,C). The final result
is expressed as a tensor product:

∫

(S2 ;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃
(

C ⊠FunE(C,C) C, 1C ⊠FunE(C,C) (x1 ⊗ · · · ⊗ xn)
)

By Lem. 5.25 and Lem. A.9, the composed equivalence

C ⊠FunE(C,C) C ≃ Cop
⊠FunE(C,C) C ≃ C ⊠FunE(C,C)rev Cop ≃ E

carries x⊠FunE(C,C) y 7→ xR ⊠FunE(C,C) y 7→ y⊠FunE(C,C)rev xR 7→ [y, xR]R
E
� [xR, y]E. Taking x = 1C

and y = x1 ⊗ · · · ⊗ xn in the above composed equivalence, we obtain Eq. (5.2). �

Theorem 5.30. Let C be a UMTC/E and x1, . . . , xn ∈ C. Let Σg be a closed stratified surface
of genus g without 1-stratum but with finitely many 0-cells p1, . . . , pn. Suppose a coefficient
system assigns C to the unique 2-cell and assigns (C, x1), . . . , (C, xn) to the 0-cells p1, . . . , pn,
respectively. We have

∫

(Σg;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃
(

E, [1C, x1 ⊗ · · · ⊗ xn ⊗ (η−1(A) ⊗T(A) η
−1(A))⊗g]E

)

(5.3)

where A is a symmetric ∗-Frobenius algebra inE such that there exists an equivalenceη : C ≃ EA

in VE

uty and T : E→ C′ is the braided embedding.

Proof. Since C is a unitary E-module category, there exists a symmetric ∗-Frobenius algebra
A in C such that C ≃η EA in VE

uty. Notice that Eq. (5.3) holds for genus g = 0 by Thm. 5.29.

Now we assume g > 0. The proof of Thm. 5.29 implies that
∫

S1×R
C ≃ FunE(C,C). By Prop.A.6,

Lem. A.7 and Lem. A.8, the composed equivalence of categories

FunE(EA,EA) ≃ AEA ≃ AE ⊠E EA ≃ EA ⊠E EA

carries id 7→ A 7→ p̄ ⊠E q̄ 7→ p̄ ⊠E q̄, where p̄ ⊠E q̄ ≔ colim
(

(A ⊗ A) ⊠E A ⇒ A ⊠E A
)

. Then

the equivalence FunE(C,C) ≃ C ⊠E C carries idC 7→ p ⊠E q ≔ Colim
(

η−1(A ⊗ A) ⊠E η
−1(A) ⇒

η−1(A) ⊠E η
−1(A)

)

.

Therefore, we have
∫

S1×R
C ≃
(

C ⊠E C, p ⊠E q
)

. As a consequence, when we compute the

factorization homology, we can replace a cylinder S1 ×R by two open 2-disks with two 0-cells

as shown on the Fig. 3, both of which are labelled by
(

C ⊠E C, p⊠E q
)

, or labelled by (C, p) and

(C, q).
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M

C
X ⊠E Xop

M Mrev

C C

(a) (b)

Figure 3: Figure (a) shows a stratified cylinder with a coefficient system (C;M; ∅), where C is
a UMTC/E and M is closed in BModC|C(Alg(VE

uty)). Figure (b) shows a disjoint union of two

open disks with 2-cells labeled by C, 1-cells labeled by M and Mrev, and 0-cells labeled by X

and Xop.

In this way, the genus is reduced by one. By induction, we obtain the equation

∫

(Σg;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃

∫

(Σg−1;∅;p1,...,pn,pn+1,pn+2)

(

C; ∅; (C, x1), . . . , (C, xn), (C, p), (C, q)
)

≃

∫

(Σ0;∅;p1,...,pn,...,pn+2g−1,pn+2g)

(

C; ∅; (C, x1), . . . , (C, xn), (C ⊠E C, p ⊠E q)g
)

≃
(

E, [1C, x1 ⊗ · · · ⊗ xn ⊗ (p ⊗ q)⊗g]E
)

where the notation (C ⊠E C, p ⊠E q)g denotes g copies of (C ⊠E C, p ⊠E q) and

p ⊗ q ≃ Colim
(

η−1(A ⊗ A) ⊗ η−1(A)⇒ η−1(A) ⊗ η−1(A)
)

≃ Colim
(

η−1(A) ⊗ T(A) ⊗ η−1(A)⇒ η−1(A) ⊗ η−1(A)
)

≃ η−1(A) ⊗T(A) η
−1(A)

Since factorization homology and p ⊠E q are both defined by colimits, we exchange the order
of two colimits in the first equivalence. The second equivalence is induced by the composed
equivalence η−1(A⊗A) ≃ A⊙ η−1(A) = T(A)⊗ η−1(A) ≃ η−1(A)⊗T(A). Since T(A) is an algebra
in C, we obtain the last equivalence. �

Example 5.31. The unitary category H denotes the category of finite dimensional Hilbert
spaces. Let E = H and C = UMTC. We want to choose an algebra A ∈ H such that C ≃η HA.
Suppose that η−1(A) � A and T(A) � A. Then η−1(A) ⊗T(A) η

−1(A) � A ⊗A A � A and

∫

(Σg;∅;p1,...,pn)

(C; ∅; (C, x1), . . . , (C, xn)) ≃
(

H,Hom(1C, x1 ⊗ · · · ⊗ xn ⊗ A⊗g)
)

The set O(C) denotes the set of isomorphism classes of simple objects in C. If η−1(A) =
⊕i∈O(C)i

R⊗i = T(A), the distinguished object is Hom(1C, x1⊗· · ·⊗xn⊗(⊕ii
R⊗i)⊗g). If A = ⊕i∈O(C)C

and η−1(A) = ⊕i∈O(C)i = T(A), the distinguished object is Hom(1C, x1 ⊗ · · · ⊗ (⊕i∈O(C)i)
⊗g).

Theorem 5.32. Let (S1 × R; R) be the stratified cylinder shown in Fig. 3. in which the target
label C is a UMTC/E and the target label M is closed in BModC|C(Alg(VE

uty)). We have

∫

(S1×R;R)

(C;M; ∅) ≃ FunE(X,X)

where X is the unique (up to equivalence) left C-module in Catfs
E

such that M ≃ FunC(X,X).
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Proof. By the equivalences Z(Mrev,E) ≃ C ⊠E C ≃ Z(C,E), there exists a C-module X such

that M ≃ FunC(X,X) by Thm. 4.40. Therefore, we have
∫

(S1×R;R)
(C;M; ∅) ≃ C ⊠Z(C,E) M ≃

C ⊠Z(C,E) FunC(X,X) ≃ FunE(X,X), which maps 1C ⊠Z(C,E) 1M to idX. The last equivalence is
due to Thm. 5.24. �

Conjecture 5.33. Given any closed stratified surfaceΣ and an anomaly-free coefficient system

A in Catfs
E

on Σ, we have
∫

Σ
A ≃ (E, uΣ), where uΣ is an object in E.

A Appendix

A.1 Central functors and other results

Let D be a braided monoidal category with the braiding c and M a monoidal category.

Definition A.1. A central structure of a monoidal functor F : D → M is a braided monoidal
functor F′ : D→ Z(M) such that F = f ◦ F′, where f : Z(M)→M is the forgetful functor.

A central functor is a monoidal functor equipped with a central structure. For any monoidal
functor F : D → M, the central structure of F given in Def. A.1 is equivalent to the central
structure of F given in the Def. A.2.

Definition A.2. A central structure of a monoidal functor F : D→M is a natural isomorphism
σd,m : F(d) ⊗ m → m ⊗ F(d), d ∈ D, m ∈ M which is natural in both variables such that the
diagrams

F(d) ⊗m ⊗m′
σd,m⊗m′ //

σd,m ,1 ((◗◗
◗◗◗

◗◗◗
m ⊗m′ ⊗ F(d)

m ⊗ F(d) ⊗m′
1,σd,m′

66♠♠♠♠♠♠♠♠
(A.1)

F(d) ⊗ F(d′) ⊗m

Jd,d′ ,1

��

1,σd′,m // F(d) ⊗m ⊗ F(d′)
σd,m ,1 // m ⊗ F(d) ⊗ F(d′)

1,Jd,d′

��
F(d ⊗ d′) ⊗m

σd⊗d′ ,m // m ⊗ F(d ⊗ d′)

(A.2)

F(d) ⊗ F(d′)
Jd,d′ //

σd,F(d′)

��

F(d ⊗ d′)

F(cd,d′ )

��
F(d′) ⊗ F(d)

Jd′ ,d // F(d′ ⊗ d)

(A.3)

commute for any d, d′ ∈ D and m,m′ ∈M, where J is the monoidal structure of F.

Proposition A.3. Suppose F : D→M is a central functor. For any d ∈ D,m ∈M, the following
two diagrams commute

F(d) ⊗ 1M

σd,1M //

rF(d)   ❆
❆❆

❆❆
❆❆

1M ⊗ F(d)

lF(d)~~⑥⑥
⑥⑥
⑥⑥
⑥

F(d)

F(1D) ⊗m
σ1D ,m //

lm ��❅
❅❅

❅❅
❅❅

m ⊗ F(1D)

rm
��⑦⑦
⑦⑦
⑦⑦
⑦

m

(A.4)

Here lm : F(1D) ⊗ m = 1M ⊗ m → m and rm : m ⊗ F(1D) = m ⊗ 1M → m, m ∈ M are the unit
isomorphisms of the monoidal category M.
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Proof. Consider the diagram:

F(d) ⊗ (1M ⊗ 1M)
σd,1M⊗1M//

1,l1M
��

(1M ⊗ 1M) ⊗ F(d)

l1M ,1
�� ))❚❚❚

❚❚❚❚
❚❚❚❚

❚

(F(d) ⊗ 1M) ⊗ 1M

55❥❥❥❥❥❥❥❥❥❥❥❥ rF(d),1 //

σd,1M
,1 ))❚❚❚

❚❚❚❚
❚❚❚❚

❚
F(d) ⊗ 1M

σd,1M // 1M ⊗ F(d) 1M ⊗ (1M ⊗ F(d))
l1M⊗F(d)oo

(1M ⊗ F(d)) ⊗ 1M
//

lF(d),1

OO

1M ⊗ (F(d) ⊗ 1M)
1,σd,1M

55❥❥❥❥❥❥❥❥❥❥❥❥
lF(d)⊗1M

ii❚❚❚❚❚❚❚❚❚❚❚❚

The outward hexagon commutes by the diagram (A.1). The left-upper, right-upper and
middle-bottom triangles commute by the monoidal category M. The middle-up square
commutes by the naturality of the central structure σd,m : F(d)⊗m→ m⊗ F(d), ∀d ∈ D,m ∈M.
The right-down square commutes by the naturality of the unit isomorphism lm : 1M ⊗ m ≃
m, m ∈ M. Then the left-down triangle commutes. Since − ⊗ 1M ≃ idM is the natural
isomorphism, the left triangle of (A.4) commutes.

Consider the diagram:

m ⊗ F(1D ⊗ 1D)
1,J

uu❥❥❥❥
❥❥❥❥

❥❥❥❥
1,r1D
��

m ⊗ F(1D) ⊗ F(1D)
1,rF(1D) //
rm⊗F(1D)

11 m ⊗ F(1D) F(1D ⊗ 1D) ⊗m

σ1D⊗1D ,m
jj❚❚❚❚❚❚❚❚❚❚❚❚

J,1

��

r1D ,1uu❥❥❥❥
❥❥❥❥

❥❥❥❥

F(1D) ⊗m

σ1D ,m

OO

F(1D) ⊗m ⊗ F(1D)

σ1D ,m,1

OO

rF(1D)⊗m
22

1,rm

55❥❥❥❥❥❥❥❥❥❥❥❥
F(1D) ⊗ F(1D) ⊗m

1,σ1D ,m

oo

rF(1D),1
ll

1,lm

jj❚❚❚❚❚❚❚❚❚❚❚❚

The outward diagram commutes by the diagram (A.2). The right-upper square commutes
by the naturality of the central structure σd,m : F(d) ⊗ m → m ⊗ F(d), d ∈ D,m ∈ M. The
left square commutes by the naturality of the unit isomorphism rm : m ⊗ 1M ≃ m, m ∈ M.
The left-upper and right-down triangles commute by the monoidal functor F. Three parallel
arrows equal by the triangle diagrams of the monoidal category M. Then the bottom triangle
commutes. Since F(1D) ⊗ − = 1M ⊗ − ≃ idM is the natural isomorphism, the right triangle of
(A.4) commutes. �

Let A be a separable algebra in a multifusion category C over E. We use AC (or CA, ACA) to
denote the category of left A-modules (or right A-modules, A-bimodules) in C.

Proposition A.4. Let C be a multifusion category over E and A a separable algebra in C. Then
the diagram

TC(e) ⊗ x ⊗A yR
c

e,x⊗A yR
//

ce,x ,1

��

x ⊗A yR ⊗ TC(e)

x ⊗ TC(e) ⊗A yR

h
// x ⊗A TC(e) ⊗ yR

1,ce,yR

OO

commutes for e ∈ E, x, y ∈ CA, where c is the central structure of the central functor TC : E→ C.

Proof. The functor y 7→ yR defines an equivalence of right C-modules (CA)op|L ≃ AC. For x ∈ CA,
we use px to denote the right A-action on x. For yR ∈ AC, we use qyR to denote the left A-action

on yR. Obviously, TC(e) ⊗ x belongs to CA and yR ⊗ TC(e) belongs to AC. The right A-action on
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x ⊗ TC(e) is induced by x ⊗ TC(e) ⊗ A
1,ce,A
−−−→ x ⊗ A ⊗ TC(e)

px,1
−−→ x ⊗ TC(e). The left A-action on

TC(e) ⊗ yR is induced by A ⊗ TC(e) ⊗ yR
c−1

e,A
,1

−−−→ TC(e) ⊗ A ⊗ yR
1,qyR

−−−→ TC(e) ⊗ yR. It is routine to
check that ce,x is a morphism in CA and ce,yR is a morphism in AC.

The morphism ce,x⊗AyR is induced by

TC(e) ⊗ x ⊗ A ⊗ yR
1,px,1 //

1,1,qyR

//

ce,x⊗A⊗yR

��

TC(e) ⊗ x ⊗ yR

ce,x⊗yR

��

// TC(e) ⊗ x ⊗A yR

ce,x⊗AyR

��
x ⊗ A ⊗ yR ⊗ TC(e)

px,1,1 //
1,qyR ,1

// x ⊗ yR ⊗ TC(e) // x ⊗A yR ⊗ TC(e)

The composition (1x ⊗A ce,yR) ◦ h ◦ (ce,x ⊗A 1yR ) is induced by

TC(e) ⊗ x ⊗ A ⊗ yR
1,px,1 //

1,1,qyR

//

ce,x⊗A⊗yR

��

ce,x,1,1

��

TC(e) ⊗ x ⊗ yR

ce,x,1

��

// TC(e) ⊗ x ⊗A yR

ce,x,1

��
x ⊗ TC(e) ⊗ A ⊗ yR

px⊗TC(e) //
1,1,q

yR

//

1,ce,A,1

��

x ⊗ TC(e) ⊗ yR

1

��

// x ⊗ TC(e) ⊗A yR

h

��
x ⊗ A ⊗ TC(e) ⊗ yR

px,1,1 //
1,q

TC(e)⊗yR

//

1,1,ce,yR

��

x ⊗ TC(e) ⊗ yR //

1,ce,yR

��

x ⊗A TC(e) ⊗ yR

1,ce,yR

��
x ⊗ A ⊗ yR ⊗ TC(e)

px,1,1 //
1,q

yR ,1
// x ⊗ yR ⊗ TC(e) // x ⊗A yR ⊗ TC(e)

Since ce,x⊗yR = (1x ⊗ ce,yR) ◦ (ce,x ⊗ 1yR), the composition (1x ⊗A ce,yR) ◦ h ◦ (ce,x ⊗A 1yR ) equals to
ce,x⊗AyR by the universal property of coequalizers. �

Proposition A.5. Let C be a multifusion category over E and A a separable algebra in C. There
is an equivalence FunC(CA,CA) ≃ (ACA)rev of multifusion categories over E.

Proof. By [EGNO, Prop. 7.11.1], the functor Φ : (ACA)rev → FunC(CA,CA) is defined as x 7→
−⊗A x and the inverse ofΦ is defined as f 7→ f (A). The monoidal structure on Φ is defined as

Φ(x ⊗rev
A y) = − ⊗A (y ⊗A x) ≃ (− ⊗A y) ⊗A x = Φ(x) ◦Φ(y)

for x, y ∈ (ACA)rev. Recall the central structures on the functors I : E → (ACA)rev and T̂ : E →
FunC(CA,CA) in Expl. 3.9 and Expl. 4.6 respectively. The structure of monoidal functor over E
on Φ is induced by

Φ(I(e)) = Φ(TC(e) ⊗rev A) = − ⊗A (A ⊗ TC(e)) � − ⊗ TC(e)
c−1

e,−
−−→ TC(e) ⊗ − = T̂e

for e ∈ E, where c is the central structure of the functor TC : E → C. Next we want to check
that Φ is a monoidal functor over E. Consider the diagram for e ∈ E, x ∈ (ACA)rev:

Φ(I(e) ⊗rev
A

x) //

Φ(σe,x )

��

Φ(I(e)) ◦Φ(x) // T̂e ◦Φ(x)

σ̄e,Φ(x)

��
Φ(x ⊗rev

A
I(e)) // Φ(x) ◦Φ(I(e)) // Φ(x) ◦ T̂e
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The central structure σe,x is induced by x⊗A A⊗TC(e)
c−1

e,x⊗AA

−−−−→ TC(e)⊗x⊗A A � TC(e)⊗A⊗A x
ce,A,1
−−−→

A⊗TC(e)⊗A x. The central structure σ̄e,Φ(x) is induced by TC(e)⊗ (−⊗A x) ≃ (TC(e)⊗−)⊗A x. The
commutativity of the above diagram is due to the commutativity of the following diagram

− ⊗A TC(e) ⊗ x ⊗A A

�

��

1,ce,x⊗AA// − ⊗A x ⊗A A ⊗ TC(e)
c−1

e,−⊗Ax⊗AA//

Φ(σe,x )

��

TC(e) ⊗ − ⊗A x ⊗A A

�

��
− ⊗A TC(e) ⊗ A ⊗A x

1,ce,A,1
// − ⊗A A ⊗ TC(e) ⊗A x

c−1
e,−⊗AA

,1

// TC(e) ⊗ − ⊗A A ⊗A x

The upper horizontal composition c−1
e,−⊗Ax ◦ (1 ⊗A ce,x) is induced by

− ⊗ A ⊗ TC(e) ⊗ x
p−,1,1 //

1,qTC(e)⊗x

//

1,1,ce,x

��
c−1

e,−⊗A
,1

��

− ⊗ TC(e) ⊗ x //

1,ce,x

��
c−1

e,−,1

��

− ⊗A TC(e) ⊗ x

1,ce,x

��
− ⊗ A ⊗ x ⊗ TC(e)

p−,1,1 //
1,qx,1

//

c−1
e,−⊗A⊗x

��

− ⊗ x ⊗ TC(e) //

c−1
e,−⊗x

��

− ⊗A x ⊗ TC(e)

c−1
e,−⊗Ax

��
TC(e) ⊗ − ⊗ A ⊗ x

1,p−,1 //
1,1,qx

// TC(e) ⊗ − ⊗ x // TC(e) ⊗ − ⊗A x

Here (−, p−) and (A,m) belong to CA and (x, px, qx) belong to ACA. qTC(e)⊗x is defined as A ⊗

TC(e)⊗x
c−1

e,A
,1

−−−→ TC(e)⊗A⊗x
1,qx
−−→ TC(e)⊗x. The lower horizontal composition c−1

e,−⊗AA
◦ (1⊗A ce,A)

is induced by

− ⊗ A ⊗ TC(e) ⊗ A
p−,1,1 //

1,qTC(e)⊗A

//

1,1,ce,A

��
c−1

e,−⊗A
,1

��

− ⊗ TC(e) ⊗ A //

1,ce,A

��
c−1

e,−,1

��

− ⊗A TC(e) ⊗ A

1,ce,A

��
− ⊗ A ⊗ A ⊗ TC(e)

p−,1,1 //
1,m,1

//

c−1
e,−⊗A⊗A

��

− ⊗ A ⊗ TC(e) //

c−1
e,−⊗A

��

− ⊗A A ⊗ TC(e)

c−1
e,−⊗AA

��
TC(e) ⊗ − ⊗ A ⊗ A

1,p−,1 //
1,1,m

// TC(e) ⊗ − ⊗ A // TC(e) ⊗ − ⊗A A

Since x⊗A A � x � A⊗A x, the compositions c−1
e,−⊗Ax⊗AA

◦ (1⊗A ce,x⊗AA) and (c−1
e,−⊗AA

⊗A 1x) ◦ (1⊗A

ce,A ⊗A 1x) are equal by the universal property of cokernels. �

Proposition A.6. Let C be a multifusion category over E and A,B be separable algebras in C.

(1) There is an equivalence AC ⊠C CB
≃
−→ ACB, x ⊠C y 7→ x ⊗ y in BModE|E(Catfs

E
).

(2) There is an equivalence FunC(CA,CB)
≃
−→ ACB, f 7→ f (A) in BModE|E(Catfs

E
), whose inverse

is defined as x 7→ − ⊗A x.

Proof. (1) The functorΦ : AC⊠CCB → ACB, x⊠C y 7→ x⊗ y is an equivalence by [KZ, Thm. 2.2.3].
Recall the E-E bimodule structure on ACB and AC⊠CCB by Expl. 4.19 and Expl. 4.27 respectively.
The left E-module structure on Φ is defined as

Φ(e ⊙ (x ⊠C y)) = Φ((TC(e) ⊗ x) ⊠C y) = (TC(e) ⊗ x) ⊗ y→ TC(e) ⊗ (x ⊗ y) = e ⊙Φ(x ⊠C y)
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for e ∈ E, x ⊠C y ∈ AC ⊠C CB. The right E-module structure on Φ is defined as

Φ((x ⊠C y) ⊙ e) = Φ(x ⊠C (y ⊗ TC(e))) = x ⊗ (y ⊗ TC(e))→ (x ⊗ y) ⊗ TC(e) = Φ(x ⊠C y) ⊙ e

Check that Φ satisfies the diagram (4.10).

Φ((TC(e) ⊗ x) ⊠C y)
ce,x,1 //

��

Φ((x ⊗ TC(e)) ⊠C y)
bx,TC(e),y// Φ(x ⊠C (TC(e) ⊗ y))

1,ce,y // Φ(x ⊠C (y ⊗ TC(e)))

��
TC(e) ⊗Φ(x ⊠C y)

ce,x⊗y

// Φ(x ⊠C y) ⊗ TC(e)

Here c is the central structure of the central functor TC : E→ C. The above diagram commutes
by the diagram (A.1).

(2) Since CA and CB belongs to BModC|E(Catfs
E

), the category FunC(CA,CB) belongs to

BModE|E(Catfs
E

). The E-E bimodule structure on FunC(CA,CB) in Expl. 4.22 is defined as

(e ⊙ f ⊙ ẽ)(−)≔ f (− ⊗ TC(e)) ⊗ TC(ẽ)

for e, ẽ ∈ E, f ∈ FunC(CA,CB) and − ∈ CA.
The functorΨ : ACB → FunC(CA,CB), x 7→ Ψx

≔ −⊗A x is an equivalence by [KZ, Cor. 2.2.6].
The left E-module structure onΨ is defined as

Ψe⊙x = − ⊗A (TC(e) ⊗ x) � (− ⊗ TC(e)) ⊗A x = Ψx(− ⊗ TC(e)) = e ⊙Ψx

The right E-module structure onΨx is defined as

Ψx⊙e = − ⊗A (x ⊗ TC(e)) � (− ⊗A x) ⊗ TC(e) = Ψx ⊙ e

Recall the monoidal natural isomorphism (ve)Ψx : e ⊙Ψx ⇒ Ψx ⊙ e in Expl. 4.22:

(e⊙Ψx)(−) = Ψx(−⊗TC(e))
c−1

e,−
−−→ Ψx(TC(e)⊗−)

sΨ
x

−−→ TC(e)⊗Ψx(−)
ce,Ψx (−)
−−−−→ Ψx(−)⊗TC(e) = (Ψx⊙e)(−)

CheckΨ satisfies the diagram (4.10).

Ψe⊙x = − ⊗A (TC(e) ⊗ x)

1,ce,x

��

// (− ⊗ TC(e)) ⊗A x = Ψx(− ⊗ TC(e))

c−1
e,−,1

��
TC(e) ⊗ − ⊗A x

ce,−⊗Ax

��
Ψx⊙e = − ⊗A (x ⊗ TC(e)) // (− ⊗A x) ⊗ TC(e) = Ψx(−) ⊗ TC(e)

The above diagram commutes by Prop. A.4. �

Lemma A.7. Let M and N be separable algebras in E. The functor Φ : ME ⊠E EN → MEN,

x⊠E y 7→ x⊗ y is an equivalence of categories. The inverse of Φ is defined as z 7→ Colim
(

(M⊗

M) ⊠E z⇒M ⊠E z
)

for any z ∈ MEN.

Proof. The inverse of Φ is denoted byΨ.

Ψ ◦Φ(x ⊠E y) = Ψ(x ⊗ y) = Colim
(

⊠E (M ⊗M, x ⊗ y)⇒ ⊠E(M, x ⊗ y)
)

≃ Colim
(

⊠E (M ⊗M ⊗ x, y)⇒ ⊠E(M ⊗ x, y)
)

≃ ⊠E(M ⊗M x, y) ≃ x ⊠E y
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The first equivalence is due to the balanced E-module functor ⊠E. The second equivalence
holds because the functor ⊠E preserves colimits.

Φ ◦Ψ(z) = Φ
(

Colim
(

(M ⊗M) ⊠E z⇒ M ⊠E z
))

≃ Colim
(

Φ((M ⊗M) ⊠E z)⇒ Φ(M ⊠E z)
)

≃ Colim
(

(M ⊗M) ⊗ z⇒M ⊗ z
)

≃M ⊗M z ≃ z

The first equivalence holds because Φ preserves colimits. �

Lemma A.8. Let A be a separable algebra in E. There is an equivalence AE ≃ EA of right
E-module categories.

Proof. We define a functor F : AE → EA, (x, qx : A ⊗ x → x) 7→ (x, px : x ⊗ A
rx,A
−−→ A ⊗ x

qx
−→ x)

and a functor G : EA → AE, (y, py : y ⊗ A→ y) 7→ (y, qy : A ⊗ y
rA,y

−−→ y ⊗ A
py

−→ y), where r is the
braiding of E. Since rx,y ◦ ry,x = idx⊗y for all x, y ∈ E, then F ◦ G = id and G ◦ F = id.

The rightE-action onEA is defined as (y, py)⊗e = (y⊗e, py⊗e : y⊗e⊗A
1,re,A
−−−→ y⊗A⊗e

py,1
−−→ y⊗e).

We have F((x, qx)⊗e) = F(x⊗e, qx⊗e : A⊗x⊗e
qx,1
−−→ x⊗e) = (x⊗e, px⊗e : x⊗e⊗A

rx⊗e,A
−−−→ A⊗x⊗e

qx,1
−−→

x⊗ e) and F(x, qx)⊗ e = (x, px)⊗ e = (x⊗ e, px⊗e : x⊗ e⊗A
1,re,A
−−−→ x⊗A⊗ e

rx,A,1
−−−→ A⊗ x⊗ e

qx,1
−−→ x⊗ e).

Then the right E-module structure on F is the identity natural isomorphism F((x, qx) ⊗ e) =
F(x, qx) ⊗ e. �

Lemma A.9. Let C and M be pivotal fusion categories and M a left C-module in Catfs. There
are isomorphisms [x, y]R

C
� [y, x]C � [x, y]L

C
for x, y ∈M.

Proof. Since M is a pivotal fusion category, there is a one-to-one correspondence between
traces on M and natural isomorphisms

ηMx,y : HomM(x, y)→ HomM(y, x)∗

for x, y ∈ M by [S, Prop. 4.1]. Here both HomM(−,−) and Hom(−,−)∗ are functors from
Mop ×M→ Vec. For c ∈ C, we have composed natural isomorphisms

HomC(c, [x, y]C) ≃ HomM(c ⊙ x, y)
ηM

−−→ HomM(y, c ⊙ x)∗ ≃ HomM(cL ⊙ y, x)∗

≃ HomC(cL, [y, x]C)∗ ≃ HomC([y, x]R
C
, c)∗

(ηC)−1

−−−−→ HomC(c, [y, x]R
C

),

HomC(c, [x, y]C) ≃ HomM(c ⊙ x, y) ≃ HomM(x, cR ⊙ y)
ηM

−−→ HomM(cR ⊙ y, x)∗

≃ HomC(cR, [y, x]C)∗
(ηC)−1

−−−−→ HomC([y, x]C, c
R) ≃ HomC(c, [y, x]L

C
)

By Yoneda lemma, we obtain [x, y]R
C
� [y, x]C � [x, y]L

C
. �

A.2 The monoidal 2-category Catfs
E

For objects M,N in a 2-category B, the hom category B(M,N) denotes the category of 1-
morphisms from M to N in B and 2-morphisms in B. For 1-morphisms f , g ∈ B(M,N), the set
B(M,N)( f , g) denotes the set of all 2-morphisms in B with domain f and codomain g.

Definition A.10. The product 2-category Catfs
E
×Catfs

E
is the 2-category defined by the following

data:
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• The objects are pairs (A,B) for A,B ∈ Catfs
E

.

• For objects (A,B), (C,D) ∈ Catfs
E
×Catfs

E
, a 1-morphism from (A,B) to (C,D) is a pair ( f , g)

where f : A→ C and g : B→ D are 1-morphisms in Catfs
E

.

• The identity 1-morphism of an object (A,B) is 1(A,B) ≔ (1A, 1B).

• For 1-morphisms ( f , g), (p, q) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D)), a 2-morphism from ( f , g) to

(p, q) is a pair (α, β) where α : f ⇒ p and β : g⇒ q are 2-morphisms in Catfs
E

.

• For 1-morphisms ( f , g), (p, q), (m, n) ∈ (Catfs
E
× Catfs

E
)((A,B), (C,D)), and 2-morphisms

(α, β) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D))(( f , g), (p, q)),and (γ, δ) ∈ (Catfs

E
×Catfs

E
)((A,B), (C,D))((p, q), (m, n)),

the vertical composition is (γ, δ) ◦ (α, β) ≔ (γ ◦ α, δ ◦ β).

• For 1-morphisms ( f , g) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D)), (p, q) ∈ (Catfs

E
×Catfs

E
)((C,D), (M,N)),

the horizontal composition of 1-morphisms is (p, q) ◦ ( f , g) ≔ (p ◦ f , q ◦ g).

• For 1-morphisms ( f , g), ( f ′, g′) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D)), and (p, q), (p′, q′) ∈ (Catfs

E
×

Catfs
E

)((C,D), (M,N)), and 2-morphisms (α, β) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D))(( f , g), ( f ′, g′)),

and (γ, δ) ∈ (Catfs
E
× Catfs

E
)((C,D), (M,N))((p, q), (p′, q′)), the horizontal composition of 2-

morphisms is (γ, δ) ∗ (α, β) ≔ (γ ∗ α, δ ∗ β).

It is routine to check that the above data satisfy the axioms (i)-(vi) of [JY, Prop. 2.3.4].

Next, we define a pseudo-functor ⊠E : Catfs
E
× Catfs

E
→ Catfs

E
as follows.

• For each object (A,B) ∈ Catfs
E
× Catfs

E
, an object A ⊠E B in Catfs

E
exists (unique up to

equivalence).

• For a 1-morphism ( f , g) ∈ (Catfs
E
×Catfs

E
)((A,B), (C,D)), a 1-morphism f ⊠E g : A⊠EB→

C ⊠E D in Catfs
E

is induced by the universal property of the tensor product ⊠E:

A ×B
⊠E //

f ,g

��

A ⊠E B

∃! f⊠Eg

��
C ×D

⊠E

// C ⊠E D

✡✡✡✡
AIt f g

Notice that for all x ∈ A, e ∈ E, y ∈ B, the balanced E-module structure on the functor
⊠E ◦ ( f × g) is induced by

f (x⊙ e)⊠E g(y)
(sr

f
)−1⊠E1

−−−−−−→ ( f (x)⊙ e)⊠E g(y)
bCD

f (x),e,g(y)

−−−−−→ f (x)⊠E (e⊙ g(y))
1⊠Esl

g

−−−−→ f (x)⊠E g(e⊙ y)

where (g, sl
g) : B→ D is the left E-module functor, ( f , sr

f
) : A→ C is the right E-module

functor, and the natural isomorphism bCD is the balanced E-module structure on the
functor ⊠E : C ×D→ C ⊠E D.

For a 2-morphism (α, β) : ( f , g) ⇒ (p, q) in (Catfs
E
× Catfs

E
)((A,B), (C,D)), a 2-morphism

α ⊠E β : f ⊠E g⇒ p ⊠E q in Catfs
E

is defined by the universal property of ⊠E:

A ×B
⊠E //

f ,g

��
❴❴❴❴ +3
t f g

A ⊠E B

p⊠Eq

}}
f⊠Eg

!!
❴❴❴❴ +3
∃!α⊠Eβ

C ×D
⊠E

// C ⊠E D

=

A ×B
⊠E //

p,q

��
f ,g

��
❴❴❴❴ +3
α,β ❴❴❴❴ +3

tpq

A ⊠E B

p⊠Eq

��
C ×D

⊠E

// C ⊠E D
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It is routine to check that ⊠E : (Catfs
E
× Catfs

E
)((A,B), (C,D)) → Catfs

E
(A ⊠E B,C ⊠E D) is

a local functor. That is, for 2-morphisms (α, β) : ( f , g)⇒ (p, q) and (δ, τ) : (p, q)⇒ (m, n)

in (Catfs
E
× Catfs

E
)((A,B), (C,D)), The equations (δ ◦ α) ⊠E (τ ◦ β) = (δ ⊠E τ) ◦ (α ⊠E β) and

1 f ⊠E 1g = 1 f⊠Eg hold.

• For all 1-morphisms f ⊠E g : A ⊠E B → C ⊠E D, p ⊠E q : C ⊠E D → M ⊠E N in Catfs
E

,

the lax functoriality constraint (p ⊠E q) ◦ ( f ⊠E g) ≃
t
pq

f g (p ◦ f ) ⊠E (q ◦ g) is defined by the
universal property of ⊠E:

A ×B
⊠E //

f ,g

zzttt
tt
tt
tt
t
❴❴❴❴ +3
t f g

A ⊠E B

∃! f⊠Eg
yysss

sss
sss

s

∃!(p◦ f )⊠E(q◦g)

��

❴❴❴❴ +3
∃!t

pq

f g
C ×D

⊠E //

p,q
$$❏❏

❏❏
❏❏

❏❏
❏❏

C ⊠E D

∃!p⊠Eq

%%❑❑
❑❑❑

❑❑❑
❑❑

❴❴❴❴ +3
tpq

M ×N
⊠E

// M ⊠E N

=

A ×B
⊠E //

f ,g

zztt
tt
tt
tt
t

p◦ f ,q◦g

��

❴❴❴❴ +3
tp f ,qg

A ⊠E B

∃!(p◦ f )⊠E(q◦g)

��

C ×D

p,q $$❏
❏❏

❏❏
❏❏

❏❏

M ×N
⊠E

// M ⊠E N

where the identity 2-morphism is always abbreviated.

• For 1-morphisms 1A ⊠E 1B : A ⊠E B → A ⊠E B in Catfs
E

, the lax unity constraint
1A ⊠E 1B ≃

tAB 1A⊠EB is defined by the universal property of ⊠E:

A ×B
⊠E //

1A ,1B

��
❴❴❴❴ +3

t1A ,1B

A ⊠E B

1A⊠EB

��
1A⊠E1B

��
❴❴❴❴ +3∃!tAB

A ×B
⊠E

// A ⊠E B

=

A ×B
⊠E //

1A ,1B

��
1A×B

��
❴❴❴❴ +3id

A ⊠E B

1A⊠EB

��
A ×B

⊠E

// A ⊠E B

where we choose the identity 2-morphism id : ⊠E◦1A×B ⇒ 1A⊠EB◦⊠E for convenience.

It is routine to check that the above data satisfy the lax associativity, the lax left and right
unity of [JY, (4.1.3),(4.1.4)].

Remark A.11. The left (or right) E-module structure on A ⊠E B is induced by

E ×A ×B
1,⊠E //

⊙,1

��
✎✎✎✎
CKtl

AB

E ×A ⊠E B

∃!⊙

��
A ×B

⊠E

// A ⊠E B

A ×B × E
⊠E,1 //

1,⊙

��
✎✎✎✎
CKtr

AB

A ⊠E B × E

∃!⊙

��
A ×B

⊠E

// A ⊠E B

The n-fold product 2-category Catfs
E
× · · · × Catfs

E
is written as (Catfs

E
)n such that Catfs

E

has a set of objects. The 2-category Catps((Catfs
E

)n,Catfs
E

) contains pseudofunctors (Catfs
E

)n →

Catfs
E

as objects, strong transformations between such pseudofunctors as 1-morphisms, and
modifications between such strong transformations as 2-morphisms.

Lemma A.12. We claim that Catfs
E

is a monoidal 2-category.

Proof. A monoidal 2-category Catfs
E

consists of the following data.

i The 2-category Catfs
E

is equipped with the pseudo-functor ⊠E : Catfs
E
× Catfs

E
→ Catfs

E
and

the tensor unit E.
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ii The associator is a strong transformation α : ⊠E ◦ (⊠E × id) ⇒ ⊠E ◦ (id × ⊠E) in the

2-cateogry Catps((Catfs
E

)3,Catfs
E

). For each (A,B,C) ∈ (Catfs
E

)3, α contains an invertible
1-morphism αA,B,C : (A ⊠E B) ⊠E C→ A ⊠E (B ⊠E C) induced by

A ×B × C
⊠E◦(⊠E×id) //

⊠E◦(id×⊠E) ))❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚ (A ⊠E B) ⊠E C

∃!αA,B,C

��
A ⊠E (B ⊠E C)

✡✡✡✡
AIdα

ABC

For each 1-morphism ( f1, f2, f3) : (A,B,C)→ (A′,B′,C′) in (Catfs
E

)3, α contains an invertible
2-morphism α f1, f2, f3 : ( f1 ⊠E ( f2 ⊠E f3)) ◦ αA,B,C ⇒ αA′ ,B′,C′ ◦ (( f1 ⊠E f2) ⊠E f3) induced by

A ×B × C
⊠E,1//

f1, f2, f3

��

1,⊠E ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ (A ⊠E B) × C
⊠E //

✏✏✏✏
DLdα

ABC

(A ⊠E B) ⊠E C

αA,B,C

��

( f1⊠E f2)⊠E f3

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

❴❴❴❴ +3
∃!α f1 f2 f3

✎✎✎✎
CK1 f1

,t f2 f3

A × (B ⊠E C)
⊠E //

f1, f2⊠E f3

��
✏✏✏✏
DLt f1 , f2 f3

A ⊠E (B ⊠E C)

f1⊠E( f2⊠E f3)

��

(A′ ⊠E B′) ⊠E C′

αA′ ,B′ ,C′vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

A′ ×B′ × C′
1,⊠E

// A′ × (B′ ⊠E C′)
⊠E

// A′ ⊠E (B′ ⊠E C′)

‖

A ×B × C
⊠E,1//

f1, f2, f3

��

❴❴❴❴ +3
t f1 f2

,1 f3

(A ⊠E B) × C
⊠E //

( f1⊠E f2), f3

��

(A ⊠E B) ⊠E C

( f1⊠E f2)⊠E f3

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
❴❴❴❴ +3

t f1 f2 , f3

(A′ ⊠E B′) × C′
⊠E //

❴❴❴❴ +3
dα
A′B′C′

(A′ ⊠E B′) ⊠E C′

αA′ ,B′ ,C′vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

A′ ×B′ × C′
1,⊠E

//

⊠E,1
77♦♦♦♦♦♦♦♦♦♦♦

A′ × (B′ ⊠E C′)
⊠E

// A′ ⊠E (B′ ⊠E C′)

iii The left unitor and right unitor are strong transformations l : E⊠E− ⇒ − and r : −⊠EE⇒ −

in Catps(Catfs
E
,Catfs

E
). For each A ∈ Catfs

E
, l and r contain invertible 1-morphisms lA :

E ⊠E A→ A and rA : A ⊠E E→ A respectively.

E ×A
⊠E //

⊙
%%❏❏

❏❏
❏❏❏

❏❏❏
❏ E ⊠E A

∃!lA
��
A

✡✡✡✡
AIdl

A

A × E
⊠E //

⊙
%%❏❏

❏❏
❏❏❏

❏❏❏
❏ A ⊠E E

∃!rA
��
A

✡✡✡✡
AIdr

A

For each 1-morphism f : A → B in Catfs
E

, l and r contain invertible 2-morphisms βl
f

:

f ◦ lA ⇒ lB ◦ (1E ⊠E f ) and βr
f

: f ◦ rA ⇒ rB ◦ ( f ⊠E 1E) respectively.

E ×A
⊠E //

1E, f

��

⊙
$$❏❏

❏❏
❏❏

❏❏
❏❏

❏
✡✡✡✡
AIdl

A

E ⊠E A

lA

��

1E⊠E f

%%❑
❑❑

❑❑
❑❑

❑❑

❴❴❴❴ +3
∃!βl

f
A

f

��

E ⊠E B

lB
yysss

ss
ss
ss
s

E ×B
⊙

//

❴❴❴❴ +3
sl

f

B

=

E ×A
⊠E //

1E, f

��

E ⊠E A

1E⊠E f

%%❑
❑❑

❑❑
❑❑

❑❑
❴❴❴❴ +3
t1E f

E ⊠E B

lB
yysss

ss
ss
ss
s

E ×B
⊙

//

⊠E --

B

❴❴❴❴ +3dl
B
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A × E
⊠E //

f ,1E

��

⊙
$$❏❏

❏❏
❏❏

❏❏
❏❏

❏
✡✡✡✡
AIdr

A

A ⊠E E

rA

��

f⊠E1E

%%❑
❑❑

❑❑
❑❑

❑❑

❴❴❴❴ +3
∃!βr

f
A

f

��

B ⊠E E

rB
yysss

ss
ss
ss
s

B × E
⊙

//

❴❴❴❴ +3
sr

f

B

=

A × E
⊠E //

f ,1E

��

A ⊠E E

f⊠E1E

%%❑
❑❑

❑❑
❑❑

❑❑
❴❴❴❴ +3t f 1E

B ⊠E E

rB
yysss

ss
ss
ss
s

B × E
⊙

//

⊠E --

B

❴❴❴❴ +3dr
B

where ( f , sl
f
) : A → B is a left E-module functor and ( f , sr

f
) : A → B is a right E-module

functor.

iv The pentagonator is a modification π in Catps((Catfs
E

)4,Catfs
E

). For each A,B,C,D ∈ Catfs
E

,
π consists of an invertible 2-morphism πA,B,C,D : (1A ⊠E αB,C,D) ◦ αA,B⊠EC,D ◦ (αA,B,C ⊠E
1D) ⇒ αA,B,C⊠ED ◦ αA⊠EB,C,D induced by (where, for example, A ⊠E B is abbreviated to
AB):

A ×B × C ×D
⊠E,1,1 //

1,1,⊠E

��

1,⊠E,1 ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
AB × C ×D

⊠E,1 //

❴❴❴❴ +3dα
ABC

,11D

(AB)C ×D
⊠E //

αA,B,C ,1D

��
✍✍✍✍
CKtαA,B,C ,1D

((AB)C)D

αA,B,C⊠E1D
��

αAB,C,D

��

❴❴❴❴ +3
11A

,dα
BCD

A ×BC ×D
⊠E,1

//

1,⊠E

��
✗ ✗✗ ✗
GO

dα
A,BC,D

A(BC) ×D
⊠E

// (A(BC))D

αA,BC,D

��
❴❴❴❴ +3∃!πA,B,C,D

(AB)(CD)

αA,B,CD

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

A × (BC)D
⊠E //

1A ,αB,C,D

��
✗ ✗✗ ✗
GO

t1A ,αB,C,D

A((BC)D)

1A⊠EαB,C,D

��
A ×B × CD

1,⊠E // A ×B(CD)
⊠E // A(B(CD))

‖

A ×B × C ×D
⊠E,1,1 //

1,1,⊠E

��

AB × C ×D
⊠E,1 //

1,⊠E

��
✗ ✗✗ ✗
GO

dα
AB,C,D

(AB)C ×D
⊠E // ((AB)C)D

αAB,C,D

��
A ×B × CD

⊠E,1
//

1,⊠E ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
AB × CD

⊠E //

✗ ✗✗ ✗
GO

dα
A,B,CD

(AB)(CD)

αA,B,CD

��
A ×B(CD)

⊠E

// A(B(CD))

v The middle 2-unitor µ is a modification in Catps((Catfs
E

)2,Catfs
E

). For each (B,A) ∈ (Catfs
E

)2,
µ consists of an invertible 2-morphism µB,A : (1B ⊠E lA) ◦ αB,E,A ⇒ 1B⊠EA ◦ (rB ⊠E 1A)
induced by

B × E ×A
⊠E ,1 //

1,⊠E

��
1B,⊙

''

B ⊠E E ×A
⊠E //

❴❴❴❴ +3
dα
BEA

(B ⊠E E) ⊠E A

αB,E,A

ww♦♦♦
♦♦♦

♦♦♦
♦♦

rB⊠E1A

��
❴❴❴❴ +3
∃!µB,A

B × E ⊠E A

❴❴❴❴ +311B
,dl

A

⊠E//

1,lA

��
❴❴❴❴ +3

t1B ,lA

B ⊠E (E ⊠E A)

1B⊠ElA ''❖❖
❖❖❖

❖❖❖
❖❖❖

B ⊠E A

1B⊠EA

��
B ×A

⊠E

// B ⊠E A
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‖

B × E ×A
⊠E,1//

1B,⊙

��

⊙,1A %%❑❑
❑❑

❑❑
❑❑

❑❑

❴❴❴❴ +3
dr
B
,11A

B ⊠E E ×A
⊠E//

rB,1A

��
❴❴❴❴ +3trB ,1A

(B ⊠E E) ⊠E A

rB⊠E1A

��
B ×A

⊠E

//

❴❴❴❴ +3bBA

⊠E &&▼▼
▼▼▼

▼▼▼
▼▼▼

B ⊠E A

1B⊠EA

��
❴❴❴❴ +3id

B ×A
⊠E

// B ⊠E A

where bBA is the balanced E-module structure on the functor ⊠E : B ×A→ B ⊠E A.

vi The left 2-unitor λ is a modification in Catps((Catfs
E

)2,Catfs
E

). For each (B,A) ∈ (Catfs
E

)2, λ
consists of an invertible 2-morphism λBA : lB⊠EA ◦ αE,B,A ⇒ lB ⊠E 1A induced by

E ×B ×A
⊠E,1//

1,⊠E %%❑❑
❑❑

❑❑
❑❑

❑❑

⊙,1

**

E ⊠E B ×A
⊠E//

✌✌✌✌
BJdα

EBA

(E ⊠E B) ⊠E A

αE,B,A

��

lB⊠E1Avv

❴❴❴❴ +3
∃!λB,A

E ×B ⊠E A
⊠E//

⊙ &&◆◆
◆◆◆

◆◆◆
◆◆◆

❴❴❴❴ +3dl
BA❴❴❴❴ +3tl

BA

E ⊠E (B ⊠E A)

lB⊠EA

��
B ×A

⊠E

// B ⊠E A

=

E ×B ×A
⊠E,1//

⊙,1

&&

④④④④
9Adl

B
,11A

E ⊠E B ×A
⊠E//

lB,1A

��

❴❴❴❴ +3
tlB ,1A

(E ⊠E B) ⊠E A

lB⊠E1A

��
B ×A

⊠E

// B ⊠E A

vii The right 2-unitor ρ is a modification in Catps((Catfs
E

)2,Catfs
E

). For each (B,A) in (Catfs
E

)2, ρ
consists of an invertible 2-morphism ρB,A : (1B ⊠E rA) ◦ αB,A,E ⇒ rB⊠EA induced by

B ×A × E
⊠E,1//

1,⊠E %%❑❑
❑❑

❑❑
❑❑

❑❑

1,⊙

**

B ⊠E A × E
⊠E//

✌✌✌✌
BJdα

BAE

(B ⊠E A) ⊠E E

αB,A,E

��

rB⊠EAvv

❴❴❴❴ +3
∃!ρB,A

❴❴❴❴ +3
11B

,dr
A

B ×A ⊠E E
⊠E//

1,rA

��
❴❴❴❴ +3

t1B ,rA

B ⊠E (A ⊠E E)

1B⊠ErA

��
B ×A

⊠E

// B ⊠E A

=

B ×A × E
⊠E ,1//

1,⊙

��

B ⊠E A × E
⊠E//

⊙

��❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅❅
❅❅

❅

❴❴❴❴ +3
dr
BA❴❴❴❴ +3

tr
BA

(B ⊠E A) ⊠E E

rB⊠EA

��
B ×A

⊠E

// B ⊠E A

It is routine to check that α, l, r satisfy the lax unity and the lax naturality of [JY, Def. 4.2.1],
and π, µ, λ, ρ satisfy the modification axiom of [JY, Def. 4.4.1]. It is routine to check that the
above data satisfy the non-abelian 4-cocycle condition, the left normalization and the right
normalization of [JY, (11.2.14), (11.2.16), (11.2.17)]. �

A.3 The symmetric monoidal 2-category Catfs
E

Let (Catfs
E
,⊠E,E, α, l, r, π, µ, λ, ρ) be the monoidal 2-category. For objects A,B ∈ Catfs

E
, the

braiding τ consists of an invertible 1-morphism τA,B : A ⊠E B→ B ⊠E A defined as

A ×B
⊠E //

sA,B

��
✡✡✡✡
AIdτ

A,B

A ⊠E B

∃!τAB

��
B ×A

⊠E

// B ⊠E A
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where s switches the two objects. For objects A,B,C ∈ Catfs
E

, the left hexagonator R−|−− and
the right hexagonator R−−|− consist of invertible 2-morphisms RA|B,C and RA,B|C respectively.

A ×B × C
⊠E ,1 //

1,⊠E

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

sA,B×C

��

A ⊠E B × C
⊠E //

✏✏✏✏
DLdα

A,B,C

(A ⊠E B) ⊠E C

αA,B,C

��

τAB ,1

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

A ×B ⊠E C
⊠E //

τA,B⊠EC

��
✏✏✏✏
DLdτ

A,BC

A ⊠E (B ⊠E C)

τA,B⊠EC

��

(B ⊠E A) ⊠E C

αB,A,C

��
❴❴❴❴ +3

∃!RA|B,C

B × C ×A
⊠E ,1 //

1,⊠E ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ B ⊠E C ×A
⊠E //

✏✏✏✏
DLdα

B,C,A

(B ⊠E C) ⊠E A

αB,C,A

��

B ⊠E (A ⊠E C)

1,τA,Cvv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

B × C ⊠E A
⊠E

// B ⊠E (C ⊠E A)

‖

A ×B × C
⊠E ,1 //

sA,B,1

��
sA,B×C

''

✎✎✎✎
CKdτ

AB
,1

A ⊠E B × C
⊠E //

τAB ,1

��
✏✏✏✏
DLtτ,1

(A ⊠E B) ⊠E C

τA,B ,1

��
B ×A × C

⊠E ,1 //

1,sA,C

��

1,⊠E

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

❴❴❴❴ +3
1,dτ

A,C

B ⊠E A × C
⊠E //

✏✏✏✏
DLdα

B,A,C

(B ⊠E A) ⊠E C

αB,A,C

��
B × C ×A

1,⊠E ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ B ×A ⊠E C
⊠E //

1,τA,C

��
✏✏✏✏
DLt1,τ

B ⊠E (A ⊠E C)

1,τA,C

��
B × C ⊠E A

⊠E

// B ⊠E (C ⊠E A)

A ×B × C
1,⊠E //

⊠E ,1 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

sA×B,C

��

A ×B ⊠E C
⊠E //

✏✏✏✏
DL

dα
−1

A,B,C

A ⊠E (B ⊠E C)

α−1
A,B,C

��

1,τB,C

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

A ⊠E B × C
⊠E //

sA⊠EB,C

��
✏✏✏✏
DLdτ

AB,C

(A ⊠E B) ⊠E C

τA⊠EB,C

��
❴❴❴❴ +3∃!RA,B|C

A ⊠E (C ⊠E B)

α−1
A,C,B

��
C ×A ×B

1,⊠E //

⊠E ,1 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ C ×A ⊠E B
⊠E //

✏✏✏✏
DL

dα
−1

C,A,B

C ⊠E (A ⊠E B)

α−1
C,A,B

��

(A ⊠E C) ⊠E B

τA,C ,1vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

C ⊠E A ×B
⊠E

// (C ⊠E A) ⊠E B

‖
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A ×B × C
1,⊠E //

1,sB,C

��
sA×B,C

''

✎✎✎✎
CK1,dτ

B,C

A ×B ⊠E C
⊠E //

1,τB,C

��
✏✏✏✏
DLt1,τ

A ⊠E (B ⊠E C)

1,τB,C

��
A × C ×B

1,⊠E //

sA,C ,1

��

⊠E ,1

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

❴❴❴❴ +3
dτ
A,C

,1

A × C ⊠E B
⊠E //

✏✏✏✏
DL

dα
−1

A,C,B

A ⊠E (C ⊠E B)

α−1
A,C,B

��
C ×A ×B

⊠E ,1 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖ A ⊠E C ×B
⊠E //

τA,C ,1

��
✏✏✏✏
DLtτ,1

(A ⊠E C) ⊠E B

τA,C ,1

��
C ⊠E A ×B

⊠E

// (C ⊠E A) ⊠E B

For objects A,B ∈ Catfs
E

, the syllepsis ν consists of an invertible 2-morphism νA,B defined as

A ×B
⊠E //

sA,B

��
✡✡✡✡
AIdτ

A,B

A ⊠E B

τA,B

��
1A⊠EB

xx

❴❴❴❴ +3∃!νA,B
B ×A

sB,A

��

⊠E

//

✡✡✡✡
AIdτ

B,A

B ⊠E A

τB,A

��
A ×B

⊠E

// A ⊠E B

=

A ×B
⊠E //

sA,B

��
1A×B

��

A ⊠E B

1A⊠EB

��

B ×A

sB,A

��
A ×B

⊠E

// A ⊠E B

where we choose the identity 2-morphism id : ⊠E ◦ 1A×B ⇒ 1A⊠EB ◦ ⊠E for convenience.

It is routine to check that (Catfs
E
, τ,R−|−−,R−−|−, ν) is a symmetric monoidal 2-category [JY,

Def. 12.1.6, 12.1.15, 12.1.19].
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