Algebras over a symmetric fusion category and integrations

Xiao-Xue Wei * a,b

aSchool of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China ^bShenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

Abstract

We study the symmetric monoidal 2-category of finite semisimple module categories over a symmetric fusion category. In particular, we study *En*-algebras in this 2-category and compute their E_n -centers for $n = 0, 1, 2$. We also compute the factorization homology of stratified surfaces with coefficients given by E_n -algebras in this 2-category for $n = 0, 1, 2$ satisfying certain anomaly-free conditions.

Contents

^{*}Email: xxwei@mail.ustc.edu.cn

1 Introduction

The mathematical theory of factorization homology is a powerful tool in the study of topological quantum field theories (TQFT). It was first developed by Lurie [\[L\]](#page-52-0) under the name of 'topological chiral homology', which records its origin from Beilinson and Drinfeld's theory of chiral homology [\[BD,](#page-52-1) [FG\]](#page-52-2). It was further developed by many people (see for example [\[CG,](#page-52-3) [AF1,](#page-51-0) [AFT1,](#page-51-1) [AFT2,](#page-51-2) [AFR,](#page-51-3) [BBJ1,](#page-51-4) [BBJ2\]](#page-51-5)) and gained its current name from Francis [\[F\]](#page-52-4).

Although the general theory of factorization homology has been well established, explicitly computing the factorization homology in any concrete examples turns out to be a non-trivial challenge. On a connected compact 1-dimensional manifold (or a 1-manifold), i.e. S^1 , the factorization homology is just the usual Hochschild homology. On a compact 2-manifold, the computation is already highly nontrivial (see for example [\[BBJ1,](#page-51-4) [BBJ2,](#page-51-5) [AF2\]](#page-51-6)). Motivated by the study of topological orders in condensed matter physics, Ai, Kong and Zheng carried out in [\[AKZ\]](#page-51-7) the computation of perhaps the simplest (yet non-trivial) kind of factorization homology, i.e. integrating a unitary modular tensor category (UMTC) A (viewed as an *E*2 algebra) over a compact 2-manifold Σ, denoted by $\int_{\Sigma} A$. In physics, the category A is the category of anyons (or particle-like topological defects) in a 2d (spatial dimension) anomalyfree topological order (see [\[W\]](#page-52-5) for a review). The result of this integration is a global observable defined on Σ. It turns out that this global observable is precisely the ground state degeneracy (GSD) of the 2d topological order on Σ . This fact remains to be true even if we introduce defects of codimension 1 and 2 as long as these defects are also anomaly-free. Mathematically, this amounts to computing the factorization homology on a disk-stratified 2-manifold with coefficient defined by assigning to each 2-cell a unitary modular tensor category, to each 1-cell a unitary fusion category (an *E*1-algebra) and to each 0-cell an *E*0-algebra, satisfying certain anomaly-free conditions (see [\[AKZ,](#page-51-7) Sec. 4]).

If the category A is not modular, i.e. the associated topological order is anomalous, the integral $\int_{\Sigma} {\cal A}$ gives a global observable beyond GSD. Mathematically, it is interesting to compute $\int_{\Sigma} A$ for any braided monoidal category A. In this work, we focus on a special situation that also has a clear physical meaning. It was shown in [\[LKW\]](#page-52-6), a finite onsite symmetry of a 2d symmetry enriched topological (SET) order can be mathematically described by a symmetric fusion category \mathcal{E} , and the category of anyons in this SET order can be described by a UMTC over \mathcal{E} , which is roughly a unitary braided fusion category with Müger center given by $\&$ (see Def. [5.6](#page-32-1) for a precise definition). This motivates us to compute the factorization homology on 2-manifolds but valued in the symmetric monoidal 2-category of finite semisimple module categories over $\mathbf{\mathcal{E}}$, denoted by Cat $_{\mathbf{\mathcal{E}}}^{\mathbf{fs}}.$ The symmetric tensor product in Cat $_{{\cal E}}^{{\rm fs}}$ is defined by the relative tensor product $\boxtimes _{{\cal E}}$. We first study E_i -algebras in Cat $_{{\cal E}}^{{\rm fs}}$ and their \vec{E}_i -centers for $i = 0, 1, 2$. Then we derive the anomaly-free conditions for E_i -algebras in Cat^{fs} for $i = 0, 1, 2$. In the end, we compute the factorization homology on disk-stratified

2-manifolds with coefficients defined by assigning anomaly-free E_i -algebras in Cat $_{{\cal E}}^{{\rm fs}}$ to each i -cells for $i = 0, 1, 2$. The main results of this work are Thm. [5.29,](#page-36-0) Thm. [5.30](#page-37-0) and Thm. [5.32.](#page-38-0)

The layout of this paper is as follows. In Sec. 2, we introduce the tensor product $\mathbb{E}_{\mathcal{E}}$ and the symmetric monoidal 2-category Cat $_{{\cal E}}^{{\rm fs}}$. In Sec.3, we study E_i -algebras in Cat $_{{\cal E}}^{{\rm fs}}$ and compute their E_i -centers for $i = 0, 1, 2$. In Sec. 4, we study the modules over a multifusion category over ϵ and modules over a braided fusion category over ϵ . And we prove that two fusion categories over ε are Morita equivalent in Cat $_{{\cal E}}^{{\rm fs}}$ if and only if their E_1 -centers are equivalent. In Sec. 5, we recall the theory of factorization homology and compute the factorization homology of stratified surfaces with coefficients given by E_i -algebras in Cat $_{{\cal E}}^{\rm fs}$ for $i = 0, 1, 2$ satisfying certain anomaly-free conditions.

Acknowledgement I thank Liang Kong for introducing me to this interesting subject. I also thank Zhi-Hao Zhang for helpful discussion. I am supported by NSFC under Grant No. 11971219 and Guangdong Provincial Key Laboratory (Grant No.2019B121203002).

2 The symmetric monoidal 2-category $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

Notation 2.1. All categories considered in this paper are small categories. Let **k** be an algebraically closed field of characteristic zero. Let \mathcal{E} be a symmetric fusion category over \mathbb{k} with a braiding *r*. The category Vec denotes the category of finite dimensional vector spaces over **k** and **k**-linear maps.

Let A be a monoidal category. We denote A^{op} the monoidal category which has the same tensor product of A, but the morphism space is given by $\text{Hom}_{A^{op}}(a, b) := \text{Hom}_{A}(b, a)$ for any objects $a, b ∈ A$, and A^{rev} the monoidal category which has the same underlying category A but equipped with the reversed tensor product $a \otimes^{rev} b := b \otimes a$ for $a, b \in A$. A monoidal category A is rigid if every object $a \in A$ has a left dual a^L and a right dual a^R . The duality functors $\delta^L: a \mapsto a^L$ and $\delta^R: a \mapsto a^R$ induce monoidal equivalences $\mathcal{A}^{\text{op}} \simeq \mathcal{A}^{\text{rev}}$.

A braided monoidal category A is a monoidal category A equipped with a braiding *c*_{*a*,*b*} : *a* ⊗ *b* → *b* ⊗ *a* for any *a*, *b* ∈ A. We denote A the braided monoidal category which has the same monoidal category of A but equipped with the anti-braiding $\bar{c}_{a,b} = c_{b,a}^{-1}$.

A fusion subcategory of a fusion category we always mean a full tensor subcategory closed under taking of direct summands. Any fusion category A contains a trivial fusion subcategory Vec.

2.1 Module categories

Let Catfs be the 2-category of finite semisimple **k**-linear abelian categories, **k**-linear functors, and natural transformations. The 2-category Cat^{fs} equipped with Deligne's tensor product **⊠**, the unit Vec is a symmetric monoidal 2-category.

Let C , D be multifusion categories. We define the 2-category $LMod_C(Cat^{fs})$ as follows.

- Its objects are left C-modules in Cat^{fs}. A left C-module M in Cat^{fs} is an object M in Cat^{ts} equipped with a k-bilinear functor ⊙ : $C \times M \rightarrow M$, a natural isomorphism $\lambda_{c,c',m}$: $(c \otimes c') \odot m \simeq c \odot (c' \odot m)$, and a unit isomorphism l_m : $\mathbb{1}_{\mathcal{C}} \odot m \simeq m$ for all *c*, *c'* ∈ C , *m* ∈ M and the tensor unit 1_C ∈ C satisfying some natural conditions.
- Its 1-morphisms are left C-module functors. For left C-modules M , N in Cat^{ts}, a left C-module functor from M to N is a pair (F, s^F) , where $F : \mathcal{M} \to \mathcal{N}$ is a k-linear functor and $s_{c,m}^F : F(c \odot m) \simeq c \odot F(m)$, $c \in \mathcal{C}$, $m \in \mathcal{M}$, is a natural isomorphism, satisfying some natural conditions.

• Its 2-morphisms are left C-module natural transformations. A left C-module natural transformation between two left C-module functors (F, s^F) , $(G, s^G) : \mathcal{M} \rightrightarrows \mathcal{N}$ is a natural transformation $\alpha : F \to G$ such that the following diagram commutes for $c \in \mathcal{C}, m \in \mathcal{M}$:

$$
F(c \odot m) \xrightarrow{s^{c}} c \odot F(m)
$$

\n
$$
\downarrow^{a_{c \odot m}} \qquad \qquad \downarrow^{1 \odot \alpha_{m}}
$$

\n
$$
G(c \odot m) \xrightarrow{s^{c}} c \odot G(m)
$$
\n(2.1)

Similarly, one can define the 2-category $RMod_D(Cat^{fs})$ of right D -modules in Cat^{fs} and the 2-category BMod_{C|D}(Cat^{fs}) of C-D bimodules in Cat^{fs}. We use Fun(M, N) to denote the category of k-linear functors from M to N and natural transformations. We use $Fun_{\mathcal{C}}(\mathcal{M},\mathcal{N})$ (or Fun_le (\mathcal{M}, \mathcal{N})) to denote the category of left (or right) C-module functors from $\mathcal M$ to $\mathcal N$ and left (or right) C-module natural transformations.

Remark 2.2. There is a bijective correspondence between **k**-linear categories (or **k**-linear functors) and Vec-modules (or Vec-module functors). For objects C, M in Cat^{fs}, if $\odot : \mathbb{C} \times \mathbb{M} \rightarrow$ M is a **k**-bilinear functor, it is a balanced Vec-module functor. And a **k**-bilinear functor ⊙ : C × M → M is equivalent to a **k**-linear functor C ⊠ M → M by the universal functor $\boxtimes : \mathcal{C} \times \mathcal{M} \to \mathcal{C} \boxtimes \mathcal{M}.$

2.2 Tensor product

The following definitions are standard (see for example [\[ENO,](#page-52-7) Def. 3.1], [\[KZ,](#page-52-8) Def. 2.2.1]).

Definition 2.3. Let M ∈ RMod_{*E*}(Cat^{fs}), N ∈ LMod_{*E*}(Cat^{fs}) and D ∈ Cat^{fs}. A *balanced* E *module functor* is a k-bilinear functor $F : \mathcal{M} \times \mathcal{N} \rightarrow \mathcal{D}$ equipped with a natural isomorphism *b*_{*me*,*n*} : $F(m ⊙ e, n) ≈ F(m, e ⊙ n)$ for $m ∈ M, n ∈ N, e ∈ E$, called the *balanced* E-module structure on *F*, such that the diagram

$$
F(m \odot (e_1 \otimes e_2), n) \xrightarrow{b_{m_{e_1} \otimes e_2, n}} F(m, (e_1 \otimes e_2) \odot n)
$$

\n
$$
\cong \qquad \qquad \downarrow \cong
$$

\n
$$
F((m \odot e_1) \odot e_2, n) \xrightarrow{b_{m \odot e_1, e_2, n}} F(m \odot e_1, e_2 \odot n) \xrightarrow{b_{m_{e_1, e_2, e_1}}} F(m, e_1 \odot (e_2 \odot n))
$$

\n(2.2)

commutes for $e_1, e_2 \in \mathcal{E}, m \in \mathcal{M}, n \in \mathcal{N}$.

A *balanced* \mathcal{E} *-module natural transformation* between two balanced \mathcal{E} -module functors F , G : $M \times N \rightrightarrows D$ is a natural transformation $\alpha : F \Rightarrow G$ such that the diagram

$$
F(m \odot e, n) \xrightarrow{b_{m,e,n}^F} F(m, e \odot n)
$$

$$
\alpha_{m \odot e, n} \downarrow \qquad \qquad \downarrow \alpha_{m,e \odot n}
$$

$$
G(m \odot e, n) \xrightarrow[b_{m,e,n}^G]{} G(m, e \odot n)
$$

commutes for all *m* ∈ M, *e* ∈ E , *n* ∈ N, where *b*^F and *b*^G are the balanced E -module structures on *F* and *G* respectively. We use Fun $_{\mathcal{E}}^{\mathrm{bal}}(\mathcal{M},\mathcal{N};\mathcal{D})$ to denote the category of balanced $\mathcal{E}\text{-module}$ functors from $M \times N$ to D , and balanced ϵ -module natural transformations.

Definition 2.4. Let M ∈ RMod_{*E*}(Cat^{fs}) and N ∈ LMod_{*E*}(Cat^{fs}). The *tensor product* of M and N over $\&$ is an object $M \boxtimes_{\&} N$ in Cat^{fs}, together with a balanced $\&$ -module functor \boxtimes _ε : $M \times N \to M \boxtimes$ _ε N , such that, for every object D in Cat^{fs}, composition with \boxtimes _ε induces an equivalence of categories Fun(M $\boxtimes_{\mathcal{E}} \mathcal{N}, \mathcal{D}$) ≃ Fun $_{\mathcal{E}}^{\mathrm{bal}}(\mathcal{M}, \mathcal{N}; \mathcal{D})$.

Remark 2.5. The tensor product of M and N over \mathcal{E} is an object M $\mathbb{Z}_{\mathcal{E}}$ N in Cat^{fs} unique up to equivalence, together with a balanced $\mathcal{E}\text{-module functor }\mathbb{Z}_\mathcal{E}: \mathcal{M} \times \mathcal{N} \to \mathcal{M} \mathbb{Z}_\mathcal{E} \mathcal{N}$, such that for every object $\mathcal D$ in Cat^{fs}, for any $f\in \mathrm{Fun}^{\mathrm{bal}}_{\mathcal E}(\mathcal{M},\mathcal{N};\mathcal{D})$, there exists a pair (f,η) unique up to isomorphism, such that $f \simeq^{\eta} f \circ \boxtimes_{\varepsilon}$, i.e.

where *f* is a k-linear functor in Fun($M \boxtimes_{\varepsilon} N$, D), and $η : f \Rightarrow f \circ \boxtimes_{\varepsilon}$ is a balanced ε -module natural transformation in Fun $_{\mathcal{E}}^{\mathrm{bal}}(\mathcal{M},\mathcal{N};\mathcal{D}).$ The notation ≃ $^{\eta}$ means that the natural isomorphism is induced by η . Given two objects f , g and a morphism $a : f \Rightarrow g$ in Fun $^{\rm bal}_\mathcal E(\mathcal M,\mathcal N;\mathcal D)$, there exist unique objects f , $g \in \text{Fun}(\mathcal{M} \boxtimes_E \mathcal{N}, \mathcal{D})$ such that $f \simeq^{\eta} f \circ \boxtimes_E$ and $g \simeq^{\xi} g \circ \boxtimes_E$. For any choice of (a, η, ξ, f, g) , there exists a unique morphism $b : f \Rightarrow g$ in Fun($M \boxtimes_{\varepsilon} N$, D) such that $\xi \circ a \circ \eta^{-1} = b * \mathrm{id}_{\mathfrak{B}_{\mathcal{E}}}$.

2.3 The symmetric monoidal 2-category $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

A left $\&$ -module $\mathcal M$ in Cat^{fs} is automatically a $\&$ -bimodule category with the right $\&$ -action defined as $m \odot e := e \odot m$, for $m \in \mathcal{M}, e \in \mathcal{E}$.

Definition 2.6. The 2-category Cat^{fs} consists of the following data.

- Its objects are left ϵ -modules in Cat^{fs}.
- Its 1-morphisms are left ϵ -module functors.
- Its 2-morphisms are left E-module natural transformations.
- The identity 1-morphism 1_M for each object M is identity functor 1_M .
- The identity 2-morphism 1_F for each left $\mathcal{E}\text{-module functor } F : \mathcal{M} \to \mathcal{N}$ is the identity natural transformation 1*F*.
- The vertical composition is the vertical composition of left $\mathcal{E}\text{-module natural transform}$ mations.
- Horizontal composition of 1-morphisms is the composition of left E-module functors.
- Horizontal composition of 2-morphisms is the horizontal composition of left E-module natural transformations.

It is routine to check the above data satisfy the axioms $(i)-(vi)$ of $[JY, Prop. 2.3.4]$. We define a pseudo-functor ⊠ $_E$: Cat $_E^{\text{fs}}\times$ Cat $_E^{\text{fs}}\to$ Cat $_E^{\text{fs}}$ in Sec. [A.2.](#page-44-0) And the following theorem is proved in Sec. [A.2](#page-44-0) and Sec. [A.3.](#page-49-0)

Theorem 2.7. The 2-category $\mathsf{Cat}^{\mathrm{fs}}_{\mathcal{E}}$ is a symmetric monoidal 2-category.

3 Algebras and centers in $\text{Cat}^{\text{fs}}_{\mathcal{E}}$

In this section, Sec. 3.1, Sec. 3.2 and Sec. 3.3 study E_0 -algebras, E_1 -algebras and E_2 -algebras in Cat^{fs}, respectively. Sec. 3.4, Sec. 3.5 and Sec. 3.6 study E_0 -centers, E_1 -centers and E_2 -centers in Cat $_{\varepsilon}^{\mathrm{fs}}$, respectively.

3.1 *E*0**-algebras**

Definition 3.1. We define the 2-category $\text{Alg}_{E_0}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$ of E_0 -algebras in $\text{Cat}_{\mathcal{E}}^{\text{fs}}$ as follows.

- Its objects are E_0 -algebras in Cat^{fs}. An E_0 -algebra in Cat^{fs} is a pair (A, A), where A is an object in Cat^{fs} and $A: \mathcal{E} \to \mathcal{A}$ is a 1-morphism in Cat^{fs}.
- For two E_0 -algebras (A, A) and (B, B), a 1-morphism $F : (A, A) \to (B, B)$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$ is a 1-morphism $F: \mathcal{A} \to \mathcal{B}$ in Cat^{fs} and an invertible 2-morphism $F^0: B \Rightarrow F \circ A$ in Cat^{fs}.
- For two 1-morphisms $F, G : (A, A) \rightrightarrows (B, B)$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$, a 2-morphism $\alpha : F \Rightarrow G$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$ is a 2-morphism $\alpha : F \Rightarrow G$ in $\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}$ such that $(\alpha * 1_A) \circ F^0 = G^0$, i.e.

$$
\mathcal{E} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{E} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{E} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{E} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{E} \xrightarrow{\alpha} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha}} \mathcal{A} \xrightarrow{\mathcal{G} \xrightarrow{\alpha} \mathcal{A} \
$$

3.2 *E*1**-algebras**

Let A and B be two monoidal categories. A monoidal functor from A to B is a pair (F, J^F) , where $F: A \to B$ is a functor and $J_{x,y}^F: F(x \otimes y) \simeq F(x) \otimes F(y)$, $x, y \in A$, is a natural isomorphism such that $F(\mathbb{1}_A) = \mathbb{1}_B$ and a natural diagram commutes. A *monoidal natural transformation* between two monoidal functors (F, J^F) , $(G, J^G) : A \rightrightarrows B$ is a natural transformation $\alpha : F \Rightarrow G$ such that the following diagram commutes for all $x, y \in A$:

$$
F(x \otimes y) \xrightarrow{f_{x,y}^F} F(x) \otimes F(y)
$$

\n
$$
\downarrow^{\alpha_{x \otimes y}} \qquad \qquad \downarrow^{\alpha_{x}, \alpha_{y}} \qquad \qquad (\beta.2)
$$

\n
$$
G(x \otimes y) \xrightarrow{f_{x,y}^G} G(x) \otimes G(y)
$$

Given a monoidal category M, the *Drinfeld center* of M is a braided monoidal category *Z*(*M*). The objects of *Z*(*M*) are pairs (*x*, *z*), where *x* ∈ *M* and $z_{x,m}: x \otimes m \approx m \otimes x, m \in M$ is a natural isomorphism such that the following diagram commutes for *m*, *m*′ ∈ M:

$$
x \otimes m \otimes m' \xrightarrow{z_{x,m\otimes m'}} m \otimes m' \otimes x
$$

$$
z_{x,m}1 \searrow m \otimes x \otimes m'
$$

$$
m \otimes x \otimes m'
$$

Recall the two equivalent definitions of a central functor in Def. [A.1](#page-39-2) and Def. [A.2.](#page-39-3) The definitions of a fusion category over $\mathcal E$ and a braided fusion category over $\mathcal E$ are in [\[DNO\]](#page-52-10).

Definition 3.2. The 2-category $\text{Alg}_{E_1}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$ consists of the following data.

- Its objects are multifusion categories over E. *A multifusion category over* E is a multifusion category A equipped with a k-linear central functor $T_A : \mathcal{E} \to \mathcal{A}$. Equivalently, a multifusion category over E is a multifusion category A equipped with a **k**-linear braided monoidal functor $T'_{\mathcal{A}} : \mathcal{E} \to Z(\mathcal{A})$.
- Its 1-morphisms are monoidal functors over E. A *monoidal functor over* E between two multifusion categories A, B over $\mathcal E$ is a $\mathbb k$ -linear monoidal functor $(F, J) : \mathcal A \to \mathcal B$ equipped with a monoidal natural isomorphism $u_e: F(T_{\mathcal{A}}(e)) \to T_{\mathcal{B}}(e)$ in \mathcal{B} for each $e \in \mathcal{E}$, called the structure of monoidal functor over ϵ on F , such that the diagram

$$
F(T_{\mathcal{A}}(e) \otimes x) \xrightarrow{\prod_{T_{\mathcal{A}}(e), x}} F(T_{\mathcal{A}}(e)) \otimes F(x) \xrightarrow{\mu_{e}, 1} T_{\mathcal{B}}(e) \otimes F(x)
$$
\n
$$
F(z_{e,x}) \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$
\n
$$
F(x \otimes T_{\mathcal{A}}(e)) \xrightarrow{\prod_{x, T_{\mathcal{A}}(e)} F(x) \otimes F(T_{\mathcal{A}}(e))} \xrightarrow{1, \mu_{e}} F(x) \otimes T_{\mathcal{B}}(e)
$$
\n
$$
(3.3)
$$

commutes for $e \in \mathcal{E}, x \in \mathcal{A}$. Here *z* and \hat{z} are the central structures of the central functors $T_A : \mathcal{E} \to \mathcal{A}$ and $T_B : \mathcal{E} \to \mathcal{B}$ respectively.

• Its 2-morphisms are monoidal natural transformations over E. A *monoidal natural transformation over* \mathcal{E} between two monoidal functors $F, G : \mathcal{A} \implies \mathcal{B}$ over \mathcal{E} is a monoidal natural transformation α : $F \Rightarrow G$ such that the following diagram commutes for $e \in \mathcal{E}$:

$$
F(T_{\mathcal{A}}(e)) \xrightarrow{\alpha_{T_{\mathcal{A}}(e)}} G(T_{\mathcal{A}}(e))
$$
\n
$$
T_{\mathcal{B}}(e) \qquad \qquad (3.4)
$$

where *u* and *v* are the structures of monoidal functors over $\mathcal E$ on F and G , respectively.

Remark 3.3. If A is a multifusion category over ϵ such that $T'_{\mathcal{A}} : \epsilon \to Z(\mathcal{A})$ is fully faithful, then A is a indecomposable. If $\mathcal{E} = \mathcal{V}$ ec, the functor \mathcal{V} ec $\rightarrow Z(\mathcal{A})$ is fully faithful if and only if A is indecomposable. The condition " $\mathcal{E} \to Z(\mathcal{A}) \to \mathcal{A}$ is fully faithful" implies the condition $\mathcal{C} \rightarrow Z(\mathcal{A})$ is fully faithful".

Lemma 3.4. Let A and B be two monoidal categories. Suppose that $T_A : \mathcal{E} \to \mathcal{A}$, $T_B : \mathcal{E} \to \mathcal{B}$ and $F: A \to B$ are monoidal functors, and $u: F \circ T_A \Rightarrow T_B$ is a monoidal natural isomorphism. Then A, B are left ϵ -module categories, T_A , T_B and F are left ϵ -module functors, and u is a left E-module natural isomorphism.

Proof. The left \mathcal{E} -module structure on \mathcal{A} is defined as $e \odot a := T_{\mathcal{A}}(e) \otimes a$ for all $e \in \mathcal{E}$ and $a \in \mathcal{A}$. The left $\mathcal E$ -module structure on T_A is induced by the monoidal structure of T_A . The left $\mathcal E$ -module structure s^F on F is induced by $F(e\odot a)=F(T_\mathcal{A}(e)\otimes a)\to F(T_\mathcal{A}(e))\otimes F(a)\xrightarrow{u_e,1} T_\mathcal{B}(e)\otimes F(a)=e\odot F(a).$ The left $\mathcal{E}\text{-module structure on }F\circ T_{\mathcal{A}}$ is induced by $F(T_{\mathcal{A}}(\tilde{e}\otimes e))\to F(T_{\mathcal{A}}(\tilde{e})\otimes T_{\mathcal{A}}(e))\stackrel{s^F}{\to}$ $T_B(\tilde{e}) \otimes F(T_A(e)) = \tilde{e} \odot F(T_A(e))$ for $e, \tilde{e} \in \mathcal{E}$. The natural isomorphism *u* satisfy the diagram [\(2.1\)](#page-3-1) by the diagram [\(3.2\)](#page-5-3) of the monoidal natural isomorphism *u*.

Remark 3.5. A monoidal functor $F : A \to B$ over $\mathcal E$ is a left $\mathcal E$ -module functor. If A is a multifusion category over $\mathcal E$ and $F : \mathcal A \to \mathcal B$ is an equivalence of multifusion categories, $\mathcal B$ is a multifusion category over \mathcal{E} . The central structure σ on the monoidal functor $F \circ T_A : \mathcal{E} \to \mathcal{B}$ is induced by

$$
F(T_A(e)) \otimes b \xrightarrow{\simeq} F(T_A(e)) \otimes F(a) \xrightarrow{\simeq} F(T_A(e) \otimes a)
$$
\n
$$
\begin{array}{ccc}\n\sigma_{e,b} & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
b \otimes F(T_A(e)) \xleftarrow{\simeq} F(a) \otimes F(T_A(e)) \xleftarrow{\simeq} F(a \otimes T_A(e))\n\end{array}
$$

for $e \in \mathcal{E}, b \in \mathcal{B}$, where *c* is the central structure of the functor $T_A : \mathcal{E} \to \mathcal{A}$. Notice that for any object *b* ∈ \textcircled{B} , there is an object *a* ∈ \textcircled{A} such that *b* ≃ *F*(*a*) by the equivalence of *F*.

Example 3.6. If C is a multifusion category over \mathcal{E} , C^{rev} is a multifusion category over \mathcal{E} by the central functor $\mathcal{E} = \overline{\mathcal{E}} \xrightarrow{T_{\mathcal{C}}} \overline{Z(\mathcal{C})} \cong Z(\mathcal{C}^{\text{rev}}).$

Example 3.7. Let M be a left ϵ -module in Cat^{fs}. Fun_{ϵ}(M, M) is a multifusion category by [\[EGNO,](#page-52-11) Cor. 9.3.3]. Moreover, Fun_{$\mathcal{E}(\mathcal{M}, \mathcal{M})$ is a multifusion category over \mathcal{E} . We define a} functor $T: \mathcal{E} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M}), e \mapsto T^e \coloneqq e \odot -$. The left $\mathcal{E}\text{-module structure on } T^e$ is defined as $e\odot (\tilde{e}\odot m)\rightarrow (e\otimes \tilde{e})\odot m\xrightarrow{r_{e,\tilde{e}},1} (\tilde{e}\otimes e)\odot m\rightarrow \tilde{e}\odot (e\odot m)$ for $\tilde{e}\in \mathcal{E}$, $m\in \mathcal{M}.$ The monoidal structure J^T on *T* is induced by $T^{e\otimes e'} = (e \otimes e') \odot - \simeq e \odot (e' \odot -) = T^e \circ T^{e'}$ for $e, e' \in \mathcal{E}$. The central structure σ on *T* is induced by $T^e \circ G(m) = e \circ G(m) \simeq G(e \circ m) = G \circ T^e(m)$ for all $e \in \mathcal{E}, G \in \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ and $m \in \mathcal{M}$.

Example 3.8. Let C and D be multifusion categories over \mathcal{E} . C $\mathbb{Z}_{\mathcal{E}}$ D is a multifusion category over E. We define a monoidal functor $T_{\mathfrak{C} \mathfrak{w}_\mathcal{E} \mathcal{D}} : \mathcal{E} \simeq \mathcal{E} \mathfrak{w}_\mathcal{E} \mathcal{E} \xrightarrow{T_{\mathfrak{C}} \mathfrak{w}_\mathcal{E} \mathcal{D}} \mathcal{C} \mathfrak{w}_\mathcal{E} \mathcal{D}$ by $e \mapsto e \mathfrak{w}_\mathcal{E} \mathbb{1}_\mathcal{E} \mapsto$ $T_c(e) \boxtimes_{\varepsilon} T_D(\mathbb{1}_{\varepsilon}) = T_c(e) \boxtimes_{\varepsilon} \mathbb{1}_D$ for $e \in \varepsilon$. And the central structure σ on $T_{\mathbb{C} \boxtimes_{\varepsilon} \mathcal{D}}$ is induced by

$$
T_{\mathcal{C}\boxtimes_{\mathcal{E}}\mathcal{D}}(e) \otimes (c \boxtimes_{\mathcal{E}} d) \longrightarrow (T_{\mathcal{C}}(e) \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{D}}) \otimes (c \boxtimes_{\mathcal{E}} d) \longrightarrow (T_{\mathcal{C}}(e) \otimes c) \boxtimes_{\mathcal{E}} (\mathbb{1}_{\mathcal{D}} \otimes d)
$$
\n
$$
\begin{array}{c}\n\sigma_{e,c} \boxtimes_{\mathcal{E}} d \\
\vdots \\
\downarrow \
$$

for $e \in \mathcal{E}, c \boxtimes_{\mathcal{E}} d \in \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$, where *z* and \hat{z} are the central structures of the functors $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$ and $T_D : \mathcal{E} \to \mathcal{D}$ respectively. Notice that $T_{\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}}(e) \simeq 1_{\mathcal{C}} \boxtimes_{\mathcal{E}} T_{\mathcal{D}}(e)$.

An algebra *A* in a tensor category A is called *separable* if the multiplication morphism $m: A \otimes A \rightarrow A$ splits as a morphism of *A*-bimodules. Namely, there is an *A*-bimodule map $e: A \rightarrow A \otimes A$ such that $m \circ e = id_A$.

Example 3.9. Let C be a multifusion category over \mathcal{E} and A a separable algebra in C. The category *^A*C*^A* of *A*-bimodules in C is a multifusion category by [\[DMNO,](#page-52-12) Prop. 2.7]. Moreover, *A*C*A* is a multifusion category over \mathcal{E} . We define a functor $I: \mathcal{E} \to {A}C_A$, $e \mapsto T_{\mathcal{C}}(e) \otimes A$. The left *A*-module structure on the right *A*-module $T_c(e) \otimes A$ is defined as $A \otimes T_c(e) \otimes A \xrightarrow{c^{-1}_{e,A'} 1}$

 $T_c(e) \otimes A \otimes A \to T_c(e) \otimes A$, where *c* is the central structure of the functor $T_c : \mathcal{E} \to \mathcal{C}$. The monoidal structure on *I* is defined as $T_c(e_1 \otimes e_2) \otimes A \simeq T_c(e_1) \otimes T_c(e_2) \otimes A \simeq T_c(e_1) \otimes A \otimes_A T_c(e_2) \otimes A$ for $e_1, e_2 \in \mathcal{E}$. The central structure on *I* is induced by

 $I(e)\otimes_A x=T_\mathfrak{C}(e)\otimes A\otimes_A x\xrightarrow{c_{e\mathcal{A}\otimes_A x}}A\otimes_A x\otimes T_\mathfrak{C}(e)\cong x\otimes_A A\otimes T_\mathfrak{C}(e)\xrightarrow{1,c_{e\mathcal{A}}^{-1}}x\otimes_A T_\mathfrak{C}(e)\otimes A=x\otimes_A I(e)$ for $e \in \mathcal{E}, x \in A\mathcal{C}_A$.

3.3 *E*2**-algebras**

Let A be a subcategory of a braided fusion category C. The *centralizer of* A *in* C, denoted by $A'|_C$, is defined by the full subcategory of objects $x \in C$ such that $c_{a,x} \circ c_{x,a} = id_{x \otimes a}$ for all $a \in A$, where *c* is the braiding of C. The *Müger center* of C, denoted by C' or C'|_C, is the centralizer of C in C. Let B be a fusion category over E such that $\mathcal{E} \to Z(\mathcal{B})$ is fully faithful. The centralizer of $\mathcal E$ in $Z(\mathcal B)$ is denoted by $Z(\tilde{\mathcal B}, \tilde{\mathcal E})$ or $\mathcal E'|_{Z(\mathcal B)}$.

Definition 3.10. The 2-category $\text{Alg}_{E_2}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$ consists of the following data.

- \bullet Its objects are braided fusion categories over \mathcal{E} . A *braided fusion category over* \mathcal{E} is a braided fusion category A equipped with a k-linear braided monoidal embedding $T_{\mathcal{A}}:\mathcal{E}\to\mathcal{A}'$. A braided fusion category A over ϵ is non-degenerate if T_A is an equivalence.
- Its 1-morphisms are braided monoidal functors over E. A *braided monoidal functor over* $\&$ between two braided fusion categories A, B over $\&$ is a k-linear braided monoidal functor $F: A \to B$ equipped with a monoidal natural isomorphism $u_e: F(T_A(e)) \simeq T_B(e)$ in $\mathcal B$ for all $e \in \mathcal E$.
- For two braided monoidal functors $F, G : A \rightrightarrows B$ over $\mathcal E$, a 2-morphism from F to G is a monoidal natural transformation α : $F \Rightarrow G$ such that the diagram [\(3.4\)](#page-6-0) commutes.

Remark 3.11. Let A be a braided fusion category over ϵ and $\eta : A \simeq B$ is an equivalence of braided fusion categories. Then B is a braided fusion category over E.

Example 3.12. If D is a braided fusion category over E , D is a braided fusion category over E by the braided monoidal embedding $\mathcal{E} = \overline{\mathcal{E}} \xrightarrow{T_{\mathcal{D}}} \overline{\mathcal{D}'} = \overline{\mathcal{D}}'.$

Example 3.13. Let C be a fusion category over \mathcal{E} such that $\mathcal{E} \to Z(\mathcal{C})$ is fully faithful. $Z(\mathcal{C}, \mathcal{E})$ is a non-degenerate braided fusion category over \mathcal{E} . Next check that $Z(\mathcal{C}, \mathcal{E})' = \mathcal{E}$. On one hand, if $e \in \mathcal{E}$, we have $T_{\mathcal{C}}(e) \in Z(\mathcal{C}, \mathcal{E})'$. On the other hand, since $Z(\mathcal{C})' = \mathcal{V}$ ec $\subset \mathcal{E}$, we have $Z(\mathcal{C}, \mathcal{E})'|_{Z(\mathcal{C}, \mathcal{E})} \subset Z(\mathcal{C}, \mathcal{E})'|_{Z(\mathcal{C})} = (\mathcal{E}'|_{Z(\mathcal{C})})'|_{Z(\mathcal{C})} = \mathcal{E}$. The central structure on $T_{Z(\mathcal{C}, \mathcal{E})} : \mathcal{E} \to Z(\mathcal{C}, \mathcal{E})'$ is defined as $T_{\rm C}$.

If C is a non-degenerate braided fusion category over E , there is a braided monoidal equivalence $Z(\mathcal{C}, \mathcal{E}) \simeq \mathcal{C} \boxtimes_{\mathcal{E}} \overline{\mathcal{C}}$ over \mathcal{E} by [\[DNO,](#page-52-10) Cor. 4.4].

3.4 *E*₀-centers

A *contractible groupoid* is a non-empty category in which there is a unique morphism between any two objects. An object $\mathcal X$ in a monoidal 2-category **B** is called a *terminal object* if for each \mathcal{Y} ∈ B, the hom category B(\mathcal{Y}, \mathcal{X}) is a contractible groupoid. Here the hom category B(\mathcal{Y}, \mathcal{X}) denotes the category of 1-morphisms from $\mathcal Y$ to $\mathcal X$ and 2-morphisms in B.

Definition 3.14. Let $A = (A, A) \in \text{Alg}_{E_0}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. A *left unital* A -action on $\mathcal{X} \in \text{Cat}_{\mathcal{E}}^{\text{fs}}$ is a 1morphism $F:\mathcal{A} \boxtimes_\mathcal{E} \mathfrak{X}\to \mathfrak{X}$ in Cat $^{fs}_\mathcal{E}$ together with an invertible 2-morphism α in Cat $^{fs}_\mathcal{E}$ as depicted in the following diagram:

where the unlabeled arrow is given by the left $\mathcal E$ -action on $\mathfrak X$.

Definition 3.15. Let $\mathcal{X} \in \text{Cat}_{\mathcal{E}}^{\text{fs}}$. The 2-category $\text{Alg}_{E_0}(\text{Cat}_{\mathcal{E}}^{\text{fs}})_{\mathcal{X}}$ of left unital actions on \mathcal{X} in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$ is defined as follows.

- The objects are left unital actions on X .
- Let $((A, A), F, \alpha_A)$ be a left unital (A, A) -action on X and $((B, B), G, \alpha_B)$ be a left unital (B, B) -action on $\mathfrak X$. A 1-morphism (P, ρ) : $((\mathcal A, A), F, \alpha_{\mathcal A}) \to ((\mathcal B, B), G, \alpha_{\mathcal B})$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal E}^{\mathrm{fs}})_{\mathfrak X}$

is a 1-morphism $P: (A, A) \to (B, B)$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$, equipped with an invertible 2morphism $\rho : G \circ (P \boxtimes_{\mathcal{E}} 1_{\mathcal{X}}) \Rightarrow F$ in Cat^{fs}, such that the following pasting diagram equality holds.

Here we choose the identity 2-morphism id : $(P \boxtimes_{\mathcal{E}} 1_{\mathcal{X}}) \circ (A \boxtimes_{\mathcal{E}} 1_{\mathcal{X}}) \Rightarrow (P \circ A) \boxtimes_{\mathcal{E}} 1_{\mathcal{X}}$ for convenience.

• Given two 1-morphisms (P, ρ) , (Q, σ) : $((A, A), F, \alpha_A) \implies ((B, B), G, \alpha_B)$, a 2-morphism $\alpha:(P,\rho)\Rightarrow (Q,\sigma)$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})_{\mathcal{X}}$ is a 2-morphism $\alpha:P\Rightarrow Q$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})$ such that the following pasting diagram equality holds.

An E_0 -center of the object $\mathfrak X$ in $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal E}$ is a terminal object in $\mathrm{Alg}_{E_0}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal E})_{\mathfrak X}.$

Theorem 3.16. The E_0 -center of a category $\mathcal{X} \in \text{Cat}_{\mathcal{E}}^{\text{fs}}$ is given by the multifusion category Fun_{$\mathcal{E}(\mathfrak{X}, \mathfrak{X})$ over \mathcal{E} .}

Proof. Suppose (A, A) is an E_0 -algebra in Cat $_E^{\text{fs}}$ and (*F, u*) as depicted in the following diagram

$$
\begin{array}{c}\n\mathcal{A} \boxtimes_{\varepsilon} \mathfrak{X} \\
\longrightarrow \\
\mathcal{E} \boxtimes_{\varepsilon} \mathfrak{X} \longrightarrow \\
\downarrow u \longrightarrow \mathfrak{X}\n\end{array}
$$

is a unital A-action on X. In other words, $F : A \boxtimes_{\mathcal{E}} \mathcal{X} \to \mathcal{X}$ is a left \mathcal{E} -module functor and $u_{e,x}: F(A(e) \boxtimes_{\mathcal{E}} x) \to e \odot x, e \in \mathcal{E}, x \in \mathcal{X} \text{ is a natural isomorphism in } \mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}.$

Recall that (Fun $_{\mathcal{E}}(\mathfrak{X},\mathfrak{X})$, *T*) is an E_0 -algebra in Cat $_{\mathcal{E}}^{\mathsf{fs}}$ by Expl. [3.7.](#page-7-1)

$$
\begin{array}{ccc}\n\text{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}) \boxtimes_{\mathcal{E}} \mathcal{X} \\
\downarrow^{\text{TR}_{\mathcal{E}} 1_{\mathcal{X}}} & \downarrow^{\text{G}} \\
\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{X} & \downarrow^{\text{G}}\n\end{array}
$$

Define a functor

 $G: \text{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}) \boxtimes_{\mathcal{E}} \mathcal{X} \to \mathcal{X}, \quad f \boxtimes_{\mathcal{E}} x \mapsto f(x)$

and a natural isomorphism

$$
v_{e,x} = \mathrm{id}_{e \odot x} : G(T^e \boxtimes \varepsilon x) = T^e(x) = e \odot x \to e \odot x, \quad e \in \varepsilon, x \in \mathfrak{X}.
$$

Then $((\text{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}), T), G, v)$ is a left unital $\text{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X})$ -action on \mathcal{X} .

We want to show that $\mathrm{Alg}_{E_0}(\mathrm{Cat}^{\mathrm{fs}}_\mathcal{E})_\mathfrak{X}(\mathcal{A},\mathrm{Fun}_\mathcal{E}(\mathfrak{X},\mathfrak{X}))$ is a contractible groupoid. First we want to show there exists a 1-morphism $(P, \rho) : A \to \text{Fun}_{\mathcal{E}}(\mathfrak{X}, \mathfrak{X})$ in $\text{Alg}_{E_0}(\text{Cat}_{\mathcal{E}}^{\text{fs}})_{\mathfrak{X}}$. We define a functor *P* : *A* → Fun_{*E*}($\mathfrak{X}, \mathfrak{X}$) by *P*(*a*) $:= F(a \boxtimes_{\mathcal{E}} \neg)$ for all *a* ∈ *A* and an invertible 2-morphism P_e^0 : *T*^{*e*} = *e* ⊙ − ⇒ *P*(*A*(*e*)) = *F*(*A*(*e*) ⊠ $_{\mathcal{E}}$ −) as u_e^{-1} for all *e* ∈ $_{\mathcal{E}}$. The natural isomorphism ρ can be defined by

$$
\rho_{a,x} = \mathrm{id}_{F(a \boxtimes_{\mathcal{E}} x)} : G(P(a) \boxtimes_{\mathcal{E}} x) = P(a)(x) = F(a \boxtimes_{\mathcal{E}} x) \longrightarrow F(a \boxtimes_{\mathcal{E}} x)
$$

for $a \in A$, $x \in \mathcal{X}$. Then it suffices to show that the composition of morphisms

$$
G(T^e \boxtimes_{\mathcal{E}} x) = e \odot x \xrightarrow{(P_e^0)_x = u_{e,x}^{-1}} F(A(e) \boxtimes_{\mathcal{E}} x) \xrightarrow{\rho_{A(e),x} = id_{F(A(e) \boxtimes_{\mathcal{E}} x)}} F(A(e) \boxtimes_{\mathcal{E}} x) \xrightarrow{u_{e,x}} e \odot x
$$

is equal to $v_{e,x} = \mathrm{id}_{e\odot x}$ by the definitions of P^0 and ρ .

Then we want to show that if there are two 1-morphisms $(Q_i, \sigma_i): A \to Fun_{\mathcal{E}}(\mathfrak{X}, \mathfrak{X})$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})_{\mathfrak{X}}$ for $i = 1, 2$, there is a unique 2-morphism $\beta : (Q_1, \sigma_1) \Rightarrow (Q_2, \sigma_2)$ in $\mathrm{Alg}_{E_0}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}})_{\mathfrak{X}}$. The 2-morphism β in $\text{Alg}_{E_0}(\text{Cat}_{\mathcal{E}}^{\text{fs}})_{\mathcal{X}}$ is a natural isomorphism $\beta: Q_1 \Rightarrow Q_2$ such that the equalities

$$
\left(T \xrightarrow{\mathcal{Q}_1^0} Q_1 \circ A \xrightarrow{\beta \ast 1_A} Q_2 \circ A\right) = \left(T \xrightarrow{\mathcal{Q}_2^0} Q_2 \circ A\right) \tag{3.5}
$$

and

$$
\left(Q_1(a)(x) \xrightarrow{(\beta_a)_x} Q_2(a)(x) \xrightarrow{(\sigma_2)_{a,x}} F(a \boxtimes_{\mathcal{E}} x)\right) = \left(Q_1(a)(x) \xrightarrow{(\sigma_1)_{a,x}} F(a \boxtimes_{\mathcal{E}} x)\right) \tag{3.6}
$$

hold for $a \in A$, $x \in \mathcal{X}$. The second condition [\(3.6\)](#page-10-0) implies that $(\beta_a)_x = (\sigma_2)_{a,x}^{-1} \circ (\sigma_1)_{a,x}$. This proves the uniqueness of β. For the existence of β, we want to show that β satisfy the first condition [\(3.5\)](#page-10-1), i.e. β is a 2-morphism in Alg_{E₀}(Cat^{fs}). Since (Q_i , σ_i) are 1-morphisms in Alg_{E₀}(Cat^{fs})_X, the composed morphism

$$
e \odot x = T^e(x) \xrightarrow{(Q_i^0)_{e,x}} Q_i(A(e))(x) \xrightarrow{(\sigma_i)_{A(e),x}} F(A(e) \boxtimes_{\mathcal{E}} x) \xrightarrow{u_{e,x}} e \odot x
$$

is equal to $v_{e,x} = id_{e\odot x}$. It follows that the composition of morphisms

$$
e \odot x \xrightarrow{(Q_1^0)_{e,x}} Q_1(A(e))(x) \xrightarrow{(G_1)_{A(e),x}} F(A(e) \boxtimes_E x) \xrightarrow{(G_2)_{A(e),x}^{-1}} Q_2(A(e))(x) \xrightarrow{(Q_2^0)_{e,x}^{-1}} e \odot x
$$

is equal to $id_{e\odot x}$, i.e. $(Q_2^0)_{e,x}^{-1} \circ (\beta_{A(e)})_x \circ (Q_1^0)_{e,x} = id_{e\odot x}$. This is precisely the first condition [\(3.5\)](#page-10-1). Hence the natural transformation $\beta: Q_1 \Rightarrow Q_2$ defined by $(\beta_a)_x = (\sigma_2)_{a,x}^{-1} \circ (\sigma_1)_{a,x}$ is the unique 2-morphism β : $(Q_1, \sigma_1) \Rightarrow (Q_2, \sigma_2)$.

Finally, we also want to verify that the E_1 -algebra structure on the E_1 -center Fun $_{\mathcal{E}}(\mathfrak{X}, \mathfrak{X})$ coincides with the usual monoidal structure of $\text{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X})$ defined by the composition of functors. Recall that the *E*1-algebra structure is induced by the iterated action

$$
\operatorname{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}) \boxtimes_{\mathcal{E}} \operatorname{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}) \boxtimes_{\mathcal{E}} \mathcal{X} \xrightarrow{\operatorname{1\mathfrak{A}}_{\mathcal{E}} G} \operatorname{Fun}_{\mathcal{E}}(\mathcal{X}, \mathcal{X}) \boxtimes_{\mathcal{E}} \mathcal{X} \xrightarrow{G} \mathcal{X}
$$

By the construction given above, the induced tensor product Fun $_{\varepsilon}(\mathfrak{X}, \mathfrak{X}) \boxtimes_{\varepsilon} \text{Fun}_{\varepsilon}(\mathfrak{X}, \mathfrak{X}) \rightarrow$ $Fun_{\mathcal{E}}(\mathcal{X}, \mathcal{X})$ is given by $f \boxtimes_{\mathcal{E}} g \mapsto G(f \boxtimes_{\mathcal{E}} G(g \boxtimes_{\mathcal{E}} -)) = f(g(-)) = f \circ g$. Hence, the *E*₁-algebra structure on Fun $_{\epsilon}(\mathfrak{X}, \mathfrak{X})$ is the composition of functors, which is the usual monoidal structure on Fun $_{\mathcal{E}}(\mathcal{X}, \mathcal{X}).$

3.5 *E*1**-centers**

Definition 3.17. Let \mathcal{X} ∈ Alg_{*E*1}(Cat^{fs}). The *E*₁*-center of* \mathcal{X} *in* Cat^{fs} is the *E*₀*-center of* \mathcal{X} in $\mathrm{Alg}_{E_1}(\mathrm{Cat}^{\mathrm{fs}}_{\mathcal{E}}).$

Theorem 3.18. Let $\mathcal B$ be a multifusion category over $\mathcal E$. Then the E_1 -center of $\mathcal B$ in Cat $^{fs}_{\mathcal E}$ is the braided multifusion category $Z(\mathcal{B}, \mathcal{E})$ over \mathcal{E} .

Proof. Let A be a multifusion category over ϵ . A left unital A-action on B in $\text{Alg}_{E_1}(\text{Cat}_{\epsilon}^{\text{fs}})$ is a monoidal functor $F : A \boxtimes_{\mathcal{E}} B \to B$ over $\mathcal E$ and a monoidal natural isomorphism *u* over $\mathcal E$ shown below:

 \blacksquare More precisely, F is a functor equipped with natural isomorphisms $J^F: F(a_1 \boxtimes_{\mathcal{E}} b_1) \otimes F(a_2 \boxtimes_{\mathcal{E}} b_2)$ b_2) $\stackrel{\simeq}{\to}$ *F*(($a_1 \boxtimes_\varepsilon b_1$) \otimes ($a_2 \boxtimes_\varepsilon b_2$)), $a_1, a_2 \in \mathcal{A}$, $b_1, b_2 \in \mathcal{B}$, and $I^f: \mathbb{1}_{\mathcal{B}} \stackrel{\simeq}{\to} F(\mathbb{1}_{\mathcal{A}} \boxtimes_\varepsilon \mathbb{1}_{\mathcal{B}})$ satisfying certain commutative diagrams. The monoidal structure on the functor \odot : $\& \boxtimes_{\varepsilon} \mathcal{B} \rightarrow \mathcal{B}$, $e\boxtimes_{\mathcal{E}}b\mapsto e\odot b=T_{\mathcal{B}}(e)\otimes b$ is induced by $T_{\mathcal{B}}(e_1\otimes e_2)\otimes (b_1\otimes b_2)\simeq T_{\mathcal{B}}(e_1)\otimes T_{\mathcal{B}}(e_2)\otimes b_1\otimes b_2 \xrightarrow{1,z_{e_2,b_1},1}$ $T_{\mathcal{B}}(e_1) \otimes b_1 \otimes T_{\mathcal{B}}(e_2) \otimes b_2$ for $e_1, e_2 \in \mathcal{E}, b_1, b_2 \in \mathcal{B}$, where $(T_{\mathcal{B}}(e_2), z) \in Z(\mathcal{B})$. The structure of monoidal functor over \mathcal{E} on \odot is defined as $\odot(T_{\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{B}}(e)) = \odot(e \boxtimes_{\mathcal{E}} \mathbb{1}_B) = e \odot \mathbb{1}_B = T_B(e) \otimes \mathbb{1}_B \simeq$ *T*_B(*e*). And *u* is a monoidal natural isomorphism $u_{e,b}$: $F(T_A(e) \boxtimes_E b) \stackrel{\simeq}{\rightarrow} e \odot b := T_B(e) \otimes b$, *e* ∈ ϵ , *b* ∈ ϵ . Also one can show that *I*^F = $u_{1\epsilon}^{-1}$, The structure of monoidal functor over ϵ on F is $u_{e,\mathbb{1}_B}$: $F(T_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}}(e)) = F(T_{\mathcal{A}}(e) \boxtimes_{\mathcal{E}} \mathbb{1}_B) \simeq \widetilde{T}_{\mathcal{B}}(e) \otimes \mathbb{1}_B \simeq T_{\mathcal{B}}(e).$

There is an obviously left unital $Z(\mathcal{B}, \mathcal{E})$ -action on $\mathcal B$

defined by $G: Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{f,1} \mathcal{B} \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{\otimes} \mathcal{B}$ and $v_{e,b} := id_{T_{\mathcal{B}}(e) \otimes b} : G(T_{\mathcal{B}}(e) \boxtimes_{\mathcal{E}} b) = T_{\mathcal{B}}(e) \otimes$ *b* → *e* ⊙ *b*, for *e* ∈ E, *b* ∈ B. The structure of monoidal functor over E on *G* is defined as $G(T_{\mathcal{B}}(e) \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{B}}) = T_{\mathcal{B}}(e) \otimes \mathbb{1}_{\mathcal{B}} \simeq T_{\mathcal{B}}(e).$

First we want to show that $F(a \boxtimes_{\mathcal{E}} \mathbb{1}_B) \in Z(\mathcal{B}, \mathcal{E})$ for $a \in \mathcal{A}$. Notice that $F(\mathbb{1}_{\mathcal{A}} \boxtimes_{\mathcal{E}} b) =$ $F(T_A(\mathbb{1}_\mathcal{E}) \boxtimes_\mathcal{E} b) \xrightarrow{u_{\mathbb{1}_\mathcal{E},b}} \mathbb{1}_\mathcal{E} \odot b = b$. Since *F* is a monoidal functor over \mathcal{E} , it can be verified that the natural transformation γ (shown below)

$$
F(a \boxtimes_{\mathcal{E}} 1_{\mathcal{B}}) \otimes b \xrightarrow{1, u_{1_{\mathcal{E}},b}^{-1}} F(a \boxtimes_{\mathcal{E}} 1_{\mathcal{B}}) \otimes F(1_{\mathcal{A}} \boxtimes_{\mathcal{E}} b) \xrightarrow{f^{F}} F((a \otimes 1_{\mathcal{A}}) \boxtimes_{\mathcal{E}} (1_{\mathcal{B}} \otimes b))
$$
\n
$$
\downarrow_{\alpha,b} \qquad \qquad \downarrow_{\alpha,\alpha} \qquad \downarrow_{\alpha
$$

is a half-braiding on $F(a \boxtimes_{\mathcal{E}} \mathbb{1}_B) \in \mathcal{B}$, for $a \in \mathcal{A}$, $b \in \mathcal{B}$. It is routine to check that the composition $T_{\mathcal{B}}(e) \otimes F(a \boxtimes \mathcal{E} \mathbb{1}_{\mathcal{B}}) \to F(a \boxtimes \mathcal{E} \mathbb{1}_{\mathcal{B}}) \otimes T_{\mathcal{B}}(e) \to T_{\mathcal{B}}(e) \otimes F(a \boxtimes \mathcal{E} \mathbb{1}_{\mathcal{B}})$ equals to identity. Then $F(a \boxtimes \mathcal{E} \mathbb{1}_{\mathcal{B}})$ belongs to $Z(\mathcal{B}, \mathcal{E})$.

We define a monoidal functor $P : A \to Z(B, \mathcal{E})$ by $P(a) := (F(a \boxtimes_{\mathcal{E}} \mathbb{1}_B), \gamma_{a,-})$ with the monoidal structure induced by that of *F*:

$$
J^{P}: (P(a_{1}) \otimes P(a_{2}) = F(a_{1} \boxtimes_{\varepsilon} \mathbb{1}_{\mathcal{B}}) \otimes F(a_{2} \boxtimes_{\varepsilon} \mathbb{1}_{\mathcal{B}}) \xrightarrow{J^{P}} F((a_{1} \otimes a_{2}) \boxtimes_{\varepsilon} (\mathbb{1}_{\mathcal{B}} \otimes \mathbb{1}_{\mathcal{B}})) = F((a_{1} \otimes a_{2}) \boxtimes_{\varepsilon} \mathbb{1}_{\mathcal{B}}) = P(a_{1} \otimes a_{2})
$$

$$
I^P: \left(\mathbb{1}_{\mathcal{B}} \xrightarrow{I^F} F(\mathbb{1}_{\mathcal{A}} \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{B}}) = P(\mathbb{1}_{\mathcal{A}})\right)
$$

The structure of monoidal functor over $\mathcal E$ on P is defined as $u_{e,\mathbb 1\cdot B}$: $P(T_{\mathcal A}(e)) = F(T_{\mathcal A}(e) \boxtimes_{\mathcal E} \mathbb 1\cdot_{\mathcal B}) \simeq$ $T_{\mathcal{B}}(e) = T_{Z(\mathcal{B}, \mathcal{E})}(e)$ for $e \in \mathcal{E}$.

Then we show that there exists a 1-morphism (P, ρ) : $\mathcal{A} \to Z(\mathcal{B}, \mathcal{E})$ in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_1}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_{\mathcal{B}}$.

The invertible natural isomorphism P^0 : $T_B \Rightarrow P \circ T_A$ is defined by $T_B(e) = e \odot \mathbb{1}_B \xrightarrow{\mu_{e,\mathbb{1}_B}^{-1}}$ $F(T_A(e) \boxtimes_E \mathbb{1}_B) = P(T_A(e))$ for $e \in \mathcal{E}$. The monoidal natural isomorphism $\rho : G \circ (P \boxtimes_E \mathbb{1}_B) \Rightarrow F$ is defined by

$$
\rho_{a,b}:F(a\boxtimes_{\mathcal{E}}\mathbb{1}_{\mathcal{B}})\otimes b\xrightarrow{1,u_{1_{\mathcal{E}},b}^{-1}}F(a\boxtimes_{\mathcal{E}}\mathbb{1}_{\mathcal{B}})\otimes F(\mathbb{1}_{\mathcal{A}}\boxtimes_{\mathcal{E}}b)\xrightarrow{J^F}F((a\otimes\mathbb{1}_{\mathcal{A}})\boxtimes_{\mathcal{E}}(\mathbb{1}_{\mathcal{B}}\otimes b))=F(a\boxtimes_{\mathcal{E}}b)
$$

for *a* ∈ A, *b* ∈ B. It is routine to check that the composition of 2-morphisms *P* 0 , ρ and *u* is equal to the 2-morphism *v*.

Then we show that if there are two 1-morphisms $(Q_i, \sigma_i): A \to Z(B, E)$ in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_1}(\mathrm{Cat}^{fs}_\mathcal{E}))_B$ for $i = 1, 2$, then there exists a unique 2-morphism $\beta : (Q_1, \sigma_1) \Rightarrow (Q_2, \sigma_2)$ in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_1}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_{\mathcal{B}}$. Such a *β* is a natural transformation $β$: Q_1 \Rightarrow Q_2 such that the equalities

$$
\left(Q_1(a)\otimes b\xrightarrow{\beta_a,1}Q_2(a)\otimes b\xrightarrow{(\sigma_2)_{a,b}}F(a\boxtimes_{\varepsilon} b)\right)=\left(Q_1(a)\otimes b\xrightarrow{(\sigma_1)_{a,b}}F(a\boxtimes_{\varepsilon} b)\right) \tag{3.7}
$$

and

$$
\left(T_{\mathcal{B}} \stackrel{Q_1^0}{\Longrightarrow} Q_1 \circ T_{\mathcal{A}} \stackrel{\beta \ast 1}{\Longrightarrow} Q_2 \circ T_{\mathcal{A}}\right) = \left(T_{\mathcal{B}} \stackrel{Q_2^0}{\Longrightarrow} Q_2 \circ T_{\mathcal{A}}\right) \tag{3.8}
$$

hold for $a \in A$, $b \in B$. The first condition [\(3.7\)](#page-12-0) implies that $\beta_a : Q_1(a) \to Q_2(a)$ is equal to the composition

$$
Q_1(a) = Q_1(a) \otimes \mathbb{1}_{\mathcal{B}} \xrightarrow{(\sigma_1)_{a,\mathbb{1}_{\mathcal{B}}}} F(a \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{B}}) \xrightarrow{(\sigma_2)_{a,\mathbb{1}_{\mathcal{B}}^{-1}}} Q_2(a) \otimes \mathbb{1}_{\mathcal{B}} = Q_2(a)
$$

This proves the uniqueness of β . It is routine to check that β_a is a morphism in $Z(\mathcal{B}, \mathcal{E})$ and β satisfy the second condition [\(3.8\)](#page-12-1).

Finally, we also want to verify that the E_2 -algebra structure on the E_1 -center $Z(\mathcal{B}, \mathcal{E})$ coincides with the usual braiding structure on $Z(\mathcal{B}, \mathcal{E})$. The E_2 -algebra structure is given by the monoidal functor $H : Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} Z(\mathcal{B}, \mathcal{E}) \rightarrow Z(\mathcal{B}, \mathcal{E})$, which is induced by the iterated action

$$
Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{1, G} Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{G} \mathcal{B}
$$

with the monoidal structure given by

$$
x_1 \otimes x_2 \otimes y_1 \otimes y_2 \otimes b_1 \otimes b_2 \xrightarrow{\gamma_{y_2,b_1}} x_1 \otimes x_2 \otimes y_1 \otimes b_1 \otimes y_2 \otimes b_2 \xrightarrow{\gamma_{x_2,y_1 \otimes b_1}} x_1 \otimes y_1 \otimes b_1 \otimes x_2 \otimes y_2 \otimes b_2
$$

for $x_1 \boxtimes_{\varepsilon} y_1 \boxtimes_{\varepsilon} b_1$, $x_2 \boxtimes_{\varepsilon} y_2 \boxtimes_{\varepsilon} b_2$ in $Z(\mathcal{B}, \varepsilon) \boxtimes_{\varepsilon} Z(\mathcal{B}, \varepsilon) \boxtimes_{\varepsilon} \mathcal{B}$. Then by the construction given above, the induced functor $H : Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} Z(\mathcal{B}, \mathcal{E}) \rightarrow Z(\mathcal{B}, \mathcal{E})$ maps $x \boxtimes_{\mathcal{E}} y$ to the object $G((1 \boxtimes_{\mathcal{E}} G)(x \boxtimes_{\mathcal{E}} y \boxtimes_{\mathcal{E}} 1_B)) = x \otimes y \otimes 1_B = x \otimes y$ with the half-braiding

$$
x \otimes y \otimes b \xrightarrow{\gamma_{y,b}} x \otimes b \otimes y \xrightarrow{\gamma_{x,b}} b \otimes x \otimes y
$$

Thus the functor *H* coincides with the tensor product of $Z(\mathcal{B}, \mathcal{E})$. For $x_1 \boxtimes_{\mathcal{E}} y_1, x_2 \boxtimes_{\mathcal{E}} y_2 \in$ $Z(\mathcal{B}, \mathcal{E}) \boxtimes_{\mathcal{E}} Z(\mathcal{B}, \mathcal{E})$, the monoidal structure of *H* is induced by

$$
H((x_1 \boxtimes_{\mathcal{E}} y_1) \otimes (x_2 \boxtimes_{\mathcal{E}} y_2)) = x_1 \otimes x_2 \otimes y_1 \otimes y_2 \xrightarrow{\gamma_{x_2, y_1}} x_1 \otimes y_1 \otimes x_2 \otimes y_2 = H(x_1 \boxtimes_{\mathcal{E}} y_1) \otimes H(x_2 \boxtimes_{\mathcal{E}} y_2)
$$

Equivalently, the braiding structure on $Z(\mathcal{B}, \mathcal{E})$ is given by $x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x$, which is the usual **braiding structure on** $Z(\mathcal{B}, \mathcal{E})$ **.**

3.6 *E*2**-centers**

Definition 3.19. Let \mathcal{X} ∈ Alg_{*E*2}(Cat^{*fs*}). The *E*₂*-center of* \mathcal{X} *in* Cat^{*fs*} is the *E*₀*-center of* \mathcal{X} in $\mathrm{Alg}_{E_2}(\mathrm{Cat}^{\mathrm{fs}}_{\mathcal{E}}).$

Theorem 3.20. Let C be a braided fusion category over \mathcal{E} . The E_2 -center of C is the symmetric fusion category C' over \mathcal{E} .

Proof. Let A be a braided fusion category over \mathcal{E} . A left unital A-action on \mathcal{C} is a braided monoidal functor *F* : *A* ⊠_{*ε*} $C \rightarrow C$ over *ε* and a monoidal natural isomorphism *u* over *ε* shown below:

$$
\begin{array}{ccc}\n & A \boxtimes_{\mathcal{E}} C \\
 & T_{A,1} & & F \\
\hline\n\end{array}
$$
\n
$$
\mathcal{E} \boxtimes_{\mathcal{E}} C \longrightarrow C
$$

More precisely, *F* is a monoidal functor over $\mathcal E$ (recall the proof of Thm. [3.18\)](#page-11-1) such that the diagram

$$
F(a_1 \boxtimes_{\mathcal{E}} x_1) \otimes F(a_2 \boxtimes_{\mathcal{E}} x_2) \xrightarrow{f^F} F((a_1 \otimes a_2) \boxtimes_{\mathcal{E}} (x_1 \otimes x_2))
$$

$$
F(a_1 \boxtimes_{\mathcal{E}} x_1) F(a_2 \boxtimes_{\mathcal{E}} x_2) \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

$$
F(a_2 \boxtimes_{\mathcal{E}} x_2) \otimes F(a_1 \boxtimes_{\mathcal{E}} x_1) \xrightarrow{f^F} F((a_2 \otimes a_1) \boxtimes_{\mathcal{E}} (x_2 \otimes x_1))
$$

commutes for $a_1, a_2 \in \mathcal{A}$, $x_1, x_2 \in \mathcal{C}$, where \tilde{c} and c are the half-braidings of \mathcal{A} and \mathcal{C} respectively. The braided structure on $\mathcal E\boxtimes_{\mathcal E}\mathcal C$ is defined as $T_\mathcal C(e_1\otimes e_2)\otimes x_1\otimes x_2\xrightarrow{r_{e_1,e_2,c_{x_1,x_2}}T_\mathcal C(e_2\otimes e_1)\otimes x_2\otimes x_1$, for $e_1 \boxtimes_{\varepsilon} x_1, e_2 \boxtimes_{\varepsilon} x_2 \in \varepsilon \boxtimes_{\varepsilon} \mathcal{C}$. Check that $\odot : \varepsilon \boxtimes_{\varepsilon} \mathcal{C} \to \mathcal{C}$ is a braided functor.

There is a left unital C'-action on C

given by $G: \mathcal{C}' \boxtimes_{\mathcal{E}} \mathcal{C} \to \mathcal{C}$, $(z, x) \mapsto z \otimes x$ and $v_{e,x} \coloneqq id_{e \odot x} : G(T_{\mathcal{C}}(e) \boxtimes_{\mathcal{E}} x) = T_{\mathcal{C}}(e) \otimes x \to e \odot x$.

Next we want to show that there exists a 1-morphism $(P, \rho) : A \to C'$ in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_2}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_C$. Since F is a braided monoidal functor over \mathcal{E} , the commutative diagram

$$
F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \otimes x \xrightarrow{1, u_{1 \varepsilon}^{-1} x} F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \otimes F(1_{\mathcal{A}} \boxtimes_{\varepsilon} x) \xrightarrow{f^{\varepsilon}} F(a \boxtimes_{\varepsilon} x)
$$

\n
$$
x \otimes F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \xrightarrow{u_{1 \varepsilon}^{-1} x^{J}} F(1_{\mathcal{A}} \boxtimes_{\varepsilon} x) \otimes F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \xrightarrow{f^{\varepsilon}} F(a \boxtimes_{\varepsilon} x)
$$

\n
$$
F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \xrightarrow{u_{1 \varepsilon}^{-1} x^{J}} F(1_{\mathcal{A}} \boxtimes_{\varepsilon} x) \otimes F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \xrightarrow{f^{\varepsilon}} F(a \boxtimes_{\varepsilon} x)
$$

\n
$$
F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \otimes x \xrightarrow{f^{\varepsilon} (1, a \boxtimes_{\varepsilon} x) F(a \boxtimes_{\varepsilon} 1_{\varepsilon})} F(a \boxtimes_{\varepsilon} 1_{\varepsilon}) \otimes F(1_{\mathcal{A}} \boxtimes_{\varepsilon} x) \xrightarrow{f^{\varepsilon}} F(a \boxtimes_{\varepsilon} x)
$$

implies that the equality $c_{x,F(a\boxtimes g \perp e)} \circ c_{F(a\boxtimes g \perp e),x} = id_{F(a\boxtimes g \perp e) \otimes x}$ holds for $a \in \mathcal{A}, x \in \mathcal{C}$, i.e. *F*($a \boxtimes E$ 1_C) ∈ C'. Then we define the functor *P* by *P*(a) := $F(a \boxtimes E$ 1_C), and the monoidal structure of *P* is induced by that of *F*. The monoidal natural isomorphism $\rho : G \circ (P \boxtimes_{\mathcal{E}} 1_{\mathcal{C}}) \Rightarrow F$ is defined by

$$
\rho_{e,x}: F(a \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{C}}) \otimes x \xrightarrow{1 \otimes u_{\mathbb{1}_{\mathcal{E}},x}} F(a \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{C}}) \otimes F(\mathbb{1}_{\mathcal{A}} \boxtimes_{\mathcal{E}} x) \xrightarrow{f^F} F(a \boxtimes_{\mathcal{E}} x)
$$

Then (P, ρ) is a 1-morphism in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_2}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_{\mathcal{C}}$.

It is routine to check that if there are two 1-morphisms $(Q_i, \sigma_i) : A \to \mathbb{C}'$, $i = 1, 2$, in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_2}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_{\mathcal{C}}$, there exists a unique 2-morphism $\beta : (Q_1, \sigma_1) \Rightarrow (Q_2, \sigma_2)$ in $\mathrm{Alg}_{E_0}(\mathrm{Alg}_{E_2}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}))_{\mathcal{C}}$. \Box

4 Representation theory and Morita theory in $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

In this section, Sec. 4.1 and Sec. 4.2 study the modules over a multifusion category over E and bimodules in Cat $_{\varepsilon}^{\text{fs}}$. Sec. 4.3 and Sec. 4.4 prove that two fusion categories over ε are Morita equivalent in Cat $_{{\cal E}}^{{\rm fs}}$ if and only if their E_1 -centers are equivalent. Sec. 4.5 studies the modules over a braided fusion category over E.

4.1 Modules over a multifusion category over E

Let C and D be multifusion categories over \mathcal{E} . We use *z* and \hat{z} to denote the central structures of the central functors $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$ and $T_{\mathcal{D}} : \mathcal{E} \to \mathcal{D}$ respectively.

 $\bf{Definition 4.1.}$ The 2-category ${\rm LMod}_{\mathcal{C}}({\rm Cat}^{\rm fs}_{{\mathcal{E}}})$ consists of the following data.

• A class of objects in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$. An object $\mathcal{M} \in LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$ is an object $\mathcal{M} \in Cat_{\mathcal{E}}^{fs}$ equipped with a monoidal functor $\phi : \mathcal{C} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ over \mathcal{E} .

Equivalently, an object $\mathcal M\in\mathsf{LMod}_\mathfrak{C}(\mathsf{Cat}^{\mathsf{fs}}_\mathcal{E})$ is an object $\mathcal M$ both in $\mathsf{Cat}^{\mathsf{fs}}_\mathcal{E}$ and $\mathsf{LMod}_\mathfrak{C}(\mathsf{Cat}^{\mathsf{fs}})$ equipped with a monoidal natural isomorphism $u_e^e : T_e(e) \odot - \simeq e \odot -$ in Fun $_{\varepsilon}(\mathcal{M}, \mathcal{M})$ for each *e* ∈ ε , such that the functor (*c* ⊙ −, *s*^{*c*⊙−}) belongs to Fun_{*ε*}(*M*, *M*) for each *c* ∈ *C*, and the diagram

$$
(T_{\mathcal{C}}(e) \otimes c) \odot - \longrightarrow T_{\mathcal{C}}(e) \odot (c \odot -) \xrightarrow{(u_{\epsilon}^{\mathcal{C}})_{\mathcal{C}\odot} -} e \odot (c \odot -)
$$
\n
$$
\downarrow^{z_{e,c},1} \downarrow \qquad \qquad \downarrow^{z_{\mathcal{C},-}} (c \otimes T_{\mathcal{C}}(e)) \odot - \longrightarrow c \odot (T_{\mathcal{C}}(e) \odot -) \xrightarrow{1,u_{\epsilon}^{\mathcal{C}}} c \odot (e \odot -)
$$
\n
$$
(4.1)
$$

commutes for *e* ∈ $\&$, *c* ∈ $\&$, − ∈ $\&$. We use a pair $(\mathcal{M}, u^{\mathcal{C}})$ to denote an object \mathcal{M} in $\operatorname{LMod}_{\mathcal{C}}(\operatorname{Cat}^{\operatorname{fs}}_{\mathcal{E}}).$

• For objects $(\mathcal{M}, u^{\mathcal{C}})$, $(\mathcal{N}, \bar{u}^{\mathcal{C}})$ in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{\mathsf{fs}})$, a 1-morphism $F : \mathcal{M} \to \mathcal{N}$ in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{\mathsf{fs}})$ is both a left C-module functor $(F, s^F): \mathcal{M} \to \mathcal{N}$ and a left E-module functor $(F, t^F): \mathcal{M} \to \mathcal{N}$ such that the following diagram commutes for $e \in \mathcal{E}$, $m \in \mathcal{M}$:

$$
F(T_{\mathcal{C}}(e) \odot m) \xrightarrow{\left(u_{e}^{\mathcal{C}}\right)_{m}} F(e \odot m)
$$
\n
$$
\begin{array}{c}\n\stackrel{s_{T_{\mathcal{C}}(e),m}}{\rightharpoonup} \\
\downarrow F(e,m) \\
\downarrow F(e,m) \\
\downarrow F(e,m)\n\end{array}\n\quad e \odot F(m)
$$
\n
$$
(4.2)
$$

• For 1-morphisms $F, G : \mathcal{M} \rightrightarrows \mathcal{N}$ in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$, a 2-morphism from *F* to *G* is a left C-module natural transformation from *F* to *G*. A left C-module natural transformation is automatically a left ϵ -module natural transformation.

In the above definition, we take $\phi(c) := c \odot$ for $c \in \mathcal{C}$. A left \mathcal{D}^{rev} -module M is automatically a right D-module, with the right D-action defined by $m \odot d := d \odot m$ for $m \in \mathcal{M}, d \in \mathcal{D}$.

Definition 4.2. The 2-category $\text{RMod}_{\mathcal{D}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$ consists of the following data.

• A class of objects in $\text{RMod}_{\mathcal{D}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. An object $\mathcal{M} \in \text{RMod}_{\mathcal{D}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$ is an object $\mathcal{M} \in \text{Cat}_{\mathcal{E}}^{\text{fs}}$ equipped with a monoidal functor $\phi : \mathcal{D}^{\text{rev}} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ over \mathcal{E} .

Equivalently, an object $\mathcal M\in\mathsf{RMod}_{\mathcal D}(\mathsf{Cat}^{\rm fs}_\mathcal E)$ is an object $\mathcal M$ both in $\mathsf{Cat}^{\rm fs}$ and $\mathsf{RMod}_{\mathcal D}(\mathsf{Cat}^{\rm fs})$ equipped with a monoidal natural isomorphism $u_e^{\mathcal{D}}$: $-\odot T_{\mathcal{D}}(e) \simeq e \odot -$ in Fun $_{\varepsilon}(\mathcal{M}, \mathcal{M})$ for each $e \in E$ such that the functor $(-\bigcirc d \cdot, s^{-\bigcirc d})$ belongs to Fun $_{E}(\mathcal{M}, \mathcal{M})$ for each $d \in \mathcal{D}$, and the diagram

$$
- \odot (d \otimes T_{\mathcal{D}}(e)) \longrightarrow (- \odot d) \odot T_{\mathcal{D}}(e) \xrightarrow{(u_e^{\mathcal{D}})_{-\odot d}} e \odot (- \odot d)
$$

\n
$$
1 \hat{z}_{e,d}^{-1} \downarrow \qquad \qquad \downarrow s_{e^{-}}^{-\odot d}
$$

\n
$$
- \odot (T_{\mathcal{D}}(e) \otimes d) \longrightarrow (- \odot T_{\mathcal{D}}(e)) \odot d \xrightarrow[u_e^{\mathcal{D}},1]} (e \odot -) \odot d
$$

\n(4.3)

commutes for *e* ∈ $\&$, *d* ∈ \mathcal{D} , – ∈ M. We use a pair $(\mathcal{M}, u^{\mathcal{D}})$ to denote an object M in $\mathsf{RMod}_{\mathcal{D}}(\mathsf{Cat}^{\mathrm{fs}}_{\mathcal{E}}).$

• For objects $(M, u^{\mathcal{D}})$, $(N, \bar{u}^{\mathcal{D}})$ in $\text{RMod}_{\mathcal{D}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$, a 1-morphism $F : \mathcal{M} \to \mathcal{N}$ in $\text{RMod}_{\mathcal{D}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$ is both a right D-module functor $(F, \tilde{s}^F) : \mathcal{M} \to \mathcal{N}$ and a left $\mathcal{E}\text{-module functor } (F, t^F)$: $M \to N$ such that the following diagram commutes for $e \in \mathcal{E}, m \in \mathcal{M}$:

$$
F(m \odot T_{\mathcal{D}}(e)) \xrightarrow{(u_c^{\mathcal{D}})_{m}} F(e \odot m)
$$

\n
$$
\begin{array}{c} \sum_{\substack{\mathcal{F}_{m,T_{\mathcal{D}}(e)}}} \left\{ \begin{array}{c} \text{if } e \odot m\\ \text{if } e_{\mathcal{E}_{m}} \end{array} \right. \\ F(m) \odot T_{\mathcal{D}}(e) \xrightarrow{\overline{\text{if } e_{\mathcal{D}} \odot P(m)}} e \odot F(m) \end{array} \tag{4.4}
$$

• For 1-morphisms $F, G : \mathcal{M} \rightrightarrows \mathcal{N}$ in $\mathsf{RMod}_\mathcal{D}(\mathsf{Cat}^{\mathsf{fs}}_\mathcal{E})$, a 2-morphism from F to G is a right D-module natural transformation from *F* to *G*.

Remark 4.3. Let $(\mathcal{M}, u^{\mathcal{D}})$ belongs to $\mathsf{RMod}_{\mathcal{D}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$. We explain the monoidal natural isomorphism u_e : $-\odot T_{\mathcal{D}}(e) \simeq e \odot -$ in Fun_E(M, M). The monoidal structure on $F : \mathcal{E} \rightarrow$ $\text{Fun}_{\mathcal{E}}(\mathcal{M},\mathcal{M})$, $e \mapsto F^e := -\bigcirc T_{\mathcal{D}}(e)$ is defined as $J_{e_1,e_2} : F^{e_1 \otimes e_2} = -\bigcirc T_{\mathcal{D}}(e_1 \otimes e_2) \xrightarrow{r_{e_1,e_2}} -\bigcirc$ $T_D(e_2 \otimes e_1) \rightarrow (- \odot T_D(e_2)) \odot T_D(e_1) = F^{e_1} \circ F^{e_2}$, for $e_1, e_2 \in \mathcal{E}$. The monoidal structure on $T : \mathcal{E} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M}), e \mapsto T^e \coloneqq e \odot - \text{ is defined as } T^{e_1 \otimes e_2} = (e_1 \otimes e_2) \odot - \to e_1 \odot (e_2 \odot -) = T^{e_1} \circ T^{e_2}$ for $e_1, e_2 \in \mathcal{E}$. For each $e \in \mathcal{E}$, $u_e : - \odot T_{\mathcal{D}}(e) \to e \odot -$ is an isomorphism in Fun $_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$. That is, u_e is a left ϵ -module natural isomorphism. The monoidal natural isomorphism $u_e: -\odot T_{\mathcal{D}}(e) \rightarrow e\odot -$ satisfies the diagram

$$
- \odot T_{\mathcal{D}}(e_1 \otimes e_2) \xrightarrow{r_{e_1,e_2}} - \odot T_{\mathcal{D}}(e_2 \otimes e_1) \longrightarrow (- \odot T_{\mathcal{D}}(e_2)) \odot T_{\mathcal{D}}(e_1)
$$
\n
$$
\downarrow^{u_{e_1} \otimes u_{e_2}} \downarrow^{u_{e_1} \ast u_{e_2}} \downarrow^{u_{e_1} \ast u_{e_2}} \downarrow^{u_{e_1} \ast u_{e_2}}
$$
\n
$$
(e_1 \otimes e_2) \odot - \longrightarrow e_1 \odot (e_2 \odot -)
$$

where $u_{e_1} * u_{e_2}$ is defined as

$$
F^{e_1} \circ F^{e_2} = (- \odot T_{\mathcal{D}}(e_2)) \odot T_{\mathcal{D}}(e_1) \xrightarrow{u_{e_2}, 1} (e_2 \odot -) \odot T_{\mathcal{D}}(e_1)
$$

\n
$$
(u_{e_1})_{\circ \sigma_{\mathcal{D}}(e_2)} \downarrow \qquad \qquad u_{e_1} * u_{e_2} \downarrow \qquad \qquad (u_{e_1})_{e_2 \odot -}
$$

\n
$$
e_1 \odot (- \odot T_{\mathcal{D}}(e_2)) \xrightarrow{u_{e_1} * u_{e_2}} e_1 \odot (e_2 \odot -) = T^{e_1} \circ T^{e_2}
$$

For any d_1 , $d_2 \in \mathcal{D}$, the functors $(-\odot d_1, s^{-\odot d_1})$, $(-\odot d_2, s^{-\odot d_2})$ and $(-\odot (d_1 \otimes d_2), s^{-\odot (d_1 \otimes d_2)})$ belong to Fun $_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$. Consider the diagram:

$$
e \odot (m \odot (d_1 \otimes d_2)) \longrightarrow (e \odot m) \odot (d_1 \otimes d_2)
$$

\n
$$
1, \lambda_{m,d_1,d_2}^{\mathcal{M}} \downarrow \qquad \qquad (4.5)
$$

\n
$$
e \odot ((m \odot d_1) \odot d_2) \longrightarrow (e \odot (m \odot d_1)) \odot d_2 \longrightarrow \qquad \qquad \downarrow_{e \odot m,d_1,d_2}^{\mathcal{M}} \qquad (4.5)
$$

\n
$$
e \odot ((m \odot d_1) \odot d_2) \longrightarrow \qquad \downarrow_{e \odot m \odot d_1}^{\mathcal{M}} \qquad (4.5)
$$

where $\lambda^{\mathcal{M}}$ is the module associativity constraint of M in RMod $_{\mathcal{D}}(Cat^{fs})$. Since the diagrams [\(4.3\)](#page-15-0) and [\(A.1\)](#page-39-4) commute and *m* ⊙ − : D → M is the functor for all *m* ∈ M, the above diagram commutes. Then the natural isomorphism $-\odot (d_1 \otimes d_2) \Rightarrow (-\odot d_1) \odot d_2$ is the left *E*-module natural isomorphism.

Let $(\mathcal{M}, u^{\mathcal{C}})$ belong to $L\text{Mod}_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$. For any $c_1, c_2 \in \mathcal{C}$, the functors $(c_1 \odot -, s^{c_1 \odot -})$, $(c_2 \odot$ $-$, *s*^{*c*₂⊙−}) and ((*c*₁ ⊗ *c*₂) ⊙ −, *s*^{(*c*₁⊗*c*₂)⊙−}) belong to Fun_{*ε*}(M, M). Since the diagrams [\(4.1\)](#page-14-2) and [\(A.1\)](#page-39-4) commutes and − ⊙ *m* : C → M is the functor for all *m* ∈ M, the natural isomorphism $(c_1 ⊗ c_2) ⊙ - \Rightarrow c_1 ⊙ (c_2 ⊙ -)$ is the left *E*-module natural isomorphism.

Remark 4.4. Assume that $(\mathcal{M}, u^{\mathcal{D}})$ belongs to $\mathsf{RMod}_{\mathcal{D}}(\mathsf{Cat}_{\mathcal{E}}^{\mathsf{fs}})$. The right $\mathcal{E}\text{-module structure}$ on M is defined as $m\overline{0}e := m \odot T_D(e)$, $\forall m \in \mathcal{M}, e \in \mathcal{E}$. The module associativity constraint is defined as $\lambda^1_{m,e_1,e_2}: m \odot T_{\mathcal{D}}(e_1 \otimes e_2) \rightarrow m \odot (T_{\mathcal{D}}(e_1) \otimes T_{\mathcal{D}}(e_2)) \rightarrow (m \odot T_{\mathcal{D}}(e_1)) \odot T_{\mathcal{D}}(e_2)$, ∀*m* ∈ M,*e*1,*e*² ∈ E. Another right E-module structure on M is defined as *m* ⊙ *e* ≔ *e* ⊙ *m*, $\forall e \in \mathcal{E}, m \in \mathcal{M}$. The module associativity constraint is defined as $\lambda_{m,e_1,e_2}^2 : m \odot (e_1 \otimes e_2) =$ $(e_1 \otimes e_2) \odot m \xrightarrow{r_{e_1,e_2,1}} (e_2 \otimes e_1) \odot m \rightarrow e_2 \odot (e_1 \odot m) = (m \odot e_1) \odot e_2$, $\forall m \in \mathcal{M}, e_1, e_2 \in \mathcal{E}.$

Check that the identity functor id : $M \rightarrow M$ equipped with the natural isomorphism $s_{m,e}^{\rm id}:$ id($m\bar{\odot}e$) = m \odot T _D(e) $\stackrel{(u_e^{\mathcal{D}})_{m}}{\longrightarrow}$ e \odot $m=$ id(m) \odot e is a right $\mathcal E$ -module functor by the monoidal $\text{natural isomorphism } u_e^{\mathcal{D}} : - \odot T_{\mathcal{D}}(e) \to e \odot -$.

 $\bf{Proposition 4.5.}$ Let $({\cal M},u^{\frak{C}})$ belong to ${\rm LMod}_{\Bbb C}({\rm Cat}^{\frak{fs}}_{\Bbb C}).$ The diagram

$$
\begin{array}{l}\n\tilde{e} \odot (T_{\mathcal{C}}(e) \odot m) \xrightarrow{1,(u_{\epsilon}^{\mathcal{C}})_{m}} \tilde{e} \odot (e \odot m) \longrightarrow (\tilde{e} \otimes e) \odot m \\
\downarrow^{T_{\mathcal{C}}(e) \odot -} \\
T_{\mathcal{C}}(e) \odot (\tilde{e} \odot m) \xrightarrow{(u_{\epsilon}^{\mathcal{C}})_{\tilde{e} \odot m}} e \odot (\tilde{e} \odot m) \longrightarrow (e \otimes \tilde{e}) \odot m\n\end{array} \tag{4.6}
$$

commutes for $e, \tilde{e} \in \mathcal{E}$, $m \in \mathcal{M}$. Let $(\mathcal{M}, u^{\mathcal{D}})$ belong to $\mathsf{RMod}_{\mathcal{D}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$. The diagram

$$
(e \odot m) \odot T_{\mathcal{D}}(\tilde{e}) \xrightarrow{\left(\mu_{\tilde{e}}^{\mathcal{D}}\right)_{e \odot m}} \tilde{e} \odot (e \odot m) \longrightarrow (\tilde{e} \otimes e) \odot m
$$
\n
$$
\begin{array}{c}\n\sum_{\tilde{e}_{e,m}^{\mathcal{D}} \uparrow \mathcal{D}} \left(\tilde{e}_{e,m}^{\mathcal{D}}\right) \\
\downarrow^{\mathcal{D}} \\
\downarrow^{\mathcal{D}}\n\end{array}\n\quad (4.7)
$$
\n
$$
e \odot (m \odot T_{\mathcal{D}}(\tilde{e})) \xrightarrow{\longrightarrow} e \odot (\tilde{e} \odot m) \longrightarrow (e \otimes \tilde{e}) \odot m
$$

commutes for $e, \tilde{e} \in \mathcal{E}, m \in \mathcal{M}$. Here the functors $(T_{\mathcal{C}}(e) \odot -, s^{T_{\mathcal{C}}(e) \odot -})$ and $(- \odot T_{\mathcal{D}}(\tilde{e}), s^{-\odot T_{\mathcal{D}}(\tilde{e})})$ belong to Fun_{ϵ} (M, M).

Proof. Consider the diagram:

$$
\tilde{e} \odot (T_{\mathcal{C}}(e) \odot m) \xrightarrow{1.(u_{\varepsilon}^{\mathcal{C}})_{m}} \tilde{e} \odot (e \odot m) \longrightarrow (\tilde{e} \otimes e) \odot m
$$
\n
$$
\tilde{C} \odot (T_{\mathcal{C}}(e) \odot m) \longleftarrow (T_{\mathcal{C}}(\tilde{e}) \otimes T_{\mathcal{C}}(e)) \odot m \longleftarrow T_{\mathcal{C}}(\tilde{e} \otimes e) \odot m
$$
\n
$$
T_{\mathcal{C}}(e) \odot (T_{\mathcal{C}}(e) \odot m) \longleftarrow (T_{\mathcal{C}}(e) \otimes T_{\mathcal{C}}(e)) \odot m \longleftarrow T_{\mathcal{C}}(\tilde{e} \otimes e) \odot m
$$
\n
$$
T_{\mathcal{C}}(e) \odot (T_{\mathcal{C}}(\tilde{e}) \odot m) \longleftarrow (T_{\mathcal{C}}(e) \otimes T_{\mathcal{C}}(\tilde{e})) \odot m \longleftarrow T_{\mathcal{C}}(e \otimes \tilde{e}) \odot m
$$
\n
$$
T_{\mathcal{C}}(e) \odot (\tilde{e} \odot m) \xrightarrow{(u_{\varepsilon}^{\mathcal{C}})_{\tilde{e} \odot m}} e \odot (\tilde{e} \odot m) \longrightarrow (e \otimes \tilde{e}) \odot m
$$

The top and bottom hexagon diagrams commute by the monoidal natural isomorphism $u_e^{\mathcal{C}}$: $T_c^{\bullet}(e)$ ⊙ − ≃ *e* ⊙ −. The leftmost hexagon commutes by the diagram [\(4.1\)](#page-14-2). The middleright square commutes by the central functor $T_{\rm C}$: $\mathcal{E} \rightarrow \mathcal{C}$. The rightmost square commutes by the naturality of u_e^e . Then the outward diagram commutes. One can check the diagram [\(4.7\)](#page-16-0) commutes.

For objects M, N in $\mathop{\rm LMod}\nolimits_{\mathcal{C}}(\mathop{\rm Cat}\nolimits_{\mathcal{E}}^{\mathop{\rm fs}})$ (or $\mathop{\rm RMod}\nolimits_{\mathcal{D}}(\mathop{\rm Cat}\nolimits_{\mathcal{E}}^{\mathop{\rm fs}})$), we use $\mathop{\rm Fun}\nolimits_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M},\mathcal{N})$ (or $\mathop{\rm Fun}\nolimits_{\mathop{\rm l}\nolimits({\mathcal{D}}}^{\mathcal{E}}(\mathcal{M},\mathcal{N}))$ to denote the category of 1-morphisms M \to N, 2-morphisms in LMod $_{\mathfrak{C}}({\sf Cat}^{\rm fs}_{\cal E})$ (or RMod $_{\mathfrak{D}}({\sf Cat}^{\rm fs}_{\cal E})$).

 $\bf{Example 4.6.}$ Fun $^{\mathcal{E}}_{\rm{e}}(\mathcal{M},\mathcal{M})$ is a multifusion category by [\[EGNO,](#page-52-11) Cor. 9.3.3]. Moreover, Fun $^{\mathcal{E}}_{\rm{e}}(\mathcal{M},\mathcal{M})$ is a multifusion category over \mathcal{E} . A functor $\hat{T}: \mathcal{E} \to \text{Fun}^{\mathcal{E}}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ is defined as $e \mapsto \hat{T}^e \coloneqq T_{\mathcal{C}}(e) \odot$ −. The left C-module structure on \hat{T}^e is defined as $s_{c,m}: T_e(e) ⊙ (c ⊙ m) → (T_e(e) ⊗ c) ⊙ m \xrightarrow{z_{e,c}1}$ $(c \otimes T_{\mathcal{C}}(e)) \odot m \to c \odot (T_{\mathcal{C}}(e) \odot m)$ for $c \in \mathcal{C}$, $m \in \mathcal{M}$. The left \mathcal{E} -module structure on \hat{T}^e is defined $\text{as }T_\mathfrak{C}(e)\odot(\tilde{e}\odot m)\xrightarrow{1,(u_\varepsilon^\mathfrak{C})_{m}^{-1}} T_\mathfrak{C}(e)\odot(T_\mathfrak{C}(\tilde{e})\odot m)\xrightarrow{s_{T_\mathfrak{C}(\tilde{e}),m}} T_\mathfrak{C}(\tilde{e})\odot(T_\mathfrak{C}(e)\odot m)\xrightarrow{(u_\varepsilon^\mathfrak{C})_{T_\mathfrak{C}(\mathfrak{c})\odot m}}\tilde{e}\odot(T_\mathfrak{C}(e)\odot m)$ for $\tilde{e} \in \mathcal{E}$, $m \in \mathcal{M}$. Then \hat{T}^e belongs to Fun $_e^{\mathcal{E}}(\mathcal{M}, \mathcal{M})$.

The monoidal structure on \hat{T} is induced by $T_{\mathcal{C}}(e_1 \otimes e_2) \odot - \simeq (T_{\mathcal{C}}(e_1) \otimes T_{\mathcal{C}}(e_2)) \odot - \simeq$ $T_c(e_1) \odot (T_c(e_2) \odot -)$ for $e_1, e_2 \in \mathcal{E}$. The central structure on \hat{T} is a natural isomorphism $\sigma_{e,g}$: $\hat{T}^e \circ g(m) = T_e(e) \odot g(m) \simeq g(T_e(e) \odot m) = g \circ \hat{T}^e(m)$ for any $e \in \mathcal{E}, g \in \text{Fun}^{\mathcal{E}}_{\mathcal{C}}(\mathcal{M}, \mathcal{M}), m \in \mathcal{M}$. The left (or right) \mathcal{E} -module structure on Fun $\frac{\varepsilon}{e}(\mathcal{M}, \mathcal{M})$ is defined as $(e \odot f)(-) = T_e(e) \odot f(-)$, $(\text{or } (f \odot e)(-) := f(T_{\mathcal{C}}(e) \odot -))$, for $e \in \mathcal{E}, f \in \text{Fun}_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ and $- \in \mathcal{M}$.

Proposition 4.7. Let (M, *u*) and (N, *ū*) belong to $\text{LMod}_{\mathcal{C}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$. $f:\mathcal{M}\to\mathcal{N}$ is a 1-morphism in $\operatorname{LMod}_\mathfrak{C}(\operatorname{Cat}^{\rm fs})$. Then f belongs to $\operatorname{LMod}_\mathfrak{C}(\operatorname{Cat}^{\rm fs}_\mathfrak{C})$.

Proof. Notice that for a 1-morphism $f : \mathcal{M} \to \mathcal{N}$ in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$, the left C-action on f is compatible with the left $\&$ -action on *f*. Assume $(f, s) : \mathcal{M} \to \mathcal{N}$ is a left $\&$ -module functor. The left &-module structure on f is given by $f(e\odot m)\xrightarrow{(u_e^{-1})_m}f(T_\mathfrak{C}(e)\odot m)\xrightarrow{s_{T_\mathfrak{C}(e),m}}T_\mathfrak{C}(e)\odot f(m)\xrightarrow{(\bar{u}_e)_{f(m)}}$ e ⊙ $f(m)$. $□$

Remark 4.8. The forgetful functor $f : Fun_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M}, \mathcal{N}) \to Fun_{\mathcal{C}}(\mathcal{M}, \mathcal{N}), (f, s, t) \mapsto (f, s)$ induces an equivalence in Cat $_{\mathcal{E}}^{\mathsf{fs}}$, where *s* and *t* are the left C-module structure and the left E-module structure on *f* respectively. Notice that *t* equals to the composition of u^{-1} , *s* and \bar{u} .

Let (M, *u*) and (M, id) belong to $\sf{LMod}_{\cal C}(Cat_{\cal E}^{\sf fs})$. Then the identity functor ${\sf id}_{\mathcal M}: ({\mathcal M}, u)\to$ (M, id) induces an equivalence in $\operatorname{LMod}_{\mathcal{C}}(\operatorname{Cat}^{\text{fs}}_{\mathcal{E}}).$

Example 4.9. Let *A* be a separable algebra in C. We use C*^A* to denote the category of right *A*-modules in C. By [\[DMNO,](#page-52-12) Prop. 2.7], the category \mathcal{C}_A is a finite semisimple abelian category. \mathcal{C}_A has a canonical left C-module structure. The left \mathcal{E} -module structure on \mathcal{C}_A is defined as $e \odot x \coloneqq T_{\mathcal{C}}(e) \otimes x$ for any $e \in \mathcal{E}$, $x \in \mathcal{C}_A$. Then $(\mathcal{C}_A$, id) belongs to $\mathop{\rm LMod}\nolimits_{\mathcal{C}}(\mathop{\rm Cat}\nolimits_{\mathcal{E}}^{\mathop{\rm fs}})$.

We use ${}_{A}C_{A}$ to denote the category of A-bimodules in C. By Prop. [A.5,](#page-41-0) Fun_C(C_A, C_A) is equivalent to $({}_A\mathcal{C}_A)^\text{rev}$ as multifusion categories over $\mathcal{E}.$

 ${\bf Proposition \ 4.10.}$ Let $\mathcal M\in\mathop{\rm LMod}\nolimits_{\mathcal C}({\mathop{\rm Cat}\nolimits}_{{\mathcal E}}^{{\rm fs}}).$ There is a separable algebra A in ${\mathcal C}$ such that $\mathcal M\simeq{\mathcal C}_A$ in $\operatorname{LMod}_\mathfrak{C}(\operatorname{Cat}^{\operatorname{fs}}_\mathcal{E}).$

Proof. By [\[EGNO,](#page-52-11) Thm. 7.10.1], there is an equivalence $\eta : \mathcal{M} \simeq \mathcal{C}_A$ in $\text{LMod}_{\mathcal{C}}(\text{Cat}^{\text{fs}})$ for some separable algebra *A* in C. By Prop. [4.7,](#page-17-0) η is an equivalence in $\operatorname{LMod}_\mathfrak{C}(\operatorname{Cat}^{\operatorname{fs}}_\mathcal{E})$ \Box

Definition 4.11. An object M in $LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{fs})$ is *faithful* if there exists $m \in \mathcal{M}$ such that **1**^{*i*}_€ ⊙ *m* ≠ 0 for every nonzero subobject $\mathbb{1}^i$ ^{*e*} of the unit object $\mathbb{1}_c$.

Remark 4.12. Notice that $\mathbb{1}_{\varepsilon} \odot m \simeq T_{\varepsilon}(\mathbb{1}_{\varepsilon}) \odot m = \mathbb{1}_{\varepsilon} \odot m \neq 0$. If \mathcal{C} is an indecomposable multifusion category over $\mathbf{\mathcal{E}}$, any nonzero $\mathbf{\mathcal{M}}$ in $\mathsf{LMod}_{\mathcal{C}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$ is faithful.

Proposition 4.13. Suppose M is a faithful object in $\text{LMod}_{\mathcal{C}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$. There is an equivalence $\mathcal{C} \simeq \text{Fun}^{\mathcal{E}}_{\text{Fun}^{\mathcal{E}}_{\mathcal{C}}(\mathcal{M},\mathcal{M})}(\mathcal{M},\mathcal{M})$ of multifusion categories over $\mathcal{E}.$

Proof. By Prop. [4.10,](#page-18-1) there is a separable algebra *A* in C such that $\mathcal{M} \simeq C_A$. By [\[EGNO,](#page-52-11) Thm. 7.12.11], the category $\text{Fun}_{\text{Fun}_\mathbb{C}(\mathcal{M},\mathcal{M})}(\mathcal{M},\mathcal{M})$ is equivalent to the category of $A^R\otimes A$ bimodules in the category of *A*-bimodules. The latter category is equivalent to the category ${}_{A^R\otimes A}{\mathcal C}_{A^R\otimes A}$ of $A^R\otimes A$ -bimodules. Then the functor $\Phi:{\mathcal C}\to {}_{A^R\otimes A}{\mathcal C}_{A^R\otimes A}$, $x\mapsto A^R\otimes x\otimes A$ is an equivalence by the faithfulness of M. The monoidal structure on Φ is defined as

$$
\Phi(x \otimes y) = A^R \otimes x \otimes y \otimes A \simeq A^R \otimes x \otimes A \otimes_{A^R \otimes A} A^R \otimes y \otimes A = \Phi(x) \otimes_{A^R \otimes A} \Phi(y)
$$

for $x, y \in C$, where the equivalence is due to $A \otimes_{A^R \otimes A} A^R \simeq \mathbb{1}_C$. Recall the central structure on the monoidal functor $I: \mathcal{E} \to {}_{A^R\otimes A^R\otimes A}$ in Expl. [3.9.](#page-7-2) The structure of monoidal functor over \mathcal{E}

on Φ is induced by $\Phi(T_{\mathcal{C}}(e)) = A^R \otimes T_{\mathcal{C}}(e) \otimes A \xrightarrow{z^{-1}_{e,A^R},1} T_{\mathcal{C}}(e) \otimes A^R \otimes A = I(e)$ for $e \in \mathcal{E}.$

By Rem. [4.8 a](#page-17-1)nd Prop. [A.5,](#page-41-0) we have the equivalences $\mathrm{Fun}^{\mathcal{E}}_{\mathrm{Fun}^{\mathcal{E}}_{\mathbf{C}}(\mathcal{M},\mathcal{M})}(\mathcal{M},\mathcal{M})\simeq\mathrm{Fun}_{\mathrm{Fun}^{\mathcal{E}}(\mathcal{M},\mathcal{M})}(\mathcal{M},\mathcal{M})\simeq\mathrm{Fun}$ $A^R \otimes A^C A^R \otimes A \cong C$ of multifusion categories over \mathcal{E} .

4.2 Bimodules in Cat^{fs}

Let C and D be multifusion categories over \mathcal{E} . We use z and \hat{z} to denote the central structures of the central functors $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$ and $T_{\mathcal{D}} : \mathcal{E} \to \mathcal{D}$ respectively.

Definition 4.14. The 2-category $\text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$ consists of the following data.

• A class of objects in BMod_{C|D}(Cat^{fs}₂). An object $\mathcal{M} \in \text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$ is an object \mathcal{M} both in Cat^{fs} and BMod_{C|D}(Cat^{fs}) equipped with monoidal natural isomorphisms u_e^e : $T_c(e) \odot - \simeq e \odot -$ and $u_e^{\mathcal{D}}: - \odot T_{\mathcal{D}}(e) \simeq e \odot -$ in Fun $_c(\mathcal{M}, \mathcal{M})$ for each $e \in \mathcal{E}$ such that the functor (*c* ⊙ − ⊙ *d*, *s*^{c⊙−⊙*d*}) belongs to Fun_{*E*}(M, M) for each *c* ∈ C, *d* ∈ D, and the diagrams

$$
(T_{\mathcal{C}}(e) \otimes c) \odot - \odot d \longrightarrow T_{\mathcal{C}}(e) \odot (c \odot - \odot d) \xrightarrow{(u_{e}^{\mathcal{C}})_{\mathcal{C}\odot -\mathcal{C}d}e} \odot (c \odot - \odot d)
$$
\n
$$
\downarrow^{z_{e,c,1,1}}_{(c \otimes T_{\mathcal{C}}(e)) \odot - \odot d \longrightarrow c \odot (T_{\mathcal{C}}(e) \odot -) \odot d \xrightarrow{1, u_{e}^{\mathcal{C},1}} c \odot (e \odot -) \odot d
$$
\n
$$
c \odot - \odot (d \otimes T_{\mathcal{D}}(e)) \longrightarrow (c \odot - \odot d) \odot T_{\mathcal{D}}(e) \xrightarrow{(u_{e}^{\mathcal{D}})_{\mathcal{C}\odot -\mathcal{C}d}} e \odot (c \odot - \odot d)
$$
\n
$$
\downarrow^{1,1,2}_{1,1,2} \downarrow \qquad \qquad \downarrow^{s\circ\circ\circ\circ d} \qquad (4.9)
$$
\n
$$
c \odot - \odot (T_{\mathcal{D}}(e) \otimes d) \longrightarrow c \odot (- \odot T_{\mathcal{D}}(e)) \odot d \xrightarrow{1, u_{e}^{\mathcal{D}},1} c \odot (e \odot -) \odot d
$$

commute for all $e \in \mathcal{E}, c \in \mathcal{C}, d \in \mathcal{D}$. We use a triple $(\mathcal{M}, u^{\mathcal{C}}, u^{\mathcal{D}})$ to denote an object $\mathcal M$ in $\mathsf{BMod}_{\mathcal{C}|\mathcal{D}}(\mathsf{Cat}_{\mathcal{E}}^{\mathrm{fs}}).$

- For objects $(M, u^{\mathbb{C}}, u^{\mathbb{D}})$, $(N, \bar{u}^{\mathbb{C}}, \bar{u}^{\mathbb{D}})$ in BMod_{C|D}(Cat^{fs}₂), a 1-morphism $F : M \to N$ in BMod $_{\mathcal{C}|\mathcal{D}}(Cat_{\mathcal{E}}^{\text{fs}})$ is a 1-morphism $F:\mathcal{M}\to\mathcal{N}$ both in Cat $_{\mathcal{E}}^{\text{fs}}$ and BMod $_{\mathcal{C}|\mathcal{D}}(Cat^{\text{fs}})$ such that the diagrams [\(4.2\)](#page-14-3) and [\(4.4\)](#page-15-1) commute.
- For 1-morphisms $F, G : \mathcal{M} \rightrightarrows \mathcal{N}$ in $BMod_{\mathcal{C}|\mathcal{D}}(Cat_{\mathcal{E}}^{\text{fs}})$, a 2-morphism from F to G is a $\mathcal{C}\text{-}\mathcal{D}$ bimodule natural transformation from *F* to *G*.

For objects \mathcal{M},\mathcal{N} in $\mathsf{BMod}_{\mathcal{C}|\mathcal{D}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$, we use $\textsf{Fun}^{\mathcal{E}}_{\mathcal{C}|\mathcal{D}}(\mathcal{M},\mathcal{N})$ to denote the category of 1morphisms M \rightarrow N, 2-morphisms in BMod $_{\mathcal{C}|\mathcal{D}}(\mathsf{Cat}_{\mathcal{E}}^{\mathsf{fs}}).$

Let $(\mathcal{M},u^{\mathbb{C}},u^{\mathbb{D}}), (\mathcal{N},\bar{u}^{\mathbb{C}},\bar{u}^{\mathbb{D}})$ belong to $\mathsf{BMod}_{\mathbb{C}|\mathcal{D}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$. A monoidal natural isomorphism $v^{\mathcal{M}}$ is defined as $v_e^{\mathcal{M}}$: $T_e(e) ⊙ - \stackrel{u_e^{\mathcal{C}}}{\implies} e ⊙ - \stackrel{(u_e^{\mathcal{D}})^{-1}}{\implies} - ⊙ T_{\mathcal{D}}(e)$ for $e \in \mathcal{E}, -\in \mathcal{M}$. Similarly, a monoidal natural isomorphism v^N is defined as $v_e^N:=(\bar u_e^{\mathcal D})^{-1}\circ \bar u_e^{\mathcal C}$. A 1-morphism $F:\mathcal M\to\mathcal N$ in BMod $_{\mathcal{C}|\mathcal{D}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$ satisfies the following diagram for $e \in \mathcal{E}$, $m \in \mathcal{M}$:

$$
F(T_{\mathcal{C}}(e) \odot m) \xrightarrow{(v_c^{\mathcal{M}})_{m}} F(m \odot T_{\mathcal{D}}(e))
$$
\n
$$
T_{\mathcal{C}}(e) \odot F(m) \xrightarrow{(v_c^{\mathcal{N}})_{F(m)}} F(m) \odot T_{\mathcal{D}}(e)
$$
\n(4.10)

Remark 4.15. Plugging $c = \mathbb{1}_C$ into the diagram [\(4.8\)](#page-18-2) and $d = \mathbb{1}_D$ into the diagram [\(4.9\)](#page-18-3), the diagrams

$$
T_{\mathcal{C}}(e) \odot (m \odot d) \longrightarrow (T_{\mathcal{C}}(e) \odot m) \odot d \qquad (c \odot m) \odot T_{\mathcal{D}}(e) \longrightarrow c \odot (m \odot T_{\mathcal{D}}(e))
$$

\n
$$
\downarrow \qquad \qquad \downarrow \
$$

commute for $m \in \mathcal{M}$. Since the diagrams [\(4.11\)](#page-19-0) and [\(4.6\)](#page-16-1) commute, the diagram

$$
(T_{\mathcal{C}}(e) \odot m) \odot T_{\mathcal{D}}(\tilde{e}) \xrightarrow{(u_{e}^{c})_{m}, 1} (e \odot m) \odot T_{\mathcal{D}}(\tilde{e}) \xrightarrow{(u_{\tilde{e}}^{T})_{e \odot m}} \tilde{e} \odot (e \odot m) \longrightarrow (\tilde{e} \otimes e) \odot m
$$
\n
$$
T_{\mathcal{C}}(e) \odot (m \odot T_{\mathcal{D}}(\tilde{e})) \xrightarrow{\text{(u.g., 1)}} T_{\mathcal{C}}(e) \odot (\tilde{e} \odot m) \xrightarrow{(u_{e}^{c})_{\tilde{e} \odot m}} e \odot (\tilde{e} \odot m) \longrightarrow (e \otimes \tilde{e}) \odot m
$$
\n
$$
(4.12)
$$

commutes for $e, \tilde{e} \in \mathcal{E}, m \in \mathcal{M}$. Since the diagrams [\(4.11\)](#page-19-0), [\(4.1\)](#page-14-2) and [\(4.3\)](#page-15-0) commute, the diagrams

$$
T_{\mathcal{C}}(e) \odot (m \odot d) \xrightarrow{(v_e^{\mathcal{M}})_{m \odot d}} (m \odot d) \odot T_{\mathcal{D}}(e) \longrightarrow m \odot (d \otimes T_{\mathcal{D}}(e))
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
(T_{\mathcal{C}}(e) \odot m) \odot d \xrightarrow{(\overline{v_e^{\mathcal{M}}})_{m,1}} (m \odot T_{\mathcal{D}}(e)) \odot d \longrightarrow m \odot (T_{\mathcal{D}}(e) \otimes d)
$$
\n
$$
(T_{\mathcal{C}}(e) \otimes c) \odot m \longrightarrow T_{\mathcal{C}}(e) \odot (c \odot m) \xrightarrow{(v_e^{\mathcal{M}})_{c \odot m}} (c \odot m) \odot T_{\mathcal{D}}(e)
$$
\n
$$
Z_{e,c,1} \downarrow \qquad \qquad \downarrow
$$
\n
$$
(c \otimes T_{\mathcal{C}}(e)) \odot m \longrightarrow c \odot (T_{\mathcal{C}}(e) \odot m) \xrightarrow{T_{\mathcal{D}}(e^{\mathcal{M}})_{m}} c \odot (m \odot T_{\mathcal{D}}(e))
$$

commute for $e \in \mathcal{E}, d \in \mathcal{D}, c \in \mathcal{C}, m \in \mathcal{M}$.

Proposition 4.16. Let A, B be multifusion categories over \mathcal{E} . There is an equivalence of 2-categories

$$
LMod_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}}(\text{Cat}_{\mathcal{E}}^{\text{fs}}) \simeq BMod_{\mathcal{A}|\mathcal{B}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})
$$

Proof. An object M ∈ LMod_{A⊠ε B}rev(Cat^{fs}) is an object M ∈ Cat $_ε^{\text{fs}}$ equipped with a monoidal functor $\phi: \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}} \to \text{Fun}_{\mathcal{E}}(\mathcal{M},\mathcal{M})$ over $\mathcal{E}.$ Given an object \mathcal{M} in $\text{LMod}_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$, we want to define an object (M, u^A , u^B) in BMod_{A|B}(Cat^{fs}). The left A-action on M is defined as $a \odot m := \phi^{a \boxtimes_{\mathcal{E}} a} \mathbb{I}_{\mathcal{B}}(m)$ for $a \in \mathcal{A}$, $m \in \mathcal{M}$, and the unit $\mathbb{1}_{\mathcal{B}} \in \mathcal{B}^{\text{rev}}$. And the right B-action on M is defined as $m \odot b := \phi^{1} A^{\boxtimes} \delta^b(m)$ for $b \in \mathcal{B}$, $m \in \mathcal{M}$, and the unit $1_{\mathcal{A}} \in \mathcal{A}$. By Expl. [3.8,](#page-7-3) we have $T_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}}(\mathcal{e}) = T_{\mathcal{A}}(\mathcal{e}) \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{B}}$ and $T_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}}(\mathcal{e}) \simeq \mathbb{1}_{\mathcal{A}} \boxtimes_{\mathcal{E}} T_{\mathcal{B}}(\mathcal{e})$. Recall the central structure on $T : \mathcal{E} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ in Expl[.3.7.](#page-7-1) The structure of monoidal functor over \mathcal{E} on ϕ gives the monoidal natural isomorphisms $u^{\mathcal{A}}$ and $u^{\mathcal{B}}$ and the commutativity of diagrams [\(4.8\)](#page-18-2) and [\(4.9\)](#page-18-3).

Given objects M, N and a 1-morphism $f:\mathcal{M}\to\mathbb{N}$ in $\mathrm{LMod}_{\mathcal{A}\boxtimes_\mathcal{E}\mathcal{B}^\mathrm{rev}}(\mathrm{Cat}_\mathcal{E}^{\mathrm{fs}})$, f satisfy the diagrams [\(4.2\)](#page-14-3) and [\(4.4\)](#page-15-1). For two 1-morphisms $f,g : \mathcal{M} \rightrightarrows \mathcal{N}$ in $\text{LMod}_{\mathcal{A} \boxtimes_\mathcal{E} \mathcal{B}^\text{rev}}(\text{Cat}_\mathcal{E}^\text{fs})$, a 2morphism $\alpha: f \Rightarrow g$ in $\text{LMod}_{\mathcal{A} \boxtimes_\mathcal{E} \mathcal{B}^\text{rev}}(\text{Cat}_\mathcal{E}^\text{fs})$ is a left $\mathcal{A} \boxtimes_\mathcal{E} \mathcal{B}^\text{rev}$ -module natural transformation. If $B^{rev} = \mathcal{E}$, α is a left A-module natural transformation. If $\mathcal{A} = \mathcal{E}$, α is a right B-module natural transformation.

Conversely, given an object (M, $u^{\mathcal{A}}$, $u^{\mathcal{B}}$) in BMod $_{\mathcal{A}|\mathcal{B}}(\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}})$, we want to define a monoidal functor $\phi : A \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ over \mathcal{E} . For $a \boxtimes_{\mathcal{E}} b \in A \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}$, we define $\phi^{a \boxtimes_{\mathcal{E}} b} \coloneqq$ $(a \boxtimes_{\varepsilon} b) \odot - := a \odot - \odot b$ for $- \in \mathcal{M}$. For $a_1 \boxtimes_{\varepsilon} b_1$, $a_2 \boxtimes_{\varepsilon} b_2 \in \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}^{\text{rev}}$, the monoidal structure on ϕ is defined as $\phi^{(a_1 \boxtimes_c b_1) \otimes (a_2 \boxtimes_c b_2)} = \phi^{(a_1 \otimes a_2) \boxtimes_c (b_1 \otimes^{\text{rev}} b_2)} = (a_1 \otimes a_2) \odot - \odot (b_2 \otimes b_1) \simeq$ $a_1 \odot (a_2 \odot - \odot b_2) \odot b_1 = \phi^{a_1 \boxtimes c} b_1 \circ \phi^{a_2 \boxtimes c} b_2$. The structure of monoidal functor over ε on ϕ is defined as $\phi^{T_{\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}(\mathcal{e})}} = \phi^{T_{\mathcal{A}}(\mathcal{e}) \boxtimes_{\mathcal{E}} \mathbb{1}_{\mathcal{B}}} = T_{\mathcal{A}}(\mathcal{e}) \odot - \odot \mathbb{1}_{\mathcal{B}} \xrightarrow{u^{\mathcal{A}}, 1} \mathcal{e} \odot - \odot \mathbb{1}_{\mathcal{B}} \simeq \mathcal{e} \odot - = T^{\mathcal{e}} \text{ for } \mathcal{e} \in \mathcal{E}.$

Given an object $(N, \bar u^{\mathcal A},\bar u^{\mathcal B})$ and a 1-morphism $f:\mathcal M\to\mathcal N$ in ${\rm BMod}_{\mathcal A|\mathcal B}({\rm Cat}^{\rm fs}_\mathcal E)$, we want to define a 1-morphism f in $\sf{LMod}_{\mathcal{A} \boxtimes_\mathcal{E} \mathcal{B}^\mathrm{rev}}(\sf{Cat}^\mathrm{fs}_\mathcal{E})$. The left $\mathcal{A} \boxtimes_\mathcal{E} \mathcal{B}^\mathrm{rev}\text{-module}$ structure on f is defined as $f((a \boxtimes_{\mathcal{E}} b) \odot m) = f(a \odot m \odot b) \xrightarrow{s^f} a \odot f(m \odot b) \xrightarrow{1, t^f} a \odot f(m) \odot b = (a \boxtimes_{\mathcal{E}} b) \odot f(m)$ for $a \boxtimes_E b \in A \boxtimes_E \mathcal{B}^\text{rev}$, $m \in \mathcal{M}$, where s^f and t^f are the left A-module structure and the right B-module structure on *f* respectively. It is routine to check that *f* satisfy the diagram [\(4.2\)](#page-14-3).

For 1-morphisms f , $g:\mathcal{M}\rightrightarrows\mathcal{N}$ in BMod $_{\mathcal{A}|\mathcal{B}}(Cat_{\mathcal{E}}^{\mathsf{fs}})$, a 2-morphism $\alpha:f\Rightarrow g$ in BMod $_{\mathcal{A}|\mathcal{B}}(Cat_{\mathcal{E}}^{\mathsf{fs}})$ is an A-B bimodule natural transformation. It is routine to check that $\alpha : f \Rightarrow g$ is a left $A \boxtimes_{\mathcal{E}} \mathcal{B}^{\text{rev}}$ -module natural transformation.

Example 4.17. Let C be a multifusion category over \mathcal{E} . The left \mathcal{E} -module structure on C is defined as $e ⊙ c := T_e(e) ⊗ c$ for $e ∈ E, c ∈ C$. For $c ∈ C$, the functor $(c ⊗ -, s^{c ⊗}) : C → C$ belongs to $\text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})$, where the natural isomorphism $s_{e,-}^{\infty-}: \mathcal{C}\otimes (e \odot -) = \mathcal{C}\otimes T_\mathcal{C}(e)\otimes - \xrightarrow{z_{e,c}^{-1},1} T_\mathcal{C}(e)\otimes c\otimes - = 0$ *e* ⊙ (*c* ⊗ −). Then (C, id_e : T_C(*e*) ⊗ − = *e* ⊙ −) belongs to LMod_C(Cat^{fs}_c).

For $c \in \mathcal{C}$, the functor $(-\otimes c, s^{-\otimes c}) : \mathcal{C} \to \mathcal{C}$ belongs to Fun $_{\varepsilon}(\mathcal{C},\mathcal{C})$, where the natural \Rightarrow isomorphism $s_{e,-}^{-\otimes c}:$ $(e \odot -) \otimes c = (T_{\mathcal{C}}(e) \otimes -) \otimes c \stackrel{\simeq}{\rightarrow} T_{\mathcal{C}}(e) \otimes (- \otimes c) = e \odot (- \otimes c).$ The category \mathcal{C} α equipped with the monoidal natural isomorphism $u_e: -\otimes T$ e $(e) \stackrel{z_c^1}{\longrightarrow} T$ e $(e)\otimes -$ = e ⊙ – belongs to RMod $_{\mathfrak{C}}$ (Cat $_{\mathcal{E}}^{\mathrm{fs}}$).

For *c*, $\tilde{c} \in \mathcal{C}$, the functor $c \otimes - \otimes \tilde{c} : \mathcal{C} \to \mathcal{C}$ equipped with the natural isomorphism

$$
s_{e,-}^{\cos-\otimes \tilde{c}}: c \otimes (e \odot -) \otimes \tilde{c} = c \otimes T_{\mathcal{C}}(e) \otimes - \otimes \tilde{c} \xrightarrow{z_{e,c}^{-1},1,1} T_{\mathcal{C}}(e) \otimes c \otimes - \otimes \tilde{c} = e \odot (c \otimes - \otimes \tilde{c})
$$

beongs to Fun $_{\mathcal{E}}$ (M, M). Then (C, id $_{e}$, u_{e}) belongs to BMod $_{\mathcal{C}|\mathcal{C}}(Cat_{\mathcal{E}}^{\mathrm{fs}}).$

Theorem 4.18. Let C be a multifusion category over \mathcal{E} such that $\mathcal{E} \to Z(\mathcal{C})$ is fully faithful. There is an equivalence of multifusion categories over \mathcal{E} :

$$
\operatorname{Fun}^{\mathcal{E}}_{\mathcal{C}|\mathcal{C}}(\mathcal{C}, \mathcal{C}) \simeq Z(\mathcal{C}, \mathcal{E})
$$

Proof. Let us recall the proof of a monoidal equivalence $Func_{\mathbb{C}\mathbb{R}}(C, C) \simeq Z(C)$ in [\[EGNO,](#page-52-11) Prop. 7.13.8]. Let *F* belong to Fun_{C \mathbb{R} Crev(C, C). Since *F* is a right C-module functor, we have} *F* = *d* ⊗ − for some *d* ∈ C. Since *F* is a left C-module functor, we have a natural isomorphism

$$
d \otimes (x \otimes y) = F(x \otimes y) \xrightarrow{s_{x,y}} x \otimes F(y) = x \otimes (d \otimes y) \quad x, y \in \mathcal{C}
$$

Taking $y = \mathbb{1}_{\mathcal{C}}$, we obtain a natural isomorphism $\gamma_d = s_{-, \mathbb{1}_{\mathcal{C}}}$: $d \otimes - \xrightarrow{\simeq} - \otimes d$. The compatibility conditions of γ_d correspond to the axioms of module functors. Then (d, γ_d) belongs to $Z(\mathcal{C})$. And the composition of C-bimodule functors of C corresponds to the tensor product of objects of $Z(\mathcal{C})$.

Moreover, *F* belongs to Fun^g_C(C, C). Taking $m = \mathbb{1}_{C}$, $F = d \otimes -$ in the diagram [\(4.10\)](#page-19-1), the following square commutes:

$$
d \otimes (T_{\mathcal{C}}(e) \otimes \mathbb{1}_{\mathcal{C}}) \longrightarrow d \otimes (\mathbb{1}_{\mathcal{C}} \otimes T_{\mathcal{C}}(e))
$$

\n
$$
T_{\mathcal{C}}(e) \otimes (d \otimes \mathbb{1}_{\mathcal{C}}) \longrightarrow \mathbb{1}_{\mathcal{C}_{e,d} \otimes \mathbb{1}_{\mathcal{C}}}
$$

\n
$$
T_{\mathcal{C}}(e) \otimes (d \otimes \mathbb{1}_{\mathcal{C}}) \longrightarrow \mathbb{1}_{\mathcal{C}_{e,d} \otimes \mathbb{1}_{\mathcal{C}}}
$$

\n
$$
T_{\mathcal{C}}(e) \otimes T_{\mathcal{C}}(e) \otimes \mathbb{1}_{\mathcal{C}} \longrightarrow \mathbb{1}_{\mathcal{Z}_{e,\mathbb{1}_{\mathcal{C}}}} \longrightarrow (d \otimes \mathbb{1}_{\mathcal{C}}) \otimes T_{\mathcal{C}}(e)
$$

The triangle commutes by the diagram [\(A.1\)](#page-39-4). Then we obtain $z_{e,d} \circ \gamma_d = id_{d \otimes T_e(e)}$, i.e. $(d, \gamma_d) \in$ $Z(\mathcal{C}, \mathcal{E})$. It is routine to check that the functor $Fun_{\mathcal{C}|\mathcal{C}}^{\mathcal{E}}(\mathcal{C}, \mathcal{C}) \to Z(\mathcal{C}, \mathcal{E})$ is a monoidal functor over \mathcal{E} .

Example 4.19. Let *A*, *B* be separable algebras in a multifusion category C over E. We use *^A*C*^B* to denote the category of *A*-*B* bimodules in C. The left $\mathcal{E}\text{-module structure on }\mathcal{A}_{B}^{C}$ is defined as $e \odot x := T_{\mathcal{C}}(e) \otimes x$ for $e \in \mathcal{E}, x \in A\mathcal{C}_B$. We use q_x and p_x to denote the left *A*-action and right *B*-action on *x* respectively. The right *B*-action on $T_c(e) \otimes x$ is induced by $T_c(e) \otimes x \otimes B \xrightarrow{1,p_x} T_c(e) \otimes x$. The left A-action on $T_{\mathcal{C}}(e)\otimes x$ is induced by $A\otimes T_{\mathcal{C}}(e)\otimes x \xrightarrow{z^{-1}_{e,A},1} T_{\mathcal{C}}(e)\otimes A\otimes x \xrightarrow{1,\mathcal{A}_x} T_{\mathcal{C}}(e)\otimes x.$ The module associativity constraint is given by $\lambda_{e_1,e_2,x}$: $(e_1 \otimes e_2) \odot x = T_e(e_1 \otimes e_2) \otimes x \rightarrow$ *T*_C(*e*₁) ⊗ *T*_C(*e*₂) ⊗ *x* = *e*₁ ⊙ (*e*₂ ⊙ *x*), for *e*₁, *e*₂ ∈ *E*, *x* ∈ _{*A*}C_{*B*}. The unit isomorphism is given by $l_x: \mathbb{1}_{\mathcal{E}} \odot x = T_{\mathcal{C}}(\mathbb{1}_{\mathcal{E}}) \otimes x = \mathbb{1}_{\mathcal{C}} \otimes x \to x$. Check that $\lambda_{e_1,e_2,x}$ and l_x belong to ${}_{A}\mathcal{C}_{B}$.

The right \mathcal{E} -action on ${}_{A}{}^{C}{}_{B}$ is defined as $x \odot e := x \otimes T_{C}(e)$, $e \in \mathcal{E}, x \in {}_{A}{}^{C}{}_{B}$. The left *A*-action on $x\otimes T$ C(*e*) is defined as $A\otimes x\otimes T$ C(*e*) $\xrightarrow{q_{x,1}}x\otimes T$ C(*e*). The right *B*-action on $x\otimes T$ C(*e*) is defined as $x\otimes T$ _C(*e*) ⊗ *B* $\stackrel{1,z_{e,B}}{\longrightarrow} x\otimes B\otimes T$ _C(*e*) $\stackrel{p_{x},1}{\longrightarrow} x\otimes T$ _C(*e*). The module associativity constraint is defined as $\lambda_{x,e_1,e_2}: x \odot (e_1 \otimes e_2) = x \otimes T_{\mathcal{C}}(e_1 \otimes e_2) \rightarrow x \otimes T_{\mathcal{C}}(e_1) \otimes T_{\mathcal{C}}(e_2) = (x \odot e_1) \odot e_2$, for $x \in {}_{A \mathcal{C}_B}$, *e*₁, $e_2 \in \mathcal{E}$. The unit isomorphism is defined as r_x : $\dot{x} \odot 1_{\mathcal{E}} = x \otimes T_{\mathcal{C}}(1_{\mathcal{E}}) = x \otimes 1_{\mathcal{C}} \rightarrow \dot{x}$. Check that λ_{x,e_1,e_2} and r_x belong to ${_A\mathcal{C}_B}$. Check that ${_A\mathcal{C}_B}$ equipped with the monoidal natural isomorphism $v_e: T_\mathfrak{C}(e) \otimes \chi \xrightarrow{z_{e,\chi}} \chi \otimes T_\mathfrak{C}(e)$ belongs to $\mathrm{BMod}_{\mathcal{E}|\mathcal{E}}(\mathrm{Cat}_{\mathcal{E}}^{\mathrm{fs}}).$

Also one can check that ${}_{A}$ C belongs to BMod ${}_{\mathcal{E}|\mathcal{C}}(Cat_{\mathcal{E}}^{\mathrm{fs}})$ and \mathcal{C}_B belongs to BMod ${}_{\mathcal{C}|\mathcal{E}}(Cat_{\mathcal{E}}^{\mathrm{fs}}).$

Example 4.20. Let M belongs to RMod $_{\mathcal{D}}$ (Cat $_{\mathcal{E}}^{\text{fs}}$). Then M belongs to BMod $_{\mathcal{E}|\mathcal{D}}$ (Cat $_{\mathcal{E}}^{\text{fs}}$). The $\mathcal{E}\text{-}\mathcal{D}$ b imodule structure on M is defined as $(e\odot m)\odot d \xrightarrow{(s\in\mathcal{M})^{-1}} e\odot(m\odot d)$ for any $e\in\mathcal{E}, m\in\mathcal{M}.$ Since (− ⊙ *d*, *s*^{-⊙*d*}) belongs to Fun_ε(M, M) and the diagram [\(4.5\)](#page-16-2) commutes, *M* is an *E*-D bimodule category.

The functor $e \odot - \odot d$: $\mathcal{M} \rightarrow \mathcal{M}$ equipped with the natural isomorphism $s_{\tilde{e},-}^{e\odot - \odot d}$: $\tilde{e} \odot$ $((e \odot -) \odot d) \xrightarrow{S^{\square}_{\ell, e \odot}} (\tilde{e} \odot (e \odot -)) \odot d \xrightarrow{S^{\emptyset \triangleright}_{\tilde{e}, -} 1} (e \odot (\tilde{e} \odot -)) \odot d$ is a left $\mathcal{E}\text{-module functor, where}$ *s*^{e⊙−} : $\tilde{e} \odot (e \odot -) \simeq (\tilde{e} \otimes e) \odot - \xrightarrow{r_{\tilde{e},e}} (e \otimes \tilde{e}) \odot - \simeq e \odot (\tilde{e} \odot -)$ for $\tilde{e} \in \mathcal{E}$. The object M both in Cat $^{fs}_{\mathcal{E}}$ and BMod $_{\mathcal{E}|\mathcal{D}}(Cat^{fs})$ equipped with the monoidal natural isomorphisms $u_{e}^{\mathcal{E}} = id : e \odot - e \odot - e$ and $u_e^{\mathcal{D}}$: – \odot $T_{\mathcal{D}}(e) \simeq e \odot$ – belongs to BMod_{$\mathcal{E}|\mathcal{D}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. The monoidal natural isomorphism} $u_e^{\mathcal{D}}$ satisfies the diagram [\(4.9\)](#page-18-3) by the diagrams [\(4.3\)](#page-15-0) and [\(4.7\)](#page-16-0).

Example 4.21. Let C , D be multifusion categories over \mathcal{E} and $(\mathcal{M}, u^C, u^D) \in BMod_{C|D}(Cat_{\mathcal{E}}^{\text{fs}})$. The D-C bimodule structure on the category $\mathcal{M}^{L|op|L}$ is defined as $d \odot^L m \odot^L c \coloneqq c^L \odot m \odot d^L$ $\text{for } d \in \mathcal{D}, c \in \mathcal{C}, m \in \mathcal{M}.$ Then $(\mathcal{M}^{L|op|L}, \tilde{u}^{\mathcal{D}}, \tilde{u}^{\mathcal{C}})$ belongs to $BMod_{\mathcal{D}|\mathcal{C}}(Cat_{\mathcal{E}}^{\text{fs}}).$ The left $\mathcal{E}\text{-module}$ structure on $\mathcal{M}^{L|op|L}$ is defined as $e \odot^L m := e^L \odot m$ for $e \in \mathcal{E}$, $m \in \mathcal{M}$. The monoidal natural isomorphism $\tilde{u}^{\mathcal{D}}$ is defined as $T_{\mathcal{D}}(e) \odot^L m = m \odot T_{\mathcal{D}}(e)^L \simeq m \odot T_{\mathcal{D}}(e^L)$ $\stackrel{u^{\mathcal{D}}_{e^L}}{\longrightarrow} e^L \odot m$. The monoidal natural isomorphism $\tilde{u}^{\mathfrak{C}}$ is defined as $m\odot^{L}T_{\mathfrak{C}}(e)=T_{\mathfrak{C}}(e)^{L}\odot m\simeq T_{\mathfrak{C}}(e^{L})\odot m\stackrel{u^{ \mathfrak{C}}_{e^L}}{\longrightarrow}e^{L}\odot m.$

Example 4.22. Let C , D , P be multifusion categories over \mathcal{E} , and $(\mathcal{M}, u^C, u^D) \in BMod_{C|D}(Cat_{\mathcal{E}}^{fs})$, $(N, \bar{u}^{\mathcal{C}}, \bar{u}^{\mathcal{P}}) \in \text{BMod}_{\mathcal{C}|\mathcal{P}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. Then $(\text{Fun}_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M}, \mathcal{N}), \tilde{u}^{\mathcal{D}}, \tilde{u}^{\mathcal{P}})$ belongs to $\text{BMod}_{\mathcal{D}|\mathcal{P}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. The left E-module structure on Fun^E_C(M, N) is defined as $(e \circ f)(-) = T_e(e) \circ f(-)$, for $e \in \mathcal{E}, f \in$ Fun^ε_C(M, N). The D-P bimodule structure on Fun^ε_C(M, N) is defined as $(d \circ f \circ p)(-) :=$ $f(-\odot d) \odot p$ for any $d \in \mathcal{D}$, $p \in \mathcal{P}$. Let $v_e^{\mathcal{M}} := (u_e^{\mathcal{D}})^{-1} \circ u_e^{\mathcal{C}}$ and $v_e^{\mathcal{N}} := (\bar{u}_e^{\mathcal{P}})^{-1} \circ \bar{u}_e^{\mathcal{C}}$. The monoidal $\lim_{\epsilon \to 0} \frac{d^2 u}{dx^2}$ is defined as $(T_{\mathcal{D}}(e) \odot f)(-)=f(- \odot T_{\mathcal{D}}(e)) \xrightarrow{(v_e^{\mathcal{M}})^{-1}} f(T_e(e) \odot -) \xrightarrow{s^f} f(T_e(e))$ $T_e(e) \odot f(-) = (e \odot f)(-)$. The monoidal natural isomorphism $\tilde{u}^{\mathcal{P}}$ is defined as $(f \odot T_{\mathcal{P}}(e))(-) =$ $f(-) \odot T_{\mathcal{P}}(e) \xrightarrow{(v_e^{\mathcal{N}})^{-1}} T_{\mathcal{C}}(e) \odot f(-) = (e \odot f)(-).$

4.3 Invertible bimodules in $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

Definition 4.23. Let C be a multifusion category over \mathcal{E} , and $(\mathcal{M}, u^{\mathcal{M}}) \in \text{RMod}_{\mathcal{C}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$, $(N, u^N) \in LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{\mathsf{fs}})$ and $\mathcal{D} \in Cat_{\mathcal{E}}^{\mathsf{fs}}$. A *balanced* C-module functor $F : \mathcal{M} \times \mathcal{N} \to \mathcal{D}$ *in* Cat^{fs} consists of the following data.

• *F* : M × N → D is an E-bilinear bifunctor. That is, for each *n* ∈ N, (*F*(−, *n*),*s F*1) : M → D is a left $\&$ -module functor, where

$$
s_{e,m}^{F1}: F(e \odot m, n) \simeq e \odot F(m, n), \quad \forall e \in \mathcal{E}, m \in \mathcal{M}
$$

is a natural isomorphism. For each $g : n \to n'$ in N, $F(-, g) : F(-, n) \Rightarrow F(-, n')$ is a left *E*-module natural transformation. And for each *m* ∈ *M*, (*F*(*m*, −), *s*^{*F*2}) : \mathcal{N} → \mathcal{D} is a left E-module functor, where

$$
s_{e,n}^{F2}: F(m,e\odot n)\simeq e\odot F(m,n),\quad \forall e\in\mathcal{E}, n\in\mathcal{N}
$$

is a natural isomorphism. For each $f: c \rightarrow c'$ in $\mathcal{C}, F(f, -): F(c, -) \Rightarrow F(c', -)$ is a left E-module natural transformation.

• $F : \mathcal{M} \times \mathcal{N} \to \mathcal{D}$ is a balanced $\mathcal{E}\text{-module functor}$ (recall Def. [2.3\)](#page-3-2), where the balanced E-module structure on *F* is defined as

$$
\hat{b}_{m,e,n}: F(m\odot e,n)=F(e\odot m,n)\xrightarrow{s_{e,m}^{F_1}} e\odot F(m,n)\xrightarrow{(s_{e,n}^{F_2})^{-1}} F(m,e\odot n).
$$

• *F* : $M \times N \rightarrow D$ is a balanced C-module functor (recall Def. [2.3\)](#page-3-2), where $b_{m,c,n}$: $F(m \odot c, n) \simeq$ *F*(*m*, *c*⊙*n*), ∀*m* ∈ M, *c* ∈ C, *n* ∈ N, is the balanced C-module structure on *F*. And $b_{m,c,n}$ is a left ϵ -module natural isomorphism. That is, the following diagram commutes

$$
F(e \odot (m \odot c), n) \xrightarrow{s_{e,m}^{-\infty} 1} e \odot F(m \odot c, n)
$$
\n
$$
F((e \odot m) \odot c, n) \xrightarrow{b_{e \odot m, c, n}} 1 \downarrow \downarrow
$$
\n
$$
F((e \odot m) \odot c, n) \xrightarrow{1, b_{m, c, n}} 1 \downarrow
$$
\n
$$
F(e \odot m, c \odot n) \xrightarrow{s_{e,m}^{-1}} e \odot F(m, c \odot n)
$$
\n
$$
(4.13)
$$

where the functor $(- ⊙ c, s^{-⊙c}) ∈ Fun_E(M, M), ∀_C ∈ C.$

such that the followng diagram commutes

$$
F(m \odot T_{\mathcal{C}}(e), n) \longrightarrow F(m, T_{\mathcal{C}}(e) \odot n)
$$
\n
$$
\downarrow^{(u_{e}^{\mathcal{N}})_{m,1}} \downarrow^{(u_{e}^{\mathcal{N}})_{m,2}} F(m, T_{\mathcal{C}}(e) \odot n)
$$
\n
$$
F(e \odot m, n) \longrightarrow^{\mathfrak{G}_{m,e,n}} e \odot F(m, n) \longrightarrow^{\mathfrak{G}_{m,e,n}} F(m, e \odot n)
$$
\n
$$
(4.14)
$$

We use $\mathrm{Fun}^{\mathrm{ball}\mathcal{E}}_{\mathcal{C}}(\mathcal{M},\mathcal{N};\mathcal{D})$ to denote the category of balanced $\mathcal{C}\text{-module functors in }\mathrm{Cat}^{\mathrm{fs}}_{\mathcal{E}}$, and natural transformations both in $\text{Fun}^{\text{bal}}_{\mathcal{C}}(\mathcal{M},\mathcal{N};\mathcal{D})$ and $\text{Cat}^{\text{fs}}_{\mathcal{E}}.$

The *tensor product of* M *and* N *over* C is an object M $\mathbf{z}_\mathcal{C}$ N in Cat $^{fs}_\mathcal{E}$, together with a balanced C-module functor $\boxtimes_\mathcal{C}: \mathcal{M} \times \mathcal{N} \to \mathcal{M} \boxtimes_\mathcal{C} \mathcal{N}$ in Cat $^{fs}_\mathcal{E}$, such that, for every object $\mathcal D$ in Cat $^{fs}_\mathcal{E}$, composition with $\boxtimes_\mathcal{C}$ induces an equivalence $\text{Fun}_\mathcal{E}(\mathcal{M} \boxtimes_\mathcal{C} \mathcal{N}, \mathcal{D}) \simeq \text{Fun}^{\text{ball} \check{\mathcal{E}}}_{\mathcal{C}}(\mathcal{M},\mathcal{N};\mathcal{D}).$

Proposition 4.24. For $e_1, e_2 \in \mathcal{E}$, $m \in \mathcal{M}$, $n \in \mathcal{N}$, the following diagram commutes

$$
F(e_1 \odot m, e_2 \odot n) \xrightarrow{s_{e_1,m}^{F_1}} e_1 \odot F(m, e_2 \odot n) \xrightarrow{1, s_{e_2,n}^{F_2}} e_1 \odot e_2 \odot F(m, n)
$$

$$
e_2 \odot F(e_1 \odot m, n) \xrightarrow[1, s_{e_1,m}^{F_1}]} e_2 \odot e_1 \odot F(m, n)
$$

Proof. Since $F : \mathcal{M} \times \mathcal{N} \to \mathcal{D}$ is a balanced \mathcal{E} -module functor, the following outward diagram commutes.

$$
F((e_1 \otimes e_2) \odot m, n) \xrightarrow{\begin{subarray}{l} s_{e_1 \otimes e_2, m \\ \longleftarrow \\ s_{e_1, e_2} \end{subarray}} (e_1 \otimes e_2) \odot F(m, n) \xrightarrow{\begin{subarray}{l} (s_{e_1 \otimes e_2, m}^{[S_{e_1 \otimes e_2, m}^{-1}]} \vdots \\ \longleftarrow \\ s_{e_1, e_2} \end{subarray}} F(m, (e_1 \otimes e_2) \odot n)
$$
\n
$$
F(e_2 \odot e_1 \odot m, n) \xrightarrow{\begin{subarray}{l} s_{e_1, e_2}^{[S]} \vdots \\ s_{e_2, e_1, m}^{[S]} \vdots \\ \longleftarrow \\ s_{e_1, m}^{[S]} \end{subarray}} e_2 \odot e_1 \odot F(m, n)
$$
\n
$$
F(e_1 \odot m, n) \xrightarrow{\begin{subarray}{l} s_{e_1, m}^{[S]} \vdots \\ \longleftarrow \\ s_{e_1, m}^{[S]} \end{subarray}} e_1 \odot F(m, e_2 \odot n)
$$
\n
$$
F((e_1 \otimes e_2) \odot n) \xrightarrow{\begin{subarray}{l} s_{e_1, m}^{[S]} \vdots \\ \longleftarrow \\ s_{e_1, m}^{[S]} \end{subarray}} e_1 \odot F(m, e_2 \odot n)
$$

The two triangles commute since $(F(-, n), s^{F1})$: $\mathcal{M} \to \mathcal{D}$ and $(F(m, -), s^{F2})$: $\mathcal{N} \to \mathcal{D}$ are left E-module functors. The square commutes by the naturality of *s F*1 . Then the pentagon \Box commutes. **Proposition 4.25.** For $e \in \mathcal{E}, m \in \mathcal{M}, c \in \mathcal{C}, n \in \mathcal{N}$, the diagram

$$
F((e \odot m) \odot c, n) \xrightarrow{b_{e \odot m, c, n}} F(e \odot m, c \odot n) \xrightarrow{\hat{b}_{m, e, \odot n}} F(m, e \odot (c \odot n))
$$
\n
$$
F(e \odot (m \odot c), n) \xrightarrow{\hat{b}_{m, c, e, n}} F(m \odot c, e \odot n) \xrightarrow{\hat{b}_{m, c, e \odot n}} F(m, c \odot (e \odot n))
$$
\n
$$
(4.15)
$$

commutes, where the functors $(-\odot c, s^{-\odot c}) \in \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ and $(c \odot -, s^{c \odot -}) \in \text{Fun}_{\mathcal{E}}(\mathcal{N}, \mathcal{N})$, $\forall c \in \mathcal{C}$. *Proof.* Consider the following diagram:

$$
F(m \odot (T_{\mathcal{C}}(e) \otimes c), n) \xrightarrow{z_{e,c,1}} F(m \odot (c \otimes T_{\mathcal{C}}(e)), n)
$$
\n
$$
F((e \odot m) \odot c, n) \xrightarrow{(s_{e,m}^{-\infty})^{-1}} F(e \odot (m \odot c), n)
$$
\n
$$
b_{m,T_{\mathcal{C}}(e) \otimes c,n} \downarrow
$$
\n
$$
F(e \odot m, c \odot n) \xrightarrow{\begin{subarray}{l} \downarrow b_{e \odot m, c,n \\ b_{e \odot m, c,n} \end{subarray}} F(m \odot c, e \odot n)
$$
\n
$$
F(m \odot c, e \odot n)
$$
\n
$$
F(m, e \odot (c \odot n)) \xrightarrow{\begin{subarray}{l} \downarrow b_{m, c, c \odot n \\ \downarrow b_{m, c, c \odot n} \end{subarray}} F(m, c \odot (e \odot n))
$$
\n
$$
F(m, r \odot (e \odot n)) \xrightarrow{\begin{subarray}{l} \downarrow b_{m, c, c \odot n \\ \downarrow b_{m, c, c \odot n} \end{subarray}} F(m, (T_{\mathcal{C}}(e) \otimes c) \odot n)) \xrightarrow{\begin{subarray}{l} \downarrow b_{m, c \odot n} \\ \downarrow b_{m, c, c \odot n} \end{subarray}} (4.16)
$$

Here *z* is the central structure of the central functor $T_{\rm C}$: $\epsilon \rightarrow \rm C$. The middle-top and middledown squares commute by the diagrams [\(4.1\)](#page-14-2) and [\(4.3\)](#page-15-0). The leftmost diagram commutes by the diagram

$$
F(m \odot (T_{\mathcal{C}}(e) \otimes c), n) \xrightarrow{b_{m,T_{\mathcal{C}}(e) \otimes c,n}} F(m, (T_{\mathcal{C}}(e) \otimes c) \odot n)
$$
\n
$$
F((m \odot T_{\mathcal{C}}(e)) \odot c, n) \xrightarrow{b_{m \odot T_{\mathcal{C}}(e) \otimes r}} F(m \odot T_{\mathcal{C}}(e), c \odot n) \xrightarrow{b_{m,T_{\mathcal{C}}(e) \otimes c}} F(m, T_{\mathcal{C}}(e) \odot (c \odot n))
$$
\n
$$
(u_{e}^{\mathcal{M}})_{m,1} \downarrow \qquad \qquad (u_{e}^{\mathcal{M}})_{m,1} \downarrow \qquad \qquad (u_{e}^{\mathcal{M}})_{m,2}
$$
\n
$$
F((e \odot m) \odot c, n) \xrightarrow{b_{e \odot m, c,n}} F(e \odot m, c \odot n) \xrightarrow{\hat{b}_{m, c, \odot n}} F(m, e \odot (c \odot n))
$$

The top pentagon commutes by the balanced C-module functor $F : \mathcal{M} \times \mathcal{N} \to \mathcal{D}$. The left-down square commutes by the naturality of the balanced C-module structure *b* on *F*. The right-down square commutes by the diagram [\(4.14\)](#page-23-0). One can check that the rightmost diagram of [\(4.16\)](#page-24-0) commutes. Then the middle hexagon of [\(4.16\)](#page-24-0) commutes.

Corollary 4.26. By the commutativities of the diagrams [\(4.13\)](#page-23-1) and [\(4.15\)](#page-24-1), the following diagram commutes

$$
F(m \odot c, e \odot n) \xrightarrow{\begin{subarray}{l} s_{e,n}^{P} \\ \hline b_{m,c,e \odot n} \\ \hline \end{subarray}} e \odot F(m \odot c, n)
$$
\n
$$
F(m, c \odot (e \odot n))
$$
\n
$$
T_{r}(s_{e,n}^{C} \odot \cdots) \qquad \qquad \downarrow
$$
\n
$$
F(m, e \odot (c \odot n)) \xrightarrow[s_{e,c \odot n}]{\begin{subarray}{l} \hline s_{e,c}^{\odot} \\ \hline \end{subarray}} e \odot F(m, c \odot n)
$$

Example 4.27. Let C, D, P be multifusion categories over \mathcal{E} , $(\mathcal{M}, u^C, u^D) \in BMod_{C|D}(Cat_{\mathcal{E}}^{fs})$ and $(N, \bar{u}^{\mathcal{D}}, \bar{u}^{\mathcal{P}}) \in \text{BMod}_{\mathcal{D}|\mathcal{P}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. Then $(M \boxtimes_{\mathcal{D}} N, \tilde{u}^{\mathcal{C}}, \tilde{u}^{\mathcal{P}})$ belongs to $\text{BMod}_{\mathcal{C}|\mathcal{P}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. The left E-module structure on $M \boxtimes_{\mathcal{D}} N$ is defined as $e \odot (m \boxtimes_{\mathcal{D}} n) := (e \odot m) \boxtimes_{\mathcal{D}} n$, for $e \in \mathcal{E}$, *m* ⊠_D *n* ∈ M ⊠_D N. The C-P bimodule structure on M ⊠_D N is defined as $c \odot (m \boxtimes_D n) \odot p :=$ $(c \odot m) \boxtimes_D (n \odot p)$, for $c \in \mathcal{C}, p \in \mathcal{P}$. The monoidal natural isomorphism \tilde{u}^c is induced by $T_{\mathcal{C}}(e) \odot (m \boxtimes_{\mathcal{D}} n) = (T_{\mathcal{C}}(e) \odot m) \boxtimes_{\mathcal{D}} n \xrightarrow{(u_e^c)_{m,l}} (e \odot m) \boxtimes_{\mathcal{D}} n = e \odot (m \boxtimes_{\mathcal{D}} n)$. The monoidal isomorphism $\tilde{u}^{\mathcal{P}}$ is induced by $(m \boxtimes_{\mathcal{D}} n) \odot T_{\mathcal{P}}(e) = m \boxtimes_{\mathcal{D}} (n \odot T_{\mathcal{P}}(e)) \xrightarrow{1, (\tilde{u}_e^{\mathcal{P}})_n} m \boxtimes_{\mathcal{D}} (e \odot n) \xrightarrow{1, (\tilde{u}_e^{\mathcal{D}})_n^{-1}}$ $m\boxtimes_{\mathcal{D}}(T_{\mathcal{D}}(e)\odot n)\xrightarrow{b_{m,T_{\mathcal{D}}(e),n}^{-1}}(m\odot T_{\mathcal{D}}(e))\boxtimes_{\mathcal{D}} n\xrightarrow{(u_{e}^{\mathcal{D}})_{m},1}(e\odot m)\boxtimes_{\mathcal{D}} n=e\odot(m\boxtimes_{\mathcal{D}} n),$ where b is the balanced $\mathcal D\text{-module structure on } \boxtimes_{\mathcal D}: \mathcal M \times \mathcal N \to \mathcal M \boxtimes_{\mathcal D} \mathcal N.$

Let C be a multifusion category over E and $M \in LMod_{\mathcal{C}}(Cat_{\mathcal{E}}^{\text{fs}})$. Then M is *enriched* in C. That is, there exists an object $[x, y]_c \in C$ and a natural isomorphism $\text{Hom}_{\mathcal{M}}(c \odot x, y) \simeq$ Hom_C(*c*, [*x*, *y*]_C) for $c \in \mathcal{C}$, $x, y \in \mathcal{M}$. The category \mathcal{C}_A is enriched in \mathcal{C} and we have [*x*, *y*]_C = $(x \otimes_A y^R)^L$ for $x, y \in C_A$ by [\[EGNO,](#page-52-11) Expl. 7.9.8]. By Prop. [A.4,](#page-40-0) the diagram

$$
T_{\mathcal{C}}(e) \otimes x \otimes_A y^R \xrightarrow{c_{e,x \otimes_A y^R}} x \otimes_A y^R \otimes T_{\mathcal{C}}(e)
$$

$$
x \otimes T_{\mathcal{C}}(e) \otimes_A y^R \longrightarrow x \otimes_A T_{\mathcal{C}}(e) \otimes y^R
$$

commutes for $e \in \mathcal{E}$, $x, y \in \mathcal{C}_A$, where *c* is the central structure of the central functor $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$.

Let C be a multifusion category over $\mathcal E$ and A, B be separable algebras in C. By Prop. [A.6,](#page-42-0) we have the following statements.

- There is an equivalence ${}_{A}C \boxtimes_{C} C_{B} \xrightarrow{\simeq} {}_{A}C_{B}$, $x \boxtimes_{C} y \mapsto x \otimes y$ in $BMod_{\varepsilon|E}(Cat_{\varepsilon}^{\text{fs}})$.
- There is an equivalence $\text{Fun}_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_B) \xrightarrow{\simeq} {}_{A\mathcal{C}_B, f} \mapsto f(A)$ in $\text{BMod}_{\mathcal{E}|\mathcal{E}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$, whose inverse is defined as $x \mapsto -\otimes_A x$.

Proposition 4.28. Let C, B, D be multifusion categories over $\mathcal E$ and $\mathcal M\in {\rm BMod}_{\mathcal C|\mathcal B}({\rm Cat}^{\rm fs}_\mathcal E)$ and $\mathcal{N} \in \text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$. The functor $\Phi: \mathcal{M}^{L|\text{op}|L} \boxtimes_{\mathcal{C}} \mathcal{N} \to \text{Fun}_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M}, \mathcal{N}), m \boxtimes_{\mathcal{C}} n \mapsto [-, m]_{\mathcal{C}}^R \odot n$, is an equivalence of B-D-bimodules in Cat $_{\mathcal{E}}^{\mathsf{fs}}.$

Proof. There are equivalences of categories $M^{L|op|L} \boxtimes_{\mathcal{C}} N \simeq \text{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{N}) \simeq \text{Fun}_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M}, \mathcal{N})$ by [\[KZ,](#page-52-8) Cor. 2.2.5] and Rem. [4.8.](#page-17-1) The $B-D$ bimodule structure on Φ is induced by

 $(b\odot^L m) \boxtimes_\mathbb{C} (n \odot d) = (m \odot b^L) \boxtimes_\mathbb{C} (n \odot d) \mapsto [-, m \odot b^L]^R_\mathbb{C} \odot (n \odot d) \simeq ([-\odot b, m]^R_\mathbb{C} \odot n) \odot d = b \odot ([-, m]^R_\mathbb{C} \odot n) \odot d$

for $m \in \mathcal{M}, n \in \mathcal{N}, b \in \mathcal{B}, d \in \mathcal{D}$, where the equivalence is due to the canonical isomorphisms $\text{Hom}_{\mathcal{C}}(c, [-, m \odot b^L]_{\mathcal{C}}) \simeq \text{Hom}_{\mathcal{M}}(c \odot -, m \odot b^L) \simeq \text{Hom}_{\mathcal{M}}(c \odot - \odot b, m) \simeq \text{Hom}_{\mathcal{C}}(c, [-\odot b, m]_{\mathcal{C}})$ for *c* ∈ C. The left E-module structure on Φ is induced by the left B-module structure on Φ. Recall Expl. [4.21,](#page-22-1) [4.27](#page-24-2) and [4.22.](#page-22-2) It is routine to check that Φ satisfy the diagram [\(4.10\)](#page-19-1). \Box

Definition 4.29. Let C , D be multifusion categories over E and M ∈ BMod_{C| D}(Cat^{fs}). M is right dualizable, if there exists an $\mathcal{N} \in \text{BMod}_{\mathcal{D}|\mathcal{C}}(\text{Cat}^{\text{fs}}_{\mathcal{E}})$ equipped with bimodule functors $u:\mathcal{D}\to\mathcal{N}$ $\boxtimes_\mathcal{C}\mathcal{M}$ and $v:\mathcal{M}\boxtimes_\mathcal{D}\mathcal{N}\to\mathcal{C}$ in Cat $_\mathcal{E}^{\rm fs}$ such that the composed bimodule functors

$$
\mathcal{M} \simeq \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{D} \xrightarrow{\mathbf{1}_{\mathcal{M}} \boxtimes_{\mathcal{D}} \mathcal{U}} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{M} \xrightarrow{\mathcal{D} \boxtimes_{\mathcal{C}} \mathbf{1}_{\mathcal{M}}} \mathcal{C} \boxtimes_{\mathcal{C}} \mathcal{M} \simeq \mathcal{M}
$$

$$
\mathcal{N} \simeq \mathcal{D} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{\mathbf{1}_{\mathcal{M}} \boxtimes_{\mathcal{D}} \mathcal{I}} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N} \xrightarrow{\mathbf{1}_{\mathcal{N}} \boxtimes_{\mathcal{C}} \mathcal{P}} \mathcal{N} \boxtimes_{\mathcal{C}} \mathcal{C} \simeq \mathcal{N}
$$

in Cat $^{fs}_{\cal E}$ are isomorphic to the identity functor. In this case, the D-C bimodule N in Cat $^{fs}_{\cal E}$ is left dualizable.

 ${\bf Proposition \ 4.30.}$ The right dual of ${\mathbb M}$ in ${\rm BMod_{\mathcal{C}|\mathcal{D}}}(Cat_{\mathcal{E}}^{\rm fs})$ is given by a $\mathcal{D}\text{-}\mathcal{C}$ bimodule $\mathcal{M}^{L \text{\rm lop} |L}$ in Cat $_{{\cal E}}^{{\rm fs}}$ equipped with two maps u and v defined as follows:

$$
u: \mathcal{D} \to \text{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M}) \simeq \mathcal{M}^{L[\text{op}]} \boxtimes_{\mathcal{C}} \mathcal{M}, \qquad d \mapsto -\odot d,
$$

$$
v: \mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{L[\text{op}]} \to \mathcal{C}, \qquad x \boxtimes_{\mathcal{D}} y \mapsto [x, y]_{\mathcal{C}}^R \tag{4.17}
$$

Proof. By [\[AKZ,](#page-51-7) Thm. 4.6], the object $\mathcal{M}^{L|op|L}$ in BMod_{D|C}(Cat^{fs}), equipped with the maps *u* and *v*, are the right dual of M in $BMod_{C/D}(Cat^{fs})$. It is routine to check that *u* is a *D*-bimodule functor in Cat $_{\mathcal{E}}^{\mathsf{fs}}$ and v is a C-bimodule functor in Cat $_{\mathcal{E}}^{\mathsf{fs}}$.

Definition 4.31. Let €, D be multifusion categories over E. An M ∈ BMod $_{C|D}$ (Cat $_{E}^{fs}$) is *invertible* if there is an equivalence $\mathcal{D}^{\text{rev}} \simeq \text{Fun}^{\mathcal{E}}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ of multifusion categories over \mathcal{E} . If such an invertible M exists, $\mathop{\mathcal{C}}$ and $\mathop{\mathcal{D}}$ are said to be *Morita equivalent in* Cat $_{\mathop{\mathcal{E}}}^{\mathop{\mathsf{fs}}}$.

Proposition 4.32. Let M belong to BMod $_{\mathbb{C}|\mathcal{D}}(Cat_{\mathcal{E}}^{\text{fs}})$. The following conditions are equivalent.

- (i) M is invertible,
- (ii) The functor $\mathcal{D}^{\text{rev}} \to \text{Fun}_{\mathcal{C}}^{\mathcal{E}}(\mathcal{M},\mathcal{M})$, *d* \mapsto − ⊙ *d* is an equivalence of multifusion categories over E,
- (iii) The functor $C \to \text{Fun}^{\mathcal{E}}_{|\mathcal{D}}(\mathcal{M},\mathcal{M}), c \mapsto c \odot -$ is an equivalence of multifusion categories over E.

Proof. We obtain (i) \Leftrightarrow (ii) by the Def. [4.31.](#page-26-1) Since $\text{Fun}^{\mathcal{E}}_{\text{Fun}^{\mathcal{E}}_{\mathcal{C}}(\mathcal{M},\mathcal{M})}(\mathcal{M},\mathcal{M})$ and \mathcal{C} are equivalent as multifusion categories over *ε* by Prop[.4.13,](#page-18-4) we obtain (ii) ⇔ (iii). $□$

4.4 Characterization of Morita equivalence in $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

Convention 4.33. Throughout this subsection, we consider multifusion categories C over E with the property that $\mathcal{E} \to Z(\mathcal{C})$ is fully faithful.

Let C and D be multifusion categories over \mathcal{E} . We use β and γ to denote the central structures of the central functors $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$ and $T_{\mathcal{D}} : \mathcal{E} \to \mathcal{D}$ respectively.

Theorem 4.34. Let M be invertible in $\text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Cat}^\text{fs}_\mathcal{E}).$ The left action of $Z(\mathcal{C},\mathcal{E})$ and the right action of $Z(D, E)$ on Fun $_{\text{C}|\mathcal{D}}^{\varepsilon}(\mathcal{M}, \mathcal{M})$ induce an equivalence of multifusion categories over $\tilde{\varepsilon}$

$$
Z(\mathcal{C}, \mathcal{E}) \xrightarrow{L} \text{Fun}^{\mathcal{E}}_{\mathcal{C}|\mathcal{D}}(\mathcal{M}, \mathcal{M}) \xleftarrow{R} Z(\mathcal{D}, \mathcal{E})
$$

Moreover, $Z(\mathcal{C}, \mathcal{E})$ and $Z(\mathcal{D}, \mathcal{E})$ are equivalent as braided multifusion categories over \mathcal{E} .

Proof. Since M is invertible, the functor $C \to \text{Fun}_{\mathcal{D}^{\text{rev}}}(\mathcal{M}, \mathcal{M})$, $z \mapsto z \odot -$ is a monoidal equivalence over $\mathcal E.$ Then the induced monoidal equivalence $L: Z(\mathcal C,\mathcal E)\xrightarrow{(z,\beta_{z,-})\mapsto(z\odot -,\beta_{z,-})} \mathrm{Fun}^{\mathcal E}_{\mathcal C|\mathcal D}(\mathcal M,\mathcal M)$ is constructed as follows.

- An object $z \in Z(\mathcal{C}, \mathcal{E})$ is an object $z \in \mathcal{C}$, equipped with a half-braiding $\beta_{z,c}: z \otimes c \to c \otimes z$ for all $c \in \mathcal{C}$, such that the composition $z \otimes T_{\mathcal{C}}(e) \xrightarrow{\beta_{z,T_{\mathcal{C}}(e)}} T_{\mathcal{C}}(e) \otimes z \xrightarrow{\beta_{T_{\mathcal{C}}(e)z}} z \otimes T_{\mathcal{C}}(e), e \in \mathcal{E}$, equals to identity.
- An object *z* ⊙ − in Fun^ε_{C|D}(M, M) is an object *z* ⊙ − in Fun^ε_{Drev}(M, M) for *z* ∈ C, equipped with a natural isomorphism *z* ⊙ *c* ⊙ − $\xrightarrow{\beta_{z,c}}$ *c* ⊙ *z* ⊙ − for *c* ∈ C, − ∈ M. The left *E*-module structure on *z* ⊙ − is induced by Prop. [4.7.](#page-17-0) Notice that *z* ⊙ − satisfies the diagram [\(4.10\)](#page-19-1) by the last diagram in Rem. [4.15](#page-19-2) and the equality $\beta_{T_{\mathcal{C}}(e),z} = \beta_{z,T_{\mathcal{C}}(e)}^{-1}$.

It is routine to check that *L* is a monoidal functor over \mathcal{E} . By the same reason, the functor $R: Z(\mathcal{D}, \mathcal{E}) \simeq Z(\mathcal{D}, \mathcal{E})^{\text{rev}} \stackrel{\simeq}{\rightarrow} \text{Fun}_{\mathcal{C}|\mathcal{D}}^{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ is defined by $(a, \gamma_{a,-}) \mapsto (-\odot a, \gamma_{a,-})$, where the second $\gamma_{a,-}$ is a natural isomorphism $-\odot a \odot d \stackrel{\gamma_{a,d}}{\longrightarrow} -\odot d \odot a$ for $d \in \mathcal{D}$. Thus $Z(\mathcal{C}, \mathcal{E}) \simeq Z(\mathcal{D}, \mathcal{E})$. Suppose *R* [−]¹ ◦ *L* : *Z*(C, E) → *Z*(D, E) carries *z*, *z* ′ to *d*, *d* ′ , respectively. The diagram

$$
z \odot (z' \odot x) \xrightarrow{\simeq} (z' \odot x) \odot d \xrightarrow{\simeq} (x \odot d') \odot d
$$

$$
\downarrow \searrow
$$

$$
z' \odot (z \odot x) \xrightarrow{\simeq} z' \odot (x \odot d) \xrightarrow{\simeq} (x \odot d) \odot d'
$$

commutes for $x \in M$. Since the isomorphism $z \odot - \simeq - \odot d$ is a left C-module natural isomorphism, the left square commutes. Since the isomorphism $z' \odot - \simeq - \odot d'$ is a right D-module natural isomorphism, the right square commutes. Then the commutativity of the outer square implies that the equivalence $R^{-1} \circ L$ preserves braidings. The equivalence

 $R^{-1} \circ L$, equipped with the monoidal natural isomorphism $L(T_{\mathcal{C}}(e)) = T_{\mathcal{C}}(e) \odot - \frac{v_{e}^{\mathcal{M}}}{e} - \odot T_{\mathcal{D}}(e) = 0$ $R(T_{\mathcal{D}}(e))$, is the braided equivalence over \mathcal{E} .

Lemma 4.35. Let C be a fusion category over \mathcal{E} such that the central functor $T_c : \mathcal{E} \to \mathcal{C}$ is fully faithful. Let $f : Z(\mathcal{C}, \mathcal{E}) \to \mathcal{C}$ and $I_{\mathcal{C}} : \mathcal{C} \to Z(\mathcal{C}, \mathcal{E})$ denote the forgetful functor and its right adjoint.

- (1) There is a natural isomorphism $I_{\mathcal{C}}(x) \cong [\mathbb{1}_{\mathcal{C}}, x]_{Z(\mathcal{C},\mathcal{E})}$ for all $x \in \mathcal{C}$.
- (2) The object $A := I_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}})$ is a connected étale algebra in $Z(\mathcal{C}, \mathcal{E})$; moreover for any $x \in \mathcal{C}$, the object $I_{\mathcal{C}}(x)$ has a natural structure of a right *A*-module.
- (3) The functor $I_{\mathcal{C}}$ induces an equivalence of fusion categories $\mathcal{C} \simeq Z(\mathcal{C}, \mathcal{E})_A$ over \mathcal{E} . Notice that $Z(\mathcal{C}, \mathcal{E})_A$ is the category of right A-modules in $Z(\mathcal{C}, \mathcal{E})$.

Proof. For any $z \in Z(\mathcal{C}, \mathcal{E}), x \in \mathcal{C}$, we have the equivalences $\text{Hom}_{Z(\mathcal{C}, \mathcal{E})}(z, I_{\mathcal{C}}(x)) \simeq \text{Hom}_{\mathcal{C}}(z, x) \simeq$ $\text{Hom}_{Z(\mathcal{C},\mathcal{E})}(z,[\mathbb{1}_{\mathcal{C}},x]_{Z(\mathcal{C},\mathcal{E})}).$ By Yoneda lemma, we obtain $I_{\mathcal{C}}(x) \cong [\mathbb{1}_{\mathcal{C}},x]_{Z(\mathcal{C},\mathcal{E})}.$

Since $T_{\mathcal{C}} : \mathcal{E} \to \mathcal{C}$ is fully faithful, the forgetful functor $f : Z(\mathcal{C}, \mathcal{E}) \to \mathcal{C}$ is surjective by [\[DNO,](#page-52-10) Lem. 3.12]. By [\[DMNO,](#page-52-12) Lem. 3.5], the object *A* is a connected étale algebra and there is a monoidal equivalence $\mathcal{C} \simeq Z(\mathcal{C}, \mathcal{E})_A$. More explicitly, for any object $x \in \mathcal{C}$, the object $I_{\mathcal{C}}(x) = [\mathbb{1}_{\mathcal{C}}, x]_{Z(\mathcal{C},\mathcal{E})}$ is a right *A*-module and the monoidal functor

$$
I_{\mathcal{C}} = [\mathbb{1}_{\mathcal{C}}, -]_{Z(\mathcal{C}, \mathcal{E})} : \mathcal{C} \to Z(\mathcal{C}, \mathcal{E})_A
$$

is a monoidal equivalence. The left *A*-module structure on $I_c(x)$ is given by $A \otimes I_c(x) \xrightarrow{\beta_{A,I_c(x)}}$ *I*_C(*x*) ⊗ *A* → *I*_C(*x*). One can check that for *x* = **f**(*z*) ∈ C with *z* ∈ *Z*(C, *E*), one have *I*_C(*x*) ≅ *z* ⊗ *A* (as *A*-modules). The monoidal structure on $I_{\rm C}$ is induced by

$$
\mu_{x,y}: I_{\mathcal{C}}(x \otimes y) = [\mathbb{1}_{\mathcal{C}}, \mathbf{f}(z) \otimes y]_{Z(\mathcal{C}, \mathcal{E})} \simeq z \otimes [\mathbb{1}_{\mathcal{C}}, y]_{Z(\mathcal{C}, \mathcal{E})} = z \otimes A \otimes_A I_{\mathcal{C}}(y) = I_{\mathcal{C}}(x) \otimes_A I_{\mathcal{C}}(y)
$$

for *x*, *y* \in C. Since **f** is surjective, $\mu_{x,y}$ is always an isomorphism. *Z*(C, E)_{*A*} can be identified with a subcategory of the fusion category ${A\text{Z}}(\mathcal{C},\mathcal{E})_{A}$. Recall the central structure on the functor $\mathcal{E} \to \mathcal{A}Z(\mathcal{C}, \mathcal{E})_A$ by Ex.3.9. The structure of monoidal functor over \mathcal{E} on $I_{\mathcal{C}}$ is induced by $I_{\mathcal{C}}(T_{\mathcal{C}}(e)) = [\mathbb{1}_{\mathcal{C}}, T_{\mathcal{C}}(e)]_{Z(\mathcal{C},\mathcal{E})} \simeq T_{\mathcal{C}}(e) \otimes A.$

Lemma 4.36. Let C and D be fusion categories over E such that the central functors T_c : $\mathcal{E} \to \mathcal{C}$ and $T_{\mathcal{D}} : \mathcal{E} \to \mathcal{D}$ are fully faithful. Suppose that $Z(\mathcal{C}, \mathcal{E})$ is equivalent to $Z(\mathcal{D}, \mathcal{E})$ as braided fusion categories over $\&$. We have FPdim($\&$) = FPdim(\mathcal{D}) and FPdim($I_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}})$) = $FPdim(I_{\mathcal{D}}(\mathbb{1}_{\mathcal{D}})) = \frac{FPdim(\mathcal{C})}{FPdim(\mathcal{E})}$ $\frac{\text{Ferm}(C)}{\text{FPdim}(E)}$, where FPdim is the Frobenius-Perron dimension.

Proof. $Z(\mathcal{C}, \mathcal{E})$ is a subcategory of $Z(\mathcal{C})$. By [\[DGNO,](#page-52-13) Thm. 3.14], we obtain the equation

$$
FPdim(Z(\mathcal{C}, \mathcal{E}))FPdim(Z(\mathcal{C}, \mathcal{E})') = FPdim(Z(\mathcal{C}))FPdim(Z(\mathcal{C}, \mathcal{E}) \cap Z(\mathcal{C})')
$$

Since the equations $Z(\mathcal{C}, \mathcal{E})' = \mathcal{E}, Z(\mathcal{C})' = \mathcal{V}$ ec and $FPdim(Z(\mathcal{C})) = FPdim(\mathcal{C})^2$ (recall [\[EGNO,](#page-52-11) Thm. 7.16.6]) hold, we get the equation

$$
\text{FPdim}(Z(\mathcal{C}, \mathcal{E})) = \frac{\text{FPdim}(\mathcal{C})^2}{\text{FPdim}(\mathcal{E})}
$$
\n(4.18)

Since $Z(\mathcal{C}, \mathcal{E}) \simeq Z(\mathcal{D}, \mathcal{E})$ and the numbers FPdim(C) and FPdim(D) are positive, FPdim(C) = FPdim(D).

Since $f: Z(\mathcal{C}, \mathcal{E}) \to \mathcal{C}$ is surjective, we get the equation

$$
\text{FPdim}(I_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}})) = \frac{\text{FPdim}(Z(\mathcal{C}, \mathcal{E}))}{\text{FPdim}(\mathcal{C})} = \frac{\text{FPdim}(\mathcal{C})}{\text{FPdim}(\mathcal{E})}
$$

by [\[EGNO,](#page-52-11) Lem. 6.2.4] and the equation [\(4.18\)](#page-28-0). Then we have FPdim($I_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}})$ = FPdim($I_{\mathcal{D}}(\mathbb{1}_{\mathcal{D}})$). \Box

Lemma 4.37. Suppose that $f : Z(\mathcal{C}) \stackrel{\simeq}{\to} Z(\mathcal{D})$ is an equivalence of braided multifusion categories and $u_e: f(T_e(e)) \simeq T_{\mathcal{D}}(e)$ is a monoidal natural isomorphism in $Z(\mathcal{D})$ for all $e \in \mathcal{E}$. Then *f* induces an equivalence *Z*(*C*, *E*) ≃ *Z*(*D*, *E*) of braided multifusion categories over *E*.

Proof. Suppose that $f : Z(\mathcal{C}) \to Z(\mathcal{D})$ maps $(x, \beta_{x,-})$ to $(f(x), \gamma_{f(x),-})$. If the object $(x, \beta_{x,-})$ belongs to *Z*(C, E), the object (*f*(*x*), γ*^f*(*x*),−) belongs to *Z*(D, E) by the commutativity of the following diagram.

$$
f(x \otimes T_{\mathcal{C}}(e)) \longrightarrow f(x) \otimes f(T_{\mathcal{C}}(e)) \xrightarrow{1, u_e} f(x) \otimes T_{\mathcal{D}}(e)
$$
\n
$$
\downarrow_{x, T_{\mathcal{C}}(e)} \qquad \qquad \downarrow_{y_{f(x), f(T_{\mathcal{C}}(e))}} \qquad \qquad \downarrow_{y_{f(x), T_{\mathcal{D}}(e)}} \qquad \qquad \downarrow_{y_{f(x), T_{\mathcal{D}}(e)}} \qquad \qquad \downarrow_{y_{f(x), T_{\mathcal{D}}(e)}} \qquad \qquad \downarrow_{y_{f(x), T_{\mathcal{D}}(e)}} \qquad \qquad \downarrow_{y_{f(T_{\mathcal{C}}(e)), f(x)}} \qquad \qquad \downarrow_{y_{f(T_{\mathcal{C}}(e)), f(x)}} \qquad \qquad \downarrow_{y_{T_{\mathcal{D}}(e), f(x)}} \qquad \qquad \downarrow_{y_{T_{\mathcal{
$$

Since *f* is the braided functor, the left two squares commute. The right-upper square commutes by the naturality of $\gamma_{f(x),-}$. The right-down square commutes by reason that u_e is a natural isomorphism in *Z*(*D*). Since the equation $\beta_{T_{e}(e),x} \circ \beta_{x,T_{e}(e)} = id$ holds, we obtain the equation $\gamma_{T_{\mathcal{D}}(e), f(x)} \circ \gamma_{f(x), T_{\mathcal{D}}(e)} = id$. Then *f* induces an equivalence $Z(\mathcal{C}, \mathcal{E}) \simeq Z(\mathcal{D}, \mathcal{E})$.

Example 4.38. Let C be a fusion category over ϵ and A a separable algebra in C. By [\[EGNO,](#page-52-11) Rem. 7.16.3], there is a monoidal equivalence Φ : $Z(\mathcal{C}) \to Z(A\mathcal{C}_A)$, $(z, \beta_{z-}) \mapsto (z \otimes A, \beta_{z \otimes A})$, where $\beta_{z\otimes A}$ is induced by

$$
z \otimes A \otimes_A x \cong z \otimes x \xrightarrow{\beta_{z,x}} x \otimes z \cong x \otimes_A A \otimes z \xrightarrow{1,\beta_{z,A}^{-1}} x \otimes_A z \otimes A, \quad \forall x \in {}_{A}C_A
$$

 $Φ$ induces the monoidal equivalence $Z($ *C*, E) = $E'|_{Z(C)}$ ≃ $E'|_{Z(A^CA)}$ = $Z(A^CA, E)$. Recall the central structure on the functor $I : \mathcal{E} \to {}_{A}C_{A}$ in Ex. [3.9.](#page-7-2) We obtain $\Phi(T_{\mathcal{C}}(e)) = T_{\mathcal{C}}(e) \otimes A = I(e)$. Then $Z(\mathcal{C}, \mathcal{E}) \simeq Z(A\mathcal{C}_A, \mathcal{E})$ is the monoidal equivalence over $\mathcal{E}.$

Let C_A be an indecomposable left C-module in Cat^{ts}. By [\[EGNO,](#page-52-11) Prop. 8.5.3], Φ : $Z(\mathcal{C}) \simeq$ $Z(A \mathcal{C}_A)$ is the equivalence of braided fusion categories. By Lem[.4.37,](#page-28-1) Φ : $Z(\mathcal{C}, \mathcal{E}) \simeq Z(A \mathcal{C}_A, \mathcal{E})$ is the equivalence of braided fusion categories over E.

Lemma 4.39. Let C be a fusion category over $\mathcal E$ and $\mathcal M$ an indecomposable left C -module in Cat^{fs}. Then FPdim(C) = FPdim(Fun_C(M , M)).

Proof. Since M is a left C-module in Cat^{fs}, there is a separable algebra A in C such that $M \simeq C_A$. Recall the equivalences $Z(\mathcal{C}, \mathcal{E}) \simeq Z(A\mathcal{C}_A, \mathcal{E})$ in Expl. [4.38](#page-28-2) and ${}_{A}\mathcal{C}_{A} \simeq \text{Fun}_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_A)^{\text{rev}}$ in Prop. [A.5.](#page-41-0) Then we get the equations

$$
\frac{\mathrm{FPdim}(\mathcal{C})^2}{\mathrm{FPdim}(\mathcal{E})} = \mathrm{FPdim}(Z(\mathcal{C}, \mathcal{E})) = \mathrm{FPdim}(Z(\mathcal{A}\mathcal{C}_A, \mathcal{E})) = \frac{\mathrm{FPdim}(\mathcal{A}\mathcal{C}_A)^2}{\mathrm{FPdim}(\mathcal{E})} = \frac{\mathrm{FPdim}(\mathrm{Fun}_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_A))^2}{\mathrm{FPdim}(\mathcal{E})}
$$

The first and third equations are due to the equation [\(4.18\)](#page-28-0). Since the Frobenius-Perron dimensions are positive, the result follows.

Thm. 8.12.3 of [\[EGNO\]](#page-52-11) says that two finite tensor categories C and D are Morita equivalent if and only if *Z*(C) and *Z*(D) are equivalent as braided tensor categories. The statement and the proof idea of Thm. [4.40](#page-29-0) comes from which of Thm. 8.12.3 in [\[EGNO\]](#page-52-11).

Theorem 4.40. Let C and D be fusion categories over \mathcal{E} such that the central functors $T_c : \mathcal{E} \to \mathcal{C}$ and $T_{\cal D}:\cal E\to \cal D$ are fully faithful. $\cal C$ and $\cal D$ are Morita equivalent in Cat $^{\rm fs}_\cal E$ if and only if $Z(\cal C,\cal E)$ and $Z(\mathcal{D}, \mathcal{E})$ are equivalent as braided fusion categories over \mathcal{E} .

Proof. The "only if" direction is proved in Thm. [4.34.](#page-26-2)

Let C , D be fusion categories over $\mathcal E$ such that there is an equivalence $a: Z(C, \mathcal E) \stackrel{\simeq}{\to} Z(D, \mathcal E)$ as braided fusion categories over \mathcal{E} . Since $I_{\mathcal{D}}(\mathbb{1}_D)$ is a connected étale algebra in $Z(\mathcal{D}, \mathcal{E})$, *L* := $a^{-1}(I_D(\mathbb{1}_D))$ is a connected étale algebra in *Z*(*C*, *E*). By Lem. [4.35,](#page-27-0) there is an equivalence

$$
\mathcal{D}\simeq Z(\mathcal{C},\mathcal{E})_L
$$

of fusion categories over E.

By [\[DMNO,](#page-52-12) Prop. 2.7], the category C_L of *L*-modules in C is semisimple. Note that the algebra *L* is indecomposable in $Z(\mathcal{C}, \mathcal{E})$ but *L* might be decomposable as an algebra in \mathcal{C} , i.e. the category ${}_{I}C_{I}$ is a multifusion category. It has a decomposition

$$
{}_{L}\mathcal{C}_{L}=\bigoplus_{i,j\in J}\bigl({}_{L}\mathcal{C}_{L}\bigr)_{ij}
$$

where *J* is a finite set and each $(L^CL)_{ii}$ is a fusion category. Let $L = \bigoplus_{i \in J} L_i$ be the decomposition of *L* such that $_{L_i}C_{L_i} \simeq (L_iC_L)_{ii}$. Here $L_i, i \in J$, are indecomposable algebras in C such that the multiplication of *L* is zero on $L_i \otimes L_j$, $i \neq j$.

Next we want to show that there is an equivalence $Z(\mathcal{C}, \mathcal{E})_L \simeq {}_L\mathcal{C}_{L_i}$ of fusion categories over \mathcal{E} . Consider the following commutative diagram of monoidal functors over \mathcal{E} :

$$
Z(\mathcal{C}, \mathcal{E}) \longrightarrow Z(L_i \mathcal{C}_{L_i}, \mathcal{E})
$$

\n
$$
Z(L_i \mathcal{C}_{L_i}, \mathcal{E}) \downarrow
$$

\n
$$
Z(\mathcal{C}, \mathcal{E})_L \subset {}_L Z(\mathcal{C}, \mathcal{E})_L \longrightarrow {}_t \mathcal{C}_L \longrightarrow {}_L \mathcal{C}_{L_i}
$$

 π_i is projection and $\pi_i(x \otimes L) = x \otimes L_i$. The top arrow is the equivalence by Expl. [4.38.](#page-28-2) Next we calculate the Frobenius-Perron dimensions of the categories *Z*(C, E)*^L* and *^Li*C*Lⁱ* :

$$
\text{FPdim}(Z(\mathcal{C},\mathcal{E})_L) = \frac{\text{FPdim}(Z(\mathcal{C},\mathcal{E}))}{\text{FPdim}(L)} = \text{FPdim}(\mathcal{C}) = \text{FPdim}(_{L_i}\mathcal{C}_{L_i})
$$

The first equation is due to $[DMNO, Lem. 3.11]$. The second equation is due to $FPdim(L)$ $FPdim(I_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}})) = FPdim(Z(\mathcal{C}, \mathcal{E}))/FPdim(\mathcal{C})$ by Lem. [4.36.](#page-27-1) The third equation is due to Lem. [4.39.](#page-28-3) Since π _{*i*} ∘ **f** is also surjective, π _{*i*} ∘ **f** is an equivalence. Then we have monoidal equivalences over $\mathcal{E}: \mathcal{D} \simeq Z(\mathcal{C}, \mathcal{E})_L \simeq {}_{L_i} \mathcal{C}_{L_i} \simeq \text{Fun}_{\mathcal{C}}(\mathcal{C}_{L_i}, \mathcal{C}_{L_i})^{\text{rev}}$. The contract of the contract

4.5 Modules over a braided fusion category over E

Let C and D be braided fusion categories over \mathcal{E} . In this subsection, fusion categories M over E with the property that $E \to Z(M)$ is fully faithful.

Definition 4.41. The 2-category $\text{LMod}_{\mathcal{C}}(\text{Alg}(\text{Cat}^{\text{fs}}_{\mathcal{E}}))$ consists of the following data.

- A class of objects in $LMod_{\mathcal{C}}(Alg(Cat_{\mathcal{E}}^{\{s\}}))$. An object $\mathcal{M} \in LMod_{\mathcal{C}}(Alg(Cat_{\mathcal{E}}^{\{s\}}))$ is a fusion category M over $\mathcal E$ equipped with a braided monoidal functor $\phi_M : \overline{\mathcal C} \to Z(\mathcal M, \mathcal E)$ over E.
- For objects M , N in $LMod_{\mathcal{C}}(Alg(Cat_{\mathcal{E}}^{\{s\}}))$, a 1-morphism $F : M \to N$ in $LMod_{\mathcal{C}}(Alg(Cat_{\mathcal{E}}^{\{s\}}))$ is a monoidal functor $F : \mathcal{M} \to \mathcal{N}$ equipped with a monoidal isomorphism $u^{\mathcal{M}\mathcal{N}}$: $F \circ \phi_M \Rightarrow \phi_N$ such that the diagram

$$
F(\phi_{\mathcal{M}}(c) \otimes m) \longrightarrow F(\phi_{\mathcal{M}}(c)) \otimes F(m) \xrightarrow{\iota_{c}^{\mathcal{M}^{\mathcal{M}}}, 1} \phi_{\mathcal{N}}(c) \otimes F(m)
$$
\n
$$
\downarrow^{\beta_{c,m}^{\mathcal{M}}} \downarrow^{\beta_{c,F(m)}^{\mathcal{M}}} \downarrow^{\beta_{c,F(m)}^{\mathcal{M}}} \downarrow^{\beta_{c,F(m)}^{\mathcal{M}}} \qquad (4.19)
$$
\n
$$
F(m \otimes \phi_{\mathcal{M}}(c)) \longrightarrow F(m) \otimes F(\phi_{\mathcal{M}}(c)) \xrightarrow{\iota_{\mathcal{M}^{\mathcal{M}^{\mathcal{M}}}}} F(m) \otimes \phi_{\mathcal{N}}(c)
$$

commutes for $c \in \overline{C}$, $m \in \mathcal{M}$, where $(\phi_{\mathcal{M}}(c), \beta^{\mathcal{M}}) \in Z(\mathcal{M}, \mathcal{E})$ and $(\phi_{\mathcal{N}}(c), \beta^{\mathcal{N}}) \in Z(\mathcal{N}, \mathcal{E})$.

• For 1-morphisms $F,G : \mathcal{M} \rightrightarrows \mathcal{N}$ in $LMod_{\mathcal{C}}(Alg(Cat_{\mathcal{E}}^{\{s\}}))$, a 2-morphism $\alpha : F \Rightarrow G$ in LMod $_{\mathfrak{C}}(\mathrm{Alg}(\mathrm{Cat}^{\mathrm{fs}}_{\mathcal{E}}))$ is a monoidal isomorphism α such that the diagram

$$
F(\phi_{\mathcal{M}}(c)) \xrightarrow{\alpha_{\phi_{\mathcal{M}}(c)}} G(\phi_{\mathcal{M}}(c))
$$

$$
\psi_{c}^{\mathcal{M}\mathcal{N}} \longrightarrow \psi_{\tilde{u}_{c}^{\mathcal{M}\mathcal{N}}}
$$

commutes for $c \in \overline{C}$, where u^{MN} and \tilde{u}^{MN} are the monoidal isomorphisms on *F* and *G* respectively.

 ${\bf Remark~4.42.} \ \text{ If } F:\mathbb{M}\to\mathbb{N} \text{ is a 1-morphism in }{\rm LMod}_{\mathcal{C}}({\rm Alg}({\rm Cat}_{\mathcal{E}}^{\rm fs})), F \text{ is a left } \overline{\mathcal{C}}\text{-module functor}$ and a monoidal functor over $\mathbf{\mathcal{E}}.\,$ By Lem. [3.4,](#page-6-1) the left $\overline{\mathbf{\mathcal{C}}}$ -module structure s^F on F is defined as $F(c \odot m) = F(\phi_{\mathcal{M}}(c) \otimes m) \rightarrow F(\phi_{\mathcal{M}}(c)) \otimes F(m) \xrightarrow{u_c^{\mathcal{M} \mathcal{N}}, 1} \phi_{\mathcal{N}}(c) \otimes F(m) = c \odot F(m)$ for all $c \in \overline{\mathcal{C}}, m \in \mathcal{M}$. Let u^{cM} : $\phi_M \circ T_c \Rightarrow T_M$ and u^{cN} : $\phi_N \circ T_c \Rightarrow T_N$ be the structures of monoidal functors over ϵ on $\phi_\mathcal{M}$ and $\phi_\mathcal{N}$ respectively. The structure of monoidal functor over ϵ on F is induced by the composition $v : F \circ T_{\mathcal{M}} \xrightarrow{1.(u^{\mathcal{CM}})^{-1}} F \circ \phi_{\mathcal{M}} \circ T_{\mathcal{C}} \xrightarrow{u^{\mathcal{M}\mathcal{M}}.1} \phi_{\mathcal{N}} \circ T_{\mathcal{C}} \xrightarrow{u^{\mathcal{C}\mathcal{N}}} T_{\mathcal{N}}.$

The 2-category RMod ${}_{\mathcal{D}}(\operatorname{Alg}(\operatorname{Cat}^{\operatorname{fs}}_{\mathcal{E}}))$ consists of the following data.

- An object $\mathcal{M} \in \text{RMod}_{\mathcal{D}}(\text{Alg}(\text{Cat}_{\mathcal{E}}^{\text{fs}}))$ is a fusion category $\mathcal M$ over $\mathcal E$ equipped with a braided monoidal functor $\phi_M : \mathcal{D} \to Z(\mathcal{M}, \mathcal{E})$ over \mathcal{E} .
- 1-morphisms and 2-morphisms are similar with which in the Def. [4.41.](#page-30-1)

And the 2-category $\text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Alg}(\text{Cat}^{\text{fs}}_{\mathcal{E}}))$ consists of the following data.

- An object $\mathcal{M} \in \text{BMod}_{\mathcal{C}|\mathcal{D}}(\text{Alg}(\text{Cat}_{\mathcal{E}}^{\text{fs}}))$ is a fusion category $\mathcal M$ over $\mathcal E$ equipped with a braided monoidal functor $\phi_\mathcal{M}:\overline{\mathcal{C}}\mathbb{R}_\mathcal{E}\mathcal{D}\to Z(\mathcal{M},\mathcal{E})$ over $\mathcal{E}.$ An object $\mathcal{M}\in \mathrm{BMod}_{\mathcal{C}|\mathcal{D}}(\mathrm{Alg}(\mathrm{Cat}_\mathcal{E}^{\mathrm{fs}}))$ is closed if ϕ_{M} is an equivalence.
- 1-morphisms and 2-morphisms are similar with which in the Def. [4.41.](#page-30-1)

5 Factorization homology

In this section, Sec. 5.1 recalls the definitions of unitary categories, unitary fusion categories and unitary modular tensor categories over \mathcal{E} (see [\[LKW,](#page-52-6) Def. 3.15, 3.16, 3.21]). Sec. 5.2 recalls the theory of factorization homology. Sec. 5.3 and Sec. 5.4 compute the factorization homology of stratified surfaces with coefficients given by $UMTC_{\ell}\epsilon's$.

5.1 Unitary categories

Definition 5.1. A **-category* C is a C -linear category equipped with a functor * : $C \rightarrow C^{op}$ which acts as the identity map on objects and is anti-linear and involutive on morphisms. More explicitly, for any objects $x, y \in C$, there is a map $* : \text{Hom}_{C}(x, y) \to \text{Hom}_{C}(y, x)$, such that

$$
(g \circ f)^* = f^* \circ g^*, \quad (\lambda f)^* = \bar{\lambda} f^*, \quad (f^*)^* = f
$$

for $f: u \to v$, $g: v \to w$, $h: x \to y$, $\lambda \in \mathbb{C}^{\times}$. Here $\mathbb C$ denotes the field of complex numbers.

A ∗*-functor* between two ∗-categories C and D is a **C**-linear functor *F* : C → D such that $F(f^*) = F(f^*)$ for all $f \in \text{Hom}_{\mathcal{C}}(x, y)$. A *-category is called *unitary* if it is finite and the ∗-operation is positive, i.e. *f* ◦ *f* $* = 0$ implies *f* = 0.

Definition 5.2. A *unitary fusion category* C is both a fusion category and a unitary category such that * is compatible with the monoidal structures, i.e.

$$
(g \otimes h)^* = g^* \otimes h^*, \quad \forall g : v \to w, h : x \to y
$$

$$
\alpha^*_{x,y,z} = \alpha^{-1}_{x,y,z}, \quad \gamma^*_{x} = \gamma^{-1}_{x}, \quad \rho^*_{x} = \rho^{-1}_{x}
$$

for *x*, *y*, *z*, *v*, $w \in C$, where α , γ , ρ are the associativity, the left unit and the right unit constraints respectively. A unitary braided fusion category is a unitary fusion category C with a braiding *c* such that $c^*_{x,y} = c^{-1}_{x,y}$ for any $x, y \in \mathcal{C}$.

A *monoidal*∗*-functor* between unitary fusion categories is a monoidal functor (*F*, *J*) : C → D, such that *F* is a ∗-functor and $J^*_{x,y} = J^{-1}_{x,y}$ for $x,y \in C$. A *braided* *-functor between unitary braided fusion categories is both a monoidal ∗-functor and a braided functor.

Remark 5.3. Let C be a unitary fusion category. C admits a canonical spherical structure. The unitary center *Z*^{*}(*℃*) is defined as the fusion subcategory of the Drinfeld center *Z*(*℃*), where $(x, c_{x,-})$ ∈ *Z*^{*}(C) if $c_{x,-}^* = c_{x,-}^{-1}$. *Z*^{*}(C) is a unitary braided fusion category and *Z*^{*}(C) is braided equivalent to $Z(\mathcal{C})$ by [\[GHR,](#page-52-14) Prop. 5.24].

Definition 5.4. A *unitary E-module category* C is an object C in Cat^{fs} such that C is a unitary category, and the $*$ is compatible with the ϵ -module structure, i.e.

$$
(i \odot j)^* = i^* \odot j^*, \qquad \lambda_{e,\tilde{e},x}^* = \lambda_{e,\tilde{e},x}^{-1}, \qquad l_x^* = l_x^{-1}
$$

for $i: e \to \tilde{e} \in \mathcal{E}, j: x \to y \in \mathcal{C}$, where λ and l are the module associativity and the unit constraints respectively. Notice that symmetric fusion categories are all unitary.

Let C, D be unitary E-module categories. An E*-module* ∗*-functor* is an E-module functor (F, s) : $C \rightarrow D$ such that *F* is a ∗-functor and $s_{e,x}^* = s_{e,x}^{-1}$ for $e \in \mathcal{E}, x \in C$.

Remark 5.5. Let C be an indecomposable unitary \mathcal{E} -module category. Then the full subcategory Fun^{*}_ε(C, C) ⊂ Fun_ε(C, C) of $\hat{\varepsilon}$ -module *-functors is a unitary fusion category. And the embedding Fun[∗]_ε(C, C) → Fun_ε(C, C) is the monoidal equivalence by [\[GHR,](#page-52-14) Thm, 5.3].

Definition 5.6. A *unitary fusion category over* E is a unitary fusion category A equipped with a braided *-functor $T'_{\mathcal{A}}: \mathcal{E} \to Z(\mathcal{A})$ such that the central functor $\mathcal{E} \to \mathcal{A}$ is fully faithful. A *unitary braided fusion category over* E is a unitary braided fusion category C equipped with a braided *-embedding T_c : $\mathcal{E} \to \mathcal{C}'$. A *unitary modular tensor category over* \mathcal{E} *(or* UMTC_{/ε}) is a unitary braided fusion category C over $\mathcal E$ such that $C' \simeq \mathcal E$.

Let C be a unitary fusion category.

Definition 5.7. Let $(A, m : A \otimes A \rightarrow A, \eta : 1 \in A \rightarrow A)$ be an algebra in C. A $*$ -Frobenius algebra in C is an algebra *A* in C such that the comultiplication $m^* : A \to A \otimes A$ is an *A*-bimodule map. Let *A* be a ∗-Frobenius algebra in C and M a unitary left C-module category. A *left* ∗*-A-module in* M is a left *A*-module ($\overline{M}, q : A \otimes M \to M$) such that $q^* : M \to A \otimes M$ is a left *A*-module map.

Remark 5.8. A ∗-Frobenius algebra in C is separable. The full subcategory *^A*M[∗] ⊂ *^A*M of left ∗-*A*-modules in M is a unitary category. The embedding *^A*M[∗] → *^A*M is an equivalence. Similarly, one can define \mathcal{M}^*_A and $_A\mathcal{M}^*_A$.

If the object $(x^L, ev_x : x^L \otimes x \to \mathbb{1}_{\mathcal{C}}$, $coev_x : \mathbb{1}_{\mathcal{C}} \to x \otimes x^L$) is a left dual of *x* in \mathcal{C} , then $(x^L, \text{coev}_x^* : x \otimes x^L \to \mathbb{1}_{\mathcal{C}}$, $\text{ev}_x^* : \mathbb{1}_{\mathcal{C}} \to x^L \otimes x$) is the right dual of *x* in \mathcal{C} . Here we choose the duality maps ev_x and $coev_x$ are *normalized*. That is, the induced composition

$$
\mathrm{Hom}_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}},x\otimes -)\xrightarrow{\mathrm{ev}_{x}}\mathrm{Hom}_{\mathcal{C}}(x^{L}, -)\xrightarrow{\mathrm{ev}_{x}^{*}}\mathrm{Hom}_{\mathcal{C}}(\mathbb{1}_{\mathcal{C}}, -\otimes x)
$$

is an isometry. Then the normalized left dual x^L is unique up to canonical unitary isomorphism. Let (A, m, η) be a ∗-Frobenius algebra in C. The object $(A, \eta^* \circ m : A \otimes A \to \mathbb{1}_{\mathcal{C}}$, $m^* \circ \eta$: $\mathbb{1}_{\mathcal{C}} \rightarrow A \otimes A$) is the left (or right) dual of *A* in \mathcal{C} .

Definition 5.9. A ∗-Frobenius algebra *A* in C is *symmetric* if the two morphisms $\Phi_1 = \Phi_2$ in $\operatorname{Hom}_{\mathfrak{C}}(A,A^L)$, where

 $\Phi_1 \coloneqq [(\eta^* \circ m) \otimes \mathrm{id}_{A^L}] \circ (\mathrm{id}_A \otimes \mathrm{coev}_A)$ and $\Phi_2 \coloneqq [\mathrm{id}_{A^L} \otimes (\eta^* \circ m)] \circ (\mathrm{ev}_A^* \otimes \mathrm{id}_A)$

The following proposition comes from Hao Zheng's lessons.

Proposition 5.10. Let M be a unitary left C-module category. Then there exists a symmetric ∗-Frobenius algebra *A* such that M ≃ C ∗ *A* as unitary left C-module categories.

5.2 Factorization homology for stratified surfaces

The theory of factorization homology (of stratified spaces) is in [\[AF1,](#page-51-0) [AFT2,](#page-51-2) [AF2\]](#page-51-6).

Definition 5.11. Let Mfld^{or} be the topological category whose objects are oriented *n*-manifolds without boundary. For any two oriented *n*-manifolds M and N, the morphism space $\text{Hom}_{\text{Mfld}_n^{\text{or}}}(M,N)$ is the space of all orientation-preserving embeddings $e : M \to N$, endowed with the compactopen topology. We define Mfld^{or} to be the symmetric monoidal ∞-category associated to the topological category Mfld^{or}. The symmetric monoidal structure is given by disjoint union.

Definition 5.12. The symmetric monoidal ∞ -category $\text{Disk}_n^{\text{or}}$ is the full subcategory of $\text{Mfld}_n^{\text{or}}$ whose objects are disjoint union of finitely many *n*-dimensional Euclidean spaces $\prod_I \mathbb{R}^n$ equipped with the standard orientation.

Definition 5.13. Let $\mathcal V$ be a symmetric monoidal ∞-category. An *n-disk algebra* in $\mathcal V$ is a symmetric monoidal functor $\ddot{A}: \mathcal{D}$ isk $_n^{\text{or}} \to \mathcal{V}$.

Let v_{utv} be the symmetric monoidal (2,1)-category of unitary categories. The tensor product of \mathcal{V}_{uty} is Deligne tensor product \boxtimes . Expl. 3.5 of [\[AKZ\]](#page-51-7) gives examples of 0-, 1-, 2-disk algebras in v_{uty} . A unitary braided fusion category gives a 2-disk algebra in v_{uty} . A 1-disk algebra in \mathcal{V}_{uty} is a unitary monoidal category. A 0-disk algebra in \mathcal{V}_{uty} is a pair (\mathcal{P}, p), where P is a unitary category and *p* ∈ P is a distinguished object. We guess that the *n*-disk algebra in v_{utv} equipped with the compatible ε -module structure, is the *n*-disk algebra both in v_{utv} and Cat^{fs}, for $n = 0, 1, 2$.

Assumption 5.14. Let $\mathcal{V}_{\text{uty}}^{\varepsilon}$ be the symmetric monoidal (2,1)-category of unitary ε -module categories. We assume that a unitary braided fusion category over ϵ gives a 2-disk algebra in $\mathcal{V}_{\text{uty}}^{\varepsilon}$, a unitary fusion category over ε gives a 1-disk algebra in $\mathcal{V}_{\text{uty}}^{\varepsilon}$, and a unitary ε -module category equipped with a distinguished object gives a 0-disk algebra in $\mathcal{V}^\mathcal{E}_{\mathrm{uty}}$.

Definition 5.15. An *(oriented) stratified surface* is a pair (Σ , Σ $\stackrel{\pi}{\to}$ {0, 1, 2}) where Σ is an oriented surface and π is a map. The subspace $\Sigma_i \coloneqq \pi^{-1}(i)$ is called the *i-stratum* and its connected components are called *i-cells*. These data are required to satisfy the following properties.

- (1) Σ_0 and $\Sigma_0 \cup \Sigma_1$ are closed subspaces of Σ .
- (2) For each point $x \in \Sigma_1$, there exists an open neighborhood *U* of *x* such that $(U, U \cap \Sigma_1, U \cap$ Σ_0) $\cong (\mathbb{R}^2, \mathbb{R}^1, \emptyset).$
- (3) For each point $x \in \Sigma_0$, there exists an open neighborhood *V* of *x* and a finite subset *I* ⊂ *S*¹, such that $(V, V \cap \Sigma_1, V \cap \Sigma_0) \cong (\mathbb{R}^2, C(I) \setminus \{cone point\}$, {cone point}), where *C*(*I*) is the open cone of *I* defined by $C(I) = I \times [0, 1)/I \times \{0\}$.
- (4) Each 1-cell is oriented, and each 0-cell is equipped with the standard orientation.

There are three important types of stratified 2-disks shown in [\[AKZ,](#page-51-7) Expl. 3.14].

Definition 5.16. We define Mfld^{str} to be the topological category whose objects are stratified surfaces and morphism space between two stratified surfaces M and N are embeddings $e : M \to N$ that preserve the stratifications, and the orientations on 1-, 2-cells. We define Mfld^{str} to be the symmetric monoidal ∞-category associated to the topological category Mfld^{str}. The symmetric monoidal structure is given by disjoint union.

Definition 5.17. Let *M* be a stratified surface. We define \mathcal{D} isk $_M^{\text{str}}$ to be the full subcategory of Mfld^{str} consisting of those disjoint unions of stratified 2-disks that admit at least one morphism into *M*.

Definition 5.18. Let Vbe a symmetric monoidal ∞-category. A *coe*ffi*cient* on a stratified surface *M* is a symmetric monoidal functor $A: \mathcal{D}\text{isk}^{\text{str}}_{M} \to \mathcal{V}$.

A coefficient *A* provides a map from each *i*-cell of *M* to an *i*-disk algebra in V.

Definition 5.19. Let $\mathcal V$ be a symmetric monoidal ∞-category, M a stratified surface, and $A: \mathcal{D}\text{isk}_M^{\text{str}} \to \mathcal{V}$ a coefficient. The *factorization homology* of \tilde{M} with coefficient in A is an object of V defined as follows:

$$
\int_M A := \operatorname{Colim}\bigl((\operatorname{\mathcal{D}isk}^{\operatorname{str}}_M)_{/M} \xrightarrow{i} \operatorname{\mathcal{D}isk}^{\operatorname{str}}_M \xrightarrow{A} \mathcal{V}\bigr)
$$

where $(\text{Disk}_{M}^{\text{str}})_{/M}$ is the over category of stratified 2-disks embedded in *M*. And the notation Colim $\left((\mathcal{D}\text{isk}^\text{str}_M)_{/M} \stackrel{A \circ i}{\longrightarrow} \mathcal{V}\right)$ denotes the colimit of the functor $A \circ i.$

Definition 5.20. A *collar-gluing* for an oriented *n*-manifold *M* is a continuous map $f : M \rightarrow$ [−1, 1] to the closed interval such that restriction of *f* to the preimage of (−1, 1) is a manifold bundle. We denote a collar-gluing $f : M \to [-1,1]$ by the open cover $M_- \cup_{M_0 \times \mathbb{R}} M_+ \simeq M$, where $M_{-} = f^{-1}([-1, 1]), M_{+} = f^{-1}((-1, 1])$ and $M_{0} = f^{-1}(0)$.

Theorem 5.21. ([\[AF1\]](#page-51-0) Lem. 3.18). Suppose $\mathcal V$ is presentable and the tensor product ⊗ : $\mathcal V \times \mathcal V \rightarrow$ V preserves small colimits for both variables. Then the factorization homology satisfies ⊗ excision property. That is, for any collar-gluing $M_-\cup_{M_0\times R} M_+\simeq M$, there is a canonical equivalence:

$$
\int_M A \simeq \int_{M_{-}} A \bigotimes_{\int_{M_0 \times \mathbb{R}} A} \int_{M_{+}} A
$$

Remark 5.22. If *U* is contractible, there is an equivalence $\int_{U} A \simeq A$ in V .

Generalization of the ⊗-excision property is the *pushforward property.* Let *M* be an oriented *m*-manifold, *N* an oriented *n*-manifold, possibly with boundary, and *A* an *m*-disk algebra in a ⊗-presentable ∞-category V. Let $f : M \to N$ be a continuous map which fibers over the interior and the boundary of *N*. There is a pushforward functor *f*[∗] sends an *m*-disk algebra *A* on *M* to the *n*-disk algebra f_*A on *N*. Given an embedding $e: U \to N$ where $U = \mathbb{R}^n$ or **R** *ⁿ*−¹×[0, 1), an *n*-disk algebra *f*∗*A* is defined as (*f*∗*A*)(*U*) ≔ R *f* −1 (*e*(*U*)) *A*. Then there is a canonical equivalence in V

$$
\int_{N} f_{*} A \simeq \int_{M} A \tag{5.1}
$$

5.3 Preparation

Lemma 5.23. Let C be a multifusion category over \mathcal{E} such that $\mathcal{E} \to Z(\mathcal{C})$ is fully faithful. Then the functor $C \boxtimes_{Z(C, \mathcal{E})} C^{rev} \to Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})$ given by $a \boxtimes_{Z(C, \mathcal{E})} b \mapsto a \otimes -\otimes b$ is an equivalence of multifusion categories over E.

Proof. C^{rev} and C are the same as categories. The composed equivalence (as categories):

$$
\mathcal{C} \boxtimes_{Z(\mathcal{C}, \mathcal{E})} \mathcal{C} \xrightarrow{id \boxtimes_{Z(\mathcal{C}, \mathcal{E})} \delta^L} \mathcal{C} \boxtimes_{Z(\mathcal{C}, \mathcal{E})} \mathcal{C}^{\mathrm{op}} \xrightarrow{v} \mathcal{C}^{\mathrm{rev}} \boxtimes_{\mathcal{E}} \mathcal{C}
$$

 $\text{carries}\, \textit{a} \boxtimes_{Z(\mathcal{C},\mathcal{E})} b \mapsto \textit{a} \boxtimes_{Z(\mathcal{C},\mathcal{E})} b^L \mapsto [a,b^L]_{\mathcal{C}^\text{rev}\boxtimes_\mathcal{E} \mathcal{C}}^R$, where v is induced by Thm. 4.18 and Eq. (4.17). Notice that the object $\mathfrak C$ in $\mathop{\rm LMod}\nolimits_{\mathfrak{C}^{\text{rev}}\boxtimes_{\mathfrak{C}}}c(\mathop{\rm Cat}\nolimits_{\mathcal E}^{\text{fs}})$ is faithful. The composed equivalence

$$
\begin{aligned} \mathcal{C}^{\text{rev}} \boxtimes_{\mathcal{E}} \mathcal{C} & \xrightarrow{\delta^R \boxtimes_{\mathcal{E}} \text{id}} \mathcal{C}^{\text{op}} \boxtimes_{\mathcal{E}} \mathcal{C} \to \text{Fun}_{\mathcal{E}}(\mathcal{C}, \mathcal{C}) \\ c \boxtimes_{\mathcal{E}} d &\mapsto c^R \boxtimes_{\mathcal{E}} d \mapsto [-, c^R]_{\mathcal{E}}^R \odot d \end{aligned}
$$

maps $[a,b^L]_{\mathcal{C}^\text{rev}\boxtimes_\mathcal{E} \mathcal{C}}^R$ to a functor $f\in \text{Fun}_\mathcal{E}(\mathcal{C},\mathcal{C}).$ Note that $\text{Hom}_\mathcal{C}([x,c^R]_\mathcal{E}^R\odot\!d,y)\simeq \text{Hom}_\mathcal{E}([x,c^R]_\mathcal{E}^R,[d,y]_\mathcal{E})\simeq$ $\text{Hom}_{\mathcal{E}}(\mathbb{1}_{\mathcal{E}}, [d, y]_{\mathcal{E}} \otimes [x, c^R]_{\mathcal{E}}) \simeq \text{Hom}_{\mathcal{C}^{\text{op}} \boxtimes_{\mathcal{E}} \mathcal{C}}(c^R \boxtimes_{\mathcal{E}} d, x \boxtimes_{\mathcal{E}} y) \simeq \text{Hom}_{\mathcal{C}^{\text{rev}} \boxtimes_{\mathcal{E}} \mathcal{C}}(c \boxtimes_{\mathcal{E}} d, x^L \boxtimes_{\mathcal{E}} y)$, which implies

$$
\mathrm{Hom}_{\mathcal{C}}(f(x), y) \simeq \mathrm{Hom}_{\mathcal{C}^{\mathrm{rev}} \boxtimes_{\mathcal{E}} \mathcal{C}}([a, b^L]^R_{\mathcal{C}^{\mathrm{rev}} \boxtimes_{\mathcal{E}} \mathcal{C}}, x^L \boxtimes_{\mathcal{E}} y) \simeq \mathrm{Hom}_{\mathcal{C}}(a \otimes x \otimes b, y)
$$

i.e. $f \simeq a \otimes -\otimes b$. Here the second equivalence above holds by the equivalence ($x^L \boxtimes_{\mathcal{E}} y$) ⊗ $[a,b^L]_{\mathcal{C}^\mathrm{rev}\boxtimes_\mathcal{E}\mathcal{C}}\simeq[a,(x^L\boxtimes_\mathcal{E} y)\odot b^L]_{\mathcal{C}^\mathrm{rev}\boxtimes_\mathcal{E}\mathcal{C}}=[a,y\otimes b^L\otimes x^L]_{\mathcal{C}^\mathrm{rev}\boxtimes_\mathcal{E}\mathcal{C}}.$

Then the functor $\Phi : \mathcal{C} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \mathcal{C}^{\text{rev}} \to \text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C}), a \boxtimes_{Z(\mathcal{C},\mathcal{E})} b \mapsto a \otimes -\otimes b$ is a monoidal equivalence. Recall the central structures of the functors $T_{\mathcal{C} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \mathcal{C}^\text{rev}} : \mathcal{E} \to \mathcal{C} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \mathcal{C}^\text{rev}$ and $T : \mathcal{E} \to \text{Fun}_{\mathcal{E}}(\mathcal{C}, \mathcal{C})$ in Expl. [3.8](#page-7-3) and Expl. [3.7](#page-7-1) respectively. The structure of monoidal functor over $\mathcal E$ on Φ is induced by $\Phi \circ T_{\mathcal{C} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \mathcal{C}^\mathrm{rev}}(\mathcal{C}) = T_\mathcal{C}(\mathcal{C}) \otimes - \otimes \mathbb{1}_\mathcal{C} \simeq T_\mathcal{C}(\mathcal{C}) \otimes - = T^e$. — П

Lemma 5.24. Let C be a multifusion category over \mathcal{E} such that $\mathcal{E} \to Z(\mathcal{C})$ is fully faithful and $\mathfrak X$ a left C-module. There is an equivalence in Cat $^{\rm fs}_{\mathcal E}$

$$
\mathcal{C} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \operatorname{Fun}_{\mathcal{C}}(\mathcal{X},\mathcal{X}) \simeq \operatorname{Fun}_{\mathcal{E}}(\mathcal{X},\mathcal{X})
$$

Proof. Corollary 3.6.18 of [\[Su\]](#page-52-15) says that there is an equivalence

$$
Fun_{\mathcal{C}}(\mathfrak{X}, \mathfrak{X}) \simeq Fun_{\mathcal{C}\boxtimes_{\mathcal{E}} \mathcal{C}^{\mathrm{rev}}}(\mathcal{C}, Fun_{\mathcal{E}}(\mathfrak{X}, \mathfrak{X}))
$$

We have equivalences $\mathbb{C}\boxtimes_{Z(\mathcal{C},\mathcal{E})}C^{\text{rev}}\boxtimes_{\mathcal{C}^{\text{rev}}} \mathcal{C}^{\text{op}}\boxtimes_{\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{C}^{\text{rev}}} \text{Fun}_{\mathcal{E}}(\mathcal{X},\mathcal{X})\simeq \text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})\boxtimes_{\mathcal{C}\boxtimes_{\mathcal{E}} \mathcal{C}^{\text{rev}}} \text{Fun}_{\mathcal{E}}(\mathcal{X},\mathcal{X})\simeq$ $C^{op} \boxtimes_{\varepsilon} C \boxtimes_{C \boxtimes_{\varepsilon} C^{rev}} \text{Fun}_{\varepsilon}(\mathfrak{X}, \mathfrak{X}) \simeq \text{Fun}_{\varepsilon}(\mathfrak{X}, \mathfrak{X})$. The first equivalence holds by the Lem. [5.23.](#page-34-1) \Box

Lemma 5.25. Let C be a semisimple finite left \mathcal{E} -module. There is an equivalence $C^{op} \boxtimes_{\text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})}$ $\mathcal{C} \simeq \mathcal{E}$ in Cat^{fs}.

Proof. The left Fun_E(C, C)-action on C is defined as $f \circ x := f(x)$ for $f \in \text{Fun}_{\mathcal{E}}(\mathcal{C}, \mathcal{C})$, $x \in \mathcal{C}$. The composed equivalence

$$
\mathcal{C}^{op} \boxtimes_{Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})} \mathcal{C} \simeq \mathcal{C} \boxtimes_{Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})^{\mathrm{rev}}} \mathcal{C}^{op} \simeq \mathcal{E}
$$

carries $a \boxtimes_{Fun_{\mathcal{E}}({\mathcal{C}},{\mathcal{C}})} b \mapsto b \boxtimes_{Fun_{\mathcal{E}}({\mathcal{C}},{\mathcal{C}})^{rev}} a \mapsto [b,a]_{\mathcal{E}}^R$, where the second equivalence is due to Thm. [4.13](#page-18-4) and Eq. [\(4.17\)](#page-26-3). \square

5.4 Computation of factorization homology

Modules over a fusion category over ϵ and modules over a braided fusion category over ϵ can be generalized to the unitary case automatically. Let ϵ be a unitary fusion category over \mathcal{E} . A closed object in $LMod_{\mathcal{C}}(\mathcal{V}_{\text{uty}}^{\mathcal{E}})$ is an object $\mathcal{M} \in \mathcal{V}_{\text{uty}}^{\mathcal{E}}$ equipped with a monoidal equivalence $(\psi, u) : \mathcal{C} \to \text{Fun}_{\mathcal{E}}(\mathcal{M}, \mathcal{M})$ over \mathcal{E} such that ψ is a monoidal *-functor and $u_e^* = u_e^{-1}$ for $e \in \mathcal{E}$. Let A and B be unitary braided fusion categories over \mathcal{E} . A closed object in $\mathop{\rm BMod}\nolimits_{\mathcal{A}|\mathcal{B}}(\mathsf{Alg}(\mathcal{V}^{\mathcal{E}}_{\text{uty}}))$ is a unitary fusion category $\mathcal M$ over $\mathcal E$ equipped with a braided monoidal equivalence $(\phi, u) : \overline{A} \boxtimes_E B \to Z(M, E)$ over E such that ϕ is a braided *-functor and $u_e^* = u_e^{-1}$ for $e \in \mathcal{E}$.

Definition 5.26. A coefficient system $A: \mathcal{D}$ isk $_M^{\text{str}} \to \mathcal{V}_{\text{uty}}^{\mathcal{E}}$ on a stratified surface M is called *anomaly-free in* Cat^{fs} if the following conditions are satisfied:

- The target label for a 2-cell is given by a UMTC $_{\ell\epsilon}$.
- The target label for a 1-cell between two adjacent 2-cells labeled by $A(\text{left})$ and $B(\text{right})$ is given by a closed object in $\text{BMod}_{\mathcal{A}|\mathcal{B}}(\text{Alg}(\mathcal{V}^{\mathcal{E}}_{\text{uty}})).$
- The target label for a 0-cell as the one depicted in Figure [1](#page-36-1) is given by a 0-disk algebra (\mathcal{P}, p) in $\mathcal{V}_{\text{uty}}^{\varepsilon}$, where the unitary ε -module category $\overline{\mathcal{P}}$ is equipped with the structure of a closed left $\int_{M\setminus\{0\}} A$ -module, i.e.

$$
\int_{M\setminus\{0\}} A \simeq \operatorname{Fun}_{\mathcal{E}}(\mathcal{P}, \mathcal{P})
$$

Example 5.27. A stratified 2-disk *M* is shown in Fig. [1.](#page-36-1) An anomaly-free coefficient system *A* on M in Cat $^{\rm fs}_{\rm g}$ is determined by its target labels shown in Fig. [1](#page-36-1)

• The target labels for 2-cells: A , B and D are UMTC_{/ ε}'s.

Figure 1: The figure depicts a stratified 2-disk with an anomaly-free coefficient system *A* in Cat $_{\varepsilon}^{\text{fs}}$ determined by its target labels.

- • The target labels for 1-cells: $\mathcal L$ is a closed object in BMod_{A|D}(Alg($\mathcal V_{\rm uty}^{\varepsilon}$)), $\mathcal M$ a closed object in $\mathrm{BMod}_{\mathcal{D}|\mathcal{B}}(\mathrm{Alg}(\mathcal{V}^{\mathcal{E}}_{\mathrm{uty}}))$ and $\mathcal N$ is a closed object in $\mathrm{BMod}_{\mathcal{A}|\mathcal{B}}(\mathrm{Alg}(\mathcal{V}^{\mathcal{E}}_{\mathrm{uty}})).$
- The target labels for 0-cells: (\mathcal{P}, p) is a closed left module over $\mathcal{L} \boxtimes_{\mathcal{A}^{\text{rev}} \otimes_{\mathcal{E}} \mathcal{D}} (\mathcal{M} \boxtimes_{\mathcal{B}} \mathcal{N}^{\text{rev}}).$

The data of the coefficient system $A: \mathcal{D}\text{isk}^{\text{str}}_M \to \mathcal{V}^\mathcal{E}_{\text{uty}}$ shown in Fig. [1](#page-36-1) are denoted as

$$
A = (A, B, D; \mathcal{L}, \mathcal{M}, \mathcal{N}; (\mathcal{P}, p))
$$

Example 5.28. Let C be a UMTC_{/E}. Consider an open disk \mathbb{D} with two 0-cells p_1 , p_2 . And a coefficient system assigns C to the unique 2-cell and assigns (C, x_1) , (C, x_2) to the 0-cells p_1, p_2 , respectively. By the ⊗-excision property, we have

$$
\int_{(\mathbb{D};\emptyset;\mathfrak{p}_1\sqcup\mathfrak{p}_2)} (\mathbb{C};\emptyset;(\mathbb{C},x_1),(\mathbb{C},x_2)) \simeq (\mathbb{C};\emptyset;(\mathbb{C},x_1) \otimes_{\mathbb{C}} (\mathbb{C},x_2)) \simeq (\mathbb{C};\emptyset;(\mathbb{C},x_1 \otimes x_2))
$$

Notice the equivalence $C \otimes_C C \simeq C$ is defined as $x \otimes_C y \mapsto x \otimes y$, whose inverse is defined as $m \mapsto \mathbb{1}_{\mathcal{C}} \otimes_{\mathcal{C}} m$ for $x, y, m \in \mathcal{C}$.

Consider an open disk \mathbb{D}^{\bullet} with finitely many 0-cells p_1, \ldots, p_n . And a coefficient system assigns C to the unique 2-cell and assigns $(C, x_1), \ldots, (C, x_n)$ to the 0-cells p_1, \ldots, p_n , respectively. We have

$$
\int_{(\hat{\mathbb{D}};\vartheta;p_1,\ldots,p_n)} (\mathbb{C};\vartheta;(\mathbb{C},x_1),\ldots,(\mathbb{C},x_n)) \simeq (\mathbb{C};\vartheta;(\mathbb{C},x_1 \otimes \cdots \otimes x_n))
$$

 $\ddot{}$

Theorem 5.29. Let C be a UMTC_{/E} and $x_1, \ldots, x_n \in \mathbb{C}$. Consider the stratified sphere S^2 without 1-stratum but with finitely many 0-cells p_1, \ldots, p_n . Suppose a coefficient system assigns C to the unique 2-cell and assigns $(C, x_1), \ldots, (C, x_n)$ to the 0-cells p_1, \ldots, p_n , respectively. We have

$$
\int_{(S^2; \emptyset; p_1, \ldots, p_n)} (\mathcal{C}; \emptyset; (\mathcal{C}, x_1), \ldots, (\mathcal{C}, x_n)) \simeq (\mathcal{E}, [\mathbb{1}_{\mathcal{C}}, x_1 \otimes \cdots \otimes x_n]_{\mathcal{E}})
$$
(5.2)

Proof. If we map the open stratified disk $(\mathbb{D}; \emptyset; p_1, \ldots, p_n)$ to the open stratified disk $(\mathbb{D}; \emptyset; p)$ and map the points p_1, \ldots, p_n to the point p . We have the following equivalence by Expl. [5.28](#page-36-2)

$$
\int_{(\hat{\mathbb{D}},\hat{\mathbf{U}},p_1,\ldots,p_n)} (\mathbb{C};\hat{\mathbf{U}};(\mathbb{C},x_1),\ldots,(\mathbb{C},x_n)) \simeq \int_{(\hat{\mathbb{D}},\hat{\mathbf{U}};p)} (\mathbb{C};\hat{\mathbf{U}};(\mathbb{C},x_1\otimes\cdots\otimes x_n))
$$

On the stratified sphere (S^2 ; \emptyset ; p), we add an oriented 1-cell $S^1 \setminus p$ from p to p , labelled by the 1-disk algebra C obtained by forgetting its 2-disk algebra structure. We project the stratified sphere $(S^2; S^1 \setminus p; p)$ directly to a closed stratified 2-disk $(\mathbb{D}; S^1 \setminus p; p)$ as shown in Fig. [2](#page-37-1) (a). Notice that this projection preserves the stratification. Applying the pushforward property [\(5.1\)](#page-34-2) and the ⊗-excision property, we reduce the problem to the computation of the factorization homology of the stratified 2-disk.

$$
\int_{(S^2; \emptyset; p_1,\ldots, p_n)} (C; \emptyset; (C, x_1), \ldots, (C, x_n)) \simeq \int_{(\mathbb{D}; S^1 \setminus p; p)} \left(C \boxtimes_{\mathcal{E}} \overline{C}; C; (C, x_1 \otimes \cdots \otimes x_n) \right)
$$

Figure 2: The figure depicts the two steps in computing the factorization homology of a sphere with the coefficient system given by a UMTC/ ε .

Notice that $\mathcal{C} \boxtimes_{\mathcal{E}} \overline{\mathcal{C}} \simeq Z(\mathcal{C}, \mathcal{E})$. Next we project the stratified 2-disk vertically onto the closed interval [−1, 1] as shown in Fig. [2](#page-37-1) (b). Notice that $C \boxtimes_{Z(\mathcal{C},\mathcal{E})} C^{\text{rev}} \simeq \text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})$. The final result is expressed as a tensor product:

$$
\int_{(S^2; \emptyset; p_1, \ldots, p_n)} (C; \emptyset; (C, x_1), \ldots, (C, x_n)) \simeq (C \boxtimes_{\text{Fun}_{\mathcal{E}}(C, C)} C, \mathbb{1}_{C} \boxtimes_{\text{Fun}_{\mathcal{E}}(C, C)} (x_1 \otimes \cdots \otimes x_n))
$$

By Lem. [5.25](#page-35-1) and Lem. [A.9,](#page-44-1) the composed equivalence

$$
\mathcal{C} \boxtimes_{Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})} \mathcal{C} \simeq \mathcal{C}^{op} \boxtimes_{Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})} \mathcal{C} \simeq \mathcal{C} \boxtimes_{Fun_{\mathcal{E}}(\mathcal{C}, \mathcal{C})^{rev}} \mathcal{C}^{op} \simeq \mathcal{E}
$$

carries $x \boxtimes_{\text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})} y \mapsto x^R \boxtimes_{\text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})} y \mapsto y \boxtimes_{\text{Fun}_{\mathcal{E}}(\mathcal{C},\mathcal{C})^{\text{rev}}} x^R \mapsto [y,x^R]_{\mathcal{E}}^R \cong [x^R,y]_{\mathcal{E}}.$ Taking $x = \mathbb{1}_{\mathcal{C}}$ and $y = x_1 \otimes \cdots \otimes x_n$ in the above composed equivalence, we obtain Eq. [\(5.2\)](#page-36-3).

Theorem 5.30. Let C be a UMTC_{/E} and $x_1, \ldots, x_n \in \mathbb{C}$. Let Σ_g be a closed stratified surface of genus *g* without 1-stratum but with finitely many 0-cells *p*1, . . . , *pn*. Suppose a coefficient system assigns C to the unique 2-cell and assigns $(C, x_1), \ldots, (C, x_n)$ to the 0-cells p_1, \ldots, p_n , respectively. We have

$$
\int_{(\Sigma_g;\emptyset;\mathcal{P}_1,\ldots;\mathcal{P}_n)} (\mathcal{C};\emptyset;(\mathcal{C},x_1),\ldots,(\mathcal{C},x_n)) \simeq (\mathcal{E},[\mathbb{1}_{\mathcal{C}},x_1\otimes\cdots\otimes x_n\otimes(\eta^{-1}(A)\otimes_{T(A)}\eta^{-1}(A))^{\otimes g}]_{\mathcal{E}})
$$
(5.3)

where *A* is a symmetric ∗-Frobenius algebra in ε such that there exists an equivalence $\eta : \mathcal{C} \simeq \varepsilon_A$ in $\mathcal{V}_{\text{uty}}^{\varepsilon}$ and $T: \varepsilon \to \mathcal{C}'$ is the braided embedding.

Proof. Since *C* is a unitary *ε*-module category, there exists a symmetric ∗-Frobenius algebra *A* in C such that $C \simeq^{\eta} \mathcal{E}_A$ in $\mathcal{V}_{\text{uty}}^{\mathcal{E}}$. Notice that Eq. [\(5.3\)](#page-37-2) holds for genus $g = 0$ by Thm. [5.29.](#page-36-0) Now we assume *g* > 0. The proof of Thm. [5.29](#page-36-0) implies that $\int_{S^1 \times \mathbb{R}} C \simeq \text{Fun}_{\mathcal{E}}(\mathcal{C}, \mathcal{C})$. By Prop. A.6, Lem. [A.7](#page-43-0) and Lem. [A.8,](#page-44-2) the composed equivalence of categories

$$
\operatorname{Fun}_{\mathcal{E}}(\mathcal{E}_A, \mathcal{E}_A) \simeq {}_A \mathcal{E}_A \simeq {}_A \mathcal{E} \boxtimes_{\mathcal{E}} {} \mathcal{E}_A \simeq {} \mathcal{E}_A \boxtimes_{\mathcal{E}} {} \mathcal{E}_A
$$

 $\mathsf{carries\ id} \mapsto A \mapsto \bar{p} \boxtimes_{\mathcal{E}} \bar{q} \mapsto \bar{p} \boxtimes_{\mathcal{E}} \bar{q}$, where $\bar{p} \boxtimes_{\mathcal{E}} \bar{q} \coloneqq \mathop{\textup{colim}}\nolimits\bigl((A \otimes A) \boxtimes_{\mathcal{E}} A \rightrightarrows A \boxtimes_{\mathcal{E}} A \bigr).$ Then $\text{the equivalence}\; \text{Fun}_{\mathcal E}({\mathcal C},{\mathcal C}) \simeq {\mathcal C} \boxtimes_{\mathcal E} {\mathcal C} \text{ carries } \text{id}_{\mathcal C} \mapsto p \boxtimes_{\mathcal E} q \coloneqq \text{Colim}\bigl(\eta^{-1}(A \otimes A) \boxtimes_{\mathcal E} \eta^{-1}(A) \rightrightarrows$ $\eta^{-1}(A) \boxtimes_{\mathcal{E}} \eta^{-1}(A)$).

Therefore, we have $\int_{S^1\times\mathbb{R}}\mathcal{C}\simeq\big(\mathcal{C}\boxtimes_\mathcal{E}\mathcal{C}, p\boxtimes_\mathcal{E} q\big)$. As a consequence, when we compute the factorization homology, we can replace a cylinder $S^1 \times \mathbb{R}$ by two open 2-disks with two 0-cells as shown on the Fig. [3,](#page-38-1) both of which are labelled by $(\mathfrak{C}\boxtimes_\mathcal{E}\mathfrak{C},p\boxtimes_\mathcal{E}q)$, or labelled by (\mathfrak{C},p) and (C, *q*).

Figure 3: Figure (a) shows a stratified cylinder with a coefficient system $(\mathcal{C}; \mathcal{M}; \emptyset)$, where \mathcal{C} is a $\text{UMTC}_{/\mathcal{E}}$ and $\mathcal M$ is closed in $\text{BMod}_{\mathcal{C}|\mathcal{C}}(\text{Alg}(\mathcal{V}^{\mathcal{E}}_{\text{uty}})).$ Figure (b) shows a disjoint union of two open disks with 2-cells labeled by C , 1-cells labeled by M and M^{rev} , and 0-cells labeled by X and $\mathfrak{X}^{\mathrm{op}}$.

In this way, the genus is reduced by one. By induction, we obtain the equation

$$
\int_{(\Sigma_g;\emptyset;p_1,\dots,p_n)} (\mathcal{C};\emptyset;(\mathcal{C},x_1),\dots,(\mathcal{C},x_n)) \simeq \int_{(\Sigma_{g-1};\emptyset;p_1,\dots,p_n,p_{n+1},p_{n+2})} (\mathcal{C};\emptyset;(\mathcal{C},x_1),\dots,(\mathcal{C},x_n),(\mathcal{C},p),(\mathcal{C},q))
$$
\n
$$
\simeq \int_{(\Sigma_0;\emptyset;p_1,\dots,p_n,\dots,p_{n+2g-1},p_{n+2g})} (\mathcal{C};\emptyset;(\mathcal{C},x_1),\dots,(\mathcal{C},x_n),(\mathcal{C}\boxtimes_{\varepsilon}\mathcal{C},p\boxtimes_{\varepsilon}q)^g)
$$
\n
$$
\simeq (\mathcal{E},[\mathbb{1}_{\mathcal{C}},x_1\otimes\cdots\otimes x_n\otimes(p\otimes q)^{\otimes g}]_{\varepsilon})
$$

 μ where the notation ($C \boxtimes_{\mathcal{E}} C$, $p \boxtimes_{\mathcal{E}} q$)^{*g*} denotes *g* copies of ($C \boxtimes_{\mathcal{E}} C$, $p \boxtimes_{\mathcal{E}} q$) and

$$
p \otimes q \simeq \text{Colim}(\eta^{-1}(A \otimes A) \otimes \eta^{-1}(A) \Rightarrow \eta^{-1}(A) \otimes \eta^{-1}(A))
$$

\simeq \text{Colim}(\eta^{-1}(A) \otimes T(A) \otimes \eta^{-1}(A) \Rightarrow \eta^{-1}(A) \otimes \eta^{-1}(A))
\simeq \eta^{-1}(A) \otimes_{T(A)} \eta^{-1}(A)

Since factorization homology and $p \boxtimes_{\mathcal{E}} q$ are both defined by colimits, we exchange the order of two colimits in the first equivalence. The second equivalence is induced by the composed equivalence $\eta^{-1}(A \otimes A) \simeq A \odot \eta^{-1}(A) = T(A) \otimes \eta^{-1}(A) \simeq \eta^{-1}(A) \otimes T(A)$. Since $T(A)$ is an algebra in C, we obtain the last equivalence.

Example 5.31. The unitary category **H** denotes the category of finite dimensional Hilbert spaces. Let $\mathcal{E} = \mathbb{H}$ and $\mathcal{C} = \text{UMTC}$. We want to choose an algebra $A \in \mathbb{H}$ such that $\mathcal{C} \simeq^{\eta} \mathbb{H}_A$. Suppose that $\eta^{-1}(A) \cong A$ and $T(A) \cong A$. Then $\eta^{-1}(A) \otimes_{T(A)} \eta^{-1}(A) \cong A \otimes_A A \cong A$ and

$$
\int_{(\Sigma_g;0;p_1,\ldots,p_n)} (\mathcal{C};\emptyset;(\mathcal{C},x_1),\ldots,(\mathcal{C},x_n)) \simeq \big(\mathbb{H},\mathrm{Hom}(\mathbb{1}_{\mathcal{C}},x_1\otimes\cdots\otimes x_n\otimes A^{\otimes g})\big)
$$

The set $O(\mathcal{C})$ denotes the set of isomorphism classes of simple objects in \mathcal{C} . If $\eta^{-1}(A)$ = $\oplus_{i\in O(\mathbb{C})} i^R\otimes i=T(A)$, the distinguished object is $\text{Hom}(\mathbb{1}_{\mathbb{C}},x_1\otimes\cdots\otimes x_n\otimes (\oplus_i i^R\otimes i)^{\otimes g}).$ If $A=\oplus_{i\in O(\mathbb{C})}\mathbb{C}$ and $\eta^{-1}(A) = \bigoplus_{i \in O(\mathcal{C})} i = T(A)$, the distinguished object is $\text{Hom}(\mathbb{1}_{\mathcal{C}}, x_1 \otimes \cdots \otimes (\oplus_{i \in O(\mathcal{C})} i)^{\otimes g})$.

Theorem 5.32. Let $(S^1 \times \mathbb{R}; \mathbb{R})$ be the stratified cylinder shown in Fig. [3.](#page-38-1) in which the target label C is a UMTC $_{/ {\cal E}}$ and the target label M is closed in BMod $_{\Bbb C|C} ({\rm Alg}(\mathcal V_{\rm uty}^{\cal E}))$. We have

$$
\int_{(S^1\times \mathbb R;\mathbb R)} (\mathcal C;\mathcal M;\emptyset) \simeq \operatorname{Fun}_{\mathcal E}(\mathfrak X,\mathfrak X)
$$

where $\frak X$ is the unique (up to equivalence) left C-module in Cat $_{{\cal E}}^{{\frak {fs}}}$ such that ${\frak M}\simeq\operatorname{Fun}_{{\cal C}}({\frak X},{\frak X}).$

Proof. By the equivalences $Z(M^{rev}, E) \simeq C \boxtimes_E \overline{C} \simeq Z(C, E)$, there exists a C-module X such that $\mathcal{M} \simeq \text{Fun}_{\mathcal{C}}(\mathcal{X}, \mathcal{X})$ by Thm. [4.40.](#page-29-0) Therefore, we have $\int_{(S^1 \times \mathbb{R}; \mathbb{R})} (\mathcal{C}; \mathcal{M}; \emptyset) \simeq \mathcal{C} \boxtimes_{Z(\mathcal{C}, \mathcal{E})} \mathcal{M} \simeq$ $C \boxtimes_{Z(\mathcal{C},\mathcal{E})} \text{Fun}_{\mathcal{C}}(\mathcal{X},\mathcal{X}) \simeq \text{Fun}_{\mathcal{E}}(\mathcal{X},\mathcal{X})$, which maps $\mathbb{1}_{\mathcal{C}} \boxtimes_{Z(\mathcal{C},\mathcal{E})} \mathbb{1}_{\mathcal{M}}$ to id χ . The last equivalence is due to Thm. [5.24.](#page-34-3)

Conjecture 5.33. Given any closed stratified surface Σ and an anomaly-free coefficient system *A* in Cat^{fs} on Σ, we have $\int_{\Sigma} A \simeq (\mathcal{E}, u_{\Sigma})$, where u_{Σ} is an object in \mathcal{E} .

A Appendix

A.1 Central functors and other results

Let D be a braided monoidal category with the braiding *c* and M a monoidal category.

Definition A.1. A *central structure* of a monoidal functor $F: \mathcal{D} \to \mathcal{M}$ is a braided monoidal functor $F': \mathcal{D} \to Z(\mathcal{M})$ such that $F = \mathbf{f} \circ F'$, where $\mathbf{f}: Z(\mathcal{M}) \to \mathcal{M}$ is the forgetful functor.

A *central functor*is a monoidal functor equipped with a central structure. For any monoidal functor $F: \mathcal{D} \to \mathcal{M}$, the central structure of *F* given in Def. [A.1](#page-39-2) is equivalent to the central structure of *F* given in the Def. [A.2.](#page-39-3)

Definition A.2. A *central structure* of a monoidal functor $F : \mathcal{D} \to \mathcal{M}$ is a natural isomorphism $\sigma_{d,m}: F(d) \otimes m \to m \otimes F(d)$, $d \in \mathcal{D}$, $m \in \mathcal{M}$ which is natural in both variables such that the diagrams

F(*d*) ⊗ *m* ⊗ *m*′ σ*d*,*m*⊗*m*′ / σ*d*,*m*,1 ◗(◗◗ ◗◗ ◗◗ ◗ *m* ⊗ *m*′ ⊗ *F*(*d*) *m* ⊗ *F*(*d*) ⊗ *m*′ 1,σ*d*,*m*′ ♠6 ♠♠ ♠♠ ♠♠ ♠ (A.1)

$$
F(d) \otimes F(d') \otimes m \xrightarrow{1, \sigma_{d',m}} F(d) \otimes m \otimes F(d') \xrightarrow{\sigma_{d,m}, 1} m \otimes F(d) \otimes F(d')
$$
\n
$$
F(d \otimes d') \otimes m \xrightarrow{\sigma_{d \otimes d',m}} m \otimes F(d) \otimes F(d') \xrightarrow{1, J_{d,d'}} (A.2)
$$
\n
$$
F(d \otimes d') \otimes m \xrightarrow{\sigma_{d \otimes d',m}}
$$

$$
F(d) \otimes F(d') \xrightarrow{J_{d,d'}} F(d \otimes d')
$$

\n
$$
\downarrow^{G_{d,F(d')}} \qquad \qquad \downarrow^{F(c_{d,d'})} F(d') \otimes F(d) \xrightarrow{J_{d',d}} F(d' \otimes d)
$$
 (A.3)

commute for any $d, d' \in \mathcal{D}$ and $m, m' \in \mathcal{M}$, where *J* is the monoidal structure of *F*.

Proposition A.3. Suppose $F: \mathcal{D} \to \mathcal{M}$ is a central functor. For any $d \in \mathcal{D}$, $m \in \mathcal{M}$, the following two diagrams commute

$$
F(d) \otimes \mathbb{1}_{\mathcal{M}} \xrightarrow{\sigma_{d,\mathbb{1}_{\mathcal{M}}}} \mathbb{1}_{\mathcal{M}} \otimes F(d) \qquad F(\mathbb{1}_{\mathcal{D}}) \otimes m \xrightarrow{\sigma_{\mathbb{1}_{\mathcal{D}},m}} m \otimes F(\mathbb{1}_{\mathcal{D}})
$$
\n
$$
F(d) \qquad \qquad \downarrow_{m} \qquad \qquad \downarrow_{m} \qquad \qquad r_{m} \qquad (A.4)
$$

Here l_m : $F(\mathbb{1}_D) \otimes m = \mathbb{1}_{\mathcal{M}} \otimes m \to m$ and r_m : $m \otimes F(\mathbb{1}_D) = m \otimes \mathbb{1}_{\mathcal{M}} \to m$, $m \in \mathcal{M}$ are the unit isomorphisms of the monoidal category M.

Proof. Consider the diagram:

$$
(F(d) \otimes 1_{\mathcal{M}}) \otimes \underbrace{\mathbb{1}_{\mathcal{M}} \otimes (1_{\mathcal{M}} \otimes 1_{\mathcal{M}})}_{\sigma_{d,1_{\mathcal{M}}},1} F(d) \otimes (1_{\mathcal{M}} \otimes 1_{\mathcal{M}}) \otimes F(d) \longrightarrow F(d) \otimes 1_{\mathcal{M}} \xrightarrow{\sigma_{d,1_{\mathcal{M}}}} 1_{\mathcal{M}} \otimes F(d) \xrightarrow{\iota_{1_{\mathcal{M}} \otimes F(d)}} 1_{\mathcal{M}} \otimes (1_{\mathcal{M}} \otimes F(d))
$$
\n
$$
(1_{\mathcal{M}} \otimes F(d)) \otimes 1_{\mathcal{M}} \xrightarrow{\iota_{1_{\mathcal{M}} \otimes F(d)}} 1_{\mathcal{M}} \otimes (F(d) \otimes 1_{\mathcal{M}}) \xrightarrow{\iota_{1_{\mathcal{M}} \otimes F(d)}} 1_{\sigma_{d,1_{\mathcal{M}}}}
$$

The outward hexagon commutes by the diagram [\(A.1\)](#page-39-4). The left-upper, right-upper and middle-bottom triangles commute by the monoidal category M . The middle-up square commutes by the naturality of the central structure $\sigma_{d,m}: F(d) \otimes m \to m \otimes F(d)$, $\forall d \in \mathcal{D}, m \in \mathcal{M}$. The right-down square commutes by the naturality of the unit isomorphism $l_m : 1_\mathcal{M} \otimes m \simeq$ *m*, *m* ∈ M. Then the left-down triangle commutes. Since $-\otimes \mathbb{1}_{M} \simeq id_{M}$ is the natural isomorphism, the left triangle of [\(A.4\)](#page-39-5) commutes.

Consider the diagram:

The outward diagram commutes by the diagram [\(A.2\)](#page-39-6). The right-upper square commutes by the naturality of the central structure $\sigma_{d,m}$: $F(d) \otimes m \to m \otimes F(d)$, $d \in D, m \in \mathcal{M}$. The left square commutes by the naturality of the unit isomorphism $r_m : m \otimes \mathbb{1}_M \simeq m$, $m \in \mathcal{M}$. The left-upper and right-down triangles commute by the monoidal functor *F*. Three parallel arrows equal by the triangle diagrams of the monoidal category M. Then the bottom triangle commutes. Since $F(\mathbb{1}_D) \otimes -\mathbb{1}_M \otimes -\simeq \mathrm{id}_M$ is the natural isomorphism, the right triangle of $(A.4)$ commutes.

Let *A* be a separable algebra in a multifusion category C over \mathcal{E} . We use ${}_{A}C$ (or C_{A} , ${}_{A}C_{A}$) to denote the category of left *A*-modules (or right *A*-modules, *A*-bimodules) in C.

Proposition A.4. Let C be a multifusion category over ϵ and A a separable algebra in C. Then the diagram

$$
T_{\mathcal{C}}(e) \otimes x \otimes_A y^R \xrightarrow{c_{e,x \otimes_A y^R}} x \otimes_A y^R \otimes T_{\mathcal{C}}(e)
$$

$$
x \otimes T_{\mathcal{C}}(e) \otimes_A y^R \xrightarrow[h \to x \otimes_A T_{\mathcal{C}}(e) \otimes y^R
$$

commutes for $e \in \mathcal{E}, x, y \in \mathcal{C}_A$, where *c* is the central structure of the central functor $T_c : \mathcal{E} \to \mathcal{C}$.

Proof. The functor $y \mapsto y^R$ defines an equivalence of right C-modules $(C_A)^{op|L} \simeq {}_{A}C$. For $x \in C_A$, we use p_x to denote the right *A*-action on *x*. For $y^R \in A^C$, we use q_{y^R} to denote the left *A*-action on y^R . Obviously, $T_\mathfrak{C}(e)\otimes x$ belongs to \mathfrak{C}_A and $y^R\otimes T_\mathfrak{C}(e)$ belongs to ${}_A\mathfrak{C}.$ The right A -action on $x\otimes T_\mathfrak{C}(e)$ is induced by $x\otimes T_\mathfrak{C}(e)\otimes A \xrightarrow{1,c_{e,A}} x\otimes A\otimes T_\mathfrak{C}(e) \xrightarrow{p_{x},1} x\otimes T_\mathfrak{C}(e).$ The left A-action on $T_\mathfrak{C}(e)\otimes y^R$ is induced by $A\otimes T_\mathfrak{C}(e)\otimes y^R\stackrel{c^{-1}_{e,A}\cdot 1}{\longrightarrow} T_\mathfrak{C}(e)\otimes A\otimes y^R\stackrel{1,\mathit{q}_{y^R}}{\longrightarrow} T_\mathfrak{C}(e)\otimes y^R.$ It is routine to check that $c_{e,x}$ is a morphism in \mathcal{C}_A and c_{e,y^R} is a morphism in ${}_{A}\mathcal{C}$.

The morphism *c^e*,*x*⊗*^A ^y ^R* is induced by

$$
T_{\mathcal{C}}(e) \otimes x \otimes A \otimes y^R \xrightarrow{\mathbf{1}, p_x, \mathbf{1}} T_{\mathcal{C}}(e) \otimes x \otimes y^R \longrightarrow T_{\mathcal{C}}(e) \otimes x \otimes_A y^R
$$

\n
$$
\downarrow^{c_{e,x \otimes A \otimes y^R}} x \otimes A \otimes y^R \otimes T_{\mathcal{C}}(e) \xrightarrow{p_x, \mathbf{1}, \mathbf{1}} x \otimes y^R \otimes T_{\mathcal{C}}(e) \longrightarrow x \otimes_A y^R \otimes T_{\mathcal{C}}(e)
$$

The composition $(1_x \otimes_A c_{e,y}R}) \circ h \circ (c_{e,x} \otimes_A 1_{y}R})$ is induced by

$$
c_{\epsilon,x\otimes A\otimes y^{R}} \n\begin{cases}\nT_{e}(e) \otimes x \otimes A \otimes y^{R} \xrightarrow{\mathbf{1},p_{x},1} T_{e}(e) \otimes x \otimes y^{R} \longrightarrow T_{e}(e) \otimes x \otimes_{A} y^{R} \\
\downarrow \chi \otimes T_{e}(e) \otimes A \otimes y^{R} \xrightarrow{\mathbf{1},p_{y}R} x \otimes T_{e}(e) \otimes y^{R} \longrightarrow x \otimes T_{e}(e) \otimes_{A} y^{R} \\
\downarrow \chi \otimes A \otimes T_{e}(e) \otimes y^{R} \xrightarrow{\mathbf{1},p_{y}R} x \otimes T_{e}(e) \otimes y^{R} \longrightarrow x \otimes T_{e}(e) \otimes_{A} y^{R} \\
\downarrow \chi \otimes A \otimes T_{e}(e) \otimes y^{R} \xrightarrow{\mathbf{1},p_{y}R} x \otimes T_{e}(e) \otimes y^{R} \longrightarrow x \otimes_{A} T_{e}(e) \otimes y^{R} \\
\downarrow \downarrow \chi \otimes A \otimes y^{R} \otimes T_{e}(e) \xrightarrow{\mathbf{1},p_{x},1} x \otimes y^{R} \otimes T_{e}(e) \longrightarrow x \otimes_{A} y^{R} \otimes T_{e}(e)\n\end{cases}
$$

Since $c_{e,x\otimes y^R}=(1_x\otimes c_{e,y^R})\circ (c_{e,x}\otimes 1_{y^R})$, the composition $(1_x\otimes_A c_{e,y^R})\circ h\circ (c_{e,x}\otimes_A 1_{y^R})$ equals to $c_{e,x\otimes_A y^R}$ by the universal property of coequalizers.

Proposition A.5. Let C be a multifusion category over E and *A* a separable algebra in C. There is an equivalence $Func_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_A) \simeq ({}_{A}\mathcal{C}_A)^{rev}$ of multifusion categories over $\mathcal{E}.$

Proof. By [\[EGNO,](#page-52-11) Prop. 7.11.1], the functor $\Phi : ({}_{A}C_{A})^{rev} \to Fun_{\mathcal{C}}(C_{A}, C_{A})$ is defined as $x \mapsto$ − ⊗*A x* and the inverse of Φ is defined as *f* \mapsto *f*(*A*). The monoidal structure on Φ is defined as

$$
\Phi(x\otimes^{\mathrm{rev}}_A y)=-\otimes_A (y\otimes_A x)\simeq (-\otimes_A y)\otimes_A x=\Phi(x)\circ\Phi(y)
$$

for $x, y \in ({}_{A}\mathcal{C}_{A})^{\text{rev}}$. Recall the central structures on the functors $I: \mathcal{E} \to ({}_{A}\mathcal{C}_{A})^{\text{rev}}$ and $\hat{T}: \mathcal{E} \to$ Fun_C(C_A , C_A) in Expl. [3.9](#page-7-2) and Expl. [4.6](#page-17-2) respectively. The structure of monoidal functor over $\mathcal E$ on Φ is induced by

$$
\Phi(I(e)) = \Phi(T_{\mathcal{C}}(e) \otimes^{\text{rev}} A) = - \otimes_A (A \otimes T_{\mathcal{C}}(e)) \cong - \otimes T_{\mathcal{C}}(e) \xrightarrow{c_{\mathcal{C}}^{-1}} T_{\mathcal{C}}(e) \otimes - \cong \hat{T}^e
$$

for *e* \in *E*, where *c* is the central structure of the functor T_e : $\&$ → $\&$. Next we want to check that Φ is a monoidal functor over \mathcal{E} . Consider the diagram for $e \in \mathcal{E}$, $x \in ({}_{A}\mathcal{C}_{A})^{\text{rev}}$:

$$
\Phi(I(e) \otimes_A^{\text{rev}} x) \longrightarrow \Phi(I(e)) \circ \Phi(x) \longrightarrow \hat{T}^e \circ \Phi(x)
$$
\n
$$
\downarrow \qquad \qquad \downarrow \sigma_{(G_{e,x})}
$$
\n
$$
\Phi(x \otimes_A^{\text{rev}} I(e)) \longrightarrow \Phi(x) \circ \Phi(I(e)) \longrightarrow \Phi(x) \circ \hat{T}^e
$$

The central structure $\sigma_{e,x}$ is induced by $x\otimes_AA\otimes T_\mathfrak{C}(e)\xrightarrow{c^{-1}_{e,x\otimes_AA}} T_\mathfrak{C}(e)\otimes x\otimes_AA\cong T_\mathfrak{C}(e)\otimes A\otimes_A x\xrightarrow{c_{e,A},1}$ $A\otimes T$ _C(*e*)⊗*A* x . The central structure $\bar{\sigma}_{e,\Phi(x)}$ is induced by T _C(*e*)⊗(−⊗*A* x) ≃ (T _C(*e*)⊗−)⊗*A* x . The commutativity of the above diagram is due to the commutativity of the following diagram

$$
- \otimes_A T_{\mathcal{C}}(e) \otimes x \otimes_A A \xrightarrow{1,c_{e,x\otimes_A A}} - \otimes_A x \otimes_A A \otimes T_{\mathcal{C}}(e) \xrightarrow{c_{e,-\otimes_A x\otimes_A A}^{-1}} T_{\mathcal{C}}(e) \otimes - \otimes_A x \otimes_A A
$$

\n
$$
= \bigvee_{\forall a \in A} T_{\mathcal{C}}(e) \otimes A \otimes_A x \xrightarrow[1,c_{e,A},1]{} - \otimes_A A \otimes T_{\mathcal{C}}(e) \otimes_A x \xrightarrow[c_{e,-\otimes_A A}]{-1} T_{\mathcal{C}}(e) \otimes - \otimes_A A \otimes_A x
$$

The upper horizontal composition $c_{e,-\otimes_A x}^{-1} \circ (1 \otimes_A c_{e,x})$ is induced by

$$
c_{e,-\infty A}^{-1}1 \begin{pmatrix} -\otimes A \otimes T_{\mathcal{C}}(e) \otimes x \xrightarrow{\frac{p_{-1,1}}{1, q_{re}} -\otimes T_{\mathcal{C}}(e) \otimes x \xrightarrow{\qquad \qquad } -\otimes_{A} T_{\mathcal{C}}(e) \otimes x \\ 1,1, c_{e,x} \downarrow \xrightarrow{\qquad \qquad } 1,1, c_{e,x} \downarrow \qquad \qquad } \downarrow 1, c_{e,x} \\ -\otimes A \otimes x \otimes T_{\mathcal{C}}(e) \xrightarrow{\frac{p_{-1,1}}{1, q_{x}, 1}} -\otimes x \otimes T_{\mathcal{C}}(e) \xrightarrow{\qquad \qquad } -\otimes_{A} x \otimes T_{\mathcal{C}}(e) \\ c_{e,-\infty A}^{-1}1 \downarrow \qquad \qquad } \downarrow 1, c_{e,x} \downarrow \qquad \qquad } \downarrow 1, c_{e,x} \\ T_{\mathcal{C}}(e) \otimes -\otimes A \otimes x \xrightarrow{\frac{1, p_{-1}}{1, 1, q_{x}}} T_{\mathcal{C}}(e) \otimes -\otimes x \xrightarrow{\qquad \qquad } T_{\mathcal{C}}(e) \otimes -\otimes_{A} x \end{pmatrix}
$$

Here (-, *p*₋) and (*A*, *m*) belong to C_{*A*} and (*x*, *p_x*, *q_x*) belong to _{*A*}C_{*A*}. *q_{T_c*(*e*)⊗*x*} is defined as *A* ⊗ $T_{\mathcal{C}}(e) \otimes x \xrightarrow{c_{e,A}^{-1},1} T_{\mathcal{C}}(e) \otimes A \otimes x \xrightarrow{1,q_x} T_{\mathcal{C}}(e) \otimes x$. The lower horizontal composition $c_{e,-\otimes_A A}^{-1} \circ (1 \otimes_A c_{e,A})$ is induced by

$$
- \otimes A \otimes T_{\mathcal{C}}(e) \otimes A \xrightarrow{\mathcal{P}_{-1,1}} - \otimes T_{\mathcal{C}}(e) \otimes A \longrightarrow - \otimes_A T_{\mathcal{C}}(e) \otimes A
$$

\n
$$
c_{e,-\otimes A}^{-1} \cdot \left(\begin{array}{c} 1,1,c_{e,A} \\ \downarrow & \downarrow \\ -\otimes A \otimes A \otimes T_{\mathcal{C}}(e) \xrightarrow{\mathcal{P}_{-1,1}} - \otimes A \otimes T_{\mathcal{C}}(e) \xrightarrow{\mathcal{P}_{-1,1}} - \otimes A \otimes T_{\mathcal{C}}(e) \xrightarrow{\mathcal{C}_{e,-\otimes A}^{-1}} \mathcal{C}_{e,-\otimes A} \xrightarrow{\mathcal{C}_{e,-\otimes A}^{-1}} T_{\mathcal{C}}(e) \otimes - \otimes A \xrightarrow{\mathcal{C}_{e,-\otimes A}^{-1}} T_{\mathcal{C}}(e) \otimes - \otimes A \xrightarrow{\mathcal{C}_{e,-\otimes A}^{-1}} T_{\mathcal{C}}(e) \otimes - \otimes A \xrightarrow{\mathcal{C}_{e,-\otimes A}^{-1}} T_{\mathcal{C}}(e) \otimes \cdots \ot
$$

Since $x \otimes_A A \cong x \cong A \otimes_A x$, the compositions $c_{e, -\otimes_A x \otimes_A A}^{-1} \circ (1 \otimes_A c_{e, x \otimes_A A})$ and $(c_{e, -\otimes_A A}^{-1} \otimes_A 1_x) \circ (1 \otimes_A a)$ $c_{e,A} \otimes_A 1_x$ are equal by the universal property of cokernels.

Proposition A.6. Let C be a multifusion category over E and A , B be separable algebras in C .

- (1) There is an equivalence ${}_{A}C \boxtimes_{C} C_{B} \xrightarrow{\simeq} {}_{A}C_{B}$, $x \boxtimes_{C} y \mapsto x \otimes y$ in $BMod_{\varepsilon|\varepsilon}(Cat_{\varepsilon}^{\text{fs}})$.
- (2) There is an equivalence $\text{Fun}_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_B) \xrightarrow{\simeq} {}_{A}\mathcal{C}_B$, $f \mapsto f(A)$ in $\text{BMod}_{\mathcal{E}|\mathcal{E}}(\text{Cat}_{\mathcal{E}}^{\text{fs}})$, whose inverse is defined as $x \mapsto -\otimes_A x$.

Proof. (1) The functor $\Phi : A \times C_B \to A \times B$, $x \times c \cdot y \mapsto x \otimes y$ is an equivalence by [\[KZ,](#page-52-8) Thm. 2.2.3]. Recall the *ε*-*ε* bimodule structure on _{*A*} C *B* and *_A* C ^{*B*_{*B*} C *B* by Expl. [4.19](#page-21-0) and Expl. [4.27](#page-24-2) respectively.} The left E -module structure on Φ is defined as

$$
\Phi(e \odot (x \boxtimes e \ y)) = \Phi((T_e(e) \otimes x) \boxtimes e \ y) = (T_e(e) \otimes x) \otimes y \rightarrow T_e(e) \otimes (x \otimes y) = e \odot \Phi(x \boxtimes e \ y)
$$

for *e* ∈ $\&$, $x \boxtimes_{\mathcal{C}} y \in A^{\mathcal{C}} \boxtimes_{\mathcal{C}} \mathcal{C}_B$. The right $\&$ -module structure on Φ is defined as

$$
\Phi((x \boxtimes_{\mathcal{C}} y) \odot e) = \Phi(x \boxtimes_{\mathcal{C}} (y \otimes T_{\mathcal{C}}(e))) = x \otimes (y \otimes T_{\mathcal{C}}(e)) \rightarrow (x \otimes y) \otimes T_{\mathcal{C}}(e) = \Phi(x \boxtimes_{\mathcal{C}} y) \odot e
$$

Check that Φ satisfies the diagram [\(4.10\)](#page-19-1).

$$
\Phi((T_{\mathcal{C}}(e) \otimes x) \boxtimes_{\mathcal{C}} y) \xrightarrow{c_{e,x},1} \Phi((x \otimes T_{\mathcal{C}}(e)) \boxtimes_{\mathcal{C}} y) \xrightarrow{b_{x, T_{\mathcal{C}}(e), y}} \Phi(x \boxtimes_{\mathcal{C}} (T_{\mathcal{C}}(e) \otimes y)) \xrightarrow{1,c_{e,y}} \Phi(x \boxtimes_{\mathcal{C}} (y \otimes T_{\mathcal{C}}(e)))
$$
\n
$$
\downarrow
$$
\n
$$
T_{\mathcal{C}}(e) \otimes \Phi(x \boxtimes_{\mathcal{C}} y) \xrightarrow{c_{e,x \otimes y}} \Phi(x \boxtimes_{\mathcal{C}} (T_{\mathcal{C}}(e) \otimes y)) \xrightarrow{1,c_{e,y}} \Phi(x \boxtimes_{\mathcal{C}} (y \otimes T_{\mathcal{C}}(e)))
$$

Here *c* is the central structure of the central functor $T_c : \mathcal{E} \to \mathcal{C}$. The above diagram commutes by the diagram [\(A.1\)](#page-39-4).

(2) Since \mathfrak{C}_A and \mathfrak{C}_B belongs to BMod_{C|E}(Cat^{fs}_E), the category Fun_C(\mathfrak{C}_A , \mathfrak{C}_B) belongs to BMod $_{\mathcal{E}|\mathcal{E}}$ (Cat $_{\mathcal{E}}^{\mathrm{fs}}$). The E-E bimodule structure on Fun $_{\mathcal{C}}$ (C_A, C_B) in Expl. [4.22](#page-22-2) is defined as

$$
(e \odot f \odot \tilde{e})(-) := f(- \otimes T_{\mathcal{C}}(e)) \otimes T_{\mathcal{C}}(\tilde{e})
$$

for $e, \tilde{e} \in \mathcal{E}, f \in \text{Fun}_{\mathcal{C}}(\mathcal{C}_A, \mathcal{C}_B)$ and $-\in \mathcal{C}_A$.

The functor $\Psi : {}_{A}C_{B} \to \text{Fun}_{\mathcal{C}}(\mathcal{C}_{A}, \mathcal{C}_{B})$, $x \mapsto \Psi^{x} := -\otimes_{A}x$ is an equivalence by [\[KZ,](#page-52-8) Cor. 2.2.6]. The left E -module structure on Ψ is defined as

$$
\Psi^{e \odot x} = - \otimes_A (T_{\mathcal{C}}(e) \otimes x) \cong (- \otimes T_{\mathcal{C}}(e)) \otimes_A x = \Psi^x(- \otimes T_{\mathcal{C}}(e)) = e \odot \Psi^x
$$

The right E-module structure on Ψ*^x* is defined as

$$
\Psi^{x\odot e} = -\otimes_A (x \otimes T_{\mathcal{C}}(e)) \cong (-\otimes_A x) \otimes T_{\mathcal{C}}(e) = \Psi^x \odot e
$$

Recall the monoidal natural isomorphism $(v_e)_{\Psi^x}: e \odot \Psi^x \Rightarrow \Psi^x \odot e$ in Expl. [4.22:](#page-22-2)

$$
(e \odot \Psi^x)(-) = \Psi^x(- \otimes T_{\mathcal{C}}(e)) \xrightarrow{c_{e,-}^{-1}} \Psi^x(T_{\mathcal{C}}(e) \otimes -) \xrightarrow{s^{\Psi^x}} T_{\mathcal{C}}(e) \otimes \Psi^x(-) \xrightarrow{c_{e,\Psi^x(-)}} \Psi^x(-) \otimes T_{\mathcal{C}}(e) = (\Psi^x \odot e)(-)
$$

Check Ψ satisfies the diagram [\(4.10\)](#page-19-1).

$$
\Psi^{e\odot x} = - \otimes_A (T_{\mathcal{C}}(e) \otimes x) \longrightarrow (- \otimes T_{\mathcal{C}}(e)) \otimes_A x = \Psi^x (- \otimes T_{\mathcal{C}}(e))
$$

\n
$$
1_{\mathcal{L}_{e,x}} \downarrow \qquad T_{\mathcal{C}}(e) \otimes - \otimes_A x
$$

\n
$$
\Psi^{x\odot e} = - \otimes_A (x \otimes T_{\mathcal{C}}(e)) \longrightarrow (- \otimes_A x) \otimes T_{\mathcal{C}}(e) = \Psi^x(-) \otimes T_{\mathcal{C}}(e)
$$

The above diagram commutes by Prop. [A.4.](#page-40-0)

Lemma A.7. Let *M* and *N* be separable algebras in \mathcal{E} . The functor $\Phi : M\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{E}_N \to M\mathcal{E}_N$, *x* ⊠^E *y* 7→ *x* ⊗ *y* is an equivalence of categories. The inverse of Φ is defined as *z* 7→ Colim (*M* ⊗ M) ⊠ ϵ z \Rightarrow M ⊠ ϵ z) for any $z \in M\epsilon_N$.

Proof. The inverse of Φ is denoted by Ψ.

$$
\Psi \circ \Phi(x \boxtimes_{\varepsilon} y) = \Psi(x \otimes y) = \text{Colim} \Big(\boxtimes_{\varepsilon} (M \otimes M, x \otimes y) \implies \boxtimes_{\varepsilon} (M, x \otimes y) \Big)
$$

$$
\simeq \text{Colim} \Big(\boxtimes_{\varepsilon} (M \otimes M \otimes x, y) \implies \boxtimes_{\varepsilon} (M \otimes x, y) \Big) \simeq \boxtimes_{\varepsilon} (M \otimes_M x, y) \simeq x \boxtimes_{\varepsilon} y
$$

The first equivalence is due to the balanced $\mathcal{E}\text{-module}$ functor $\mathbb{Z}_{\mathcal{E}}$. The second equivalence holds because the functor $\mathbb{Z}_{\mathcal{E}}$ preserves colimits.

$$
\Phi \circ \Psi(z) = \Phi\big(\text{Colim}\big((M \otimes M) \boxtimes_{\mathcal{E}} z \implies M \boxtimes_{\mathcal{E}} z\big)\big) \simeq \text{Colim}\big(\Phi((M \otimes M) \boxtimes_{\mathcal{E}} z) \implies \Phi(M \boxtimes_{\mathcal{E}} z)\big)
$$

$$
\simeq \text{Colim}\big((M \otimes M) \otimes z \implies M \otimes z \big) \simeq M \otimes_M z \simeq z
$$

The first equivalence holds because Φ preserves colimits.

Lemma A.8. Let *A* be a separable algebra in \mathcal{E} . There is an equivalence $\mathcal{A}^{\mathcal{E}} \simeq \mathcal{E}_{A}$ of right E-module categories.

Proof. We define a functor $F: {}_{A}E \rightarrow E_A$, $(x,q_x: A \otimes x \rightarrow x) \mapsto (x,p_x: x \otimes A \xrightarrow{r_{x,A}} A \otimes x \xrightarrow{q_x} x)$ and a functor $G:\mathcal{E}_A\to {}_A\mathcal{E}$, $(y,p_y:y\otimes A\to y)\mapsto (y,q_y:A\otimes y\stackrel{r_{A,y}}{\longrightarrow} y\otimes A\stackrel{p_y}{\longrightarrow} y)$, where r is the braiding of \mathcal{E} . Since $r_{x,y} \circ r_{y,x} = id_{x \otimes y}$ for all $x, y \in \mathcal{E}$, then $F \circ G = id$ and $G \circ F = id$.

The right $\mathcal E$ -action on $\mathcal E_A$ is defined as $(y,p_y)\otimes e=(y\otimes e,p_{y\otimes e} : y\otimes e\otimes A \xrightarrow{1,r_{e,A}} y\otimes A\otimes e\xrightarrow{p_y,1} y\otimes e).$ We have $F((x,q_x)\otimes e)=F(x\otimes e,q_{x\otimes e}:A\otimes x\otimes e\stackrel{q_x,1}{\longrightarrow} x\otimes e)=(x\otimes e,p_{x\otimes e}:x\otimes e\otimes A\stackrel{r_{x\otimes eA}}{\longrightarrow} A\otimes x\otimes e\stackrel{q_x,1}{\longrightarrow}$ $x \otimes e$) and $F(x, q_x) \otimes e = (x, p_x) \otimes e = (x \otimes e, p_{x \otimes e} : x \otimes e \otimes A \xrightarrow{1,r_{e, A}} x \otimes A \otimes e \xrightarrow{r_{x, A}, 1} A \otimes x \otimes e \xrightarrow{q_{x, 1}} x \otimes e)$. Then the right \mathcal{E} -module structure on \overline{F} is the identity natural isomorphism $F((x, q_x) \otimes e)$ = $F(x, q_x) \otimes e$. $□$

Lemma A.9. Let C and M be pivotal fusion categories and M a left C -module in Cat^{fs}. There are isomorphisms $[x, y]_c^R \cong [y, x]_c \cong [x, y]_c^L$ for $x, y \in M$.

Proof. Since M is a pivotal fusion category, there is a one-to-one correspondence between traces on M and natural isomorphisms

$$
\eta_{x,y}^{\mathcal{M}}:\mathrm{Hom}_{\mathcal{M}}(x,y)\to \mathrm{Hom}_{\mathcal{M}}(y,x)^*
$$

for *x*, *y* ∈ M by [\[S,](#page-52-16) Prop. 4.1]. Here both $Hom_{\mathcal{M}}(-, -)$ and $Hom(-, -)^*$ are functors from $\mathcal{M}^{op} \times \mathcal{M} \rightarrow \mathcal{V}$ ec. For $c \in \mathcal{C}$, we have composed natural isomorphisms

$$
\begin{aligned} \text{Hom}_{\mathcal{C}}(c,[x,y]_{\mathcal{C}}) &\simeq \text{Hom}_{\mathcal{M}}(c\odot x,y) \xrightarrow{\eta^{\mathcal{M}}} \text{Hom}_{\mathcal{M}}(y,c\odot x)^{*} \simeq \text{Hom}_{\mathcal{M}}(c^{L}\odot y,x)^{*} \\ &\simeq \text{Hom}_{\mathcal{C}}(c^{L},[y,x]_{\mathcal{C}})^{*} \simeq \text{Hom}_{\mathcal{C}}([y,x]_{\mathcal{C}}^{R},c)^{*} \xrightarrow{(\eta^{\mathcal{C}})^{-1}} \text{Hom}_{\mathcal{C}}(c,[y,x]_{\mathcal{C}}^{R}), \end{aligned}
$$

$$
\begin{aligned} \text{Hom}_{\mathcal{C}}(c, [x, y]_{\mathcal{C}}) &\simeq \text{Hom}_{\mathcal{M}}(c \odot x, y) \simeq \text{Hom}_{\mathcal{M}}(x, c^R \odot y) \xrightarrow{\eta^{\mathcal{M}}} \text{Hom}_{\mathcal{M}}(c^R \odot y, x)^*\\ &\simeq \text{Hom}_{\mathcal{C}}(c^R, [y, x]_{\mathcal{C}})^* \xrightarrow{(\eta^{\mathcal{C}})^{-1}} \text{Hom}_{\mathcal{C}}([y, x]_{\mathcal{C}}, c^R) \simeq \text{Hom}_{\mathcal{C}}(c, [y, x]_{\mathcal{C}}^L) \end{aligned}
$$

. The contract of the contract

By Yoneda lemma, we obtain $[x, y]_e^R \cong [y, x]_e \cong [x, y]_e^L$

A.2 The monoidal 2-category $\mathsf{Cat}^{\mathsf{fs}}_{\mathcal{E}}$

For objects M, N in a 2-category B, the hom category $B(M, N)$ denotes the category of 1morphisms from M to N in B and 2-morphisms in B. For 1-morphisms $f, g \in B(M, N)$, the set B(M, N)(*f*, *g*) denotes the set of all 2-morphisms in B with domain *f* and codomain *g*.

 $\bf{Definition A.10.}$ The product 2-category $\mathsf{Cat}^{\rm fs}_\mathcal{E} \times \mathsf{Cat}^{\rm fs}_\mathcal{E}$ is the 2-category defined by the following data:

- The objects are pairs (A, B) for $A, B \in \mathrm{Cat}^{\mathrm{fs}}_{\varepsilon}$.
- For objects (A, B) , $(C, D) \in \text{Cat}_{\mathcal{E}}^{\text{fs}} \times \text{Cat}_{\mathcal{E}}^{\text{fs}}$, a 1-morphism from (A, B) to (C, D) is a pair (f, g) where $f : \mathcal{A} \to \mathcal{C}$ and $g : \mathcal{B} \to \mathcal{D}$ are 1-morphisms in Cat^{fs}.
- The identity 1-morphism of an object (A, B) is $1_{(A,B)} := (1_A, 1_B)$.
- For 1-morphisms (f, g) , $(p, q) \in (Cat_{\varepsilon}^{fs} \times Cat_{\varepsilon}^{fs})((A, B), (\mathcal{C}, \mathcal{D}))$, a 2-morphism from (f, g) to (p, q) is a pair (α, β) where $\alpha : f \Rightarrow p$ and $\beta : g \Rightarrow q$ are 2-morphisms in Cat^{fs}.
- For 1-morphisms (f, g) , (p, q) , $(m, n) \in (Cat_{\mathcal{E}}^{fs} \times Cat_{\mathcal{E}}^{fs})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))$, and 2-morphisms $(\alpha, \beta) \in (Cat_{\varepsilon}^{\text{fs}} \times Cat_{\varepsilon}^{\text{fs}})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))((f, g), (p, q)),$ and $(\gamma, \delta) \in (Cat_{\varepsilon}^{\text{fs}} \times Cat_{\varepsilon}^{\text{fs}})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))((p, q), (m, n)),$ the vertical composition is $(\gamma, \delta) \circ (\alpha, \beta) := (\gamma \circ \alpha, \delta \circ \beta)$.
- For 1-morphisms $(f, g) \in (Cat_{\varepsilon}^{fs} \times Cat_{\varepsilon}^{fs})((A, B), (\mathcal{C}, \mathcal{D})), (p, q) \in (Cat_{\varepsilon}^{fs} \times Cat_{\varepsilon}^{fs})((\mathcal{C}, \mathcal{D}), (\mathcal{M}, \mathcal{N})),$ the horizontal composition of 1-morphisms is $(p, q) \circ (f, g) := (p \circ f, q \circ g)$.
- For 1-morphisms (f, g) , $(f', g') \in (Cat_{\mathcal{E}}^{fs} \times Cat_{\mathcal{E}}^{fs})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))$, and (p, q) , $(p', q') \in (Cat_{\mathcal{E}}^{fs} \times$ $Cat_{\mathcal{E}}^{fs}((\mathcal{C}, \mathcal{D}), (\mathcal{M}, \mathcal{N}))$, and 2-morphisms $(\alpha, \beta) \in (Cat_{\mathcal{E}}^{fs} \times Cat_{\mathcal{E}}^{fs})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))((f, g), (f', g'))$, and $(y, \delta) \in (Cat_{\mathcal{E}}^{\text{fs}} \times Cat_{\mathcal{E}}^{\text{fs}})((\mathcal{C}, \mathcal{D}), (\mathcal{M}, \mathcal{N}))((p, q), (p', q'))$, the horizontal composition of 2morphisms is $(\gamma, \delta) * (\alpha, \beta) := (\gamma * \alpha, \delta * \beta).$

It is routine to check that the above data satisfy the axioms (i) - (vi) of $[JY, Prop. 2.3.4]$.

Next, we define a pseudo-functor $\boxtimes_\mathcal E$: Cat $_{\mathcal E}^{\rm fs} \times$ Cat $_{\mathcal E}^{\rm fs} \to$ Cat $_{\mathcal E}^{\rm fs}$ as follows.

- For each object $(A, B) \in \text{Cat}_{\mathcal{E}}^{\text{fs}} \times \text{Cat}_{\mathcal{E}}^{\text{fs}}$, an object $A \boxtimes_{\mathcal{E}} B$ in Cat $_{\mathcal{E}}^{\text{fs}}$ exists (unique up to equivalence).
- For a 1-morphism $(f, g) \in (Cat_{\varepsilon}^{fs} \times Cat_{\varepsilon}^{fs})((\mathcal{A}, \mathcal{B}), (\mathcal{C}, \mathcal{D}))$, a 1-morphism $f \boxtimes_{\varepsilon} g : \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \to$ C \boxtimes _ε D in Cat^{fs} is induced by the universal property of the tensor product \boxtimes _ε:

$$
\mathcal{A} \times \mathcal{B} \xrightarrow{B_{\varepsilon}} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$
\n
$$
\begin{array}{c}\nf_{\mathcal{S}} \\
f_{\mathcal{S}}\n\end{array}\n\qquad\n\begin{array}{c}\n\downarrow \\
\downarrow \\
f_{\mathcal{S}}\n\end{array}\n\qquad\n\begin{array}{c}\n\downarrow \\
\downarrow \\
\downarrow \\
\downarrow\n\end{array}
$$

Notice that for all *x* ∈ *A*, *e* ∈ *E*, *y* ∈ *B*, the balanced *E*-module structure on the functor \boxtimes _{*ξ*} \circ (*f* × *g*) is induced by

$$
f(x \odot e) \boxtimes_{\mathcal{E}} g(y) \xrightarrow{(s_f^r)^{-1} \boxtimes_{\mathcal{E}} 1} (f(x) \odot e) \boxtimes_{\mathcal{E}} g(y) \xrightarrow{b_{f(x),e,g(y)}^{\mathcal{E} \oplus} f(x) \boxtimes_{\mathcal{E}} (e \odot g(y)) \xrightarrow{1 \boxtimes_{\mathcal{E}} s_g^l} f(x) \boxtimes_{\mathcal{E}} g(e \odot y)
$$

where $(g, s_g^l) : \mathcal{B} \to \mathcal{D}$ is the left $\mathcal{E}\text{-module functor}, (f, s_f^r) : \mathcal{A} \to \mathcal{C}$ is the right $\mathcal{E}\text{-module}$ functor, and the natural isomorphism b^{CD} is the balanced ϵ -module structure on the functor $\boxtimes_{\varepsilon}: \mathcal{C} \times \mathcal{D} \to \mathcal{C} \boxtimes_{\varepsilon} \mathcal{D}$.

For a 2-morphism (α, β) : (f, g) ⇒ (p, q) in (Cat^{fs} × Cat^{fs})((A, B),(C, D)), a 2-morphism α ⊠ε β : f ⊠ε g \Rightarrow p ⊠ε q in Cat $_{{\cal E}}^{\rm fs}$ is defined by the universal property of ⊠ε:

$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\mathbb{R}_{\varepsilon}} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{f_{\mathcal{E}} f \boxtimes_{\varepsilon} g} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\mathcal{B}_{\varepsilon}} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\mathcal{B}_{\varepsilon}} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\mathcal{B}_{\varepsilon}} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\mathcal{B}_{\varepsilon}} \mathcal{C} \boxtimes_{\varepsilon} \mathcal{D} \xrightarrow{\mathcal{B}_{\varepsilon}} \mathcal{C} \boxtimes_{\varepsilon} \mathcal{D}
$$

It is routine to check that $\boxtimes_\mathcal{E}:(\textnormal{Cat}_\mathcal{E}^{\textnormal{fs}}\times\textnormal{Cat}_\mathcal{E}^{\textnormal{fs}})((\mathcal{A},\mathcal{B}),(\mathcal{C},\mathcal{D}))\rightarrow \textnormal{Cat}_\mathcal{E}^{\textnormal{fs}}(\mathcal{A}\boxtimes_\mathcal{E}\mathcal{B},\mathcal{C}\boxtimes_\mathcal{E}\mathcal{D})$ is a local functor. That is, for 2-morphisms $(\alpha, \beta) : (f, g) \Rightarrow (p, q)$ and $(\delta, \tau) : (p, q) \Rightarrow (m, n)$ in (Cat $^{fs}_\mathcal{E}$ × Cat $^{fs}_\mathcal{E}$)((A, B), (C, D)), The equations (δ ∘ α) ⊠ $_\mathcal{E}$ (τ ∘ β) = (δ ⊠ $_\mathcal{E}$ τ) ∘ (α ⊠ $_\mathcal{E}$ β) and 1_f ⊠ E 1_g = 1_{f ⊠ E g hold.

• For all 1-morphisms $f \boxtimes_{\mathcal{E}} g : \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B} \to \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$, $p \boxtimes_{\mathcal{E}} q : \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D} \to \mathcal{M} \boxtimes_{\mathcal{E}} \mathcal{N}$ in Cat^{fs}, the lax functoriality constraint $(p \boxtimes_{\mathcal{E}} q) \circ (f \boxtimes_{\mathcal{E}} g) \simeq f/g$ $(p \circ f) \boxtimes_{\mathcal{E}} (q \circ g)$ is defined by the universal property of $\boxtimes_{\mathcal{E}}$:

where the identity 2-morphism is always abbreviated.

• For 1-morphisms $1_A \boxtimes_{\mathcal{E}} 1_B : A \boxtimes_{\mathcal{E}} B \to A \boxtimes_{\mathcal{E}} B$ in Cat^{fs}, the lax unity constraint 1_A ⊠_ε 1_B \simeq ^{*tAB*} $1_{A\boxtimes$ _ε B is defined by the universal property of ⊠_ε:

$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$
\n
$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$
\n
$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$
\n
$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$
\n
$$
\mathcal{A} \times \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B} \xrightarrow{\boxtimes \varepsilon} \mathcal{A} \boxtimes_{\varepsilon} \mathcal{B}
$$

where we choose the identity 2-morphism id : $\mathbb{Z}_{\mathcal{E}} \circ 1_{A \times B} \Rightarrow 1_{A \mathbb{Z}_{\mathcal{E}}} \circ \mathbb{Z}_{\mathcal{E}}$ for convenience.

It is routine to check that the above data satisfy the lax associativity, the lax left and right unity of [\[JY,](#page-52-9) (4.1.3),(4.1.4)].

Remark A.11. The left (or right) ϵ -module structure on $A \boxtimes_{\epsilon} B$ is induced by

$$
\mathcal{E} \times \mathcal{A} \times \mathcal{B} \xrightarrow{1, \mathbb{R}_{\mathcal{E}}} \mathcal{E} \times \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B} \qquad \mathcal{A} \times \mathcal{B} \times \mathcal{E} \xrightarrow{R_{\mathcal{E},1}} \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B} \times \mathcal{E}
$$

\n
$$
\circ, 1 \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

The n-fold product 2-category $\text{Cat}_{\varepsilon}^{\text{fs}} \times \cdots \times \text{Cat}_{\varepsilon}^{\text{fs}}$ is written as $(\text{Cat}_{\varepsilon}^{\text{fs}})^n$ such that $\text{Cat}_{\varepsilon}^{\text{fs}}$ has a set of objects. The 2-category $\text{Cat}_{\varepsilon}^{\text{fs}}$ ($\text{Cat}_{\varepsilon}^{\text{fs}}$)^{*n*}, $\$ Cat $_{{\cal E}}^{{\rm fs}}$ as objects, strong transformations between such pseudofunctors as 1-morphisms, and modifications between such strong transformations as 2-morphisms.

Lemma A.12. We claim that Cat $_{\varepsilon}^{\text{fs}}$ is a monoidal 2-category.

Proof. A monoidal 2-category Cat $_{\varepsilon}^{\text{fs}}$ consists of the following data.

i The 2-category Cat $^{\rm fs}_\epsilon$ is equipped with the pseudo-functor $\boxtimes_\mathcal E$: Cat $^{\rm fs}_\epsilon \times$ Cat $^{\rm fs}_\epsilon \to$ Cat $^{\rm fs}_\epsilon$ and the tensor unit E.

ii The associator is a strong transformation $\alpha : \mathbb{Z}_{\varepsilon} \circ (\mathbb{Z}_{\varepsilon} \times id) \Rightarrow \mathbb{Z}_{\varepsilon} \circ (id \times \mathbb{Z}_{\varepsilon})$ in the 2-cateogry Cat^{ps}((Cat^{fs})³,Cat^{fs}). For each (A, B, C) \in (Cat^{fs})³, α contains an invertible 1-morphism $\alpha_{A,B,C}$: $(\overline{A} \boxtimes_{\mathcal{E}} B) \boxtimes_{\mathcal{E}} C \rightarrow A \boxtimes_{\mathcal{E}} (B \boxtimes_{\mathcal{E}} C)$ induced by

$$
\mathcal{A} \times \mathcal{B} \times \mathcal{C} \xrightarrow{\boxtimes_{\mathcal{E}} \circ (\boxtimes_{\mathcal{E}} \times \text{id})} (\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}) \boxtimes_{\mathcal{E}} \mathcal{C} \xrightarrow{d_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}} d_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}}}
$$
\n
$$
\xrightarrow{\text{d}_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}} d_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}} d_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}}}
$$
\n
$$
\xrightarrow{\text{d}_{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{C}} d_{\mathcal{B} \cdot \mathcal{B} \cdot \mathcal{C}} d_{\mathcal{B} \cdot \mathcal{B} \cdot \mathcal{C}}}
$$

For each 1-morphism $(f_1, f_2, f_3) : (\mathcal{A}, \mathcal{B}, \mathcal{C}) \to (\mathcal{A}', \mathcal{B}', \mathcal{C}')$ in $(Cat_{\mathcal{E}}^{\mathsf{fs}})^3$, α contains an invertible 2 -morphism α_{f_1,f_2,f_3} : $(f_1 \boxtimes_{\mathcal{E}} (f_2 \boxtimes_{\mathcal{E}} f_3)) \circ \alpha_{\mathcal{A},\mathcal{B},\mathcal{C}} \Rightarrow \alpha_{\mathcal{A}',\mathcal{B}',\mathcal{C}'} \circ ((f_1 \boxtimes_{\mathcal{E}} f_2) \boxtimes_{\mathcal{E}} f_3)$ induced by

$$
A \times B \times C \xrightarrow{\boxtimes_{\varepsilon} 1} (A \boxtimes_{\varepsilon} B) \times C \xrightarrow{\boxtimes_{\varepsilon}} (A \boxtimes_{\varepsilon} B) \boxtimes_{\varepsilon} C
$$
\n
$$
f_{1}, f_{2}, f_{3}
$$
\n
$$
A \times (B \boxtimes_{\varepsilon} C) \xrightarrow{\boxtimes_{\varepsilon}} A \boxtimes_{\varepsilon} (B \boxtimes_{\varepsilon} C)^{\boxtimes_{\varepsilon}} f_{3}
$$
\n
$$
f_{1}, f_{2}, f_{2}
$$
\n
$$
f_{2} \boxtimes_{\varepsilon} f_{3}
$$
\n
$$
f_{1} \boxtimes_{\varepsilon} (B \boxtimes_{\varepsilon} C) \xrightarrow{\boxtimes_{\varepsilon}} A' \boxtimes_{\varepsilon} (B' \boxtimes_{\varepsilon} C')
$$
\n
$$
f_{2} \boxtimes_{\varepsilon} (B' \boxtimes_{\varepsilon} C')
$$

$$
A \times B \times C \xrightarrow{\boxtimes_{\varepsilon} 1} (A \boxtimes_{\varepsilon} B) \times C \xrightarrow{\boxtimes_{\varepsilon}} (A \boxtimes_{\varepsilon} B) \boxtimes_{\varepsilon} C
$$
\n
$$
f_{1}, f_{2}, f_{3} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{1}, f_{2}, f_{3}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{2}, f_{3}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{3}, f_{4}, f_{5}, f_{6}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{4}, f_{5}, f_{6}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{5}, f_{6}, f_{7}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{5}, f_{6}, f_{7}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{5}, f_{6}, f_{7}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{5}, f_{6}, f_{7}, f_{8}, f_{8}, f_{9}} \xrightarrow{\qquad \qquad t_{f_{1}, f_{2}, f_{3}}}_{f_{6}, f_{7}, f_{8}, f_{9}, f_{9}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{10}, f_{11}, f_{12}, f_{13},
$$

 \parallel

iii The left unitor and right unitor are strong transformations $l : E \boxtimes_E - \Rightarrow -$ and $r : -\boxtimes_E E \Rightarrow$ in Cat^{ps}(Cat^{fs}, Cat^{fs}). For each $A \in \text{Cat}^{\text{fs}}_{\varepsilon}$, l and r contain invertible 1-morphisms l_A : $\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{A} \rightarrow \mathcal{A}$ and $r_{\mathcal{A}} : \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{E} \rightarrow \mathcal{A}$ respectively.

For each 1-morphism $f : A \to B$ in Cat^{fs}, l and r contain invertible 2-morphisms β_f^l : *f* ∘ *l*_A \Rightarrow *l*_B ∘ (1_E ⊠_E *f*) and β_f^r : *f* ∘ *r*_A \Rightarrow *r*_B ∘ (*f* ⊠_E 1_E) respectively.

where $(f, s_f^l) : A \to B$ is a left $\mathcal{E}\text{-module functor and } (f, s_f^r) : A \to B$ is a right $\mathcal{E}\text{-module}$ functor.

iv The pentagonator is a modification π in Cat^{ps} ((Cat^{fs})⁴, Cat^{fs}). For each A, B, C, D \in Cat^{fs}, π consists of an invertible 2-morphism $\pi_{A,B,C,D}$: $(1_A \boxtimes_{\mathcal{E}} \alpha_{B,C,D}) \circ \alpha_{A,B\boxtimes_{\mathcal{E}} C,D} \circ (\alpha_{A,B,C} \boxtimes_{\mathcal{E}} \alpha_{B,C,D})$ 1_D) $\Rightarrow \alpha_{A,B,C\boxtimes_{\varepsilon}D} \circ \alpha_{A\boxtimes_{\varepsilon}B,C,D}$ induced by (where, for example, $A \boxtimes_{\varepsilon} B$ is abbreviated to AB):

v The middle 2-unitor μ is a modification in Cat^{ps}((Cat^{fs})², Cat^{fs}). For each (B, A) \in (Cat^{fs})², μ consists of an invertible 2-morphism $\mu_{\mathcal{B},\mathcal{A}} : (1_\mathcal{B} \boxtimes_\mathcal{E} l_\mathcal{A}) \circ \alpha_{\mathcal{B},\mathcal{E},\mathcal{A}} \Rightarrow 1_{\mathcal{B} \boxtimes_\mathcal{E} \mathcal{A}} \circ (r_\mathcal{B} \boxtimes_\mathcal{E} 1_\mathcal{A})$ induced by

where $b^{\mathcal{BA}}$ is the balanced $\mathcal{E}\text{-module}$ structure on the functor $\mathbf{\boxtimes}_{\mathcal{E}}:\mathcal{B}\times\mathcal{A}\to\mathcal{B}$ $\mathbf{\boxtimes}_{\mathcal{E}}\mathcal{A}$.

vi The left 2-unitor λ is a modification in Cat^{ps}((Cat^{fs})², Cat^{fs}). For each (B, A) \in (Cat^{fs})², λ consists of an invertible 2-morphism λ_{BA} : $l_{B\boxtimes_{\mathcal{E}}}\overline{A} \circ \alpha_{\mathcal{E},B,A} \Rightarrow l_B \boxtimes_{\mathcal{E}} 1_A$ induced by

vii The right 2-unitor ρ is a modification in Cat^{ps}((Cat^{fs})², Cat^{fs}). For each (B, A) in (Cat^{fs})², ρ consists of an invertible 2-morphism $\rho_{\mathcal{B},\mathcal{A}}$: (1_B $\boxtimes_{\mathcal{E}} r_{\mathcal{A}}$) $\circ \alpha_{\mathcal{B},\mathcal{A},\mathcal{E}} \Rightarrow r_{\mathcal{B} \boxtimes_{\mathcal{E}} \mathcal{A}}$ induced by

It is routine to check that α , *l*, r satisfy the lax unity and the lax naturality of [\[JY,](#page-52-9) Def. 4.2.1], and π , μ , λ , ρ satisfy the modification axiom of [\[JY,](#page-52-9) Def. 4.4.1]. It is routine to check that the above data satisfy the non-abelian 4-cocycle condition, the left normalization and the right normalization of [\[JY,](#page-52-9) (11.2.14), (11.2.16), (11.2.17)].

A.3 The symmetric monoidal 2-category $\text{Cat}^{\text{fs}}_{\mathcal{E}}$

Let $(Cat_{\mathcal{E}}^{\text{fs}}, \boxtimes_{\mathcal{E}}, \mathcal{E}, \alpha, l, r, \pi, \mu, \lambda, \rho)$ be the monoidal 2-category. For objects $\mathcal{A}, \mathcal{B} \in Cat_{\mathcal{E}}^{\text{fs}}$, the braiding τ consists of an invertible 1-morphism $\tau_{A,B}$: $\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B} \to \mathcal{B} \boxtimes_{\mathcal{E}} \mathcal{A}$ defined as

A × B [⊠]^E / *s*A,^B ✡✡ ✡✡ *d* ^τ AI A,B A ⊠^E B ∃!τAB B × A [⊠]^E /B ⊠^E A

where *s* switches the two objects. For objects A, B, C ∈ Cat^{fs}, the left hexagonator R_{−|−−} and the right hexagonator *R*−−|− consist of invertible 2-morphisms *R*^A|B,^C and *R*^A,B|^C respectively.

$$
A \times B \times C \xrightarrow{\mathbb{E}_{\varepsilon,1}} A \boxtimes_{\varepsilon} B \times C \xrightarrow{\mathbb{E}_{\varepsilon}} (A \boxtimes_{\varepsilon} B) \boxtimes_{\varepsilon} C
$$
\n
$$
{}_{\mathcal{A},\mathcal{B},\mathcal{C}} \uparrow \qquad {}_{\mathcal{A},\mathcal{B},\mathcal{C}} \downarrow \q
$$

$$
\mathcal{A} \times \mathcal{B} \times \mathcal{C} \xrightarrow{\boxtimes_{\mathcal{E},1}} \mathcal{A} \otimes_{\mathcal{E}} \mathcal{B} \times \mathcal{C} \xrightarrow{\boxtimes_{\mathcal{E}}} (\mathcal{A} \otimes_{\mathcal{E}} \mathcal{B}) \otimes_{\mathcal{E}} \mathcal{C}
$$
\n
$$
\mathcal{B} \times \mathcal{A} \times \mathcal{C} \xrightarrow{\boxtimes_{\mathcal{E},1}} \mathcal{B} \otimes_{\mathcal{E}} \mathcal{A} \times \mathcal{C} \xrightarrow{\boxtimes_{\mathcal{E},1}} \mathcal{C} \xrightarrow{\text{H}_{\mathcal{A},\mathcal{B},1}} \mathcal{C} \mathcal{A} \times \mathcal{C} \xrightarrow{\text{H}_{\mathcal{E},1}} \mathcal{C} \mathcal{A} \times \mathcal{C} \xrightarrow{\text{H}_{\mathcal{E},2}} (\mathcal{B} \otimes_{\mathcal{E}} \mathcal{A}) \otimes_{\mathcal{E}} \mathcal{C}
$$
\n
$$
\mathcal{B} \times \mathcal{A} \times \mathcal{C} \xrightarrow{\text{H}_{\mathcal{B},\mathcal{A},\mathcal{C}}} \mathcal{C} \xrightarrow{\text{H}_{\mathcal{B},\mathcal{A},\
$$

$$
A \times B \times C \xrightarrow{1, \mathbb{B}_{\mathcal{E}}} A \times B \boxtimes_{\mathcal{E}} C \xrightarrow{d_{\mathcal{A}, \mathcal{B}, \mathcal{C}}^{a-1}} A \boxtimes_{\mathcal{E}} (B \boxtimes_{\mathcal{E}} C)
$$
\n
$$
= \n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}, \mathcal{C}} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}, \mathcal{C}} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}, \mathcal{C}}^{a-1} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}, \mathcal{C}}^{a} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}, \mathcal{C}}^{a} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{B}, \mathcal{C}}^{a} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{B}}^{a} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}\n\mathcal{A}_{\mathcal{A}, \mathcal{C}, \mathcal{B}}^{a} \\
\downarrow\n\end{array}
$$
\n
$$
\mathcal{C}_{\mathcal{A}, \mathcal{A}}^{a-1} \\
\downarrow\n\end{array}\n\qquad\n\begin{array}{c}
$$

$$
\mathcal{A} \times \mathcal{B} \times \mathcal{C} \xrightarrow{\mathbf{1}, \mathcal{B}_{\mathcal{E}}}_{\mathcal{A} \times \mathcal{B}, \mathcal{C}} \mathcal{A} \times \mathcal{B} \boxtimes_{\mathcal{E}} \mathcal{C} \xrightarrow{\mathbf{B}_{\mathcal{E}}} \mathcal{A} \boxtimes_{\mathcal{E}} (\mathcal{B} \boxtimes_{\mathcal{E}} \mathcal{C})
$$
\n
$$
\mathcal{A} \times \mathcal{C} \times \mathcal{B} \xrightarrow{\mathbf{1}, \mathcal{B}_{\mathcal{E}}}_{\mathcal{B}, \mathcal{C}} \mathcal{A} \times \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}}} \mathcal{A} \times \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}}} \mathcal{A} \boxtimes_{\mathcal{E}} (\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{B})
$$
\n
$$
\mathcal{B}_{\mathcal{A}, \mathcal{C}, \mathbf{1}} \downarrow_{\mathcal{A}, \mathcal{C}, \mathbf{2}} \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}, \mathbf{1}}} \mathcal{A} \times \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}}} \mathcal{A} \boxtimes_{\mathcal{E}} (\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{B})
$$
\n
$$
\mathcal{C} \times \mathcal{A} \times \mathcal{B} \xrightarrow{\mathbf{A}_{\mathcal{A}, \mathcal{C}, \mathbf{1}}^{\mathcal{B}_{\mathcal{A}, \mathcal{C}}}_{\mathcal{B}, \mathcal{A}, \mathcal{C}} \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{C} \times \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}}} (\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{C}) \boxtimes_{\mathcal{E}} \mathcal{B}
$$
\n
$$
\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{A} \times \mathcal{B} \xrightarrow{\mathbf{B}_{\mathcal{E}}}_{\mathcal{A}, \mathcal{C}, \mathbf{1}} \downarrow_{
$$

For objects A , B \in Cat $_{{\cal E}}^{{\frak l}_s}$, the syllepsis ν consists of an invertible 2-morphism $\nu_{\cal A,B}$ defined as

where we choose the identity 2-morphism id : $\boxtimes_{\varepsilon} \circ 1_{A \times B} \Rightarrow 1_{A \boxtimes_{\varepsilon} B} \circ \boxtimes_{\varepsilon}$ for convenience. It is routine to check that (Cat^{fs}, τ, *R*−_{|−−}, *R*−−|−, ν) is a symmetric monoidal 2-category [\[JY,](#page-52-9) Def. 12.1.6, 12.1.15, 12.1.19].

References

- [AF1] David Ayala, John Francis. Factorization homology of topological manifolds. Journal of Topology, 2015, 8(4):1045-1084.
- [AF2] David Ayala, John Francis. A factorization homology primer. In: Handbook of Homotopy theory. Chapman and Hall/CRC, 2020, 39-101.
- [AFT1] David Ayala, John Francis, Hiro Lee Tanaka. Local structures on stratified spaces. Advances in Mathematics, 2017, 307:903-1028.
- [AFT2] David Ayala, John Francis, Hiro Lee Tanaka. Factorization homology of stratified spaces. Selecta Mathematica, 2016, 23(1):293-362.
- [AFR] David Ayala, John Francis, Nick Rozenblyum. Factorization homology i: Higher categories. Advances in Mathematics, 2018, 333:1024-1177.
- [AKZ] Yinghua Ai, Liang Kong, Hao Zheng. Topological orders and factorization homology. Advances in Theoretical and Mathematical Physics, 2017, 21(8):1854-1894.
- [BBJ1] David Ben-Zvi, Adrien Brochier, David Jordan. Integrating Quantum groups over surfaces. Journal of Topology, 2018, 11(4):874-917.
- [BBJ2] David Ben-Zvi, Adrien Brochier, David Jordan. Quantum character varieties and braided module categories. Selecta Mathematica, 2018, 24(5):4711-4748.
- [BD] Alexander Beilinson, Vladimir Drinfeld. Chiral algebras. American Mathematical Society, Providence, R.I, 2004.
- [CG] Kevin Costello, Owen Gwilliam. Factorization algebras in perturbative quantum field theory. Cambridge University Press, 2016.
- [DGNO] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik. On braided fusion categoires I. Selecta Mathematica, 2010, 16(1):1-119.
- [DMNO] Alexei Davydov, Michael Müger, Dmitri Nikshych, Victor Ostrik. The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik (Grelles Journal), 2013, 677:135-177.
- [DNO] Alexei Davydov, Dmitri Nikshych, Victor Ostrik. On the structure of the Witt group of braided fusion categories. Selecta Mathematica, 2012, 19(1):237-269.
- [EGNO] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik. Tensor categories. American Mathematical Society, 2015.
- [ENO] Pavel Etingof, Dmitri Nikshych, Victor Ostrik. Fusion categories and homotopy theory. Quantum Topology, 2010, 1(3):209-273.
- [F] John Francis. The tangent complex and Hochschild cohomology of *En*-rings. Compositio Mathematica, 2013, 149:430-480.
- [FG] John Francis, Dennis Gaitsgory. Chiral koszul duality. Selecta Mathematica, 2012, 18:27-87.
- [JY] Niles Johnson, Donald Yau. 2-Dimensional Categories. Oxford University Press, 2021.
- [KZ] Liang Kong, Hao Zheng. The center functor is fully faithful. Advanced in Mathematics, 2018, 339:749-779.
- [L] Jacob Lurie. On the classification of topological field theories. Current Developments in Mathematics, 2008, (1):129-280.
- [LKW] Tian Lan, Liang Kong, Xiao-Gang Wen. Modular extensions of unitary braided fusion categories and 2+1D topological/SPT orders with symmetries. Communications in Mathematical Physics, 2016, 351(2):709-739.
- [GHR] César Galindo, Seung-Moon Hong, Eric C.Rowell. Generalized and quasilocalizations of braid group representations. International Mathematics Research Notices, 2013, (3):693-731.
- [Su] Long Sun. The symmetric enriched center functor is fully faithful. Communications in Mathematical Physics, 2022, 395:1345-1382.
- [S] Gregor Schaumann. Traces on module categories over fusion categories. ScienceDirect, 2013, 379:382-425.
- [W] Xiao-Gang Wen. Choreographed entanglement dances: Topological states of quantum matter. Science, 2019, 363(6429).