arXiv:2206.00530v1 [math.NT] 1 Jun 2022

HECKE’S THEOREM ON THE DIFFERENT FOR 3-MANIFOLDS

WILL SAWIN AND MARK SHUSTERMAN

ABSTRACT. Hecke has shown that the different of an extension of number fields is a square in the class
group. We prove an analog for branched covers of closed 3-manifolds saying that the branch divisor is
a square in the first homology group.

1. INTRODUCTION

Let E/F be an extension of number fields, let O be the ring of integers of E, and let C1(Og) be the
class group of Op. One associates to the extension E/F the different Dg/p, an ideal in O, see [Ser79,
Chapter 3]. Hecke has shown that as an element of Cl(Op), the different Dg /F 18 a square, namely
there exists an ideal class J € C1(Og) such that J% = Dy s/ in Cl(Og). Hecke’s proof uses a reciprocity
formula for Gauss sums, see [Arm67] and [Fro78] for a proof and a discussion of related results.

An analog of Hecke’s theorem for finite separable extensions of fields of fractions of Dedekind domains
fails in general, see [FST62]. However, there exists an analog in case E//F is a finite separable extension
of function fields of curves over finite fields of odd characteristic, see [Arm67]. Another geometric analog
of Hecke’s theorem, based on similarities between the inverse of the different and the canonical bundle
on a curve, is the theory of theta characteristics.

In this work we consider an analog of Hecke’s theorem for 3-manifolds, as suggested by arithmetic
topology. We refer to [Mor12] for the analogy between rings of integers and primes on the one hand,
and 3-manifolds and knots on the other hand. The analog of Spec(OF) is a closed (not necessarily
oriented) 3-manifold M. The map Spec(Og) — Spec(OF) is replaced by a cover m: M — M branched
over a link L € M, so M is a closed 3-manifold and 7~!(M \ L) is a covering space of M \ L. The
inverse image of L under 7 is a link L in M.

For a prime ideal p of O we denote by e, its ramification index, namely the largest positive integer e
for which p¢ contains p N Op. We view Spec(Op) — Spec(OF) as branched over the primes of Op that
ramify, so L is our analog for R /p = {p € Spec(Og) : e, > 1}. The analogy is perhaps closest in case
Spec(Op) — Spec(OF) is tamely ramified, namely e, is coprime to |Of/p| for every p € Spec(Og). In
this case the different of E/F is given by

DE/F = H pep_l.
PERE/F

The prime ideals in R,/ are analogous to the components of the link L. For each component K
of this link, let the ramification index ez be the number of times the image under 7 of a small loop

around K wraps around W(IN( ). An analog of Cl(Og) is H 1(M ,Z), and a homology class is a square if
and only if its image in
H\(M,7) ®7Z/27 =~ Hy(M,7/27)
vanishes. Our analogy of Dpp, or rather of its class in CI(Og)/ Cl(Og)?, is the branch divisor
D, = > (ef — VK] € Hi(M,Z/22Z)
K a component of L
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of 7. Since we are working with Z/2Z-coefficients, it is not necessary to fix an orientation of K , nor is
the sign of ey significant.

Theorem 1.1. Let M and M be closed 3-manifolds, and let m: M — M be a cover branched over a
link in M. Then the branch divisor D, represents the trivial class in Hy(M,Z/27).

2. A CENTRAL EXTENSION OF THE HYPEROCTAHEDRAL GROUP

Let n be a positive integer, and let S,, be the symmetric group. Recall the hyperoctahedral group
B, = (Z)2Z)" x S,
where S,, acts on (Z/2Z)"™ by permuting the coordinates.
Let H,, be the group consisting of pairs (a,b) € (Z/2Z)" x Z/2Z with group law
(a1,b1)(az,b2) = (a1 + az, by + ba + Z ai,;a2j).
1<i<j<n
A straightforward computation shows that this law is associative, and that the inverse of (a,b) is
(a,b+ Z a;a;).
1<i<j<n

Projection onto the first factor exhibits H,, as a central extension of (Z/27Z)" by Z/27Z.
For 1 < i < n we donte by e; the ith unit vector in (Z/2Z)", set z; = (e;,0) € H,, and e = (0,1) € H,.
We denote the unit element (0,0) € H,, by 1. We can check that

(2.1) w?=e=1, 1<i<n,
that
(2.2) riw; = evjx;, 1<4,57<n,i#],
and that
(2.3) ex; = xie, 1<i<n,.
Furthermore, the relations in Eq. (2.1)), Eq. 22)), and Eq. (23]) among the generators x1, ..., 2y, €
define the group H, since using these relations every word in z1,...,Z,, € can be brought to the form

Tiy ...gjike‘s with1<i; <ig<---<ip<nandd € {0,1}.
We therefore have an action of S,, on H,, by automorphisms via
o(z:) = Ty(), 0(€) =€, 0€ Sy, 1<i<n.

Let G,, = H, x S, be the semidirect product defined using this action. Since ¢ € H,, is central and
Sp-invariant, it lies in the center of G, so

G /le) = Gu/{1, e} = (Z/2Z)" % S, = B,

We see that G, is a central extension of B,, by Z/2Z. We denote by 3, the class in H?(B,,Z/2Z)
corresponding to this extension.
Let 0,7 € B), be two elements that commute, let o, 7 be lifts to G,,, and define

¢(o,7) =[5,7] =570 "7 € (e) X Z/2Z.

Since G, is a central extension of B, the above is indeed independent of the choice of lifts. As every
element in Z /27 is its own inverse, we see that

(24) ¢(o,7) = [0,7] = [7.5] 7" = [7,5] = ¢(, 0).
We denote by

Cp,(0)={r€Bp:01 =70}
the centralizer of ¢ in B,.



HECKE’S THEOREM ON THE DIFFERENT FOR 3-MANIFOLDS 3

Proposition 2.1. For every o € B,, the map that sends T € Cp, (o) to ¢(o,7) is a homomorphism.

Proof. For every 11,72 € Cp, (0) we have
dlo,mim) =0n70 'R T, dlo,m)dlo, ) =ome ‘[0, 7l
so after cancelling 77, it remains to check that
7o R AT =615,
After multiplying by & from the left, we just need to check that [, 7o] commutes with 77. This is indeed
the case because [0, 73] lies in the central subgroup {1,€} of G,,. O

Corollary 2.2. For every T € By, the map that sends o € Cp, (1) to ¢(o,T) is a homomorphism.
Proof. For 01,09 € Cp, (T) we get from Eq. (2.4]) and Proposition 2] that

P(o102,7) = §(1,0102) = ¢(7,01)P(7,02) = P(01,7)P(02,T).
as required. O
Proposition 2.3. For a k-cycle o0 = (i1 ...1;) € Sp < By, and

T=e,+--+e € (Z/22)" < B,

we have ¢(o,7) = 1. For every a € S,, < B, with a(i1) = i1,...,a(ix) = ix we have ¢(a,T) = 1.
Proof. We take = (i1 ...14), T = x;, - - - =, and get that

1

¢(o,7) =070 T = o (@i - xlk) (@i, xik)_l = To(in) " Toliy) - (zi, "'xik)_l

= @iy, 2y - (T - ..:L«Z.k)—l — ek—lxil ey - (g - ..:L«Z.k)—l — k-1
Taking a = « we see that
pla,7) =ara T =alwy, w) - (zyx) T = Ta(iy) " Taliy) " (Tig - z;, )t =1.
as claimed. (]

Corollary 2.4. Let 0 € S, < B,, whose disjoint cycles are

J
Cl = (il,l e Z'17d1), e ,Cj = (Z'j,l e ij,dj)a Zdr =n,

r=1
and let T € Cp,(0). Then there exists a (unique) choice of 7' € Cg, (o) and Ai,...,\j € Z/27 such
that

J
(2.5) T="1v, v= Z Ar(€ipy + €0y )
r=1
and .
$lo,7) = B M)

Proof. The ability to express 7 as in Eq. (Z3]) is immediate from the definition of the group law in B,,.
From Proposition 2.1, Corollary 2221 and Proposition 2.3 we therefore get that

J J

o(o,7) =0 <0, 7. Z Ar(€iq 4o+ ei"“yd'r)> = ¢(o,7') - H (o, €4, +- eir,’drl))‘"
r=1

r=1
J J J ;
o T Tt e = 1 [ 0h = bt
r=1s=1 r=1

as required. O
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We keep the notation of Corollary 2.4land denote by O1, ..., O, the orbits of the action by conjugation
of the subgroup of S,, generated by 7" on {C1,...,C;}. For 1 <y < zwelet I, C {1,...,n} be the set
of all indices that appear in one of the cycles in Oy, and define the permutation TZ// € S, by

) — /(i) i€l
2 {z i¢ I,

We have a disjoint union

Un=1{...n}
y=1

hence 7/ = 71 - - - 7/ and the permutations 77, ..., 7, commute. We put
f— , f— . ... .
Ty = Tyly, Uy = E Ar(€ipy oot €0y
1<r<j
CreOy

and get that
(2.6) T =TV TLU,

z

where the factors 7{v1,...,7.v, commute.

3. PROOF OF THEOREM [I.1]

It suffices to show, for each o € H I(M ,Z/2Z), that the pairing of the branch divisor D, with «
vanishes, namely

> (e — D(K],a) =0

K a component of L

> > (ez — D{[K],a) = 0.

K a component of L [ 4 component of 7—1(K)

or equivalently

Associated to « is a degree two covering space N — M. Let n be the degree of 7: M — M which is
locally constant away from L, thus constant. Away from L, we get that N is a degree 2 covering space
of a degree n covering space, hence has monodromy group contained in the wreath product

S90Sy = (Z)2Z) 1 Sy, = (Z)2Z)" %1 S, = By,

We thus have a map H%(B,,,Z/2Z) — H*(M \ L,Z/2Z), and we denote by v € H*(M \ L,Z/2Z) the
image of (.

Consider a tubular neighborhood @Q of L and let S = 0Q be its boundary, a union of tori. Each such
torus 7' corresponds to a unique component K of L - the boundary of a tubular neighborhood of K
is T'. Since S bounds a 3-manifold in M \ L, i.e. the complement of the tubular neighborhood @, our
cohomology class v integrates to 0 on S. It follows that

Z /T7:0.

T a component of S

It is therefore sufficient to prove that

(3.1) /T y = 3 (e — D[R], a).

K a component of 7—1(K)



HECKE’S THEOREM ON THE DIFFERENT FOR 3-MANIFOLDS 5

Since T is a torus, a covering of 7' with monodromy B,,, i.e. a homomorphism from 71 (7T) to B,, is
given by a pair of elements m, ¢ € B,, that commute, where m represents a meridian and ¢ represents
a longitude. From the standard cell decomposition of the torus, we can see that

vawma.

Since the Z/2Z-covering N — M is unbranched over every component K of 71(K), the monodromy
of the meridian m does not swap the two components of the covering, and therefore m is (up to
conjugation) contained in S, < B,,.

We shall use here the notation of Corollary 2.4l and the paragraph following it for 0 = m and 7 = ¢,
in particular we write £ = ¢'v as in Eq. 2.5]). The components of 7—(K) are naturally in bijection
with the orbits of the action by conjugation of the subgroup of \S,, generated by ¢ on the set of disjoint
cycles {C1,...,C;} of m. We denote by Oz the orbit corresponding to a component K of 7 Y(K). As
in Eq. (Z4]), we can write

g:Hﬁg, gﬁ:@’f{?}f{., V= Z )‘T’(eir,l +.”+eir,d7-)’
K

1<r<j
C’I‘GOI?

We denote the number of cycles in O by ¢, note that each such cycle is of length ez, and set
df(:#{lﬁrﬁjZCTGOf(, Ar =1}
It follows from Corollary 24l that ¢(m,{z) = (e —1)dgz mod 2, so from Corollary 2.2 we get that

p(m, ) = Z p(m, lz) = Z (e —1)dg mod 2.

K a component of 7—1(K) K a component of 7—1(K)

It is therefore enough to show that dz = ([K],a) mod 2.

Let C be a longitude curve in a tubular neighborhood of K. Then [C] = [K] as homology classes in
Hl(]\Aj, Z/27), so it suffices to show that dz = ([C],a) mod 2. The projection of [C] to T is a[m]+tz[{]
for some a € Z. Thus, the action of C' on the covering space N — M is given by m®¢'&. We have

maftf( _ ma(glv)tf( — maf/tf( . (U + El(’U) + .. _|_£/tf(_1('u)),

The pairing ([C], «) is nonzero if and only if the monodromy along C' of the covering N — M is
nontrivial, which happens if and only if the action of m®¢'% sends one branch of this covering to the
other, and that occurs if and only if the kth entry of v + ¢/(v) + --- 4+ £ ~1(v) is nonzero for some
(equivalently, every) index 1 < k < n that belongs to one of the cycles in Og. It is therefore sufficient
to show that

dg =W+ +-+ "% (v)y mod 2.
We have

(00 (0) + -+ R W) = vk + () + -+ LETH (W) = Op + vpagey + - F Uyt ()

By the orbit-stabilizer theorem, each of the ¢ cycles in O contains exactly one of the ¢z elements
k071 (k), ..., 07"k T (k). Thus, from Eq. 23] we get that

Uk + Uy oo+ V=t + (g = Z Ar =dj mod 2,

1<r<j
C’I‘GOI?

as desired.
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