
ar
X

iv
:2

20
6.

00
53

7v
1 

 [
m

at
h.

PR
] 

 1
 J

un
 2

02
2

Averaging of random variables and fields.

M.R.Formica, E.Ostrovsky, L.Sirota.
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Abstract

We will prove that by averaging of random variables (r.v.) and random fields
(r.f.) its tails of distributions do not increase in comparison with the tails of source
variables, essentially or almost exact, under very weak conditions.
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tail of distribution, measurable functions, Young - Fenchel (Legendre) transform,
Young’s inequality, slowly varying function, natural function, normalized sums, fil-
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1 Preliminary. Definitions. Notations.

Let (Ω = {ω},B,P) be non - trivial probability space with expectation E and
Variation Var and let (X = {x},M, µ) be another probability space: µ(X) = 1.
Let also ξ = ξ(x) = ξ(x, ω), x ∈ X, ω ∈ Ω be numerical valued separable bi -
measurable random field.

There are at last two version to introduce the notion of an averaging in the
probability theory.

A. Define
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ξ[X ]
def
=

∫

X
ξ(x) µ(dx) − (1)

the spatial averaging.

B. Conditional averaging. Let F be some sigma - subalgebra of the
source one B. Define for arbitrary integrable numerical valued r.v. η the ordinary
conditional expectation

η{F} def
= Eη/F. (2)

Our target in this preprint is to deduce the exact norm and tail of
distribution estimations for both this averaging in the terms of tails and
norms of the source datum.

We state as it is announced that by both the introduced averaging: of
random variables (r.v.) and random fields (r.f.) its tails of distributions
do not essentially exact increase in comparison with the tails of source
variables, under very weak conditions.

Recall that the so - called tail function Tτ (t) for the numerical valued r.v. τ
is defined as follows

Tτ (t)
def
= P(|τ | ≥ t), t ≥ 0. (3)

Correspondingly, the tail function for the numerical valued random field ζ =
ζ(x) = ζ(x, ω) is understood in the uniform sense

Tζ(t)
def
= sup

x∈X
Tζ(x)(t), t ≥ 0,

is of course the last sup is not trivial.

2 Averaging of random fields.

Proposition 2.1. Norm estimation.

Let (G, || · ||G) be arbitrary Banach functional space defined on the random
variables (measurable functions) ζ : Ω → R, such that

∀x ∈ X ⇒ ξ(x) ∈ G.

Suppose also that the function β(x) := ||ξ(x)||G, x ∈ X is measurable. Then by
virtue of integral version of triangle inequality

|| ξ[X ] ||G = ||
∫

X
ξ(x) µ(dx)||G ≤
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∫

X
||ξ(x)||G µ(dx) =

∫

X
β(x) µ(dx), (4)

if of course the last integral is finite.

For instance, denote by Lp(Ω, P ) = Lp(Ω), p ≥ 1 the classical Lebesgue -Riesz
space consisting of all the numerical valued r.v. ν having a finite norm

||ν||Ω,p = ||ν||Lp(P ) def= [ E |ν|p ]1/p =
[
∫

Ω
|ν(ω)|p P(dω)

]1/p

.

Then under formulated restrictions

|| ξ[X ] ||Lp(Ω) ≤
∫

X
||ξ(x)||Lp(Ω) · µ(dx). (5)

As other spaces may be considered, e.g. Marcinkiewicz, Lorentz ones. Let
us bring an interest (in our opinion) example. The particular case of the classical
Lorentz quasi - norm (and correspondent space) for the random variable φ is defined
as follows

||φ||Lq,∞ def
= sup

t≥0
[ tq Tφ(t) ]

1/q .

To be more precisely, there exists an actually norm which is equivalent to the
described before quasi - norm [21].

We derive applying these spaces.

Proposition 2.2. Suppose for the introduced r.f ξ(x)

sup
x∈X

Tξ(x)(t) ≤ t−q, t ≥ 1, q = const > 1.

Then

∃C = C(q) <∞, ⇒ Tξ[X](t) ≤ C t−q, t ≥ 1.

Let us consider an important case for the r.v. having in general case an expo-
nential decreasing tail of distribution.

Grand Lebesgue Spaces.

Let b = const, 1 < b ≤ ∞. Let also ψ = ψ(p), p ∈ (1, b) be certain numerical
valued measurable strictly positive: infp∈[1,b) ψ(p) > 0 function, not necessary to

be bounded. Denotation: Dom(ψ)
def
= { p : ψ(p) <∞ },

(1, b) := supp(ψ); Ψ[1, b) := { ψ : supp(ψ) = (1, b) },

Ψ
def
= ∪b>1Ψ[1, b).

3



Definition 2.1., see e.g. [15], [8], [10]. Let the function ψ(·) ∈ Ψ[1, b),
which is named as generating function for introduced after space. The so - called
Grand Lebesgue Space Gψ is defined as a set of all random variables (measurable
functions) τ having a finite norm

||τ ||Gψ def
= sup

p∈(1,b)

{

||τ ||Lp(Ω)
ψ(p)

}

. (6)

The particular case of these spaces and under some additional restrictions on
the generating function ψ = ψ(p) correspondent to the so - called Yudovich spaces,

see [22], [23]. These spaces was applied at first in the theory of Partial Differential
Equations (PDE), see [5], [6].

These spaces are complete Banach functional rearrangement invariant; they are
investigated in many works, see e.g. [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19]. It is important for us in particular to note that there is exact of course
up to finite multiplicative constant interrelations under certain natural conditions
on the generating function between belonging the r.v. τ to this space and it tail
behavior. Indeed, assume for definiteness that τ ∈ Gψ and moreover ||τ ||Gψ = 1;
then

Tτ (t) ≤ exp{ −h∗(ln t) }, t ≥ e, (7)

where h(p) = h[ψ](p) := p lnψ(p) and h∗(·) is famous Young - Fenchel (Legendre)
transform of the function h(·) :

h∗(u)
def
= sup

p∈Dom(ψ)
(pu− h(p)).

Inversely, let the tail function Tτ (t), t ≥ 0 be given. Introduce the following
so - called natural function generated by τ

ψτ (p)
def
=

[

p
∫ ∞

0
tp−1 Tτ (t) dt

]1/p

= ||τ ||Lp(Ω), (8)

if it is finite for some value b ∈ (1,∞], following, it is finite at last for all the values
p ∈ [1, b).

As long as

E|τ |p = p
∫ ∞

0
tp−1 Tτ (t) dt = ψpτ (p), p ∈ [1, b),

we conclude that if the last natural for the r.v. τ function ψτ (p) is finite inside
some non - trivial segment p ∈ [1, b), 1 < b ≤ ∞, then

τ ∈ Gψτ ; ||τ ||Gψτ = 1.
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Further, let the estimate (7) be given. Suppose in addition that the generating
function ψ = ψ(p), p ∈ Dom(ψ) is continuous and suppose in the case when
b = ∞

lim
p→∞

ψ(p)

p
= 0. (9)

Then the r.v. τ belongs to the Grand Lebesgue Space Gψ :

||τ ||Gψ ≤ K[ψ] <∞, (10)

see e.g. [17].
These conditions on the generating function ψ(·) are satisfied for example for

the functions ψm,L(p) of the form

ψm,L(p)
def
= p1/m L(p), m = const > 1, b = ∞, (11)

where L = L(p) be some continuous strictly positive slowly varying at infinity
function such that

∀θ > 0 ⇒ sup
p≥1

[

L(pθ)

L(p)

]

= C(θ) <∞. (12)

For instance, L(p) = [ln(p+ 1)]r, r ∈ R.

We conclude that under formulated restrictions the r.v. τ belongs to the space
Gψm,L :

sup
p≥1

{

||τ ||p,Ω
ψm,L(p)

}

= C(m,L) <∞ (13)

if and only if

Tτ (u) ≤ exp ( −C2(m,L) u
m/L(u) ) , u ≥ e, ∃ C2(m,L) > 0. (14)

A very popular example of these spaces forms the so - called subgaussian space
Sub = Sub(Ω); it consists on the subgaussian random variables, for which ψ(p) =
ψ2(p) :=

√
p :

||τ ||Sub = ||τ ||Gψ2
def
= sup

p≥1

[

||τ ||p,Ω√
p

]

. (15)

The r.v. τ belongs to the subgaussian space Sub(Ω) iff

∃C > 0 ⇒ Tτ (u) ≤ exp(−Cu2), u ≥ 0. (16)

Remark 2.1. As a rule, on the the r.v. τ from the spaces Gψm,L is imposed
the condition of centering: Eτ = 0.

Another examples. Suppose that the r.v. τ be such that
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Tτ (t) ≤ T β,γ,L(t), β > 1, γ > −1, L = L(t),

where

T β,γ,L(t)
def
= t−β (ln t)γ L(ln t), t ≥ e

and L = L(t), t ≥ e be as before slowly varying at infinity positive continuous
function. It is known [17] that as p ∈ [1, β)

ψτ (p) = ||τ ||p ≤ C1(β, γ, L) (β − p)−(γ+1)/β L1/β(1/(β − p)), (17)

and conversely, if the relation (17) there holds, then

Tτ (t) ≤ C7(β, γ, L) T
β,γ+1,L(t).

Herewith both this estimations are unimprovable.

Theorem 2.1. Denote for the random field ξ(x), x ∈ X

Q(t) := sup
x∈X

Tξ(x)(t), t ≥ 0,

g0(p) :=
[

p
∫ ∞

0
tp−1 Q(t) dt

]1/p

,

g(p) := p ln g0(p),

and suppose ∃b ∈ (1,∞] ⇒ g(b) <∞. We assert

Tξ[X](t) ≤ exp ( −g∗(ln t) ) , t ≥ e. (18)

Proof. We have

Tξ(x)(t) ≤ Q(t), x ∈ X, t ≥ 0.

Therefore the random variables ξ(x), x ∈ X belongs to the unit ball of the
Grand Lebesgue Space G g0 :

sup
x∈X

||ξ(x)||Gκ ≤ 1.

It remains to apply the proposition (7).

Remark 2.2. A more general version: assume that there exists a finite a.e.
and non - negative measurable numerical valued function θ = θ(x), x ∈ X such
that

Tξ(x)(t) ≤ exp
{

−h∗ψ[ln(t/θ(x))]
}

, t ≥ e,
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then

||ξ(x)||Gψ ≤ C4[ψ] θ(x), C4[ψ] <∞,

therefore

||ξ[X ]||Gψ ≤ C4[ψ]
∫

X
θ(x) µ(dx),

with correspondent tail estimate

Tξ[X] ≤ exp
[

−h∗ψ(ln t/C5)
]

, t ≥ eC5, (19)

where

C5 = C4[ψ]
∫

X
θ(x) µ(dx),

if of course the last integral is finite.

Example 2.1. Suppose

sup
x∈X

Tξ(x)(u) ≤ exp ( − um/L(u) ) , u ≥ e, (20)

where as before m = const > 1, L = L(p) is some continuous strictly positive
slowly varying at infinity function such that

∀θ > 0 ⇒ sup
p≥1

[

L(pθ)

L(p)

]

= C(θ) <∞. (21)

We conclude that under formulated above restrictions that ∃C5(m,L) > 0 ⇒

Tξ[X](u) ≤ exp { −C5(m,L) u
m/L(u) } , u ≥ e. (22)

Obviously, the last estimate (22) is non - improvable, of course. up to multi-
plicative constant C5(m,L).

Example 2.2. Suppose now in the introduced notations and restrictions

sup
x∈X

Tξ(x)(u) ≤ T β,γ,L(t), t ≥ 1, (23)

We derive arguing similarly to the previous example

Tξ[X](u) ≤ T β,γ+1,L(C6(β, γ, L) t), t ≥ e, C6 > 0, (24)

and this estimate is also non - improvable still in the case when the set X consists
in a single point [18].
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Example 2.3. Let us show that the proposition of theorem 2.1 is not true if
we replace the averaging onto the classical normalized sums of the centered random
variables. Let {ζi}, i = 1, 2, . . . ; ζ = ζ1 be a sequence if independent symmetrical
distributed r.v. such that

∀y ≥ 0 ⇒ Tζ(y) = exp ( −yq ) , q = const > 2.

Denote

Sn := n−1/2
n
∑

i=1

ζi; σ
2 = σ2(q)

def
= Var(ζ) ∈ (0,∞).

We derive by virtue of CLT for all the positive values y, say for y ≥ 1

sup
n

P(Sn > y) ≥ lim
n→∞

P(Sn > y) ≥ exp
(

−C0 y
2
)

,

C0 = C0(q) ∈ (0,∞); so that the tails of distribution of the r.v. Sn are ”much
heavier” as ones for the source variable ζ.

3 Conditional averaging.

Let as in the first section (2) ν
def
= η{F} def

= Eη/F, where F is some sub - sigma
field of the source sigma algebra B.

Assume that

Tη(t) ≤ R(t), t ≥ 0;

where R = R(t) is non - negative bounded: R(t) ≤ 1 non - increasing measurable
function such that R(∞) = 0. Introduce the Ψ function

δ(p) = δ[R](p)
def
=

[

p
∫ ∞

0
tp−1 R(t) dt

]1/p

,

and suppose δ(·) ∈ Ψ; then

E|η|p ≤ δp(p).

Since the function g(y) = |y|p, p ≥ 1 is convex, one can apply the Jensen’s
inequality for the conditional expectations

E|ν|p ≤ E|η|p ≤ δp(p), p ∈ [1, b);

following ν ∈ Gδ and we obtain the inequality

Tν(t) ≤ exp ( −v∗(ln t) ) , t ≥ e, (25)
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where

v(p) = p ln δ(p), p ∈ Dom(δ).

To summarize.
Proposition 3.1. We obtain under formulated notations and restrictions

||ν||Gδ ≤ 1, (26)

and hence the estimation (25) there holds.

The examples may be considered alike ones in the previous section, under at
the same restrictions.

Example 3.1. If

Tη(u) ≤ exp { −um/L(u) } , u ≥ e, (27)

then

Tν(u) ≤ exp { −C7(m,L) u
m/L(u) } , u ≥ e, C7 > 0. (28)

Example 3.2. Suppose

Tη(u) ≤ T β,γ,L(t), t ≥ 1, β > 1, γ > −1. (29)

We derive

Tν(u) ≤ T β,γ+1,L(C8(β, γ, L) t), t ≥ e, C8 > 0, (30)

and this estimate is also essentially non - improvable, see e.g. [18].

Example 3.3. Let Ω = (0, 1) equipped with the classical Lebesgue measure.
Define the r.v. η = ω−α, ω ∈ (0, 1); α = const ∈ (0, 1) and put

F := { ∅, (0, 1/2], (1/2, 1), (0, 1) }.
We have

E|η|p = 1

1− αp
, 1 ≤ p < 1/α

and E|η|p = ∞, p ≥ 1/α. The r.v. ν = Eη/F has a form

ν(ω) = 2α/(1− α), ω ∈ (0, 1/2]

and

ν(ω) = (2− 2α)/(1− α), ω ∈ (1/2, 1).
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Thus, the r.v. ν is bounded, despite that the source r.v. η has not all the
moments E|η|p, p ge1/α.

4 Applications to the martingale theory.

A. Uniform integrable martingales.

Suppose that there is certain filtration on the source probability sigma - field
B, i.e. an increasing sequence of sigma - subfields {Fn} of canonical one B, and
let (κn, Fn), n = 1, 2, . . . be an uniform integrable martingale:

Eκm/Fk = κk, 1 ≤ k ≤ m

We conclude by virtue of theorem J.Doob there exists with probability one a
limit

κ
def
= lim

n→∞
κn. (31)

Assume that

Tκ(t) ≤ U(t), t ≥ 0,

where U = U(t) is some non - negative bounded U(t) ≤ 1 non - increasing
function for which limU(t) = 0, t → ∞. Introduce as before the following Ψ−
function

ρ(p)
def
=

[

p
∫ ∞

0
tp−1 U(t) dt

]1/p

,

and we suppose ρ ∈ Ψ(b) for some value b ∈ (1,∞].

We get on the basis of proposition 3.1 using the fact that κn = Eκ/Fn

Proposition 4.1.

||κn||Gρ ≤ 1 (32)

with correspondent tail estimation (7).

Further, define the following finite a.e. random variable

κ̂ := sup
n
κn

and a new Ψ − function
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ρ̂(p) := p/(p− 1) · ρ(p), p ∈ (1, b).

Proposition 4.2.

||κ̂||Gρ̂ ≤ 1, (33)

with correspondent tail estimation.

Proof is quite alike to the previous one; one can apply the famous Doob’s
inequality

E|κ̂|p ≤
[

p

p− 1

]p

· ρp(p) = [ ρ̂(p) ]p .

Remark 4.1. The proposition 4.2 allows a simple (particular) inversion. As-
sume namely that the estimation (33) is satisfied. Then the r.v. {κn} are uniform
integrable and, following, by virtue of theorem J.Doob there exists a limit a.e.

P( lim
n→∞

κn = κ) = 1. (34)

It follows from (34) and (33) that in turn

sup
n

||κn||Gρ̂ <∞.

B. General case: a non - uniform integrable martingales.

Let again (κn, Fn) be a martingale; we do not suppose in this subsection that
it is uniform integrable. Then the sequence κn must be normed; and as it is noted
in [20] the natural norming sequence may be choosed as a its square variation

[κ]2n
def
= κ21 +

n
∑

i=2

(κi − κi−1)
2, n ≥ 2. (35)

But the square variation sequence is random; therefore we offer its expectation as a
capacity of norming sequence

σ2
n
def
= E[κ]2n, n ≥ 2; σ2

1 := Eκ21. (36)

It will be presumed further that σn ∈ (0,∞), n ≥ 1.

For instance, if our martingale may be represented as a sum of the centered
independent r.v.

κn =
n
∑

j=1

ǫj , Fn = σ{ ǫj , 1 ≤ j ≤ n },
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such that Var(ǫj) <∞, then

σ2
n =

n
∑

j=1

Var(ǫj).

Further, suppose as above that

sup
n
Tκn/σn(t) ≤W (t), t ≥ 1,

where W (·) is non - negative bounded W ≤ 1 non - increasing function such that
W (∞) = 0. Define

υ(p) :=
[

p
∫ ∞

0
tp−1 W (t) dt

]1/p

, υ̂(p) := pυ(p).

Proposition 4.3.

One can apply the famous Burkholder’s inequality [2]

|| max
k=1,2,...,n

κk||p ≤ p υ(p) = υ̂(p),

or equally

|| max
k=1,2,...,n

κk||Gυ̂ ≤ 1

with correspondent tail estimate (7).

5 Concluding remarks.

It is interest in our opinion to generalize obtained results on the variables, and
martingales, taking values in Banach spaces.
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