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ON SUMS OF SEMIBOUNDED CANTOR SETS

JAKE FILLMAN AND SARA H. TIDWELL

Abstract. Motivated by questions arising in the study of the spectral theory of models of

aperiodic order, we investigate sums of functions of semibounded closed subsets of the real

line. We show that under suitable thickness assumptions on the sets and growth assumptions

on the functions, the sums of such sets contain half-lines. We also give examples to show

our criteria are sharp in suitable regimes.
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1. Introduction

1.1. Background and Motivation. The present paper is concerned with the following
question:

Question. If F ⊆ R is closed and bounded from below and g : [inf(F ),∞) → R is increasing
and continuous, under what conditions (on F , g, or both) does g[F ]+g[F ] contain a half-line?

This question has its roots in some recent work on spectral theory of multidimensional
quasicrystals. To set the stage, we will explain how this question arose and then give an
answer: If F is thick and the relative Lipschitz behavior of g is controllable (in senses to be
made precise later), then g[F ] + g[F ] contains a half-line. Moreover, we will show that these
hypotheses are necessary by exhibiting examples in which they fail and the resultant sums
do not contain half-lines.

Since their discovery in the 1980s by Shechtman et al. [30], quasicrystals1 have been studied
intensively by mathematicians and physicists. We direct the readers to the books [2, 3] and
the references therein for background. This paper is motivated by questions that arise
when one studies the spectra of multidimensional quasicrystal models. In particular, one
asks whether the spectra of multidimensional continuum quasicrystal models must contain a
half-line. This question itself is motivated by the corresponding question for crystalline (i.e.,

J.F. was supported in part by Simons Foundation Collaboration Grant #711663. J.F. and S.H.T. were

supported in part by undergraduate research funding from the Texas State University Research Enhancement

Program.
1That is, mathematical or physical structures simultaneously exhibiting aperiodicity and long-range order.
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2 J. FILLMAN AND S. H. TIDWELL

periodic) models, called the Bethe–Sommerfeld conjecture. The conjecture is now a theorem
with progress by many authors [14,17,29,32–34,37], with a full resolution by Parnovski [28].

To study electronic properties of quasicrystals, one often considers a single-particle Hamil-
tonian in L2(Rd) of the form

LV = −∆+ V

in which the potential V : R → R is pattern-equivariant with respect to a suitable model
of aperiodic order (e.g., the Fibonacci or Penrose tilings). Such models have been heavily
studied in dimension d = 1, where there is a cornucopia of tools available to study the
relevant spectral theory, and as a consequence, one has many results about the spectrum,
spectral type, and density of states; see, e.g. [4–6, 9–11, 22, 23, 35, 36], for a small sample of
the literature. There are comparatively fewer spectral results in higher dimensions, partially
due to the disappearance of some of the key tools in the transition from dimension d = 1 to
dimensions d ≥ 2; compare, e.g., [13, 15, 16, 18, 20, 21]. One fruitful method to push results
into higher dimensions is to study separable potentials, that is, potentials of the form

V (x) =

d∑

j=1

Vj(xj),

where each Vj : R → R is a well-understood one-dimensional model. In particular, for the
spectrum, this results in

σ(LV ) = σ(LV1
) + σ(LV2

) + · · ·+ σ(LVd
) =

{
d∑

j=1

λj : λj ∈ σ(LVj
)

}
,

the Minkowski sum of sets.
On one hand, the spectra of one-dimensional quasicrystal models have a strong tendency

to be zero-measure Cantor sets [5–7,12,19,35,36]. On the other hand, the self-sums of fractal
sets of zero Lebesgue measure can have nonempty interior. For instance, it is well-known
that if K ⊆ [0, 1] denotes the standard middle-thirds Cantor set, one has K +K = [0, 2]. In
particular, the self-sum of a zero-measure set may be an interval.

In the recent work [8], it was shown that if Vj(x) denotes a suitable locally constant version
of the Fibonacci potential, then σ(LV ) contains a half-line for each d ≥ 2. One of the key
ingredients of the proof was an affirmative answer to the main question for the function
g(x) = x2 and Cantor sets sufficiently thick in the sense of Newhouse [25, 26]. This is how
Minkowski sums of unbounded fractal sets arise in spectral theory.

In the present work, we will demonstrate classes of functions and sets for which the result
of [8] holds. We give a class of examples for which one can observe a sharp phase transition
between containing and not-containing a half-line.

1.2. Definitions and Results. Let us begin by defining terminology and recalling some
results that will be useful.

We first discuss the class of functions with which we work. In the sequel, we will consider
closed sets and functions that are bounded from below. Consequently, after shifting, we are
free to assume without loss of generality that all sets are contained in R+ = [0,∞) and that
all functions map R+ to itself.

Loosely speaking, the class of functions for which the result holds true is that of monotonic
locally Lipschitz function for which the local Lipschitz constants do not vary too quickly in
a relative sense, which we make precise in the following definition.
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Definition 1.1. We say that g : R+ → R+ is an admissible function if it is continuous,
strictly increasing, and satisfies limx→∞ g(x) = ∞. For x ∈ R+, let D± denote the upper
and lower derivatives:

D+(g, x) = lim sup
z→x

g(z)− g(x)

z − x
, D−(g, x) = lim inf

z→x

g(z)− g(x)

z − x
.

Given an admissible function g and constants γ > 0 and M ≥ 0, define

(1.1) Λ(g, γ,M) = sup

{
D+(g, x)

D−(g, y)
: x, y ≥ M, |x− y| ≤ γ

}
,

Note that Λ(g, γ,M) ≥ 1 for all M and γ and for fixed γ is nonincreasing in M and define

(1.2) Λ(g, γ) := lim
M→∞

Λ(g, γ,M).

We say that g has bounded relative variation (in short: g ∈ BRV) if Λ(g, γ) < ∞ for some
γ > 0 and trivial relative variation (g ∈ TRV) if Λ(g, γ) = 1 for some γ. We will show later
that neither of these notions depends on the particular choice of γ (cf. Prop. 2.4) and hence
one has

TRV = {g : g is admissible and Λ(g, 1) = 1}

BRV = {g : g is admissible and Λ(g, 1) < ∞} .

Remark 1.2. Let us make some comments about the definitions.

(a) We think it is extremely probable that these spaces of functions have been considered in
other works, likely under a different name. However, we were unable to locate a precise
reference.

(b) The assumptions imply that BRV functions are differentiable almost everywhere and
locally Lipschitz continuous for sufficiently large x. If g is everywhere differentiable and
g ∈ BRV, then one can check that log g′ is a function of bounded variation on any
compact subinterval of [M,∞) where M is sufficiently large.

(c) However, we find it prudent not to restrict to differentiable functions, first, since the
results do not need that assumption, and second, piecewise affine functions supply a
useful set of test cases and examples to consider.

Next, we describe the kinds of closed sets to which we may apply our results. In order
to do this, let us formulate precisely what it means to say that a set is thick. The ideas
and key results date back to work of Newhouse [25, 26]. Let K ⊆ R be a compact set and
denote by I = [minK,maxK] its convex hull. Any connected component of I\K is called
a gap of K. A presentation of K is given by an ordering U = {Un}n≥1 of the gaps of K. If
u ∈ K is a boundary point of a gap U of K, we denote by B the connected component of
I\(U1 ∪ U2 ∪ . . . ∪ Un) (with n chosen so that Un = U) that contains u and write

τ(K,U , u) =
|B|

|U |
.

The thickness τ(K) of K is given by

τ(K) = sup
U

inf
u
τ(K,U , u).
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One can check that τ(K) = ∞ if and only if K is a closed interval. It is well-known that
one can take as a maximizer any presentation U in which the gaps are ordered in such a way
that the gap lengths are nonincreasing [27].

The following consequence of the Newhouse gap lemma [25,26] is stated as [9, Lemma 6.2]
and proved there.

Lemma 1.3. Suppose K,K ′ ⊆ R are compact sets with τ(K) · τ(K ′) > 1. Assume also that
the size of the largest gap of K ′ is not greater than the diameter of K, and the size of the
largest gap of K is not greater than the diameter of K ′. Then,

K +K ′ = [minK +minK ′,maxK +maxK ′].

Remark 1.4. A particular consequence of Lemma 1.3 is the following: if K ⊆ R is a Cantor
set with τ(K) > 1, then

K +K = [2minK, 2maxK].

Thickness is a ubiquitous notion in geometric analysis. For a partial list, it has applications
in geometric measure theory [24, 31], number theory [40], fractal geometry [38], and pinned
distance problems [24]. Multidimensional generalizations have been considered in [31, 39].
For additional information about thickness, we direct the reader to [1, 27].

As mentioned before, we will consider only semibounded closed sets, so after shifting, we
will also always assume that said sets lie in R+ = [0,∞).

Definition 1.5. An ordered fragmentation of a semibounded closed set F is a decomposition

(1.3) F =

∞⋃

n=0

Kn,

where each Kn is compact and nonempty, and maxKn < minKn+1 for all n. We call Kn

the nth fragment of F .
Given constants A, a, τ > 0, we say that F is (A, a, τ)-thick if F has an ordered fragmen-

tation such that

A ≤ diam(Kn) ≤ 2A ∀n ≥ 0,(1.4)

dist(Kn, Kn+1) < a ∀n ≥ 0,(1.5)

τ(Kn) ≥ τ ∀n ≥ 0.(1.6)

Theorem 1.6. Assume F ⊆ R+ is an (A, a, τ)-thick semibounded closed set for constants

A > a > 0 and τ > 1. Suppose g ∈ TRV, and let F̃ = g[F ]. Then F̃ + F̃ contains a half-line.

One can weaken the assumption g ∈ TRV (Λ(g, γ) = 1) somewhat, depending upon the

constants A, a > 0. Namely, one can show that F̃ + F̃ contains a half-line if F is (A, a, τ)
thick for some τ > 1 and Λ(g) is sufficiently small.

Theorem 1.7. Given A > a > 0 and ε > 0, there exists δ = δ(A, a, ε) > 0 such that if F is

(A, a, 1 + ε)-thick and g ∈ BRV has 1 ≤ Λ(g, A) < 1 + δ, then F̃ + F̃ contains a half-line,

where F̃ = g[F ].

Remark 1.8. Let us make a few remarks.

(a) The proof of Theorem 1.7 gives an explicit bound on δ, but we have not optimized the
constants in the proof.
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(b) One can clearly relax some of the hypotheses. For instance, in Theorem 1.7, it suffices
that F be eventually (A, a, 1 + ε)-thick in the sense that F ∩ [c,∞) is (A, a, 1 + ε)-thick
for some c > 0. One can similarly relax hypotheses on g.

Let us remark that the assumptions of Theorem 1.6 are met with f any polynomial function
nonnegative on R+, as well as subexponential functions such as exp(xα) 0 < α < 1. The
assumptions of Theorem 1.7 are met by those functions and exponential functions of the
type exp(rx) with r > 0 sufficiently small. We give an account of these objects in Section 2
including a discussion of the structure of the spaces TRV and BRV. One can use this to
prove spectral results for separable operators modelled on the Fibonacci tiling. To define
such potentials, fix λ > 0, define

(1.7) Vλ(x) = λ
∑

n∈Z

χ[1−α,1)(nα mod 1)χ[n,n+1)(x)

and put Σλ = σ(−∆+ Vλ).

Corollary 1.9. For any λ > 0, s > 0, Σs
λ + Σs

λ contains a half-line.

Proof. It was shown in [8] that Σ
1/2
λ is eventually (A, a, τ)-thick for suitable A, a, τ . Since

x 7→ x2s is in TRV, the result follows immediately from Theorem 1.6. �

Of course, the sum in Corollary 1.9 corresponds to the operator

Hs
x +H2

y = (−∂2
x + Vλ(x))

s + (−∂2
y + V2(y))

s.

It would also be of interest to study the operator (−∆)s + Vλ(x) + Vλ(y), but this is not
within reach of the methods of this paper.

One can turn the formulation of Theorem 1.7 around and see that the result also holds in
an appropriate dual asymptotic regime of bounded Λ(g, A) and sufficiently large thickness.
More precisely, Theorem 1.7 can be viewed as fixing an (A, a, τ)-thick set F and proving the
desired half-line statement for g ∈ BRV with Λ sufficiently small. One can also fix a BRV
function and prove a similar statement if F is “sufficiently thick”.

Theorem 1.10. Given A > 0 and R > 1, there exist constants a0 = a0(A,R) and τ0 =
τ0(R) > 0 such that the following holds. If F ⊆ R+ is (A, a, τ)-thick for some 0 < a ≤ a0
and τ ≥ τ0 and Λ(g, A) ≤ R, then F̃ + F̃ contains a half-line.

To round out the discussion, we give an example to show that F̃ + F̃ may not contain a
half-line. To that end, let us say that F is a-sparse if it has infinitely many open gaps of
length at least a, that is, if F enjoys an ordered fragmentation {Kn}

∞
n=0 satisfying

dist(Kn, Kn+1) ≥ a ∀n ≥ 0.(1.8)

Notice that the thickness of the pieces is irrelevant. Indeed, the following result remains true
even if all fragments are closed intervals.

Theorem 1.11. Given r > 0, let gr(x) = erx. Given a > 0, if F is an a-sparse closed set,

ra ≥ log 2, and F̃ = gr[F ], then F̃ + F̃ does not contain a half-line.

We will also show that ra ≥ log 2 is sharp in the previous theorem by giving an example

for each a < r−1 log 2 of an a-sparse set with F̃ + F̃ containing a half-line.
Of course, it is no accident that the phase transition (from containing to not-containing a

half line) occurs precisely at era = 2, since one can easily check that Λ(erx, a) = era.



6 J. FILLMAN AND S. H. TIDWELL

The remainder of the paper is organized as follows. We prove some basic estimates for
BRV functions in Section 2. We prove Theorems 1.6, 1.7, and 1.10 in Section 3, and we
prove Theorem 1.11 in Section 4.

Acknowledgements. We are grateful to Evyi Palsson for helpful conversations. J.F. also
thanks the American Institute of Mathematics for hospitality and support during a January
2022 visit, during which part of this work was completed.

2. Functions of Bounded Relative Variation

We collect here some useful properties of functions in BRV. We will use the following
calculation somewhat frequently. Although it is well-known, we include the proof for the
reader’s convenience and to keep the paper more self-contained.

Lemma 2.1. For any g : [a, b] → R,

(2.1) inf
x∈[a,b]

D−(g, x) ≤
g(b)− g(a)

b− a
≤ sup

x∈[a,b]

D+(g, x).

Proof. First, observe that if r < t, λ ∈ (0, 1) and s = λr + (1− λ)t then

(2.2)
g(t)− g(r)

t− r
= λ

g(t)− g(s)

t− s
+ (1− λ)

g(s)− g(r)

s− r
.

Using (2.2), start with [a0, b0] = [a, b] and choose [a0, b0] ⊇ [a1, b1] ⊇ · · · so that [an+1, bn+1]
has half the length of [an, bn] and

g(bn+1)− g(an+1)

bn+1 − an+1

≥
g(bn)− g(an)

bn − an
.

Choosing x∗ in the intersection of all [an, bn], one can use (2.2) again to see that

(2.3) sup
x∈[a,b]

D+(g, x) ≥ D+(g, x∗) ≥
g(b)− g(a)

b− a
.

The other inequality is proved in the same manner. �

Using Lemma 2.1, we deduce the following inequality that relates average rates of change
for admissible functions to Λ.

Lemma 2.2. Suppose g is an admissible function andM ≥ 0. For any intervals [a, b], [c, d] ⊆
[M,∞) for which diam([a, b] ∪ [c, d]) ≤ γ, one has

(2.4)
g(d)− g(c)

g(b)− g(a)
≥ [Λ(g, γ,M)]−1d− c

b− a
.

Proof. By the previous lemma,

(2.5)
g(d)− g(c)

d− c
≥ inf

z∈[c,d]
D−(g, z),

g(b)− g(a)

b− a
≤ sup

w∈[a,b]

D+(g, w).

Since g is increasing on [M,∞), the previous inequalities yield

(2.6)
g(d)− g(c)

g(b)− g(a)
≥

[
infz∈[c,d]D

−(g, z)

supw∈[a,b]D
+(g, w)

]
d− c

b− a
.

The result follows by definition of Λ(g, γ,M). �
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We begin by clarifying some of the main properties of Λ(g, γ). First, it is submultiplicative
in the sense that Λ(g, γ1 + γ2) ≤ Λ(g, γ1)Λ(g, γ2).

Proposition 2.3. Suppose g : R+ → R+ is admissible. For any γ1, γ2 > 0,

Λ(g, γ1 + γ2) ≤ Λ(g, γ1)Λ(g, γ2).(2.7)

Proof. Let M ≥ 0. If x, y ≥ M and |x−y| ≤ γ1+γ2, we choose z ≥ M for which |x−z| ≤ γ1
and |z − y| ≤ γ2, leading to

D+(g, x)

D−(g, y)
≤

D+(g, x)

D−(g, z)

D+(g, z)

D−(g, y)
≤ Λ(g, γ1,M)Λ(g, γ2,M),

from which (2.7) follows by sending M → ∞. �

The previous calculation enables us to see that the sets TRV and BRV do not depend on
the choice of γ used to test Λ(g, γ). More precisely,

Proposition 2.4. Suppose g : R+ → R+ is admissible.

(a) g ∈ TRV if and only if Λ(g, γ) = 1 for all γ > 0.
(b) g ∈ BRV if and only if Λ(g, γ) < ∞ for all γ > 0.

Proof. (a) One direction is trivial. For the other direction, suppose g ∈ TRV, which implies
Λ(g, γ′) = 1 for some γ′ > 0. By Proposition 2.3, we get Λ(g, nγ′) ≤ 1 for all n. Since
Λ(g, γ) ≥ 1 for all γ and Λ(g, ·) is nondecreasing Λ(g, γ) = 1 for every γ.

The proof of (b) is almost identical. �

Next, we discuss the arithmetic properties of TRV and BRV. We will show that these
sets are closed under sums and products. The following bound supplies the needed input to
prove that both sets are closed under sums.

Proposition 2.5. Suppose g, h : R+ → R+ are admissible. For all γ > 0, one has

Λ(g + h, γ) ≤ max(Λ(g, γ),Λ(h, γ)).(2.8)

Proof. Let M ≥ 0 be given. Since D+(g+h, x) ≤ D+(g+h, x) and D−(g+h, x) ≥ D−(g, x)+
D−(h, x) we have the following for any x, y ≥ M with |x− y| ≤ γ:

D+(g + h, x)

D−(g + h, y)
≤

D+(g, x) + D+(h, x)

D−(g, y) + D−(h, y)

≤
D−(g, y)Λ(g, γ,M) + D−(h, y)Λ(h, γ,M)

D−(g, y) + D−(h, y)

≤ max(Λ(g, γ,M),Λ(h, γ,M)).

Taking the supremum over x, y ≥ M with |x − y| ≤ γ and then sending M → ∞ gives
(2.8). �

We also want to bound Λ(gh, γ) for a pair of BRV functions g and h, which turns out to
be slightly more delicate, because (due to the Leibniz rule) we will need to control ratios of
values of g and h as well as their derivatives. The following proposition will be helpful.

Proposition 2.6. If g ∈ BRV and γ > 0, then

(2.9) lim
M→∞

sup

{
g(x)

g(y)
: x, y ≥ M, |x− y| ≤ γ

}
≤ Λ(g, 2γ) ≤ [Λ(g, γ)]2.
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Proof. Notice that the limit on the left-hand side of (2.9) exists since the sets in question are
decreasing in M . The second inequality in (2.9) follows from Proposition 2.3, so it remains
to to prove the first inequality in (2.9). Denoting Λ = Λ(g, 2γ), let us suppose for the sake
of contradiction that there exists δ > 0 such that

(2.10) sup

{
g(x)

g(y)
: x, y ≥ M, |x− y| ≤ γ

}
> Λ + δ

for every M . Fix 0 < ε < δ, and choose k ∈ N large enough that

(2.11) (Λ− 1 + δ)

k∑

j=1

(Λ + ε)−j > 1,

which can clearly be done since the left-hand side of (2.11) converges to

Λ− 1 + δ

Λ− 1 + ε
> 1.

Now, choose M large enough that M > kγ and

(2.12) Λ(g, 2γ,M − kγ) < Λ + ε.

By (2.10) and monotonicity of g, we may find x ≥ M for which g(x + γ)/g(x) > Λ + δ.
Naturally, this yields

(2.13)
g(x+ γ)− g(x)

γ
>

Λ− 1 + δ

γ
g(x).

Inductively applying (2.12) together with Lemma 2.2, we observe that

(2.14)
g(x− (j − 1)γ)− g(x− jγ)

γ
> (Λ + ε)−jΛ− 1 + δ

γ
g(x)

for all j = 0, 1, 2, . . . , k. Thus,

g(x− kγ) = g(x)− γ
k∑

j=1

g(x− (j − 1)γ)− g(x− jγ)

γ

< g(x)− γ

k∑

j=1

(Λ + ε)−jΛ− 1 + δ

γ
g(x)

= g(x)

(
1− (Λ− 1 + δ)

k∑

j=1

(Λ + ε)−j

)

< 0,

which is a contradiction. �

Proposition 2.7. Suppose g, h : R+ → R+ are admissible. For all γ > 0, one has

Λ(gh, γ) ≤ Λ(g, γ)Λ(h, γ)max[Λ(g, γ)Λ(h, γ)].(2.15)



ON SUMS OF SEMIBOUNDED CANTOR SETS 9

Proof. First, note that

D+(gh, x) = lim sup
z→x

g(z)h(z)− g(x)h(x)

z − x

≤ lim sup
z→x

g(z)h(z)− g(z)h(x)

z − x
+ lim sup

z→x

g(z)h(x)− g(x)h(x)

z − x

= g(x)D+(h, x) + h(x)D+(g, x).(2.16)

Similarly,

(2.17) D−(gh, x) ≥ g(x)D−(h, x) + h(x)D−(g, x).

Given ε > 0, choose M large enough that

(2.18) Λ(g, γ,M) < Λ(g, γ) + ε, Λ(h, γ,M) < Λ(h, γ) + ε

and use Proposition 2.6 to ensure that M is also large enough that

(2.19) g(x) ≤ g(y)[Λ(g, γ)2 + ε], h(x) ≤ h(y)[Λ(h, γ)2 + ε], ∀x, y ≥ M, |x− y| ≤ γ.

Let x, y ≥ M with |x−y| ≤ γ be given. Putting together (2.16), (2.17), (2.18), and (2.19)

D+(gh, x)

D−(gh, y)

≤
g(x)D+(h, x) + h(x)D+(g, x)

g(y)D−(h, y) + h(y)D−(g, y)

≤
[Λ(g, γ)2 + ε](Λ(h, γ) + ε)g(y)D−(h, y) + (Λ(g, γ) + ε)[Λ(h, γ)2 + ε]h(y)D−(g, y)

g(y)D−(h, y) + h(y)D−(g, y)

≤ max
(
[Λ(g, γ)2 + ε](Λ(h, γ) + ε), (Λ(g, γ) + ε)[Λ(h, γ)2 + ε]

)
.

Sending M → ∞ and ε ↓ 0 gives the desired result. �

Proposition 2.8. The sets TRV and BRV are closed under finite sums, products, and
scaling by positive constants.

Proof. This follows immediately from the bounds in Propositions 2.5 and 2.7. �

Let us now give some examples of functions with bounded relative variation.

Proposition 2.9.

(a) For any m > 0, g(x) = xm is an admissible TRV function.

(b) For any a, b > 0, g(x) = eax
b

is in BRV if and only if b ≤ 1 and in TRV if and only if
b < 1

Proof. Since these functions are differentiable, D+(g, x) = D−(g, x) = g′(x), which we use
throughout the proof.

(a) Denote g(x) = xm. If x, y ≥ M , |x− y| ≤ γ, and m ≥ 1 then

D+(g, x)

D−(g, y)
=

g′(x)

g′(y)
=

xm−1

ym−1
≤

(
y + γ

y

)m−1

≤
(
1 + γM−1

)m−1
,

which converges to one as M → ∞. A similar argument works when 0 < m < 1, but one
must bound things differently since t 7→ tm−1 is decreasing for m < 1.
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(b) Notice that g′(x) = abxb−1eax
b

. If x, y ≥ M , |x− y| ≤ γ, and 0 < b ≤ 1, we get

D+(g, x)

D−(g, y)
=

g′(x)

g′(y)
=

xb−1

yb−1
ea(x

b−yb) ≤ (1− γM−1)b−1ea((y+γ)b−yb).

The right-hand side converges to one as M → ∞ if b < 1 and converges to a finite value if
b = 1. On the other hand, if b = 1, then one can check that

g′(x+ γ)

g′(x)
= eaγ > 1,

for all x. This shows that g ∈ BRV\TRV. Similar calculations show that g /∈ BRV whenever
b > 1. �

Let us briefly note that every BRV function is exponentially bounded:

Corollary 2.10. If g ∈ BRV, then g is exponentially bounded, that is, g(x) ≤ AeBx for
constants A,B > 0.

Proof. Proposition 2.6 implies that for some ε > 0, some large x and all n ∈ N,

(2.20) g(x+ nγ) ≤ g(x)(Λ(g, γ)2 + ε)n.

The result follows by monotonicity. �

The converse of Corollary 2.10 fails: for any increasing function h, one can find an admis-
sible function in the complement of BRV that is dominated by h.

Example 2.11. For any continuous increasing function h : R+ → R+ such that h(x) → ∞
as x → ∞, there is an admissible function g such that g(x) ≤ h(x) for all sufficiently large
x and g /∈ BRV.

To see this, choose 0 = x0 < x1 < · · · so that h(xn) = n (and hence h(x) ≥ n for x ≥ xn).
Pick 0 = y0 < y1 < · · · such that

yn ≥ xn(2.21)

yn+1 − yn ≥ n(yn − yn−1) ∀n ∈ N.(2.22)

Define g to be continuous and piecewise affine with g(yn) = n/2 for each n ∈ Z+. Notice
that g is admissible, that the definition of g and (2.21) ensure g(x) ≤ h(x) for x ≥ x1, an
that (2.22) ensures that g /∈ BRV.

One can mollify this example to produce a smooth admissible g ∈ BRV having similar
properties.

3. Proofs of Main Theorems

Let us prove Theorems 1.6 and 1.7. Clearly the latter implies the former, so we focus on
proving Theorem 1.7. We follow the strategy from [8].

Lemma 3.1. Suppose g ∈ BRV, K ⊆ [M,∞) is compact, and diam(K) ≤ γ. Then,

(3.1) τ(g[K]) ≥ [Λ(g, γ,M)]−1τ(K).

Proof. If τ(K) = ∞, then K and g[K] are both intervals, and there is nothing to do, so
assume τ := τ(K) < ∞, and write I = [minK,maxK]. Given ε > 0, choose a presentation
U = {Un} such that τ(K,U) > τ − ε.
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For any two intervals B = [u, v], U = [v, w] from I such that

|B|

|U |
=

v − u

w − v
≥ τ − ε,

we have by Lemma 2.2

|g(B)|

|g(U)|
=

g(v)− g(u)

g(w)− g(v)
≥ [Λ(g, γ,M)]−1 v − u

w − v
≥ [Λ(g, γ,M)]−1(τ − ε).

A similar estimate holds for intervals situated in the other order, that is, B = [u, v],
U = [w, u]. Therefore, gU = {g[Un]} is a presentation of g[K] satisfying τ(g[K], gU) ≥
[Λ(g, γ,M)]−1(τ − ε). Thus,

(3.2) τ(g[K]) ≥ [Λ(g, γ,M)]−1(τ − ε).

Since this holds for arbitary ε > 0, the lemma follows. �

Lemma 3.2. If K ⊆ R is compact and τ(K) > β, then the longest gap length of K satisfies

(3.3) γ(K) ≤
diam(K)

1 + 2β
.

Proof. Write I for the convex hull of K so that diam(K) = |I|. If the longest gap U of K

satisfies |U | > |I|
1+2β

, I \U has two components, one of which must have length no larger than

|I| − |U |

2
<

1− 1
1+2β

2
|I| =

β

1 + 2β
|I|.

Thus, for (at least) one endpoint u of U , one has

τ(K,U , u) ≤

β
1+2β

|I|
1

1+2β
|I|

= β

for every presentation U of K, leading to τ(K) ≤ β. The result follows. �

Proof of Theorem 1.7. Assume g ∈ BRV, F ⊆ R+ is (A, a, 1 + ε)-thick, and let {Kn}
∞
n=0 be

an ordered fragmentation of F satisfying (1.4), (1.5), and (1.6). Denote K̃n = g(Kn), let In
denote the convex hull of Kn, and assume

(3.4) Λ(g, A) < min

{√
1 + ε

1 + ε
2

,
5

√
3

2
,

3

√
A

a

}
.

We may also choose M large enough that Λ(g, A,M) is strictly less than the right-hand side
of (3.4) as well.

By Lemma 3.1 and (3.4), if n is large enough that Kn ⊆ [M,∞), one has

τ(K̃n) ≥ [Λ(g, 2A,M)]−1(1 + ε) ≥ [Λ(g, A,M)]−2(1 + ε)

>

[
1 + ε

1 + ε
2

]−1

(1 + ε)

= 1 +
ε

2
,

and thus τ(K̃n) > 1 + ε
2
for all sufficiently large n. Consequently, the sum K̃n + K̃n is an

interval by Remark 1.4.
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Next, let us show that for all sufficiently large n, each of the sets K̃n and K̃n+1 has diameter

larger than the largest gap of the other. In that case Lemma 1.3 will imply that K̃n + K̃n+1

is an interval. Write In = [xn, yn] for each n. By our assumptions, we have

(3.5) A ≤ yn − xn ≤ 2A, xn+1 − yn ≤ a

for every n. Since we already know that τ(K̃n+1) > 1, Lemma 3.2 implies that the largest

gap of K̃n+1 is not greater than 1
3
(g(yn+1) − g(xn+1)), and the diameter of K̃n is equal to

g(yn)− g(xn). Now observe

g(yn)− g(xn)
1
3
[g(yn+1)− g(xn+1)]

≥ [Λ(g, 4A+ a,M)]−1 yn − xn

1
3
(yn+1 − xn+1)

≥ [Λ(g, A,M)]−53A

2A

>

[
3

2

]−1
3

2

= 1,

by (3.4). Consequently, for all sufficiently large values of n, the diameter of K̃n is greater

than the largest gap of K̃n+1. Similarly one can show that for all sufficiently large values of

n, the diameter of K̃n+1 is greater than the largest gap of K̃n.

Consequently, the sets Jn := K̃n + K̃n and J ′
n := K̃n + K̃n+1 are intervals for large n.

Let us show that they cover a half line. To conclude, it suffices to verify Jn ∩ J ′
n 6= ∅ and

J ′
n ∩ Jn+1 6= ∅.
Recall In = [xn, yn]. It follows from our discussion above that

Jn = [2g(xn), 2g(yn)],

Jn+1 = [2g(xn+1), 2g(yn+1)],

J ′
n = [g(xn) + g(xn+1), g(yn) + g(yn+1)].

To show that Jn is not disjoint from J ′
n we need to check that 2g(yn) ≥ g(xn) + g(xn+1). To

that end, note that

g(yn)− g(xn)

g(xn+1)− g(yn)
≥ [Λ(g, 2A+ a,M)]−1 yn − xn

xn+1 − yn

≥ [Λ(g, A,M)]−3A

a
> 1,

again by (3.4).
One can show that J ′

n is not disjoint from Jn+1 from an almost identical argument.
Putting everything together, the set

⋃

n≥n0

(Jn ∪ J ′
n) ,

is a half line for large enough n0. Since this set is contained in F̃ + F̃ , we are done. �

Proof of Theorem 1.6. This follows from Theorem 1.7. �
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Let us comment on the assumptions and why they are necessary. Consider first any
semibounded closed set F ⊆ R+ with ordered fragmentation {Kn}. One can clearly choose a
smooth, nondecreasing function f ∈ C∞(R+) that satisfies f |Kn

≡ n for each n ≥ 0. Clearly
then

F̃ + F̃ = Z+

which certainly does not contain a half-line. Of course, this f is clearly not admissible.
However, one can certainly perturb about this situation somewhat. Concretely, one can
choose f : R+ → R+ smooth and increasing with K̃n = f [Kn] ⊆ [n − ε, n + ε] for n ∈ Z+.

One still sees that F̃+F̃ is contained in the 2ε-neighborhood of Z+. Evidently, the mechanism
that produces this is that f ′ ∼ ε/A on the convex hull of Kn while f ′ ∼ 1/a in between
successive Kn’s, leading to relative variations of f ′(x) = D±(f, x) on the order of A

εa
.

Let us conclude the present section with the proof of Theorem 1.10. Since this is similar
to that of Theorem 1.7, we will only give the main steps.

Proof of Theorem 1.10. Choose a0, τ0 > 0 such that

(3.6) τ0 > R7, a0 < A/R3.

Since R > 1, note additionally that a0 < A. Now, assume Λ(g, A) ≤ R and that F is
(A, a, τ)-thick with 0 < a ≤ a0 and τ ≥ τ0, let {Kn} denote an ordered fragmentation of F
satisfying (1.4), (1.5), and (1.6), and use the same notation as in the proof of Theorem 1.7.
Using Proposition 2.3, we note

(3.7) Λ(g, 2A) < R2,

so following the steps at the beginning of the proof of Theorem 1.7, we have τ(K̃n) ≥ τ0/R
2 >

R5 > 1 for large enough n.
For large enough n that the previous thickness statement holds true, the largest gap of

K̃n+1 is smaller than g(yn+1)−g(xn+1)
2R5+1

by Lemma 3.2, and we have

g(yn)− g(xn)
1

2R5+1
(g(yn+1)− g(xn+1)

≥ R−5 A
1

2R5+1
2A

> 1,

showing that the diameter of K̃n exceeds the size of the largest gap of K̃n+1 for large enough
n (and vice versa by the same argument). The assumption on a0 ensures that

Λ(g, 2A+ a) ≤ Λ(g, 3A) ≤ R3 < A/a

for large enough n. These ingredients suffice to apply the arguments of the previous proof
and conclude that F̃ + F̃ contains a half-line. �

4. Examples Not Containing Half-Lines

We now turn towards the construction of suitable examples whose sums do not contain
half-lines when the assumptions of the main theorems are not met.

Lemma 4.1. Suppose

(4.1) F ⊆
∞⋃

n=0

[xn, yn]
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where xn < yn < xn+1 for every n, and suppose that for some N0, one has

(4.2) 2yn − x0 < xn+1 ∀n ≥ N0.

Then F + F does not contain a half-line.

One can generalize this to sums consisting of more than two sets, which may be dis-
tinct. We shall do that presently and derive Lemma 4.1 as a consequence of a more general
statement.

Definition 4.2. For F1, . . . , Fd ⊆ R, define

(4.3)

d∑

j=1

Fj = F1 + · · ·+ Fd =

{
d∑

j=1

aj : aj ∈ Fj ∀1 ≤ j ≤ d

}
.

Lemma 4.3. Suppose for j = 1, 2, . . . , d

(4.4) Fj ⊆
∞⋃

n=0

[xn,j , yn,j]

is contained in a union of closed, bounded intervals such that xn,j < yn,j < xn+1,j for all
n ≥ 0 and j = 1, 2, . . . , d. If for some N0, one has

(4.5)

d∑

j=1

yn,j < min
k=1,2,...,d

(
xn+1,k +

∑

j 6=k

x0,j

)
∀n ≥ N0.

Then
∑d

j=1 Fj does not contain a half-line.

Proof. Denote F =
∑d

j=1 Fj , and define In,j = [xn,j, yn,j]. For k = 1, 2, . . . , d and n ≥ 0,

define the (n, k)-stratum by

Sn,k =
⋃

0≤n1,n2,...,nd≤n
nk=n

d∑

j=1

Inj ,j.

For n ≥ 0, define

Sn =

d⋃

k=1

Sn,k, T−
n =

n⋃

m=0

Sm, T+
n =

∞⋃

m=n+1

Sm.

and note that

F ⊆ T−
n ∪ T+

n ∀n ∈ N.

Since

max(T−
n ) =

d∑

j=1

yn,j and min(T+
n ) = min

k=1,2,...,d

(
xn+1,k +

∑

j 6=k

x0,j

)
,

our assumption (4.2) yields

(4.6) ∅ 6= Gn := (maxT−
n ,minT+

n ) ⊆ R \ F ∀n ≥ N0,

which suffices to show that F does not contain a half-line. �

Proof of Lemma 4.1. This follows immediately from Lemma 4.3. �
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Proof of Theorem 1.11. Let F be a-sparse, and write

F =

∞⋃

n=0

Kn

for an ordered fragmentation with dist(Kn, Kn+1) ≥ a. Writing [xn, yn] for the convex hull
of Kn, note that

F̃ ⊆
∞⋃

n=0

[x̃n, ỹn]

with x̃n = erxn, ỹn = eryn. By assumption ra ≥ log 2, so we observe

2ỹn − x̃0 = 2eryn − erx0

≤ er(yn+a) − erx0

≤ erxn+1 − erx0

= x̃n+1 − erx0

< x̃n+1,

in which the third line follows from sparsity. Thus the claim follows from Lemma 4.1. �

Definition 4.4. Given constants A, a > 0, let F (A, a) denote a union of intervals of length
A separated by a uniform distance of a between consecutive intervals, that is,

F (A, a) =
∞⋃

n=0

[n(A+ a), n(A + a) + A].

This can be used to show that the bound ra ≥ log 2 is sharp for constructing counterex-
amples that do not contain a half-line.

Proposition 4.5. Let A, a, r > 0 and d ≥ 2 be given, and consider g(x) = erx and F̃ =
g[F (A, a)].

(a) If

(4.7) ra ≥ log(2),

then F̃ + F̃ does not contain a half-line.
(b) If

(4.8) ra < log(2)

and A is sufficiently large, then F̃ + F̃ contains a half-line.

Proof. (a) Assume that ra ≥ log(2). Since F (A, a) is clearly a-sparse, this follows from
Theorem 1.11.

(b) On the other hand, suppose ra < log(2) and choose A large enough that

(4.9) e−rA + era < 2, e−ra + erA > 2.

Define xn = n(A+ a), yn = n(A+ a) + A, x̃n = erxn, and ỹn = eryn so that

F =

∞⋃

n=0

[xn, yn], F̃ =

∞⋃

n=0

[x̃n, ỹn]
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Observe that F̃ + F̃ contains the intervals Jn = [2x̃n, 2ỹn] and J ′
n = [x̃n + x̃n+1, ỹn + ỹn+1].

Observe that (4.9) yields

2ỹn = 2ern(A+a)+rA

> (e−rA + era)ern(A+a)+rA

= ern(A+a) + er(n+1)(A+a)

= x̃n + x̃n+1.(4.10)

Similarly, (4.9) gives

ỹn+1 + ỹn = er(n+1)(A+a)+rA + ern(A+a)+rA

= er(n+1)(A+a)(erA + e−ra)

> 2er(n+1)(A+a)

= 2x̃n+1.(4.11)

Thus, F̃ + F̃ contains ⋃

n

Jn ∪ J ′
n,

which contains a half-line in view of (4.10) and (4.11). �
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[8] D. Damanik, J. Fillman, and A. Gorodetski. Multidimensional Schrödinger operators
whose spectrum features a half-line and a Cantor set. J. Funct. Anal., 280(7):Paper No.
108911, 38, 2021.

[9] D. Damanik and A. Gorodetski. Spectral and quantum dynamical properties of the
weakly coupled Fibonacci Hamiltonian. Comm. Math. Phys., 305(1):221–277, 2011.

[10] D. Damanik and A. Gorodetski. The density of states measure of the weakly coupled
Fibonacci Hamiltonian. Geom. Funct. Anal., 22(4):976–989, 2012.

[11] D. Damanik, A. Gorodetski, and W. Yessen. The Fibonacci Hamiltonian. Invent. Math.,
206(3):629–692, 2016.



ON SUMS OF SEMIBOUNDED CANTOR SETS 17

[12] D. Damanik and D. Lenz. A condition of Boshernitzan and uniform convergence in the
multiplicative ergodic theorem. Duke Math. J., 133(1):95–123, 2006.

[13] P. Hege, M. Moscolari, and S. Teufel. Finding spectral gaps in quasicrystals. preprint,
2022. arXiv:2205.10622.

[14] B. Helffer and A. Mohamed. Asymptotic of the density of states for the Schrödinger
operator with periodic electric potential. Duke Math. J., 92(1):1–60, 1998.

[15] A. Hof. Some remarks on discrete aperiodic Schrödinger operators. J. Statist. Phys.,
72(5-6):1353–1374, 1993.

[16] A. Hof. A remark on Schrödinger operators on aperiodic tilings. J. Statist. Phys., 81(3-
4):851–855, 1995.

[17] Y. Karpeshina. Perturbation theory for the Schrödinger operator with a periodic poten-
tial, volume 1663 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.

[18] S. Klassert, D. Lenz, and P. Stollmann. Discontinuities of the integrated density of states
for random operators on Delone sets. Comm. Math. Phys., 241(2-3):235–243, 2003.

[19] D. Lenz, C. Seifert, and P. Stollmann. Zero measure Cantor spectra for continuum
one-dimensional quasicrystals. J. Differential Equations, 256(6):1905–1926, 2014.

[20] D. Lenz and P. Stollmann. Delone dynamical systems and associated random opera-
tors. In Operator algebras and mathematical physics (Constanţa, 2001), pages 267–285.
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