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ELEMENTARY PROOFS OF REPRESENTATION BY TERNARY QUADRATIC FORMS

BENJAMIN RAINEAR AND KATHERINE THOMPSON

Abstract. Mordell in 1958 [15] gave a new proof of the three squares theorem. Those techniques were general-

ized by Blackwell, et al., in 2016 [1] to characterize the integers represented by the remaining six “Ramanujan-

Dickson ternaries”. We continue the generalization of these techniques to four additional forms.

1. Introduction

The theory of quadratic forms has a long and rich history. Of particular interest is the question of represen-

tation of an integer by a form. In studying universal and almost universal positive definite forms (which, in

particular, concerns four or more variables), knowing which integers are represented by ternary subforms

not only is key from both theoretical and computational purposes, but also is a delicate and nontrivial matter.

The four-squares theorem of Lagrange appeared in 1770, and the three-squares theorem of Legendre did not

appear until 1797. And yet, assuming the three-squares theorem, the proof of the four squares theorem is at

most a few lines. Even much more recent results such as the 451 paper of Rouse [18], which gives conditions

under which quadratic forms are guaranteed to represent all odd positive integers, makes assumptions about

certain ternary subforms–conditional on the Generalized Riemann Hypothesis; in considering the 24888

escalators Rouse used knowledge of ternary subforms to handle 9812 of these cases. Among these was a

form where, if instead one took a more standard analytic approach and considered its corresponding theta

series, would have required looking at a space of modular forms where the cuspidal subspace was 2604

dimensional.

This project is heavily influenced by recent work of the second author in Blackwell et al. [1]. Many of

the results in that paper were not new; however, it was the technique that was unique. Concentrating mainly

on the Ramanujan-Dickson ternaries (which, in particular, were ternary forms of determinant at most 10),

the authors showed which positive were represented by certain positive definite ternary forms. Proving

what fails to be represented by a quadratic form is typically simple and straightforward; it is proving that

m ∈ N is represented that is challenging. The authors began with a generic quadratic form of determinant

D. They then showed a series of congruence conditions simultaneously held which guaranteed that the form

in question represented a particular m ∈ N, and also represented values that inequivalent forms of the same

determinant D failed to represent.

As noted in the abstract, this paper begins by considering ternary forms not handled in [1]; indeed, the

forms considered here are not as famous as the Ramanujan-Dickson forms and the following representation

results do not seem to appear anywhere else in the literature. More crucially, we consider determinants D
much higher than those considered before, thus forcing many more candidate forms to be simultaneously

eliminated. Last, we note that in [1] those excepted values by the other candidates happened to lie in the

same congruence class, a congruence class which in turn had little to do directly with the determinant of the

form. That is not the case here. The excepted values of the other candidates of determinant D are of the

form Dk, where k is a quadratic nonresidue modulo D. While in [1] it was designed so that x = 1, y = z = 0

would be a vector so that Q(x, y, z) produces an excepted value, that is not possible here because of what

specifically is not represented by the other forms of determinant D. Therefore, the arguments for specific
1
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vector evaluation and subsequent elimination of other candidate forms are much more intricate.

Our main results are:

Theorem 1. A positive integer m is represented by 2x2+2xy+2xz+2y2+2yz+3z2 if and only if m , 4k(8ℓ+1).

Theorem 2. A positive integer m is represented by x2 + 2y2 + 2yz + 6z2 if and only if m , 4k(8ℓ + 5).

Theorem 3. A positive integer m is represented by x2 + 3y2 + 2yz + 5z2 if and only if m , 4k(16ℓ + 2).

Theorem 4. A positive integer m is represented by 2x2 + 2xy+ 3y2 + 2yz+ 5z2 if and only if m , 4k(8ℓ + 1).

The remainder of the paper is organized as follows: after a brief but more detailed background section,

we proceed to the proofs of the theorems in order. As these proofs are constructive, we end with concrete

examples.

2. Background

For general references on the theory of quadratic forms, we refer the reader to [3] and [13].

A n-ary quadratic form over Z is a polynomial Q : Zn → Z given by

Q(~x) =
∑

1≤i≤ j≤n

ai jxix j ∈ Z[x1, ..., xn].

We say a quadratic form is positive definite if Q(~x) ≥ 0 for all ~x ∈ Zn and if Q(~x) = 0 if and only if ~x = ~0.

To each quadratic form there is an associated symmetric matrix AQ ∈ Mn

(

1
2
Z

)

whose entries ci j are given

by

ci j =















ai j, i = j

ai j/2, i , j.

With this, we note that ~x T AQ~x = Q(~x). When AQ ∈ Mn(Z) we say that Q is classically integral. We say

that the determinant det(Q) = det(AQ). Last, we say that two forms Q and Q′ are equivalent if there exists

M ∈ S Ln(Z) such that MtAQM = AQ′ .

From now on, when we use the word “form” we mean “ternary, positive definite, classically integral qua-

dratic form.”

In [1] the main idea was as follows: to show that some square-free m ∈ N is represented by a form R
of determinant D, suppose

mR(x, y, z) = (Ax + By + mz)2 + ax2 + 2hxy + by2.

If one can show all of the following conditions hold for some integers A, B, h, b, a:

• ab − h2 = Dm;

• A2 + a ≡ B2 + b ≡ 2AB + 2h ≡ 0 (mod m);

•

(

−Dm

a

)

= 1 =

(

−a

p

)

where p|m is prime;

• R(~x) = k where k ∈ N is not represented by forms Q′ of determinant D with Q′ not equivalent to Q,

then R must be equivalent to Q. We continue to use this same basic approach. However, in [1] simplicities

were made that can no longer be afforded. Namely, they took b ≡ B ≡ h ≡ 0 (mod m), and they made
A2+a

m = k (therefore, ~x = (1, 0, 0)). Here, we do not (necessarily) have b ≡ B ≡ h ≡ 0 (mod m), and



ELEMENTARY PROOFS OF REPRESENTATION BY TERNARY QUADRATIC FORMS 3

moreover, we have (with one exception) ~x = (1, 1, 0).

We note that the choice of b ≡ B ≡ h ≡ 0 (mod m) in [1] was to make 2AB + 2h ≡ 0 (mod m) imme-

diate. One key realization here is that once A and B have been determined so that A2 + a ≡ B2 + b ≡ 0

(mod m), even if A, B . 0 (mod m), one still can ensure 2AB+ 2h ≡ 0 (mod m) and in fact that AB+ h ≡ 0

(mod m). For a prime p|m:

(AB + h)2 ≡ A2B2 + 2ABh + h2 (mod p)

(AB + h)2 ≡ h2 + 2ABh + h2 (mod p)

(AB + h)2 − 2h(h + AB) ≡ 0 (mod p)

(AB + h)(AB − h) ≡ 0 (mod p).

And so, AB + h ≡ 0 (mod p) can be ensured for all p|m, which by the Chinese Remainder Theorem

guarantees AB + h ≡ 0 (mod m) has a solution.

3. Proof of Theorem 1

In this section, we provide a proof of Theorem 1, noting that there are three forms of determinant 7: Q1 :

2x2 + 2xy + 2xz + 2y2 + 2yz + 3z2, Q2 : x2 + y2 + 7z2, Q3 : x2 + 2y2 + 4z2 + 2yz.

Lemma 1. For any m ≡ 1 (mod 8), Q1 does not represent m.

Proof. This is a simple exercise left to the reader. �

Lemma 2. If m is odd, 4m is represented by Q1 if and only if m is.

Proof. One direction is trivial. So suppose 4m is represented, where m is odd. Note that then 4m ≡ 4

(mod 8). By a computer search, one can determine that this forces all of x, y, z to be even. Substituting

x = 2X, y = 2Y, z = 2Z we have

4m = 4(2X2) + 4(2XY) + 4(2XZ) + 4(2Y2) + 4(2YZ) + 4(3Z2)

and dividing through, we see m is represented by Q1. �

Lemma 3. If m = 4k(8ℓ + 1) for integers k, ℓ, then m is not represented by Q1.

Proof. This follows immediately from the previous two lemmas. �

Lemma 4. If m = 7n where n ≡ 3, 5, 6 (mod 7), then m is not represented by Q2.

Proof. Suppose that Q2 represents 7n for some n ∈ Z. Then necessarily x ≡ y ≡ 0 (mod 7), and substituting

x = 7X and y = 7Y we see

49X2 + 49Y2 + 7z2 = 7n

7X2 + 7Y2 + z2 = n.

This implies that n is a quadratic residue modulo 7. �

Lemma 5. If m = 7n where n ≡ 3, 5, 6 (mod 7) then m is not represented by Q3.

Proof. A computer search shows that for Q3 to represent any number divisible by 7, x ≡ 0 (mod 7). More-

over, modulo 7, (y, z) ∈ {±(1, 5),±(2, 3),±(3, 1)}. Consider the first case, writing x = 7X, y = 7Y + 1 and

z = 7Z + 5:

49X2 + 2(7Y + 1)2 + 4(7Z + 5)2 + 2(7Y + 1)(7Z + 5) = 7n

7X2 + 14Y2 + 14Y + 14YZ + 28Z2 + 42Z + 16 = n.
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This implies that n ≡ 2 (mod 7). Similarly, substituting y = 7Y + 2, z = 7Z + 3 we have

49X2 + 2(7Y + 2)2 + 4(7Z + 3)2 + 2(7Y + 2)(7Z + 3) = 7n

7X2 + 14Y2 + 14Y + 14YZ + 28Z2 + 28Z + 8 = n,

which means n ≡ 1 (mod 7). Last, with y = 7Y + 3, z = 7Z + 1 we have

49X2 + 2(7Y + 3)2 + 4(7Z + 1)2 + 2(7Y + 3)(7Z + 1) = 7n

7X2 + 14Y2 + 14YZ + 28Z2 + 14Z + 4 = n,

and n ≡ 4 (mod 7). �

Now we suppose m . 1 (mod 8) is squarefree. We will show m is represented by Q1. We proceed by cases.

In the interest of space, and so as not to belabor the reader with repetition, we make note of when cases

become identical to those completed in more detail.

(Case 1) Suppose m ≡ 3 (mod 4). We choose a ≡ 1 (mod 4) and a ≡ 3 (mod 49) a prime such that (−a
p ) = 1

for all primes p|m. This guarantees
(

−7m

a

)

=

(

−1

a

) (

7

a

)

(m

a

)

= 1 =

(

−a

m

)

.

Considering the equation ab−h2 = 7m, we see that modulo 7, (b, h) ∈ {(0, 0), (3,±3), (5,±1), (6,±2)}.

Switching h with −h as necessary, we can safely assume modulo 7, (b, h) ∈ {(0, 0), (3, 4), (5, 1), (6, 2)}.

This automatically guarantees there is a solution to

(A + B)2 + a + b + 2h ≡ 0 (mod 7)

which means that Q will represent multiples of seven. Moreover, for all but the case where (b, h) =

(3, 4) there are solutions to each of

(A + B)2 + a + b + 2h ≡ 0, 7, 14, 21, 28, 35, 42 (mod 49)

This will guarantee that when x ≡ y ≡ 1 (mod 49) and z = 0, Q will represent 7n where n is a

quadratic nonresidue modulo 7 (setting the equation to 21, 35, 42 (mod 42) when m is a quadratic

residue (mod 7) and to 7, 14, 28 when m is a quadratic nonresidue (mod 7) ). In the case where

(b, h) = (3, 4) there is a solution to

4A2 + 4AB + B2 + 4a + b + 4h ≡ 22(A2 + a) + 2(2AB + 2h) + B2 + b ≡ 0, 7, 14, 21, 28, 35, 42 (mod 49)

which means when x ≡ 2 (mod 49), y ≡ 1 (mod 49) and z = 0 then Q will represent 7n where n
is a quadratic nonresidue modulo 7 (with similar restrictions based on m being a quadratic residue

(mod 7) or not.). Regardless, in each case A and B are predetermined (mod m), such that A2 + a ≡
B2 + b ≡ 2(AB + h) ≡ 0 (mod m).

(Case 2) Suppose m ≡ 6 (mod 8). Then m = 2m′ where m′ ≡ 3 (mod 4). Choose a ≡ 1 (mod 8) and a ≡ 3

(mod 49) to be prime, where additionally (−a
p ) = 1 for all primes p|m′. This guarantees

(

−7m

a

)

=

(

−1

a

) (

7

a

) (

2

a

) (

m′

a

)

= 1 =

(

−a

m

)

.

The rest of this case is identical to (Case 1).

(Case 3) Suppose m ≡ 5 (mod 8). Let a = 2a′ where a′ is a prime satisfying a′ ≡ 26 (mod 49), a′ ≡ 1

(mod 4) and where for all p|m, (−2a′

p ) = 1. This guarantees
(

−7m

a′

)

=

(

−1

a′

) (

7

a′

)

(m

a′

)

= 1 =

(

−a

m

)

.

Moreover, if a′ ≡ 26 (mod 49), 2a′ ≡ 3 (mod 49). That means the rest of this case will reduce to

(Case 1).
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(Case 4) Suppose m ≡ 2 (mod 8). Then m = 2m′ where m′ ≡ 1, 5 (mod 8). Let a ≡ 5 (mod 8) and a ≡ 3

(mod 49) be prime with (−a
p ) = 1 for all primes p|m′. This guarantees

(

−7m

a

)

=

(

−1

a

) (

7

a

) (

2

a

) (

m′

a

)

= 1.

The rest of this case is identical to (Case 1).

4. Proof of Theorem 2

There are three forms of determinant 11: Q1 : x2 + 2y2 + 2yz + 6z2, Q2 : x2 + y2 + 11z2, and Q3 :

x2 + 3y2 + 2yz + 4z2.

Lemma 6. If m ≡ 5 (mod 8), then Q1 does not represent m.

Proof. This is a simple proof by exhaustion and is left to the reader. �

Lemma 7. A natural number m ∈ N is represented by Q1 if and only if 4m is.

Proof. One direction is trivial. Suppose 4m is represented by Q1. Looking (mod 2) this implies x is even.

Looking then (mod 4), we see that y and z cannot both be odd; however, any one of them even forces the

other to be even. Writing x = 2X, y = 2Y, z = 2Z and dividing through by 4 gives the result. �

Lemma 8. If m = 4k(8ℓ + 5) then m is not represented by Q1.

Proof. This follows immediately from the previous lemmas. �

Lemma 9. If m = 11n where n is a quadratic nonresidue modulo 11, then m is not represented by Q2.

Proof. Without loss of generality, suppose m is squarefree. Suppose Q2 represents m = 11n. This immedi-

ately forces x ≡ y ≡ 0 (mod 11). Substituting x = 11X and y = 11Y this means

121X2 + 121Y2 + 11z2 = 11n

11X2 + 11Y2 + z2 = n

which means that n is a quadratic residue modulo 11. �

Lemma 10. If m = 11n where n is a quadratic nonresidue modulo 11, then m is not represented by Q3.

Proof. For Q3 to represent any multiple of 11, we must have x ≡ 0 (mod 11). Assuming that m is squarefree,

this moreover, modulo 11, means (y, z) ∈ {±(1, 8),±(2, 5),±(3, 2),±(4, 10),±(5, 7)}. Again, we proceed by

cases. Writing first y = 11Y + 1 and z = 11Z + 8 gives

121X2 + 3(11Y + 1)2 + 4(11Z + 8)2 + 2(11Y + 1)(11Z + 8) = 11n

11X2 + 33Y2 + 44Z2 + 22Y + 66Z + 22YZ + 25 = n

which means that n ≡ 3 (mod 11).

Next if y = 11Y + 2, z = 11Z + 5 we have

121X2 + 3(11Y + 2)2 + 4(11Z + 5)2 + 2(11Y + 2)(11Z + 5) = 11n

11X2 + 33Y2 + 44Z2 + 22Y + 44Z + 22YZ + 12 = n

which means n ≡ 1 (mod 11). Supposing next y = 11Y + 3 and z = 11Z + 2 we see

121X2 + 3(11Y + 3)2 + 4(11Z + 2)2 + 2(11Y + 3)(11Z + 2) = 11n

11X2 + 33Y2 + 44Z2 + 22Y + 22Z + 22YZ + 5 = n
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and again n is a quadratic residue modulo 11. When y = 11Y + 4 and z = 11Z + 10 we have

121X2 + 3(11Y + 4)2 + 4(11Z + 10)2 + 2(11Y + 4)(11Z + 10) = 11n

11X2 + 33Y2 + 44Z2 + 44Y + 88Z + 22YZ + 48 = n

which makes n ≡ 4 (mod 11). Last, if y = 11Y + 5 and z = 11Z + 7:

121X2 + 3(11Y + 5)2 + 4(11Z + 7)2 + 2(11Y + 5)(11Z + 7) = 11n

11X2 + 33Y2 + 44Z2 + 44Y + 66Z + 22YZ + 31 = n

and n ≡ 9 (mod 11). �

Next, suppose that m , 5 (mod 8) is squarefree. This gives the following cases:

(Case 1) m ≡ 1 (mod 8). We set a = 2a1, where a1 is an prime satisfying a1 ≡ 1 (mod 4) and a1 ≡ 1

(mod 121) and (−a
p ) = 1, for all primes p|m. This guarantees

(

−11m

a

)

=

(

−a

m

)

= 1.

Replacing h with −h as necessary, we can assume (b, h) (mod 11) ∈ {(0, 0), (2, 2), (6, 1), (7, 5), (8, 4), (10, 3)}.

This automatically guarantees a solution to

(A + B)2 = a + b + 2h ≡ 0 (mod 11)

which means that Q will represent multiples of 11. Moreover, for each pair (b, h) there are solutions

to

(A + B)2 + a + b + 2h ≡ 11k (mod 121)

for k = 0, 1, 2, ..., 10. This will guarantee that when x ≡ y ≡ 1 (mod 121) and z = 0, Q will represent

11k where k is a quadratic nonresidue modulo 11 (setting the equation to 11, 33, 44, 55, 99 when m
is a quadratic residue (mod 11) and to 22, 55, 66, 77, 88, 110 when m is a quadratic nonresidue

(mod 11)).

(Case 2) m ≡ 2 (mod 8). We start with writing m = 2ℓ, where ℓ ≡ 1 (mod 4). To ensure

(

−11m

a

)

=

(

−a

m

)

= 1

we set a to be a prime satisfying a ≡ 5 (mod 8), a ≡ 2 (mod 121), and (−a
p ) = 1 for all odd p|m.

The rest of the proof then follows (Case 1).

(Case 3) m ≡ 3 (mod 4). Here we choose a prime a ≡ 1 (mod 4), a ≡ 2 (mod 121) and (−a
p ) = 1 for all

primes p|m. Then
(

−11m

a

)

=

(

−a

m

)

= 1

and the rest of the proof mimics (Case 1).

(Case 4) m ≡ 6 (mod 8). We write m = 2ℓ, where ℓ ≡ 3 (mod 4). Here we choose a prime satisfying a ≡ 1

(mod 8), a ≡ 2 (mod 121), and (−a
p ) = 1 for all primes p|m. Then

(

−11m

a

)

=

(

−a

m

)

= 1

and the rest of the proof follows like the others.
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5. Proof of Theorem 3

There are three forms of determinant 14: Q1 : x2 + 3y2 + 2yz + 5z2, Q2 : x2 + y2 + 14z2, Q3 : x2 + 2y2 + 7z2.

Lemma 11. If m ≡ 2 (mod 16) then m is not represented by Q1.

Proof. We leave the proof to the reader. �

Lemma 12. Let m be even. Then m is represented by Q1 if and only if 4m is represented by Q1.

Proof. For the nontrivial direction, if m is even, then 4m ≡ 0 (mod 8), which forces x, y, z all even. �

Lemma 13. If m = 4k(16ℓ + 2), then m is not represented by Q1.

Proof. This follows from the previous lemmas. �

Lemma 14. If m = 7n where n is a quadratic nonresidue modulo 7, then m is not represented by Q2.

Proof. Suppose m = 7n is squarefree and is represented by Q2. This forces x ≡ y ≡ 0 (mod 7). Substituting

x = 7X and y = 7Y and simplifying gives

7X2 + 7Y2 + 2z2 = n

which means that n is a quadratic residue modulo 7. �

Lemma 15. If m = 7n where n is a quadratic nonresidue modulo 7, then m is not represented by Q3.

Proof. Suppose m = 7n is squarefree and is represented by Q2. This forces x ≡ y ≡ 0 (mod 7). Substituting

x = 7X and y = 7Y and simplifying gives

7X2 + 14Y2 + z2 = n

which means that n is a quadratic residue modulo 7. �

We now proceed to show that if m . 2 (mod 16) is squarefree, then m is represented by Q1. Again, we

proceed by caess.

(Case 1) Suppose m ≡ 1 (mod 4). Choose a prime a such that (−a
p ) = 1 for all p|m, where additionally a ≡ 5

(mod 8) and a ≡ 3 (mod 49). This ensures that
(

−14m

a

)

=

(

−1

a

) (

2

a

) (

7

a

)

(m

a

)

= 1.

Though the equation to consider now is ab − h2 = 14m, this now behaves identically to the proof of

Theorem 1 (Case 1).

(Case 2) Suppose m ≡ 3 (mod 4). Choose a prime a such that (−a
p ) = 1 for all p|m, where additionally a ≡ 1

(mod 8) and a ≡ 3 (mod 49). This ensures that
(

−14m

a

)

=

(

−1

a

) (

2

a

) (

7

a

)

(m

a

)

= 1.

This now behaves like (Case 1).

(Case 3) Let m ≡ 6, 14 (mod 16). Then m = 2m′ where m′ ≡ 3, 7, 11, 15 (mod 16). Let a ≡ 1 (mod 8) and

a ≡ 3 (mod 49), and (−a
p ) = 1 for all p|m′. This is enough to guarantee that

(

−14m

a

)

=

(

−1

a

) (

2

a

)2 (

7

a

) (

m′

a

)

= 1.

The proof now follows (Case 1)



8 BENJAMIN RAINEAR AND KATHERINE THOMPSON

(Case 4) Let m ≡ 10 (mod 16). Then m = 2m′ where m′ ≡ 5, 13 (mod 16). We note that the total number of

primes p|m which are congruent to either 5 or 7 (mod 8) is odd. With that, we take a = 2a′ where

a′ is prime, satisfying a′ ≡ 1 (mod 8), a′ ≡ 26 (mod 49), and
(

−2a′

p

)

= 1 for all p|m′. This gives

(

−14m

a′

)

=

(

−1

a′

) (

2

a′

)2 (

7

a′

) (

m′

a′

)

= 1.

Moreover, we note that 2a′ ≡ 3 (mod 49), which means next considering 2a′b − h2 = 14m we are

reduced to earlier cases.

6. Proof of Theorem 4

We begin by noting there are five forms of determinant 23: Q1 : 2x2+2xy+3y2+2yz+5z2, Q2 : x2+y2+23z2,

Q3 : x2 + 2y2 + 2yz + 12z2, Q4 : x2 + 3y2 + 2yz + 8z2, and Q5 : x2 + 4yz + 2yz + 6z2.

Lemma 16. If m ≡ 1 (mod 8) then Q1 does not represent m.

Proof. Left to reader. �

Lemma 17. Let m ∈ N be odd. Then Q1 represents m if and only if Q1 represents 4m.

Proof. One direction is trivial, so suppose Q1 represents 4m where m is odd. Then 4m ≡ 4 (mod 8) and

a computer search will verify that in this case each of x, y, z must be even in order for Q1(x, y, z) ≡ 4

(mod 8). �

Lemma 18. If m = 23n where n is a quadratic nonresidue modulo 23, then m is not represented by Q2.

Proof. Considering x2 + y2 + 23z2 ≡ 0 (mod 23) immediately yields x ≡ y ≡ 0 (mod 23). Substituting

x = 23X, y = 23Y gives

(23X)2 + (23Y)2 + 23z2 = 23n

23X2 + 23Y2 + z2 = n,

which means n is a quadratic residue (mod 23). �

Lemma 19. If m = 23n where n is a quadratic nonresidue modulo 23, then m is not represented by Q3.

Proof. Setting Q3(x, y, z) ≡ 0 (mod 23) immediately gives x ≡ 0 (mod 23). There are additional constraints

on y and z modulo 23. These cases behave similarly to those in previous sections, and so in the interest of

space, we simply provide a summary of the data.

(y (mod 23), z (mod 23)) n (mod 23)

(±1,±21) 2

(±2,±19) 8

(±3,±17) 18

(±4,±15) 9

(±5,±13) 4

(±6,±11) 3

(±7,±9) 6

(±8,±7) 13

(±9,±5) 1

(±10,±3) 16

(±11,±1) 12
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In each case, n is a quadratic residue (mod 23), which completes the proof. �

Lemma 20. If m = 23n where n is a quadratic nonresidue modulo 23, then m is not represented by Q4.

Proof. Setting Q4(x, y, z) ≡ 0 (mod 23) immediately gives x ≡ 0 (mod 23). There are additional constraints

on y and z modulo 23. These cases behave similarly to those in previous sections, and so in the interest of

space, we simply provide a summary of the data.

(y (mod 23), z (mod 23)) n (mod 23)

(±1,±20) 3

(±2,±17) 12

(±3,±14) 4

(±4,±11) 2

(±5,±8) 6

(±6,±5) 16

(±7,±2) 9

(±8,±22) 8

(±9,±19) 13

(±10,±16) 1

(±11,±13) 18

In each case, n is a quadratic residue (mod 23), which completes the proof. �

Lemma 21. If m = 23n where n is a quadratic nonresidue modulo 23, then m is not represented by Q5.

Proof. Setting Q5(x, y, z) ≡ 0 (mod 23) immediately gives x ≡ 0 (mod 23). There are additional constraints

on y and z modulo 23. These cases behave similarly to those in previous sections, and so in the interest of

space, we simply provide a summary of the data.

(y (mod 23), z (mod 23)) n (mod 23)

(±1,±19) 4

(±2,±15) 16

(±3,±11) 13

(±4,±7) 18

(±5,±3) 8

(±6,±22) 6

(±7,±18) 12

(±8,±14) 3

(±9,±10) 2

(±10,±6) 9

(±11,±2) 1

In each case, n is a quadratic residue (mod 23), which completes the proof. �

Now suppose m . 1 (mod 8) is squarefree. We will show that m is represented by Q1 with the following

cases:

(Case 1) Let m ≡ 3 (mod 4). Let a be a prime satisfying a ≡ 1 (mod 4), a ≡ 5 (mod 529), and (−a
p ) = 1 for

all primes p|m. This will ensure
(

−23m

a

)

=

(

−1

a

) (

23

a

)

(m

a

)

=

(

−a

m

)

= 1.
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Considering the equation ab−h2 = 23m and replacing h with −h as necessary we see that modulo 23,

(b, h) ∈ {(0, 0), (5, 5), (7, 9), (10, 2), (11, 3), (14, 1), (15, 11), (17, 4), (19, 7), (20, 10), (21, 6), (22, 8)}.

This automatically guarantees there is a solution to

(A + B)2 + a + b + 2h ≡ 0 (mod 23)

which means that Q will represent multiples of 23. Moreover, for each case there are solutions to

each of

(A + B)2 + a + b + 2h ≡ 23k

for k = 0, 1, 2, ..., 22. This will guarantee that when x ≡ y ≡ 1 (mod 529) and z = 0 that Q will

represent 23n where n is a quadratic nonresidue modulo 23 (with different congruence conditions

necessary when m is or is not a quadratic residue (mod 23)).

(Case 2) Let m ≡ 6 (mod 8), so m = 2m′ where m′ ≡ 3 (mod 4). Let a be a prime satisfying a ≡ 1 (mod 8),

a ≡ 5 (mod 529), and (−a
p ) = 1 for all primes p|m′. This yields

(

−23m

a

)

=

(

−1

a

) (

23

a

) (

2

a

) (

m′

a

)

=

(

−a

m′

)

= 1.

And as the conditions (mod 23) on a are the same as in (Case 1), the rest of the proof follows

similarly.

(Case 3) Let m ≡ 5 (mod 8). We note that the total number of primes p|m which are congruent to either 5

or 7 (mod 8) is odd. With that, we write a = 2a′ where a′ is a prime satisfying a ≡ 1 (mod 4),

a ≡ 267 (mod 529) and (−a
p ) = 1 for all p|m. This first ensures

(

−23m

a

)

=

(

−1

a

) (

23

a

)

(m

a

)

=

(

−a

m

)

= 1.

But also, noting that a ≡ 2 · 267 ≡ 5 (mod 529) we are able to mimic previous cases at this point.

(Case 4) Let m ≡ 2 (mod 8). Let m ≡ 2 (mod 8), so m = 2m′ where m′ ≡ 1 (mod 4). Let a be a prime

satisfying a ≡ 5 (mod 8), a ≡ 5 (mod 529), and (−a
p ) = 1 for all primes p|m′. This forces

(

−23m

a

)

=

(

−1

a

) (

23

a

) (

2

a

) (

m′

a

)

=

(

−a

m′

)

= 1.

And as the conditions (mod 23) on a are the same as in (Case 1), the rest of the proof follows

similarly.

7. Examples

We end this paper with hopefully helpful if not entertaining to the reader concrete examples of choices of

A, B, a, b, h as outlined in the proofs of the theorems.

Example. To show that m = 51 = 3 · 17 is represented by 2x2 + 2xy + 2xz + 2y2 + 2yz + 3z2, we consider
(Case 1) of the proof of Theorem 1.

We choose a prime a ≡ 1 (mod 4) and a ≡ 3 (mod 49), and (without loss of generality) a ≡ 2 (mod 3)

and a ≡ 1 (mod 17). The smallest prime satisfying all of these conditions is a = 4217. Then solving
4217b − h2 = 7 · 51 for b and h, we see we can take b = 1613 and h = 2608. Note this is not the
“smallest” solution with respect to b > 0; however, here b ≡ 3 (mod 7) and h ≡ 4 (mod 7). Noting now
that A2 + a ≡ 0 (mod 51) means modulo 51, A ∈ {4, 13, 38, 47}. Similarly with B2 + b ≡ 0 (mod 51)

we see B ∈ {11, 23, 28, 40}. Noting, however, that we must also have 2AB + 2h ≡ 0 (mod 51) we see
the possible pairs of (A, B) modulo 51 are (A, B) ∈ {(4, 11), (13, 23), (38, 28), (47, 40)}. Accounting for
4A2 + 4AB + B2 + 4a + b + 4h ≡ 22(A2 + a) + 2(2AB + 2h) + B2 + b ≡ 21 (mod 49) gives 98 choices
for (A, B) (mod 49). Among these choices is A ≡ 0 (mod 49) and B ≡ 19 (mod 49). Selecting from our
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(mod 51) conditions A ≡ 38 (mod 51) and B ≡ 28 (mod 51) and using the Chinese Remainder Theorem
gives minimum positive values of A = 1568 and B = 1048. This then means

Q(x, y, z) = 48291x2 + 64544xy + 3136xz + 21567y2 + 2096yz + 51z2.

Last, we note that Q(2, 1, 0) = 7 · 49117, where as 49117 ≡ 5 (mod 7) means Q represents 7n where n is a
quadratic nonresidue modulo 7. We conclude that Q is equivalent to 2x2 + 2xy + 2xz + 2y2 + 2yz + 3z2.

Example. To show that m = 67 is represented by x2 + 2y2 + 2yz + 6z2 we refer to (Case 3) of the proof of
Theorem 2.

We choose a prime a ≡ 1 (mod 4) and a ≡ 2 (mod 121) and noting (−2
67

) = 1, we also take a ≡ 2 (mod 67).

The smallest prime satisfying all of these conditions is a = 170249. Then solving 170249b− h2 = 11 · 67 for
b and h, we see we can take b = 4413 and h = −27410. The requirements of A2+a ≡ B2+b ≡ 2AB+2h ≡ 0

(mod 67), give A ≡ 20 (mod 67) and B ≡ 64 (mod 67), or A ≡ 47 (mod 67) and B ≡ 3 (mod 67). We
choose the former. Solving (A + B)2 + a + b + 2h ≡ 22 (mod 121) gives, among many options, A ≡ 60

(mod 121) and B ≡ 0 (mod 121). We then take A = 4174 and B = 3146. This then means

Q(x, y, z) = 262575x2 + 391164xy + 8348xz + 147787y2 + 6292yz + 67z2.

We note that Q(1, 1, 0) = 801526 = 2 · 11 · 36433, and (2·36433
11

) = −1.

Example. To show that m = 26 = 2 · 13 is represented by x2 + 3y2 + 2yz + 5z2, we consider (Case 4) of
Theorem 3.

We choose a prime a′ ≡ 1 (mod 8) and a′ ≡ 26 (mod 49) and a′ ≡ 2 (mod 13). The smallest such
prime is a′ = 27809. Set a = 2a′. Considering next the equation ab − h2 = 14 · 26, we get b = 8440 and
h = 21666 as a possible solution. Solving A2 + a ≡ 0 (mod 26) and B2+ b ≡ 0 (mod 26) gives A ∈ {10, 16}

and B ∈ {6, 20}. Taking into account we must have 2AB + 2h ≡ 0 (mod 26) we see the pairs (A, B) are
(10, 20) and (16, 6). Because 26 is a quadratic residue mod 7, we next solve for A, B (mod 49) such that
(A + B)2 + a + b + 2h ≡ 7 (mod 35). This gives 98 pairs. One such pair is A ≡ 1 (mod 49) and B ≡ 43

(mod 49). Using the Chinese Remainder Theorem, we take A = 1128 ad B = −6. This yields

Q(x, y, z) = 51077x2 + 1146xy + 2256xz + 326y2 − 12yz + 26.

Last, we note that when x = y = 1 and z = 0, Q(x, y, z) = 7 · 7507, and 7507 ≡ 3 (mod 7).
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