
Sparse graphs with bounded induced cycle packing

number have logarithmic treewidth
∗

Marthe Bonamy
†1
, Édouard Bonnet

‡2
, Hugues Déprés

2
, Louis Esperet

§3
, Colin Geniet

2
, Claire

Hilaire
¶4
, Stéphan Thomassé

2
, and Alexandra Wesolek

∥5

1
CNRS, LaBRI, Université de Bordeaux, Bordeaux, France.

2
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France.

3
CNRS, G-SCOP, Université Grenoble Alpes, Grenoble, France.

4
FAMNIT, University of Primorska, Slovenia.

5
Technische Universität Berlin, Berlin, Germany.

February 19, 2024

Abstract

A graph isOk-free if it does not contain k pairwise vertex-disjoint and non-adjacent
cycles. We prove that "sparse" (here, not containing large complete bipartite graphs

as subgraphs)Ok-free graphs have treewidth (even, feedback vertex set number) at

most logarithmic in the number of vertices. This is optimal, as there is an infinite

family of O2-free graphs without K2,3 as a subgraph and whose treewidth is (at

least) logarithmic.

Using our result, we show thatMaximum Independent Set and 3-Coloring inOk-

free graphs can be solved in quasi-polynomial time. Other consequences include

that most of the central NP-complete problems (such as Maximum Independent

Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring)

can be solved in polynomial time in sparse Ok-free graphs, and that deciding the

Ok-freeness of sparse graphs is polynomial time solvable.

1 Introduction
Two vertex-disjoint subgraphs H and H ′

in a graph G are independent if there is no edge

betweenH andH ′
inG. Independent cycles are simply vertex-disjoint cycles that are pairwise

independent. LetOk denote the family of all graphs consisting of the disjoint union of k cycles.
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We say that a graph is Ok-free if it does not contain any graph of Ok as an induced subgraph.

Equivalently, a graph G is Ok-free if it does not contain k independent induced cycles, or

(equivalently), if G does not contain k independent cycles. These graphs can equivalently

be defined in terms of forbidden induced subdivisions. Letting Tk be the disjoint union of k
triangles, a graph is Ok-free if and only if it does not contain an induced subdivision of Tk.

A feedback vertex set is a set of vertices whose removal yields a forest. Our main technical

contribution is the following.

Theorem 1.1. Every Ok-free graph on n vertices that does not contain Kt,t as a subgraph has

a feedback vertex set of size Ot,k(log n).

Since a graph with a feedback vertex set of size k has treewidth at most k+1, this implies

a corresponding result on treewidth.

Corollary 1.2. Every Ok-free graph on n vertices that does not contain Kt,t as a subgraph has

treewidth Ot,k(log n).

Corollary 1.2 implies that a number of fundamental problems, such as Maximum Indepen-

dent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring, can

be solved in polynomial time in "sparse" Ok-free graphs. Before we elaborate on the algorith-

mic consequences of our results, we mention that our work is related to an ongoing project

devoted to unraveling an induced version of the grid minor theorem of Robertson and Sey-

mour [RS86]. This theorem implies that every graph not containing a subdivision of a k × k
wall as a subgraph has treewidth at most f(k), for some function f . This result had a deep

impact in algorithmic graph theory since many natural problems are tractable in graphs of

bounded treewidth.

Now, what are the forbidden induced subgraphs in graphs of small treewidth? It is clear that

large cliques, complete bipartite graphs, subdivided walls, and line graphs of subdivided walls

shall be excluded. It was actually suggested that in graphs with noKt,t subgraphs, the absence

of induced subdivisions of large walls and their line graphs might imply bounded treewidth,

but counterexamples were found [ST21, Dav22, Tro22]. However, Korhonen recently showed

that this absence suffices within bounded-degree graphs [Kor23]. Abrishami et al. [AAC
+
22]

proved that a vertex with at least two neighbors on a hole (i.e., an induced cycle of length at

least four) is also necessary in a counterexample. Echoing our main result, it was proven that

(triangle,theta)-free graphs have logarithmic treewidth [ACHS22], where a theta is made of

three paths each on at least two edges between the same pair of vertices. The interested reader

is referred to [ACHS23a, ACHS23b] for more recent development on the ongoing project.

As we shall see, the class of O2-free graphs that do not contain K3,3 as a subgraph has

unbounded treewidth. Since these graphs do not contain as an induced subgraph a subdivision

of a large wall or its line graph, they constitute yet another family of counterexamples.

We leave as an open question whether Ok-free graphs that do not contain Kt,t as a sub-

graph have bounded twin-width, that is, if there is a function f : N × N → N such that their

twin-width is at most f(t, k), and refer the reader to [BKTW22] for a definition of twin-width.

Algorithmic motivations and consequences
A natural approach to tackle NP-hard graph problems is to consider them on restricted classes.

A simple example is the case of forests, that is, graphs without cycles, on which most hard
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problems become tractable. The celebrated Courcelle’s theorem [Cou90] generalizes that phe-

nomenon to graphs of bounded treewidth and problems expressible in monadic second-order

logic.

For the particular yet central Maximum Independent Set (MIS, for short), the mere ab-

sence of odd cycles makes the problem solvable in polynomial time. Denoting by ocp(G)
(for odd cycle packing) the maximum cardinality of a collection of vertex-disjoint odd cycles

in G, the classical result that MIS is polytime solvable in bipartite graphs corresponds to the

ocp(G) = 0 case. Artmann et al. [AWZ17] extended the tractability of MIS to graphs G satis-

fying ocp(G) ⩽ 1. One could think that such graphs are close to being bipartite, in the sense

that the removal of a few vertices destroys all odd cycles. This is not necessarily true: Adding

to an n × n grid the edges between (1, i) and (n, n + 1 − i), for every i = 1, . . . , n, yields a
graph G with ocp(G) = 1 such that no removal of less than n vertices make G bipartite; also

see the Escher wall in [Ree99].

It was believed that Artmann et al.’s result could even be lifted to graphs with bounded

odd cycle packing number. Conforti et al. [CFH
+
20] proved it on graphs further assumed to

have bounded genus, and Fiorini et al. [FJWY21] confirmed the general conjecture for graphs

with bounded odd cycle packing number. A polynomial time approximation scheme (PTAS),

due to Bock et al. [BFMR14], was known for MIS in the (much) more general case of n-vertex
graphs G such that ocp(G) = o(n/ log n).

Similarly let us denote by cp(G), icp(G), iocp(G) the maximum cardinality of a collection

of vertex-disjoint cycles inG that are unconstrained, independent, and independent and of odd

length, respectively (for cycle packing, induced cycle packing, and induced odd cycle packing).

The Erdős-Pósa theorem [EP65] states that graphsG with cp(G) = k admit a feedback vertex

set (i.e., a subset of vertices whose removal yields a forest) of size O(k log k), hence have

treewidth O(k log k). Thus, graphs with bounded cycle packing number allow polynomial

time algorithms for a wide range of problems.

However, graphs with bounded feedback vertex set are very restricted. This is a motivation

to consider the larger classes for which solely the induced variants icp and iocp are bounded.

Graphs with iocp ⩽ 1 have their significance since they contain all the complements of disk

graphs [BGK
+
18] and all the complements of unit ball graphs [BBB

+
18]. Concretely, the ex-

istence of a polynomial time algorithm for MIS on graphs with iocp ⩽ 1 —an intriguing open

question— would solve the long-standing open problems of whether Maximum Cliqe is in P

for disk graphs and unit ball graphs. Currently only efficient PTASes are known [BBB
+
21],

even when only assuming that iocp ⩽ 1 and that the solution size is a positive fraction of

the total number of vertices [DP20]. Let us mention that recognizing the class of graphs G
satisfying iocp(G) ⩽ 1 is NP-complete [GKPT12].

We have seen that graphs with bounded cp, ocp, iocp have been studied in close connec-

tion with solving MIS (or a broader class of problems), respectively forming the Erdős-Pósa

theory, establishing a far-reaching generalization of total unimodularity, and improving the

approximation algorithms forMaximumCliqe on some geometric intersection graph classes.

Relatively less attention has been given to icp. As a graphG satisfies icp(G) < k if and only if

it isOk-free, our results (and their algorithmic consequences) are precisely about graphs with

bounded induced cycle packing, with a particular focus on the sparse case.

So, what can be said about the complexity of classical optimization problems for Ok-free

graphs? Even the class ofO2-free graphs is rather complex. Observe indeed that complements

of graphs withoutK3,3 subgraph areO2-free. As MIS remains NP-hard in graphs with girth at

least 5 (hence withoutK3,3 subgraph) [Ale82], MaximumCliqe is NP-hard inO2-free graphs.

Nonetheless MIS could be tractable inOk-free graphs, as is the case in graphs of bounded ocp:
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Conjecture 1.3. Maximum Independent Set is solvable in polynomial time inOk-free graphs.

As far as we can tell, MIS could even be tractable in graphs with bounded iocp. This would
be a surprising and formidable generalization of Conjecture 1.3 and of the same result for

bounded ocp [FJWY21].

We note that Corollary 1.2 implies Conjecture 1.3 in the sparse case. We come short of

proving Conjecture 1.3 in general, but not by much. We obtain a quasipolynomial time algo-

rithm for MIS in general Ok-free graphs, excluding that this problem is NP-complete without

any complexity-theoretic collapse (andmaking it quite likely that the conjecture indeed holds).

Theorem 1.4. There exists a function f such that for every positive integer k, Maximum Inde-

pendent Set can be solved in quasipolynomial time nO(k2 logn+f(k))
in n-vertex Ok-free graphs.

This is in sharp contrast with what is deemed possible in general graphs. Indeed, any exact

algorithm for MIS requires time 2Ω(n)
unless the Exponential Time Hypothesis (asserting that

solving n-variable 3-SAT requires time 2Ω(n)
) fails [IPZ01].

It should be noted that Conjecture 1.3 is a special case of an intriguing and very general

question by Dallard, Milanič, and Štorgel [DMŠ21] of whether there are planar graphs H for

which MIS is NP-complete on graphs excluding H as an induced minor. In the same paper,

the authors show that MIS is in fact polytime solvable when H is W4 (the 4-vertex cycle

with a fifth universal vertex), or K−
5 (the 5-vertex clique minus an edge), or K2,t. Gartland et

al. [GLP
+
21] (at least partially) answered that question when H is a path, or even a cycle, by

presenting in that case a quasi-polynomial algorithm for MIS. As we will mention again later,

Korhonen [Kor23] showed that bounded-degree graphs excluding a fixed planar graph H as

an induced minor have bounded treewidth, thereby fully settling the question of Dallard et al.

when the degree is bounded. He also derived an algorithm running in time 2O(n/ log1/6 n) =2o(n),
in the general (non bounded-degree) case.

Theorem 1.4 now adds a quasi-polynomial time algorithm whenH is the disjoint union of

triangles. This is an orthogonal generalization of the trivial case when H is a triangle (hence

the graphs are forests) to that of Gartland et al. We increase the number of triangles, while the

latter authors increase the length of the cycle. Our proofs are very different, yet they share

a common feature, that of measuring the progress of the usual branching on a vertex by the

remaining amount of relevant (semi-)induced subgraphs.

A natural related problem is the complexity of deciding Ok-freeness. A simple conse-

quence of Corollary 1.2 is that one can test whether a graph without Kt,t subgraph is Ok-

free in polynomial time. For k = 2, when no complete bipartite is excluded as a subgraph,

Le [Le17] conjectured the following, which had been raised as an open question earlier by

Raymond [Ray15].

Conjecture 1.5 (Le [Le17]). There is a constant c such that everyO2-free n-vertex graph has at
most nc

distinct induced paths.

Conjecture 1.5 was recently solved by Nguyen, Scott, and Seymour [NSS24] in the more

general Ok-free case using our Theorem 1.1. This implies in particular that the number of

induced cycles inOk-free graphs is polynomial (since this number cannot bemore than n times

the number of induced paths), and thus testing Ok-freeness can be done in polynomial time

by enumerating all induced cycles and testing, for every k cycles in this collection, whether

they are pairwise independent.
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Organization of the paper. In Section 2, we prove that Theorem 1.1 and Corollary 1.2 are

tight already for k = 2 and t = 3. Section 3 solves MIS inOk-free graphs in quasi-polynomial

time, among other algorithmic applications of Corollary 1.2.

The proof of our main structural result, Theorem 1.1, spans from Section 4 to Section 8.

After some preliminary results (Section 4), we show in Section 5 that it suffices to prove The-

orem 1.1 when the graph G has a simple structure: a cycle C , its neighborhood N (an inde-

pendent set), and the remaining vertices R (inducing a forest). Instead of directly exhibiting a

logarithmic-size feedback vertex set, we rather prove that every such graph contains a vertex

of degree linear in the so-called “cycle rank” (or first Betti number) of the graph. For sparse

Ok-free graphs, the cycle rank is at most linear in the number of vertices and decreases by a

constant fraction when deleting a vertex of linear degree. We then derive the desired theorem

by induction, using as a base case that if the cycle rank is small, we only need to remove a

small number of vertices to obtain a tree. To obtain the existence of a linear-degree vertex in

this simplified setting, we argue in Section 6 that we may focus on the case where the forest

G[R] contains only paths or only large “well-behaving” subdivided stars. In Section 7, we dis-

cuss how the Ok-freeness restricts the adjacencies between these stars/paths and N . Finally,

in Section 8, we argue that the restrictions yield a simple enough picture, and derive our main

result.

2 Sparse O2-free graphs with unbounded treewidth
In this section, we show the following.

Theorem 2.1. For every natural k, there is an O2-free graph with 2k + k − 1 vertices, which

does not contain K3,3 as a subgraph and has treewidth k.

In particular, for infinitely many values of n, there is anO2-free n-vertex graph which does
not contain K3,3 as a subgraph and has treewidth at least log2 n− 1.

Construction of Gk. To build Gk, we first define a word wk of length 2k − 1 on the alpha-

bet [k]. We setw1 = 1, and for every integer i > 1,wi = i wi−1[1] i wi−1[2] i . . . i wi−1[2
i−1−2]

i wi−1[2
i−1 − 1] i. It is worth noting that equivalently wi = incr(wi−1) 1 incr(wi−1), where

incr adds 1 to every letter of the word. Let Πk be the (2k − 1)-path where the ℓ-th vertex of

the path (say, from left to right) is denoted by Πk[ℓ].
The graph Gk is obtained by adding to Πk an independent set of k vertices v1, v2, . . . , vk,

and linking by an edge every pair vi,Πk[ℓ] such that i ∈ [k] and wk[ℓ] = i.

Observe that we can also define the graph Gk directly, rather than iteratively: it is the

union of a path u1, . . . , u2k−1 and an independent set {v0, . . . , vk−1}, with an edge between vi
and uj if and only if i is the 2-order of j (the maximum k such that 2k divides j).

See Fig. 1 for an illustration.

Gk is O2-free and has no K3,3 subgraph. The absence of K3,3 (even K2,3) as a subgraph

is easy to check. At least one vertex of the K3,3 has to be some vi, for i ∈ [k]. It forces that
its three neighbors x, y, z are in Πk. In turn, this implies that a common neighbor of x, y, z
(other than vi) is some vi′ ̸= vi; a contradiction since distinct vertices of the independent set

have disjoint neighborhoods.

We now show that Gk is O2-free. Assume towards a contradiction that Gk[C1 ∪ C2] is
isomorphic to the disjoint union of two cycles Gk[C1] and Gk[C2]. As C1 and C2 each induce
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Figure 1: The graphGk for k = 5: anO2-free graph withoutK3,3 subgraph, k+2k−1 vertices,
and treewidth k.

a cycle, they each have to intersect {v1, . . . , vk}. Assume without loss of generality that C1

contains vi, and C2 is disjoint from {vi, vi+1, . . . , vk}. Consider a subpath S of C2 with both

endpoints in {v1, . . . , vk}, thus in {v1, . . . , vi−1}, and all the other vertices of S form a set

S ′ ⊆ V (Πk). It can be that the endpoints are in fact the same vertex vi′ , and in that case S is

the entire C2.

Let vi′ , vi′′ be the two (possibly equal) endpoints. Observe that S
′
is a subpath ofΠk whose

two endpoints have label i′, i′′ < i. In particular there is a vertex labeled i somewhere along S ′
.

This makes an edge between vi ∈ C1 and C2, which is a contradiction.

Gk has treewidth k. Since {v2, . . . vk} is a feedback vertex set, the treewidth of Gk is at

most k, so it is enough to prove that Gk has treewidth at least k. We do this by proving

that Gk contains the complete graph Kk+1 as a minor (we thank an anonymous reviewer for

suggesting the argument below, our initial argument only gave aKk-minor inGk). The minor

Kk+1 is constructed as follows: for each i ∈ [k], we denote by Vi the subpath ofΠk whose right

endpoint is the leftmost vertex of Πk labeled i, and which is maximal with the property that

it does not contain any vertex labeled i + 1. Note that each set Vi contains vertices labeled

i, i+2, i+3, . . . , k, and is adjacent to a vertex labeled i+1. For each i ∈ [k], we let V ′
i be the

union of Vi and the vertex vi (this set induces a connected subgraph ofGk), and we define V
′
k+1

as the set of vertices ofΠk lying to the right of the unique vertex ofΠk labeled 1. Note that the

sets V ′
i , i ∈ [k + 1], form a partition of V (k + 1). By definition there is an edge between any

two sets V ′
i , V

′
j inGk for 1 ⩽ i < j ⩽ k+1, and thusGk containsKk+1 as a minor, as desired.

The twin-width of Gk, however, can be shown to be at most a constant independent of k.

3 Algorithmic applications
This section presents algorithms onOk-free graphs based on ourmain result, specifically using

the treewidth bound.

Corollary 1.2. Every Ok-free graph on n vertices that does not contain Kt,t as a subgraph has

treewidth Ot,k(log n).

6



Single-exponential parameterized O(1)-approximation algorithms exist for treewidth. Al-

ready in 1995, Robertson and Seymour [RS95] present a 2O(tw)n2
-time algorithm yielding

a tree-decomposition of width 4(tw + 1) for any input n-vertex graph of treewidth tw. Run
on n-vertex graphs of logarithmic treewidth, this algorithm outputs tree-decompositions of

width O(log n) in polynomial time. We thus obtain the following.

Corollary 3.1. Maximum Independent Set, Hamiltonian Cycle, Minimum Vertex Cover,

Minimum Dominating Set, Minimum Feedback Vertex Set, and Minimum Coloring can be

solved in polynomial time ng(t,k) Ok-free graphs with no Kt,t subgraph, for some function g.

Proof. Let h(t, k) be the implicit function in Corollary 1.2 such that every Ok-free n-vertex
graph with no Kt,t subgraph has treewidth at most h(t, k) log n.

Algorithms running in time 2O(tw)nO(1) = 2h(t,k) lognnO(1) = nh(t,k)+O(1) = ng(t,k)
exist for

all these problems but for Minimum Coloring. They are based on dynamic programming

over a tree-decomposition, which by Corollary 1.2 has logarithmic width and by [RS95] can

be computed in polynomial time. For Maximum Independent Set, Minimum Vertex Cover,

Minimum Dominating Set, and q-Coloring (for a fixed integer q) see for instance the text-
book [CFK

+
15, Chapter 7.3]. For Hamiltonian Cycle and Minimum Feedback Vertex Set,

deterministic parameterized single-exponential algorithms require the so-called rank-based

approach; see [CFK
+
15, Chapter 11.2].

By Corollary 4.6, Ok-free graphs with no Kt,t subgraph have bounded chromatic num-

ber. Thus a polynomial time algorithm for Minimum Coloring is implied by the one for

q-Coloring.

In a scaled-down refinement of Courcelle’s theorem [Cou90], Pilipczuk showed that any

problem expressible in Existential Counting Modal Logic (ECML) admits a single-exponential

fixed-parameter algorithm in treewidth [Pil11]. In particular:

Theorem 3.2 ([Pil11]). ECML model checking can be solved in polynomial time on any class

with logarithmic treewidth.

In a nutshell, this logic allows existential quantifications over vertex and edge sets fol-

lowed by a counting modal formula that should be satisfied from every vertex v. Counting
modal formulas enrich quantifier-free Boolean formulas with ♢Sφ, whose semantics is that

the current vertex v has a number of neighbors satisfying φ in the ultimately periodic set S of

non-negative integers. Another consequence of Corollary 1.2 (and Theorem 3.2) is that testing

if a graph is Ok-free can be done in polynomial time among sparse graphs, further indicating

that the general case could be tractable. cb

Corollary 3.3. For any fixed k and t, deciding whether a graph with noKt,t subgraph isOk-free

can be done in polynomial time.

Proof. One can observe that Ok-freeness is definable in ECML. Indeed, one can write

φ = ∃X1∃X2 . . . ∃Xk

( ∧
1⩽i⩽k

Xi → ♢{2}Xi

)
∧

( ∧
1⩽i<j⩽k

¬(Xi ∧Xj) ∧ (Xi → ♢{0}Xj)

)
.

Formula φ asserts that there are k sets of vertices X1, X2, . . . , Xk such that every vertex has

exactly two neighbors inXi if it is itself inXi, the sets are pairwise disjoint, and every vertex

has no neighbor inXj if it is in some distinctXi (with i < j). Thus G isOk-free if and only if

φ does not hold in G.
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We now show the main algorithmic consequence of our structural result. This holds for

any (possibly dense) Ok-free graph, and uses the sparse case (Corollary 3.1) at the basis of

an induction on the size of a largest collection of independent 4-vertex cycles. It should be

noted that this result (as well as the previous result on MIS above) also works for the weighted

version of the problem, with minor modifications.

Theorem 1.4. There exists a function f such that for every positive integer k, Maximum Inde-

pendent Set can be solved in quasipolynomial time nO(k2 logn+f(k))
in n-vertex Ok-free graphs.

Proof. LetG be our n-vertexOk-free input. Let q be the maximum integer such thatG admits

q independent 4-vertex cycles (the cycles themselves need not be induced). Clearly q < k.
We show the theorem by induction on q, namely that MIS can be Turing-reduced in time

nc(q+1)2 logn
for some constant c (specified later) to smaller instances with no K2,2 subgraphs

(hence such that q = 0). We first examine what happens with the latter instances. Let f(k) =
h(2, k)with h(t, k) the hidden dependence of Corollary 1.2. If q = 0,G does not containsK2,2

as a subgraph, so we can solve MIS in polynomial time nf(k)+O(1)
by Corollary 3.1.

We now assume that q ⩾ 1, n ⩾ 4, and that the case q − 1 of the induction has been es-

tablished (or q − 1 = 0). Let C be a 4-vertex cycle part of a 4q-vertex subset consisting of

q independent 4-vertex cycles. Let S be the set of all 4q-vertex subsets consisting of q inde-

pendent 4-vertex cycles in the current graph (at this point, G), and s = |S|. Thus 1 ⩽ s ⩽ n4q
.

By assumption, the closed neighborhood of C , N [C], intersects every subset in S . In particu-

lar, there is one of the four vertices of C , say, v, such that N [v] intersects at least s/4 subsets
of S .

We branch on two options: either we put v in (an initially empty set) I , and remove its

closed neighborhood fromG, or we remove v fromG (without adding it to I). With the former

choice, the size of S drops by at least s/4, whereas with the latter, it drops by at least 1.

Even if fully expanded while s > 0, this binary branching tree has at most∑
0⩽i⩽4q log4/3 n

(
n

i

)
= nO(q logn)

leaves,

since including a vertex in I can be done at most 4q log4/3 n times within the same branch;

thus, leaves can be uniquely described as binary words of length n with at most 4q log4/3 n
occurrences of, say, 1.

We retrospectively set c ⩾ 1 such that the number of leaves is at most ncq logn
, running the

algorithm thus far (when q ⩾ 1) takes at most time nc+cq logn
. At each leaf of the branching,

s= 0 holds, which means that the current graph does not admit q independent 4-vertex cycles.
By the induction hypothesis, we can Turing-reduce each such instance in time ncq2 logn

. Thus

the overall running time is

nc+cq logn + ncq logn · ncq2 logn ⩽ nc+cq logn · (ncq2 logn + 1) ⩽ nc(q+1)2 logn−cq logn−c logn+c+ 1
logn .

Note that ncq2 logn ⩾ 1 thus we could upper-bound ncq2 logn + 1 by 2ncq2 logn = ncq2 logn+ 1
logn .

Since c, q ⩾ 1 and log n ⩾ 1, it holds that −cq log n − c log n + c + 1
logn

⩽ −2c + c + 1 ⩽ 0.

Hence we get the claimed running time of nc(q+1)2 logn
for the reduction to q = 0, and the

overall running time of nc(q+1)2 logn+f(k)+O(1) = nO(k2 logn+f(k))
.

One may wonder if some other problems beside MIS become (much) easier on Ok-free

graphs than in general. As 2K2-free graphs areO2-free, one cannot expect a quasi-polynomial
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time algorithm for Minimum Dominating Set [Ber84, CP84], Hamiltonian Cycle [Gol04],

Maximum Cliqe [Pol74], and Minimum Coloring [KKTW01] since these problems remain

NP-complete on 2K2-free graphs. Nevertheless we give a quasi-polynomial time algorithm

for 3-Coloring.

Theorem 3.4. There exists a function f such that for every positive integer k, 3-Coloring can

be solved in quasi-polynomial time nO(k2 logn+f(k))
in n-vertex Ok-free graphs.

Proof. We solve themore general List 3-Coloring problem, where, in addition, every vertex v
is given a list L(v)⊆ {1, 2, 3} fromwhich one has to choose its color. Note that whenL(v) = ∅
for some vertex v, one can report that the instance is negative, and when |L(v)| = 1, v has to

be colored with the unique color in its list, and this color has to be deleted from the lists of

its neighbors (once this is done, v might as well be removed from the graph). These reduction

rules are performed as long as they apply, so we always assume that the current instance has

only lists of size 2 and 3.

We follow the previous proof, and simply adapt the branching rule, and the value of s.
Now s is defined as the sum taken over all vertex setsX consisting of q independent 4-vertex
cycles (the cycles themselves need not be induced), of the sum of the list sizes of the vertices

ofX . Hence 8 ⩽ s ⩽ 12 ·n4q
. There is a vertex v ∈ C and a color c ∈ L(v) such that c appears

in at least
1
2
· 1
12

· s
4
= s

96
of the lists of its neighbors. This is because all the lists have size at

least 2, and are subsets of {1, 2, 3}, thus pairwise intersect. (Note that this simple yet crucial

fact already breaks down for List 4-Coloring.)

We branch on two options: either we color v with c, hence we remove color c from the

lists of its neighbors or we commit to not color v by c, and simply remove c from the list of v.
With the former choice, the size of S drops by at least s/96, whereas with the latter, it drops

by at least 1. The rest of the proof is similar with a possibly larger constant c.

4 Preliminary results
An important property of graphs which do not contain the complete bipartite graph Kt,t as

a subgraph is that they are not dense (in the sense that they have a subquadratic number of

edges).

Theorem 4.1 (Kővári, Sós, and Turán [KST54]). For every integer t ⩾ 2 there is a constant ct
such that any n-vertex graph with no Kt,t subgraph has at most ct n

2−1/t
edges.

The following lemma shows that forOk-free graphs, excludingKt,t as a subgraph is equiv-

alent to a much stronger ‘large girth’ condition, up to the removal of a bounded number of

vertices.

Lemma 4.2. There is a function f such that for any integer ℓ and any Ok-free graph G with no

Kt,t subgraph, the maximum number of vertex-disjoint cycles of length at most ℓ in G is at most

f(ℓ, t, k).

Proof. If ℓ ⩽ 2, we define f(ℓ, t, k) = 0 for any integers t and k, and we observe that since G
does not contain any cycle of length at most ℓ, the statement of the lemma holds trivially.

Assume now that ℓ ⩾ 3, and define f(ℓ, t, k) := (2ctkℓ
2)t, where ct is the constant of The-

orem 4.1.

Assume for the sake of contradiction thatG containsN := f(ℓ, t, k) vertex-disjoint cycles
of length at most ℓ, which we denote by C1, . . . , CN . Let H be the graph with vertex set
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v1, . . . , vN , with an edge between vi and vj inH if and only if there is an edge between Ci and

Cj in G. Since G is Ok-free, H has no independent set of size k. By Turán’s theorem [Tur41],

H contains at least
N2

2k−2
− N

2
⩾ N2

2k
− N

2
edges.

Consider the subgraphG′
ofG induced by the vertex set

⋃N
i=1 Ci. The graphG

′
has n⩽ ℓN

vertices, and m ⩾ 3N + N2

2k
− N

2
> N2

2k
edges. Note that by the definition of N , we have

m > N2

2k
= 1

2k
·N2−1/t ·N1/t ⩾ 1

2kℓ2−1/t · n2−1/t · 2ctkℓ2 ⩾ ct n
2−1/t,

which contradicts Theorem 4.1, since G′
(as an induced subgraph of G) does not contain Kt,t

as a subgraph.

The girth of a graphG is the minimum length of a cycle inG (ifG is acyclic, its girth is set

to be infinite). We obtain the following immediate corollary of Lemma 4.2.

Corollary 4.3. There is a function g such that for any integer ℓ ⩾ 3, any Ok-free graph G with

no Kt,t subgraph contains a set X of at most g(ℓ, t, k) vertices such that G − X has girth at

least ℓ.

Proof. Let f be the function of Lemma 4.2, and let g(ℓ, t, k) := (ℓ− 1) · f(ℓ− 1, t, k). Consider
a maximum collection of disjoint cycles of length at most ℓ − 1 in G. Let X be the union of

the vertex sets of all these cycles. By Lemma 4.2, |X| ⩽ (ℓ− 1)f(ℓ− 1, t, k) = g(ℓ, t, k), and
by definition of X , the graph G − X does not contain any cycle of length at most ℓ − 1, as
desired.

We now state a simple consequence of Corollary 4.3, which will be particularly useful at

the end of the proof of our main result. A banana in a graph G is a pair of vertices joined by

at least 2 disjoint paths whose internal vertices all have degree 2 in G.

Corollary 4.4. There is a function f ′
such that any Ok-free graph G with no Kt,t subgraph

contains a set X of at most f ′(t, k) = Ot(k
t) vertices such that all bananas of G intersect X .

Proof. Let G′
be the graph obtained from G by replacing each maximal path whose internal

vertices have degree 2 in G by a path on two edges (with a single internal vertex, of degree

2). Note that each banana in G is replaced by a copy of some graph K2,s in G′
, with s ⩾ 2. In

particular, every set X ′ ∈ V (G′) intersecting all 4-cycles in G′
intersects all copies of graphs

K2,s with s ⩾ 2. Moreover, any such setX ′
in G′

can be lifted to a setX ∈ V (G) of the same

size that intersects all bananas ofG. The result then follows from the application of Corollary

4.3 to G′
with ℓ = 5.

In all the applications of Corollary 4.4, t will be a small constant (2 or 3).

The average degree of a graphG= (V,E), denoted by ad(G), is defined as 2|E|/|V |. Let us
now prove thatOk-free graphs with noKt,t subgraph have bounded average degree. This can

also be deduced from the main result of [KO04], but we include a short proof for the sake of

completeness. Moreover, the decomposition used in the proof will be used again in the proof

of our main result.

Lemma 4.5. Every Ok-free graph G of girth at least 11 has average degree at most 2k.

Proof. We proceed by induction on k. When k = 1, G is a forest, with average degree less

than 2. Otherwise, let C be a cycle of minimal length in G. Let N be the neighborhood of C ,

let S the second neighborhood of C , and let R = V (G) \ (C ∪N). Thus V (G) is partitioned

10



into C,N,R, and we have S ⊆ R. Observe that there are no edges between C and R in G,

so it follows that G[R] is Ok−1-free, and thus ad(G[R]) ⩽ 2k − 2 by induction. Observe also

that since G has girth at least 11 and C is a minimum cycle, the two sets N and S are both

independent sets. Moreover each vertex of N has a unique neighbor in C , and each vertex in

S has a unique neighbor in N . Indeed, in any other case we obtain a path of length at most

5 between two vertices of C , contradicting the minimality of C . It follows that C is the only

cycle in G[C ∪ N ∪ S], hence this graph has average degree at most 2. As a consequence, G
has a partition of its edges into two subgraphs of average degree at most 2k − 2 and at most

2, respectively, and thus ad(G) ⩽ 2k − 2 + 2 = 2k, as desired.

It can easily be deduced from this result that every Ok-free graph with no Kt,t subgraph

has average degree at most h(t, k), for some function h (and thus chromatic number at most

h(t, k) + 1).

Corollary 4.6. There is a function h such that every Ok-free graph with no Kt,t subgraph has

average degree at most h(t, k), and chromatic number at most h(t, k) + 1.

Proof. Let G be an Ok-free graph that does not contain Kt,t as a subgraph. By Corollary 4.3,

G has a set X of at most g(11, t, k) vertices such that G −X has girth at least 11. Note that

ad(G)⩽ ad(G−X)+|X|⩽ ad(G−X)+g(11, t, k)⩽ 2k+g(11, t, k), where the last inequality
follows from Lemma 4.5.

Let h(t, k) = 2k+g(11, t, k). As the class ofOk-free graphs with noKt,t subgraph is closed

under taking induced subgraphs, it follows that any graph in this class is h(t, k)-degenerate,
and thus (h(t, k) + 1)-colorable.

We would like to note that using a result of [Dvo18], extending earlier results of [KO04],

it can be proved that the class of Ok-free graphs with no Kt,t subgraph actually has bounded

expansion, which is significantly stronger than having bounded average degree. This will not

be needed in our proofs, and it can also be deduced from our main result, as it implies that

sparse Ok-free graphs have logarithmic separators, and thus polynomial expansion.

A feedback vertex set (FVS)X in a graphG is a set of vertices ofG such thatG−X is acyclic.

The minimum size of a feedback vertex set inG is denoted by fvs(G). The classical Erdős-Pósa
theorem [EP65] states that graphs with few vertex-disjoint cycles have small feedback vertex

sets.

Theorem 4.7 (Erdős and Pósa [EP65]). There is a constant c > 0 such that if a multigraph G
contains less than k vertex-disjoint cycles, then fvs(G) ⩽ ck log k.

We use this result to deduce the following useful lemma.

Lemma 4.8. There is a constant c > 0 such that the following holds. Let G consist of a cycle C ,

together with ℓ paths P1, . . . , Pℓ on at least 2 edges

• whose endpoints are in C , and

• whose internal vertices are disjoint from C , and

• such that the internal vertices of each pair of different paths Pi, Pj are pairwise distinct and

non-adjacent.

Suppose moreover that G is Ok-free (with k ⩾ 2) and has maximum degree at most d+ 2. Then

ℓ ⩽ c d k log k.

11



Proof. Observe that each path Pi intersects or is adjacent to at most 2(d− 1) + 4d < 6d other
paths Pj : indeed, if Pi has endpoints x, y in C , then there are at most 2(d− 1) paths Pj which

intersect Pi by sharing x or y as endpoint, and at most 4d paths Pj which are adjacent to Pi

because some endpoint of Pj is adjacent to either x or y. It follows that there exist s ⩾ ℓ
6d

of

these paths, say P1, . . . , Ps without loss of generality, that are pairwise non-intersecting and

non adjacent.

Consider the subgraph G′
of G induced by the union of C and the vertex sets of the paths

P1, . . . , Ps. Since the paths Pi, 1 ⩽ i ⩽ s, are pairwise independent, and since G′
does not

contain k independent cycles, the graph G′
does not contain k vertex-disjoint cycles. Let

G′′
be the multigraph obtained from G′

by suppressing all vertices of degree 2 (i.e., replac-

ing all maximal paths whose internal vertices have degree 2 by single edges). Observe that

since G′
does not contain k vertex-disjoint cycles, the graph G′′

does not contains k vertex-

disjoint cycles either. Observe also that G′′
is cubic and contains 2s vertices. It was proved by

Jaeger [Jae74] that any cubic multigraph H on n vertices satisfies fvs(H) ⩾ n+2
4
. As a con-

sequence, it follows from Theorem 4.7 that
2s+2
4

⩽ fvs(G′′) ⩽ c′k log k (for some constant c′),
and thus ℓ ⩽ 12dc′k log k = cdk log k (for c = 12c′), as desired.

A strict subdivision of a graph is a subdivision where each edge is subdivided at least once.

Lemma 4.9. There is a constant c > 0 such that for any integer k ⩾ 2, any strict subdivision

of a graph of average degree at least c k log k contains a graph of the family Ok as an induced

subgraph.

Proof. Note that if a graph G contains k vertex-disjoint cycles, then any strict subdivision of

G contains an induced Ok. Hence, it suffices to prove that any graph with less than k vertex-

disjoint cycles has average degree at most ck log k, for some constant c. By Theorem 4.7, there

is a constant c′ such that any graph G with less than k vertex-disjoint cycles contains a setX
of at most c′k log k vertices such thatG−X is acyclic. In this caseG−X has average degree

at most 2, and thus G has average degree at most c′k log k + 2 ⩽ ck log k (for some constant

c), as desired.

5 Logarithmic treewidth of sparse Ok-free graphs
Recall our main result.

Theorem 1.1. Every Ok-free graph on n vertices that does not contain Kt,t as a subgraph has

a feedback vertex set of size Ot,k(log n).

The proof of Theorem 1.1 relies on the cycle rank, which is defined as r(G) = |E(G)| −
|V (G)|+ |C(G)| where C(G) denotes the set of connected components of G. The cycle rank

is exactly the number of edges of G which must be deleted to make G a forest, hence it is

a trivial upper bound on the size of a minimum feedback vertex set. Remark the following

simple properties.

Lemma 5.1. The cycle rank is invariant under the following operations:

1. Deleting a vertex of degree 1.

2. Deleting a connected component which is a tree (and in particular, deleting a vertex of

degree 0).

12



We call reduction the operation of iteratively deleting vertices of degree 0 or 1, which

preserves cycle rank by the above lemma. A graph is reduced if it has minimum degree at

least 2, and the core of a graph G is the reduced graph obtained by applying reductions to G
as long as possible. The inclusion-wise minimal FVS ofG and of its core are exactly the same.

In a graphG, a vertex x is called ε-rich if d(x)⩾ ε·r(G). Our strategy to prove Theorem 1.1

is to iteratively reduce the graph, find an ε-rich vertex, add it to the FVS and delete it from the

graph. The following lemma shows that the cycle rank decreases by a constant factor each

iteration, implying that the process terminates in logarithmically many steps.

Lemma 5.2. In a reduced Ok-free graph, deleting a vertex of degree d decreases the cycle rank

by at least
d−k+1

2
.

Proof. In any graphG, deleting a vertex x of degree d decreases the cycle rank by d−c, where c
is the number of connected components of G− x which contain a neighbor of x. If G is Ok-

free, then all but at most k−1 components ofG−x are trees. Furthermore, if T is a connected

component of G− x which is a tree, then T must be connected to x by at least two edges, as

otherwise T must contain a vertex of degree 1 in G, which should have been deleted during

reduction. Thus we have

2c− (k − 1) ⩽ d. (1)

Therefore the cycle rank decreases by at least d− d+k−1
2

= d−k+1
2

as desired.

The existence of rich vertices is given by the following result.

Theorem 5.3. For any k, there is some εk > 0 such that anyOk-free graph with girth at least 11
has an εk-rich vertex.

Let us first prove Theorem 1.1 using Theorem 5.3.

Proof of Theorem 1.1. Fix k and t. Given a graph G which is Ok-free and does not contain

Kt,t as a subgraph, we apply Lemma 4.2 to obtain a set X of size at most f(11, t, k) such that

G′ def

= G−X has girth at least 11. Thus, it suffices to prove the result forG′
, and finally addX

to the resulting FVS ofG′
. Since log r(G′) ⩽ log

(|V (G′)|
2

)
⩽ 2 log |V (G′)|, we have reduced the

problem to the following.

Claim 5.4. For any k, there is a constant ck such that if G is an Ok-free graph with girth at

least 11, then fvs(G) ⩽ ck · log r(G).

Let us now assume that G is as in the claim, and consider its core H , for which r(H) =
r(G) and fvs(H) = fvs(G). Consider an εk-rich vertex x in H with εk as in Theorem 5.3.

If r(G) ⩾ 2k · ε−1
k , then d(x) ⩾ 2k, hence by Lemma 5.2, deleting x decreases the cycle rank

of G by at least

d(x)− k + 1

2
⩾

d(x)

4
⩾

εk
4
r(G). (2)

Thus, as long as the cycle rank is more than 2k · ε−1
k , we can find a vertex whose dele-

tion decreases the cycle rank by a constant multiplicative factor. After logarithmically many

steps, we have fvs(G) ⩽ r(G) ⩽ 2k · ε−1
k . In the end, the feedback vertex set consists of at

most f(11, t, k) vertices inX , logarithmically many rich vertices deleted in the induction, and

at most 2k · ε−1
k vertices for the final graph.
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C N S

R

Figure 2: Subgraph of an O4-free graph G. V (G) is partitioned into three sets C,N,R, where

C is a shortest cycle, N is an independent set and first neighborhood of C , and R is O3-free.

S is the second neighborhood ofN . Gray lines correspond to induced paths where all internal

vertices have degree 2.

We now focus on proving Theorem 5.3. Let G be an Ok-free graph with girth at least 11.

Consider C a shortest cycle of G, N the neighborhood of C , and R
def

= G − (C ∪ N) the rest
of the graph (see Figure 2). Remark that there is no edge between C and R, hence G[R] is
an Ok−1-free graph. As a special case, if k = 2, then G[R] is a forest. We will show that in

general, it remains possible to reduce the problem to the case where G[R] is a forest, which is

our main technical theorem.

Theorem 5.5. For any k, there is some δk > 0 such that if G is a connected Ok-free graph with

girth at least 11, and furthermore G[R] is a forest where R is as in the decomposition described

above, then G has a δk-rich vertex.

Theorem 5.5 will be proved in Section 8. In the remainder of this section, we assume

Theorem 5.5 and explain how Theorem 5.3 can be deduced from it.

Proof of Theorem 5.3. The proof is by induction on k. Let δk > 0 be as in Theorem 5.5, and

let εk−1 > 0 be as in Theorem 5.3, obtained by induction hypothesis. We fix

εk
def

= min

{
εk−1

20
,
δk
20

,
δk

5(k + 1)
,

1

30(k − 2)

}
. (3)

Let G be any Ok-free graph with girth at least 11. Reductions preserve all the hypotheses

of the claim, and the value of r(G), hence we can assume G to be reduced. Consider the de-

composition C,N,R as previously described. We construct a subset F ⊂ R inducing a rooted

forest in G such that the only edges from F to R \F are incident to roots of F , and each root

of F is incident to at most one such edge.

Claim 5.6. If F ⊂ R has the former property and F ′ ⊂ R \F induces a forest inG, then F ∪F ′

induces a forest in G.

Proof. Each connected component of G[F ] has a single root, which is the only vertex which

can be connected to F ′
. ⌟
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We construct F inductively, starting with an empty forest, and applying the following rule

as long as it applies: if x ∈ R\F is adjacent to at most one vertex inR\F , we add x to F , and

make it the new root of its connected component in F . The condition on F obviously holds

for F = ∅. When adding x, by Claim 5.6, F ∪ {x} is still a forest. Furthermore, if y ∈ F ∪ {x}
is adjacent to R \ (F ∪ {x}), then either y = x or y was a root before the addition of x, and is
not adjacent to x, and therefore x and y are in distinct connected components of F ∪ {x}. In
either case, y is a root of F ∪ {x} as required.

We now denote by F the forest obtained when the previous rule no longer applies, and

let R′ = R \ F . As observed by a reviewer, R′
and F can be defined equivalently by saying

that R′
is the core of G[R] and F is equal to R \ R′

(however the procedure described above

will be useful in order to prove the next claims). Remark that it might be the case that F = R,

meaning thatG[R] is a forest (and we fall in the case of Theorem 5.5), or F = ∅, which means

that G[R] has minimum degree at least 2.

Claim 5.7. All vertices in G[R′] have degree at least 2.

Proof. A vertex of degree less than 2 in G[R′] should have been added to F . ⌟

Claim 5.8. The graph G[C ∪N ∪ F ] is connected.

Proof. It suffices to show that each connected component T of G[F ] is connected to N . Each

such component T is a tree. If T consists of a single vertex v, then v is the root of T and has at

most one neighbor in R′
by definition. Since G is reduced, v has degree at least 2 in G, hence

it must be connected to N .

If T contains at least two vertices, then it contains at least 2 leaves, and in particular at

least one leaf v which is not the root of T . The vertex v has a single neighbor in R (its parent

in T ), and thus similarly as above it must have a neighbor in N . ⌟

DefineB as the set of vertices ofR′
adjacent toN∪F , and letA be the set of edges between

N ∪ F and B.

Claim 5.9. If |A| ⩽ 9
10
r(G), then G has an εk-rich vertex.

Proof. DeletingA fromG decreases the cycle rank by at most |A|, hence r(G−A)⩾ r(G)/10.
Since G[C ∪N ∪ F ] and G[R′] are unions of connected components of G− A, we have

r(G− A) = r(G[C ∪N ∪ F ]) + r(G[R′]).

Thus eitherG[C ∪N ∪F ] orG[R′] has cycle rank at least r(G)/20. If it isG[C ∪N ∪F ], then
we can apply Theorem 5.5 to find a (δk/20)-rich vertex, and if it is G[R′], then we can apply

the induction hypothesis to find an (εk−1/20)-rich vertex. In either case, this gives an εk-rich
vertex. ⌟

Thus we can now assume that |A| ⩾ 9
10
r(G).

Let B1, resp. B2, be the set of vertices of B incident to exactly one, resp. at least two edges

of A, and let A1, A2 ⊆ A be the set of edges of A incident to B1, B2 respectively. Remark

that A1, A2 and B1, B2 partition A and B respectively, and |A1| = |B1|.

Claim 5.10. If |A2| ⩾ 4
9
|A|, then G has an εk-rich vertex.
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Proof. Assume that |A2| ⩾ 4
9
|A|, and thus |A2| ⩾ 2

5
r(G). By Lemma 4.5, G is 2k-degenerate,

hence it can be vertex-partitioned into k + 1 forests. Consider this partition restricted to B2,

and choose B3 ⊆ B2 which induces a forest and maximizes the set A3 ⊆ A2 of edges incident

to B3. Thus |A3| ⩾ |A2| /(k + 1) ⩾ 2
5(k+1)

r(G). By Claim 5.6, F ∪ B3 is a forest, hence

Theorem 5.5 applies to G[C ∪N ∪ F ∪B3].
By Claim 5.8, G[C ∪ N ∪ F ] is connected, thus adding the vertices B3 and the edges A3

increases the cycle rank by |A3| − |B3|. This quantity is at least |A3| /2 since any vertex of B3

is incident to at least two edges of A3, and each edge of A3 is incident to exactly one vertex

of B3. Thus Theorem 5.5 yields the existence of a vertex of degree at least

δk · r(G[C ∪N ∪ F ∪B3]) ⩾
|A3|
2

δk ⩾
1

5(k + 1)
δk · r(G) ⩾ εk · r(G) (4)

as desired. ⌟

Thus we can now assume that |A1| ⩾ 5
9
|A|, and thus |B| ⩾ 5

9
|A| ⩾ 1

2
r(G).

Let X , resp. Y , be the set of vertices of B with degree at least 3, resp. exactly 2, in G[R′].
By Claim 5.7, this is a partition of B.

Claim 5.11. If |X| ⩾ |B| /5, then G has an εk-rich vertex.

Proof. Assume that |X| ⩾ |B| /5, and thus |X| ⩾ 1
10
r(G).

The cycle rank is lower-bounded by the following sum:

r(G[R′]) ⩾ |E(G[R′])| − |R′| = 1

2

∑
x∈R′

(dG[R′](x)− 2). (5)

By Claim 5.7, every term in the sum is non-negative, and each x∈X contributes by at least 1/2
to the sum. Thus r(G[R′]) ⩾ |X| /2 ⩾ 1

20
r(G), and the induction hypothesis applied to G[R′]

(which is Ok−1-free) yields an (εk−1/20)-rich vertex, which is also εk-rich. ⌟

Thus we can now assume that |Y | ⩾ 4
5
|B| ⩾ 2

5
r(G).

Let Z be the set of vertices of R′
that either are in Y or have degree at least 3 in G[R′].

Remark that Z is exactly the set of vertices of R′
with degree at least 3 in G. In G[R′], a direct

path is a path whose endpoints are inZ , and whose internal vertices are not inZ . In particular,
internal vertices of a direct path have degree 2. A direct path need not be induced, as its

endpoints may be adjacent. As a degenerate case, we consider a cycle that contains a single

vertex of Z to be a direct path whose two endpoints are equal. One can naturally construct

a multigraph GZ with vertex set Z and whose edges correspond to direct paths in G[R′].
Remark that vertices of Z have the same degree in GZ and in G[R′].

Any y ∈ Y has two neighbors x1, x2 inGZ . In degenerate cases, it may be that x1 = x2 ̸= y
(multi-edge inGZ), in which caseG[R′] contains a banana between y and x1, or that x1 = x2 =
y (loop in GZ), in which case there is a cycle Cy which is a connected component of G[R′],
and such that y is the only vertex of Z inCy. We partition Y into Yi, Ye as follows: for y, x1, x2

as above, if x1, x2 ∈ Y , then we place y in Yi, and otherwise (x1 or x2 is in Z \ Y ) we place y
in Ye.

Claim 5.12. If |Ye| ⩾ 3
4
|Y |, then G has an εk-rich vertex.
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Proof. Assume |Ye| ⩾ 3
4
|Y |, and thus |Ye| ⩾ 3

10
r(G).

By definition, any vertex of Ye is adjacent in GZ to some vertex of Z \ Y . Thus, using that

dGZ
(z) = dG[R′](z) for any z ∈ Z , we obtain∑

z∈Z\Y

dG[R′](z) ⩾ |Ye| . (6)

Recall inequality (5) on cycle rank:

r(G[R′]) ⩾
1

2

∑
x∈R′

(dG[R′](x)− 2). (7)

By Claim 5.7, the terms of this sum are non-negative. Thus, restricting it to Z \ Y , we have

r(G[R′]) ⩾
1

2

∑
z∈Z\Y

(dG[R′](z)− 2). (8)

By definition of Z , vertices of Z \ Y have degree at least 3 in G[R′]. Thus, each term of the

previous sum satisfies dG[R′](z)− 2 ⩾ dG[R′](z)/3. It follows using (6) that

r(G[R′]) ⩾
1

2

∑
z∈Z\Y

dG[R′](z)

3
⩾

|Ye|
6

⩾
1

20
r(G). (9)

Thus the induction hypothesis applied to G[R′] (which is Ok−1-free) yields an (εk−1/20)-rich
vertex, which is also εk-rich. ⌟

Thus we can now assume that |Yi| ⩾ 1
4
|Y | ⩾ 1

10
r(G).

We now consider the induced subgraphH ofG[R′] consisting of Y , and direct paths joining

vertices of Y . Thus H has maximum degree 2, and since G[R′] is Ok−1-free, at most k − 2
components of H are cycles, the rest being paths. Remark that the endpoints of paths in H
correspond exactly to Ye. Also, each connected component of H must contain at least one

vertex of Y .

We perform the following cleaning operations in order:

• In each cycle of H , pick an arbitrary vertex and delete it, so that all connected compo-

nents are paths.

• Iteratively delete a vertex of degree 0 or 1 which is not in Y , so that the endpoints of

paths are all in Y .

• Delete all isolated vertex.

Let H ′
be the subgraph of H obtained after these steps.

Claim 5.13. All but 3(k − 2) vertices of Yi are internal vertices of paths of H
′
.

Proof. If y ∈ Yi belongs to a path ofH , then it must be an internal vertex of this path, and the

path is unaffected by the cleaning operations. Thus it suffices to prove that in each cycle ofH ,

at most 3 vertices of Yi are deleted or become endpoints of paths during the clean up.

Let C ′
be a cycle of H . If C ′

contains no more than 2 vertices of Yi, there is nothing to

prove. Remark in this case that C ′
is entirely deleted by the clean up. Otherwise, let x be the

vertex deleted from H (which may be in Yi), and let y1, y2 be the first vertices of Yi strictly
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before and after x in the cyclic order of C ′
. Since C ′

has at least 3 vertices of Yi, x, y1, y2
are all distinct. Then, it is clear that the cleaning operations transform C ′

into a path with

endpoints y1, y2, such that any y ∈ Yi ∩ C ′
distinct from x, y1, y2 is an internal vertex of this

path. ⌟

We now add H ′
to F , which yields a forest by Claim 5.6. Recall that vertices of Y are

adjacent to N ∪ F , and all endpoints of paths of H ′
are in Y . Thus, in G[C ∪ N ∪ F ∪ H ′],

every vertex of H ′
has degree at least 2, and vertices of Yi in the interior of paths of H ′

have

degree at least 3. Since G[C ∪N ∪ F ] is connected by Claim 5.8, the addition of H ′
does not

change the number of connected components. Using Claim 5.13, this implies that

r(G[C ∪N ∪ F ∪H ′]) ⩾ |Yi| − 3(k − 2). (10)

We finally apply Theorem 5.5 to G[C ∪N ∪ F ∪H ′] to obtain a vertex with degree at least

δk · (|Yi| − 3(k − 2)).

Since G contains vertices of degree at least 2, we can always assume that εk · r(G) ⩾ 2, and
thus

|Yi| ⩾
1

10
· 2ε−1

k ⩾
1

5
· 30(k − 2) = 6(k − 2). (11)

It follows that |Yi| − 3(k − 2) ⩾ |Yi| /2, and the previous argument yields a vertex of degree

at least
δk
2
|Yi| ⩾ δk

20
r(G), which is an εk-rich vertex.

6 Cutting trees into stars and paths
Recall the statement of Theorem 5.5: we start with an Ok-free graph G of large girth, and

divide its vertex set into some shortest cycle C , its neighborhoodN , and the remainder of the

vertex setR (including the second neighborhood S ofC). Moreover we assume thatR induces

a forest. Since C is a shortest cycle, it is not difficult to check that every vertex of S must have

exactly one neighbor in N . Moreover, up to reducing the graph under consideration, we can

assume that all the leaves of G[R] lie in S.
Our goal in this section will be to simplify G[R] by only keeping a linear number (in |S|)

of subdivided stars or paths with endpoints in S. To this end it will be convenient to leave

C aside and only consider N and R for now (or more precisely what remains of R after the

graph has been reduced). Curious readers are invited to have a quick look at Figures 4, 5 and

6 to have an idea of how the results of this section will be used in the proof of Theorem 5.5.

The paragraphs above motivate the following definitions. A forestH is said to be (S ⊆ F )-
decorated if V (H) = F , every leaf of H lies in S ⊆ F , and every connected component of F
contains at least 2 vertices. A graph H is said to be (N,S ⊆ F )-divided if its vertex set is

partitioned into two sets F and N , such that

• F induces a forest and N is an independent set,

• the neighborhood of N in F is a subset S ⊆ V (F ) containing all the leaves of F ,

• each vertex of S has a unique neighbor in N , and

• every connected component of H[F ] contains at least two vertices.
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Note that the second and fourth conditions imply that H[F ] is (S ⊆ F )-decorated. It can
be deduced from the definition that if H is (N,S ⊆ F )-divided, then it does not contain K3,3

as a subgraph.

A subdivided star is a graph with at least two vertices, which is a subdivision of a star (a

graph obtained from a star by replacing its edges by paths of arbitrary length). We insist on

the fact that we do not consider singleton vertices as subdivided stars. A path (on at least two

vertices) is a special case of subdivided star. The center of a subdivided star is the vertex of

degree at least 3, if any. If none, the subdivided star is a path, and its center is a vertex of

degree 2 that belongs to S, if any, and an arbitrary vertex otherwise. We say that a forest

F ′ ⊆ F is S ′
-clean, for some S ′ ⊆ S, if V (F ′) ∩ S ′ = L(F ′), where L(F ′) denotes the set of

leaves of F ′
. We define being quasi-S ′

-clean for a subdivided star as intersecting S ′
at exactly

its set of leaves, plus possibly its center. Formally, a subdivided star T is quasi-S ′
-clean if

L(T ) ⊆ V (T )∩S ′ ⊆ L(T )∪{c} where c is the center of T . The degree of a subdivided star is
the degree of its center. A forest F ′ ⊆ F of subdivided stars is quasi-S ′

-clean, for some S ′ ⊆ S,
if all its connected components are quasi-S ′

-clean (subdivided stars).

Lemma 6.1 Lemma 6.3 Corollary 6.7F

Figure 3: A visual summary of Section 6.

Our approach in this section is summarized in Figure 3. We start with our forest F and a

subset S of vertices including all the leaves of F (the vertices of S are depicted in white, while

the vertices of F − S are depicted in black). We first extract quasi-S-clean subdivided stars

(Lemma 6.1). We then extract quasi-S-clean subdivided stars of large degree, or S-clean paths

(Lemma 6.3). Finally we extract S-clean subdivided stars of large degree or paths (Corollary

6.7). At each step the number of vertices of S involved in the induced subgraph of F we

consider is linear in |S|.

Lemma 6.1. Let H be an (S ⊆ F )-decorated forest. Then there is a subset F ∗ ⊆ F contain-

ing at least
1
2
|S| vertices of S such that each connected component of H[F ∗] is a quasi-S-clean

subdivided star.

Proof. We first use the following claim.

Claim 6.2. There is a set of edgesX ⊆ E(H) such that every connected component ofH \X is

either a quasi-S-clean subdivided star or a single vertex that does not belong to S.

Proof. We proceed greedily, starting with X = ∅. While H \X contains a component T and

an edge e ∈ T such that each of the two components of T − e contains either no vertex of S
or at least two vertices of S, we add e to X .
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Observe that inH , every connected component contains at least 2 vertices of S. Through-
out the process of defining X , every connected component of H \ X contains either 0 or at

least 2 vertices of S.
At the end of the process, for any connected component T ofH \X with at least one edge,

all the leaves of T belong to S. Otherwise, the edge incident to the leaf of T that is not in S
can be added to X .

Thus,H \X does not contain any component with more than one vertex of degree at least

3, since otherwise any edge on the path between these two vertices would have been added

to X , yielding two components containing at least 2 leaves, and thus at least 2 vertices of S.
Observe also that if H \X contains a component T with a vertex v ∈ S that has degree 2

in T , then T is a path containing exactly 3 vertices of S, and thus T is a subdivided star whose

center and leaves are in S, and whose other internal vertices are not in S. ⌟

To conclude, we need to select connected components of H \ X with at least two ver-

tices of S and that are pairwise independent in H . Consider the minor GH of H obtained by

contracting each connected component of H \X into a single vertex and deleting those that

are a single vertex not in S. Since H is a forest, the graph GH is a forest. We weigh each

vertex of GH by the number of elements of S that the corresponding connected component

ofH \X contains. Since GH is a forest, there is an independent set {u1, u2, . . . , up} that con-
tains at least half the total weight. The connected components corresponding to u1, u2, . . . , up

together form a forest H[F ∗] with the required properties.

We observe that subdivided stars of small degree can be transformed into paths for a low

price, as follows. A subdivided star forest is a forest whose components are subdivided stars

(possibly paths).

Lemma 6.3. Let H be an (S ⊆ F )-decorated forest. For every S ′ ⊆ S, every quasi-S ′
-clean

subdivided star forest F ′ ⊆ F , and every integerD ⩾ 2, there is a subdivided star forest F ′′ ⊆ F ′

such that every connected component of H[F ′′] is either an S ′
-clean path or a quasi-S ′

-clean

subdivided star of degree at least D. Additionally, F ′′
contains at least

2|S′∩F ′|
D

vertices of S ′
.

Proof. We define F ′′
from F ′

as follows. Consider a connected component T of H[F ′]. If the
center of T has degree at leastD, we add T toF ′′

. Consider now the case where T is a quasi-S ′
-

clean subdivided star whose center c has degree less thanD. If c ∈ S ′
, we select a non-edgeless

path P ⊆ T between c and S ′
, and add P to F ′′

. If c ̸∈ S ′
, we select two internally-disjoint

paths P1, P2 ⊆ T between c and S ′
, and add P1∪P2 to F

′′
. Note that P1∪P2 yields an S

′
-clean

path.

To see that F ′′
contains at least

2|S′∩F ′|
D

vertices of S ′
, we simply observe that in the second

case, out of a maximum of (D − 1) + 1 vertices of S ′
in a component T , we keep at least 2 in

F ′
. This adds up to

2|S′|
D

vertices of S ′
since connected components of H[F ′] are disjoint by

definition.

Lemma 6.4. Let H be an Ok-free graph which is (N,S ⊆ F )-divided. If each vertex of N has

degree less than
1
8k
|S|, then one of the following holds.

• there is a subset S ′
of S and a subset F2 of F such that F2 contains

1
32
|S| vertices of S ′

, and

each connected component of H[F2] is an S ′
-clean subdivided star.

• there is a subset F3 of F such that every connected component of F3 is a quasi-S-clean
subdivided star of degree at most 4 and F3 contains at least

1
8
|S| vertices of S.
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Proof. Let F ∗ ⊆ F be the forest obtained from Lemma 6.1, applied to the (S ⊆ F )-decorated
forest H[F ]. Then F ∗

contains at least
1
2
|S| vertices of S, and each component of H[F ∗] is a

quasi-S-clean subdivided star or an S-clean path. We define the label of a vertex of S to be its

only neighbor in N .

Claim 6.5. There is a subset F1 of F
∗
containing at least

1
4
|S| vertices of S, such that no subdi-

vided star of F1 has its center and one of its endpoints sharing the same label.

Proof. Let ℓ be the maximum integer such that there exist ℓ subdivided stars S1, S2, . . . , Sℓ in

H[F ∗] and ℓ different labels v1, . . . , vℓ ∈ N , such that for any 1 ⩽ i ⩽ ℓ, Si has its center and

at least one of its endpoint labeled vi. Note that in this case G contains ℓ independent cycles,
and thus ℓ < k by assumption.

For any 1 ⩽ i ⩽ ℓ, remove all the leaves u of F ∗
that are labeled vi, and also remove the

maximal path of H[F ∗] ending in u. By assumption, there are at most
1
8k
|S| such vertices u

for each 1 ⩽ i ⩽ ℓ, and thus we delete at most k · 1
8k
|S| ⩽ 1

8
|S| vertices of S from F ∗

. We

also delete the centers that have no leaves left (there are at most k · 1
8k
|S| ⩽ 1

8
|S| such deleted

centers). Let F1 be the resulting subset of F
∗
. Note that F1 contains at least |F ∗∩S|−2· 1

8
|S|⩾

(1
2
− 1

4
)|S| = 1

4
|S| vertices of S. ⌟

We can assume that a subset Y of at least
1
8
|S| vertices of S in the forest F1 obtained

from Claim 6.5 are involved in a quasi-S-clean subdivided star of degree at least 5. Indeed,
otherwise at least

1
8
|S| vertices of S in the forest F1 obtained from Claim 6.5 are involved in

a quasi-S-clean subdivided star of degree at most 4 (note that an S-clean path is an S-clean
subdivided star), and in this case the second outcome of Lemma 6.4 holds.

For each label v ∈ N , we choose uniformly at random with probability
1
2
whether v is a

center label or a leaf label. We then delete all the subdivided stars of F1 whose center is labeled

with a leaf label, and all the leaves whose label is a center label. Moreover, we delete from N
all the vertices that are a center label, and let S ′

be the set of vertices of S whose neighbor in

N is not deleted.

Take a vertex u of Y . If u is a center of a subdivided star, then the probability that u is

not deleted is at least
1
2
. If u is a leaf, u is kept only if u and the center of the subdivided star

it belongs to (which has by construction a different label) are correctly labeled, so u is kept

with probability at least
1
4
. Overall, each vertex u of Y has probability at least

1
4
to be kept.

Thus the expectation of the fraction of vertices of Y not deleted is at least
1
4
, thus we can

find an assignment of the labels to leaf labels or center labels, such that a subset Z ⊆ Y with

|Z| ⩾ 1
4
|Y | survives.

We then iteratively delete vertices of degree 1 that do not belong to S ′
and all vertices of

degree 0. Let F2 be the resulting forest. Note that S
′
contains only the endpoints of stars with

a leaf label, thus the forest F2 is S
′
-clean. It remains to argue that F2 contains a significant

fraction of vertices of S. Note that a connected component of F1 is deleted if and only if it

contains at most one element of Z . Every such component has at least 4 elements in Y \ Z ,
hence there are at most

1
4
· 3
4
|Y | = 3

16
|Y | such components. It follows that F2 contains at least

|Z| − 3
16
|Y | ⩾ 1

4
|Y | − 3

16
|Y | ⩾ 1

16
|S| elements of Z ⊆ S.

We now have all the ingredients to obtain the following two corollaries.

Corollary 6.6. LetH be an (S ⊆ F )-decorated forest. For anyD ⩾ 2, there is a subset F ∗ ⊆ F
containing at least

1
2D

|S| vertices of S such that each

1. F ∗
induces a quasi-S-clean subdivided star forest whose components all have degree at

least D, or
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2. F ∗
induces an S-clean path forest.

Corollary 6.6 follows from Lemma 6.1 by applying Lemma 6.3 and observing that one of

the two outcomes contains half the corresponding vertices in S.

Corollary 6.7. LetH be anOk-free graph which is (N,S ⊆ F )-divided, and letD ⩾ 2. If each
vertex of N has degree less than

1
8k
|S|, then there are F ′′ ⊆ F , S ′ ⊆ S such that F ′′

contains at

least
1

32D
|S| vertices of S ′

and one of the following two cases apply.

1. F ′′
induces an S ′

-clean subdivided star forest whose components all have degree at leastD,

or

2. F ′′
induces an S ′

-clean path forest.

Similarly, Corollary 6.7 follows from Lemma 6.4 by applying Lemma 6.3 and observing that

one of the two outcomes contains half the corresponding vertices in S.

7 Trees, stars, and paths
In the proof of Theorem 5.5, we will apply Corollaries 6.6 and 6.7 several times, and divide our

graph into two parts: a union of subdivided stars on one side, and a union of subdivided stars

or paths on the other side (see again Figures 4, 5 and 6 for an idea of what these two sides

will correspond to in the final applications). We now explain how to find a rich vertex in this

context.

We start with the case where subdivided stars appear on both sides.

Lemma 7.1 (Star-star lemma). Let c > 0 be the constant of Lemma 4.9. Let H be an Ok-free

graph whose vertex set is the union of two sets L,R, such that

• S = L ∩R is an independent set,

• there are no edges between L \ S and R \ S, and

• L (resp. R) induces in H a disjoint union of subdivided stars, whose centers have average

degree at least 3ck log k, and whose set of leaves is precisely S.

Then H contains a vertex of degree at least
1

2f ′(3,k)
|S| = Ω( 1

k3
|S|), where f ′

is the function of

Corollary 4.4.

Proof. Note thatH does not containK3,3 as a subgraph (but might containK2,2 as a subgraph)

and is Ok-free. By Corollary 4.4, there is a set X of at most f ′(3, k) vertices of H such that

all bananas ofH intersectX . Since the centers of the subdivided stars are the only vertices of

degree larger than 2 in H , we can assume that X is a subset of the centers of the subdivided

stars.

Assume first that less than
1
2
|S| vertices of S are leaves of subdivided stars centered in

an element of X . Let S ′ ⊆ S be the leaves of the subdivided stars whose center is not in X
(note that |S ′| ⩾ 1

2
|S|), and remove from the subdivided stars of H[L] and H[R] all branches

whose endpoint is not in S ′
to get new sets of vertices L′, R′

. The centers of the resulting

S ′
-clean subdivided stars now have average degree at least

1
2
· 3ck log k > ck log k. We denote

the resulting S ′
-clean subdivided stars of H[L′] by S1, S2, etc. and their centers by s1, s2, etc.

Similarly, we denote the resulting S ′
-clean subdivided stars of H[R′] by S ′

1, S
′
2, etc. and their
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centers by s′1, s
′
2, etc. Observe that by the definition of X , for any two centers si, s

′
j , there is

at most one vertex u ∈ S ′
which is a common leaf of Si and S ′

j .

LetB be the bipartite graph with partite set s1, s2, . . . and s
′
1, s

′
2, . . ., with an edge between

si and s
′
j if and only if some vertex of S ′

is a common leaf of Si and S
′
j . Note thatB has average

degreemore than ck log k, and some induced subgraph ofH (which isOk-free) contains a strict

subdivision of B. This contradicts Lemma 4.9.

So we can assume that at least
1
2
|S| vertices of S are leaves of subdivided stars centered in

an element of X . Then some vertex of X has degree at least
1

2f ′(3,k)
|S|, as desired.

We now consider the case where subdivided stars appear on one side, and paths on the

other.

Lemma 7.2 (Star-path lemma). Let c > 0 be the constant of Lemma 4.9. Let H be an Ok-free

graph whose vertex set is the union of two sets L,R, such that

• S = L ∩R is an independent set,

• there are no edges between L \ S and R \ S,

• L induces in H a disjoint union of paths, whose set of endpoints is precisely S, and

• R induces in H a disjoint union of subdivided stars, whose centers have average degree at

least 4ck log k, and whose set of leaves is precisely S.

Then H contains a vertex of degree at least
1

3f ′(2,k)
|S| = Ω( 1

k2
|S|), where f ′

is the function

of Corollary 4.4.

Proof. Note thatH does not containK2,2 as a subgraph, and isOk-free. By Corollary 4.4, there

is a set X of at most f ′(2, k) vertices of H such that all bananas of H intersect X . Since the

centers of the subdivided stars are the only vertices of degree more than 2 inH , we can assume

that X is a subset of the centers of the subdivided stars.

Assume first that less than
1
3
|S| vertices of S are leaves of subdivided stars centered in an

element of X . Then there are at least
1
6
|S| paths in H[L] whose endpoints are not leaves of

stars centered in X . Let S ′ ⊆ S be the endpoints of these paths (note that |S ′| ⩾ 1
3
|S|), and

remove from the subdivided stars of H[R] all branches whose endpoint is not in S ′
to get R′

.

The centers of the resulting S ′
-clean subdivided stars in H[R′] now have average degree at

least
1
3
·4ck log k > ck log k. We denote these subdivided stars by S1, . . . , St, and their centers

by s1, . . . , st.
Given two centers si, sj , we say that a pair ui, uj ∈ S ′

is an {i, j}-route if ui is a leaf of

Si, uj is a leaf of Sj , and there is a path with endpoints ui, uj in H[L]. Observe that by the

definition of X , for every pair si, sj , there is at most one {i, j}-route.
Let G be the graph with vertex set s1, . . . , st, with an edge between si and sj if and only

if there is an {i, j}-route. Note that G has average degree more than ck log k, and some

induced subgraph of H (which is Ok-free) contains a strict subdivision of G. This contra-

dicts Lemma 4.9.

So we can assume that at least
1
3
|S| vertices of S are leaves of subdivided stars centered in

an element of X . Then some vertex of X has degree at least
1

3f ′(2,k)
|S|, as desired.

From the two previous lemmas and Lemma 6.1 we deduce the following.

Lemma 7.3 (Star-tree lemma). There is a constant c > 0 such that the following holds. Let H
be an Ok-free graph which does not contain Kt,t as a subgraph. Assume that the vertex set of H
is the union of two sets L,R, such that
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• S = L ∩R is an independent set partitioned into SP , ST ,

• there are no edges between L \ S and R \ S,

• L induces in H a disjoint union of subdivided stars, whose centers have average degree at

least (8ck log k)2, and whose set of leaves is equal to S, and

• R induces in H the disjoint union of

– paths on a vertex set RP , whose set of endpoints is equal to SP , and

– a tree T on a vertex set RT such that ST is a subset of leaves of T .

Then H contains a vertex of degree at least Ω( 1
k4 log k

|S|).

Proof. Let c > 0 be the constant of Lemma 4.9. Assume first that |ST | ⩽ 1. Then since the

subdivided stars of L have average degree at least (8ck log k)2, we have |SP | = |S| − |ST | ⩾
(8ck log k)2 − 1 ⩾ 1 and thus |SP | ⩾ 1

2
|S|. By removing the branch of a subdivided star of L

that has an endpoint in ST (if any), we obtain a set of SP -clean subdivided stars of average

degree at least
1
2
· (8ck log k)2 ⩾ 4ck log k. By Lemma 7.2, we get a vertex of degree at least

Ω( 1
k2
|SP |) = Ω( 1

k2
(|S|)), as desired. So in the remainder we can assume that |ST | ⩾ 2.

Let T ′
be the subtree of T obtained by repeatedly removing leaves that are not in ST .

Since |ST | ⩾ 2, L(T ′) = ST . Observe that F
′ = T ′∪RP is an S-clean forest (with L(F ′) = S),

thus any S-quasi-clean subforest of F ′
is S-clean. It follows from Corollary 6.6 (applied to S,

F ′
, and D = 4ck log k) that F ′

contains a subset F ∗
containing at least

1
2·4ck log k

|S| vertices
of S, such that H[F ∗] induces either (1) an S-clean forest of path, or (2) an S-clean forest of

subdivided stars of degree at least 4ck log k.
We denote this intersection of S and F ∗

by S∗
, and we remove in the subdivided stars

of H[L] all branches whose endpoint is not in S∗
to get a new set of vertices L∗ ⊂ L. By

assumption, the average degree of the subdivided stars in L∗
is at least

(8ck log k)2

8ck log k
= 8ck log k ⩾

4ck log k.
In case (1) above we can now apply Lemma 7.2, and in case (2) we can apply Lemma 7.1.

In both cases we obtain a vertex of degree at least Ω( 1
k3
|S∗|) = Ω( 1

k4 log k
|S|), as desired.

8 Proof of Theorem 5.5
We start with recalling the setting of Theorem 5.5. The graph G is a connectedOk-free graph

of girth at least 11, and C is a shortest cycle in G. The neighborhood of C is denoted by N ,

and the vertex set V (G) \ (C ∪N) is denoted by R. The subset of R consisting of the vertices

adjacent to N is denoted by S. Since C is a shortest cycle, of size at least 11, each vertex of S
has a unique neighbor in N , and a unique vertex at distance 2 in C . Moreover N and S are

independent sets. In the setting of Theorem 5.5, R is a forest.

Our goal is to prove that there is a vertex whose degree is linear in the cycle rank r(G). To
this end, we assume that G has maximum degree at most δ · r(G), for some δ > 0, and prove

that this yields a contradiction if δ is a small enough function of k.

By Lemma 5.1, we can assume that G is reduced, i.e., contains no vertex of degree 0 or 1.
If G consists only of the cycle C , then r(G) = 1 and the theorem is immediate. Thus we can

assume that N is non-empty, which in turn implies that S is non-empty since G is reduced.

Since R does not contain any vertex of degree 0 or 1 in G, we also have that G[R] does not
contain any isolated vertex (all its components have size at least 2) and all the leaves of G[R]
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lie in S. Using the terminology introduced in Section 6, G[R] is an (S ⊆ R)-decorated forest,

and G \ V (C) is (N,S ⊆ R)-divided.

Using that G is connected, remark that

r(G) = |E(G)| − |V (G)|+ 1 = 1 +
1

2

∑
v∈V (G)

(d(v)− 2). (12)

We start with proving that the cardinality of S is at least the cycle rank r(G).

Claim 8.1. |S| ⩾ r(G), and thus G has maximum degree at most δ|S|.

Proof. Observe that
1
2

∑
v∈C∪N(d(v) − 2) = 1

2
|S|. Furthermore

1
2

∑
v∈R(d(v) − 2) is equal to

1
2
|S| minus the number of connected components of G[R], as R induces a forest and each

vertex of S has a unique neighbor outside ofR. SinceR is non-empty, it follows from (12) that

r(G) ⩽ |S|. We assumed that G has maximum degree at most δ · r(G) which is at most δ|S|,
as desired. ⌟

In the remainder of the proof, we let c > 0 be a sufficiently large constant such that Lem-

mas 4.8 and 7.3 both hold for this constant.

We consider δ < 1
8k
, and use Claim 8.1 to apply Corollary 6.7 to the subgraph H of G

induced by N and F = R (which is Ok-free), with D = 2 · (8ck log k)2. We obtain subsets

N ′ ⊆ N , R′′ ⊆ R such that if we define S ′
as the subset of S ∩ R′′

with a neighbor in N ′
, we

have |S ′| ⩾ 1
32D

|S| and at least one of the following two cases apply.

1. Each connected component ofH[R′′] is an S ′
-clean subdivided star of degree at leastD,

or

2. Each connected component of H[R′′] is an S ′
-clean path.

We first argue that the second scenario holds.

Claim 8.2. Each connected component of H[R′′] is an S ′
-clean path.

Proof. Assume for a contradiction that Case 2 does not apply, hence Case 1 applies.

v∗

C
N ′

S′

R′′

P
N2

S2

R2

Figure 4: The graphs G1 (left) and G2 (right) in the proof of Claim 8.2.

LetG1 be the subgraph ofG induced byC∪N ′∪R′′
(see Figure 4, left). Since |C|⩾ 11 and

vertices of C have disjoint second neighborhoods in S ′
, there exists a vertex v∗ ∈ C that sees

at most
1
11
|S ′| vertices of S ′

in its second neighborhood. If we remove from G1 the vertex v
∗
,

its neighborhood N(v∗) ⊆ N ′
, its second neighborhood N2(v∗) ⊆ S ′

, and the corresponding
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branches of the subdivided stars of R′′
, we obtain a graph G2 whose vertex set is partitioned

into a path P = C − v∗, its neighborhood N2 = N ′ − N(v∗), and the rest of the vertices R2

(which includes the set S2 = S ′ −N2(v∗)), with the property that each component of G2[R2]
is an S2-clean subdivided star (see Figure 4, right). More importantly,

|S2| ⩾ 10
11
|S ′| ⩾ 10

11
· 1
32D

|S| ⩾ 1
36D

|S|,

and the average degree of the centers of the subdivided stars is at least
10
11
D ⩾ (8ck log k)2.

Observe that P ∪ N2 ∪ S2 induces a tree in G2, such that all leaves of G2[P ∪ N2 ∪ S2]
except at most two (the two neighbors of v∗ on C) lie in S2, and non leaves of the tree are

not in S2. We can now apply Lemma 7.3 with R = P ∪ N2 ∪ S2 and L = R2. It follows that

G2 contains a vertex of degree at least Ω( 1
k4 log k

|S2|) = Ω( 1
k6 log3 k

|S|) > δ|S|. Since G2 is an

induced subgraph of G, this contradicts Claim 8.1. ⌟

We denote the connected components of H[R′′] by P1, . . . , Pℓ, with ℓ ⩾ 1
64D

|S|.

Claim 8.3. There is a vertex u∗
in C which has at least

1
16(8ck log k)3

|S| endpoints of the paths
P1, . . . , Pℓ in its second neighborhood, where c > 0 is the constant of Lemma 4.8.

Proof. Assume for the sake of contradiction that each vertex of C has less than
1

16(8ck log k)3
|S|

endpoints of the paths P1, . . . , Pℓ in its second neighborhood.

C
N ′C
N ′ CC

Figure 5: The graphs G3 (left) and G4 (right) in the proof of Claim 8.3.

LetG3 be subgraph of G induced by C ∪N ′
and

⋃ℓ
i=1 V (Pi) (see Figure 5, left), and letG4

be the graph obtained from G3 by contracting each vertex of N ′
with its unique neighbor in

C (i.e., G4 is obtained from G3 by contracting disjoint stars into single vertices), see Figure 5,

right. Note that sinceG isOk-free, G3 andG4 are alsoOk-free (from the structural properties

of C , N , and S, each cycle in G4 can be canonically associated to a cycle in G3, and for any

set of independent cycles in G4, the corresponding cycles in G3 are also independent). By our

assumption, each vertex of C in G4 has degree at most
1

16(8ck log k)3
|S| + 2, and G4 consists

of the cycle C together with ℓ ⩾ 1
64D

|S| paths whose endpoints are in C and whose internal

vertices are pairwise disjoint and non-adjacent. By Lemma 4.8, it follows that

1
64D

|S| < ℓ ⩽ c · 1
16(8ck log k)3

|S| · k log k,

and thus D > 2(8ck log k)2, which contradicts the definition of D = 2(8ck log k)2. ⌟

Claim8.4. If the vertices inN [u∗] have average degree at least (8ck log k)2 inS ′
, thenG contains

a vertex of degree at least δ|S|.
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Proof. The key idea of the proof of the claim is to consider the neighbors of u∗
as the centers

of stars (L) in Claim 7.3. In order to do that, we consider the subgraph G5 of G induced by

• the path C − u∗
,

• N(u∗) and the pathsPi (1⩽ i⩽ ℓ) with at least one endpoint in the second neighborhood
N2(u∗) of u∗

(call these paths P ′
1, . . . , P

′
t ), and

• the neighbors of the endpoints of the paths P ′
1, . . . , P

′
t in N .

All the components of G5 − N(u∗) are either paths P ′
i with both endpoints in N2(u∗), or a

tree whose leaves are all in N2(u∗) (except at most two leaves, which are the two neighbors

of u∗
in C). See Figure 6, right, for an illustration, where the vertices of N2(u∗) are depicted

with squares and the components of G5 −N(u∗) are depicted with bold edges.

C
N ′

C
N ′

u∗

Figure 6: The graphs G3 with the vertex u∗
(left) and the graph G5 (right) in the proof

of Claim 8.4.

By considering the vertices of N(u∗) and their neighbors in S ′
as stars (whose centers,

depicted in white in Figure 6, right, have average degree at least (8ck log k)2) we can apply

Lemma 7.3, and obtain a vertex of degree at least Ω( 1
k4 log k

|S ′|) ⩾ Ω( 1
k6 log3 k

|S|) ⩾ δ|S| in G5

(and thus in G), which contradicts Claim 8.1. ⌟

Observe that if the vertices ofN(u∗) have average degree at most (8ck log k)2 in S ′
, then u∗

has degree at least
1

16(8ck log k)5
|S|⩾ δ|S|. If not, by Claim 8.4,G also contains a vertex of degree

at least δ|S|. Both cases contradict Claim 8.1, and this concludes the proof of Theorem 5.5. □
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