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Abstract

We deduce an extension theorem for the so - called Sobolev - Grand Lebesgue
Spaces defined on the suitable subsets of the whole finite - dimensional Euclidean
space, and estimate the norms of correspondent extension operator, which may be
choosed as linear.
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Sobolev - Grand Lebesgue norm and spaces, Euclidean space, Lipschitz domain,
ordinary and linear extension, linear bounded operator, norm, measurable functions,
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1 Introduction. Previous results.

Let B(G), where G is non - trivial subset of an Euclidean space Rd : G ⊂ Rd

be a family of Banach spaces defined on the class of functions defined in turn on the
support G; the norm in this space will be denoted ||f ||B(G).

It will be presumed henceforth that all the considered domains G are closures
of the non - empty open sets and are Lipschitzian. The case when G = Rd is trivial
for us and may be excluded.

Put also for definiteness B = B(Rd).
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For instance, the classical Lebesgue - Riesz Lp(G) spaces equipped with the
ordinary norm

||f ||p(G) = ||f ||Lp(G) :=
[
∫

G
|f(x)|p dx

]1/p

, p ∈ [1,∞), f : G→ R; x ∈ G,

as well as the famous Sobolev spaces Wm
p (G), m = 1, 2, . . . :

||f ||Wm
p (G)

def
= max

α, |α|≤m
||Dαf ||Lp(G), (1)

||f ||Wm
p := ||f ||Wm

p (Rd); see e.g. [1], [24], [25], [26], [30], [31].
Here as ordinary

α = ~α = (α1, α2, . . . , αd); αj = 0, 1, 2, . . . ;

|α| :=
d

∑

j=1

αj; Dαf :=
D|α|f

∂xα1

1 ∂x
α2

2 . . . ∂x
αd

d

and all the derivatives are understood in the weak (Sobolev) sense. Of course,
D0f = f.

Let the function f : G→ R belongs to some space B(G). By definition, the
function f̃ , Rd → R is named as an extension of the function f (from the set
G), iff

∀x ∈ G ⇒ f̃(x) = f(x)

and wherein ||f̃ ||B <∞.

If there exists a linear bounded operator L : f̃ = Lf = LGf, f ∈ B(G), where
again f̃ is an extension for f, such that

K = K(G) = K(B,G)
def
= sup

06=f∈B(G)

{

|| Lf ||B

||f ||B(G)

}

<∞,

then the extension f̃ = Lf = LGf is named linear.

It is known, see e.g. [3], [4], [11], [31] that under imposed conditions on the
Lipschitz domain G and for the Sobolev’s spaces B(G) = Wm

p (G), m ≥ 1, p ≥ 1
(the case m = 0 is trivial) there exist a linear extension operator. See also the
works [18], [19], [25], [26], [29] etc.

We will ground in offered report that this linear operator there

exists also for the so - called Sobolev - Grand Lebesgue Spaces.
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2 Main result.

Sobolev - Grand Lebesgue Spaces.

Let (a, b) = const, 1 ≤ a < b ≤ ∞. Let also ψ = ψ(p), p ∈ (a, b) be
certain numerical valued measurable strictly positive: infp∈(a,b) ψ(p) > 0 function,
not necessary to be bounded. Denotation:

(a, b) := supp(ψ); Ψ[a, b] := { ψ : supp(ψ) = (a, b) },

Ψ
def
= ∪(a,b): 1≤a<b≤∞Ψ[a, b].

Definition 2.1., see e.g. [28]. The Sobolev - Grand Lebesgue Space
S[m,G, ψ] based on the set G, G ⊂ Rd is defined as a set of all (measurable)
functions having a finite norm

||f ||S[m,G, ψ]
def
= sup

p∈(a,b)

{

||f ||Wm
p (G)

ψ(p)

}

. (2)

The particular case m = 0, i.e. when

||f ||Gψ = ||f ||Gψ(a, b)
def
= ||f |||S[0, G, ψ] = sup

p∈(a,b)

{

||f ||Lp(G)

ψ(p)

}

(3)

and under some additional restrictions on the generating function ψ = ψ(p) corre-
spondent to the so - called Yudovich spaces, see [32], [33]. These spaces was applied
at first in the theory of Partial Differential Equations (PDE), see [7], [8].

A general case of these spaces when m = 0 are named as the classical Grand
Lebesgue Spaces (GLS) Gψ, ψ ∈ Ψ. These spaces are investigated in many works,
see e.g. [9], [10], [12], [13], [14], [15], [16], [17], [20], [21], [22], [23], [27]. The general
case of Sobolev - Grand Lebesgue Spaces appears at first perhaps in the article [28],
where was investigated the modulus of continuity of the functions belonging to these
spaces.

Theorem 2.1. Assume that all the formulated before restrictions are satisfied,
indeed: that the Lipschitz domain G is closure of the non - empty open subset of
whole Euclidean space Rd. We propose that for arbitrary Sobolev - Grand Lebesgue
Space S[m,G, ψ] there exists a linear bounded extension operator L = LG.

Proof. One can suppose d ≥ 2 and that G = ~x = {xj} =
{x1, x2, . . . , xd−1, xd}, where ~x = (x̃, xd); x̃ = { x1, x2, . . . , xd−1 }; so that
~x ∈ G ⇔ xd ≥ 0; on the other words, upper semi - space; see e.g. [3], [4], [11]. Let
us define the following extension operator Lf(x) := f(x), x ∈ G, f(·) ∈ S[m,G, ψ];
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Lf(x) :=
d+1
∑

k=1

ckf(x̃, −kxd), xd < 0.

The coefficients {ck} may be uniquely determined from the following system of
linear equations

m+1
∑

k=1

(−k)l ck = 1; l = 0, 1, . . . , d.

Suppose that f ∈ S[m,G, ψ]; one can assume without loss of generality
||f ||S[m,G, ψ] = 1. Then for all the values p ∈ (a, b)

||f ||Wm
p ≤ ψ(p), p ∈ (a, b),

therefore

∀p ∈ (a, b), ∀α : |α| ≤ m ⇒ ||Dαf ||p(G) ≤ ψ(p).

Introduce the functions

gk(x̃, y) := f(x̃,−ky), y ≤ 0;

then

Dαgk = (−k)αd f (α)(x̃,−ky),

||Dαgk||p(G) = kαd−1/p||Dαf ||p(G) ≤ kαd||Dαf ||p(G),

therefore

∀α : |α| ≤ m ⇒
m+1
∑

k=1

|ck| k
m · ||Dαf ||p(G) ≤

m+1
∑

k=1

|ck| k
m · ψ(p), p ∈ (a, b).

Following, by virtue of triangle inequality for Lebesgue - Riesz spaces

||L[f ]||Wm
p (Rd \G) ≤ C(d,m) ψ(p), C(d,m) <∞,

||Lf ||S[m,Rd, ψ] ≤ 1 + C(d,m) <∞,

Q.E.D.
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3 Concluding remarks.

It is interest in our opinion to compute the exact value of extension constant for
Sobolev - Grand Lebesgue Spaces, as well as to generalize the extension theorem on
the anisotropic spaces.
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