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Abstract

Following work of Raleigh and Akiyama ([31], [1]), in our article [8] we considered
(among other objects) families of weight zero meromorphic modular forms Jm for
Hecke groups G(λm). We conjectured that, for a certain uniformizing variable Xm,
the Jm have Fourier expansions Jm = 1/Xm +

∑∞
n=0 m

−2n−2An(m)Xn
m, where

the An(x) are polynomials in Q[x]. The present article is concerned with mod-
els An[p](x) of the An(x): polynomials representing self-maps of finite fields with
characteristic p. The main content is a conjecture specifying An[p](x) up to a mul-
tiplicative constant for certain families of n and p, based on numerical experiments.

1. Introduction

1.1. Why Hecke groups?

Here we describe an old puzzle to explain our interest in modular forms for Hecke

groups and to advertise the puzzle itself, which we still have not solved, and indeed

will not address in the present article. 1 C. L. Siegel ([37],[38]) established bounds

on the least positive integer represented by a positive-definite even unimodular

quadratic form in 2h variables by first bounding the exponent of the first non-

vanishing Fourier coefficient for a level one entire classical modular form Th of

weight h such that the constant term of Th is non-vanishing. While working on an

extension of Siegel’s result on the non-vanishing of the Th constant terms to level

two modular forms, we came across the regularities described in equations (1) and

(2) in numerical experiments. Let ∆ denote the weight twelve modular form for

SL(2,Z) that generates Ramanujan’s tau function, let j be the usual Hauptmodul

normalized to have constant term 744, let db(n) be the sum of the digits in the base

b expansion of n, and let C(f) stand for the constant term of the Fourier series of

f in whatever uniformizing variable happens to be in question. Then (apparently)

ord2(C(jk)) = ord2(C(1/∆k)) = 3d2(k) (1)

1We have a draft of a paper on this question in the folder “current draft” in our GitHub
depository [5].

http://arxiv.org/abs/2206.00642v2
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and

ord3(C(jk)) = ord3(C(1/∆k)) = d3(k). (2)

We listed many functions displaying analogous behavior in our 1998 article [9], to-

gether with a finer taxonomy based on congruences. (For example, if ord3(n) = 1,

then n may be congruent to 3 or 6 modulo 9.) Clearly, if only we had proofs of

these statements and their analogues, we would know that the constant terms of

1/∆k, jk, and their analogues are non-zero. In the level one case Siegel used differ-

ent arguments to establish the non-vanishing of Th constant terms, as we eventually

did for their level two analogues ([9],[10].)

We wondered about the special role of the primes p = 2 and 3 in equations (1)

and (2): why these primes but not others? (This is the aforementioned puzzle.) We

looked for patterns in the p-orders of constant terms of j and other modular forms

for SL(2,Z) for p larger than three. Our search within SL(2,Z) came up empty,

so we searched among the Hecke groups G(λn), n = 3, 4, ... for the following rea-

sons. The matrix group SL(2,Z) coincides with the Hecke group G(λ3), discussed

below. It is isomorphic to the product of cyclic groups C2 ∗ C3; while in general

G(λm) ∼= C2 ∗Cm for m = 3, 4, .... At first we hoped that primes p larger than three

might manifest behavior analogous to that of three in equations (1) and (2) in Hecke

groups G(λp), but so far we have only found some more complicated patterns.

1.2. Existence of the interpolating polynomials.

For m = 3, 4, ..., let λm = 2 cosπ/m and Jm be a certain meromorphic modular

form built from a particular triangle function φm for the Hecke group G(λm) with

Fourier expansions Jm(τ) =
∑∞

n=−1 an(m)qnm, where qm(τ) = exp 2πiτ/λm. The

groups G(λ3) and SL(2,Z) coincide. 2 (There is more on triangle functions in the

next section, and details of their construction are in [8].) For n = −1, 0, 1, 2 and

3, Raleigh [31] gave polynomials Pn(x) such that a−1(m)nq2n+2
m an(m) = Pn(m) for

m = 3, 4, ..., and conjectured that similar relations hold for all positive integers n.

This was proved by Akiyama [1].

In his 2021 article [8] the present writer suggested that such interpolating poly-

nomials for higher weight Hecke-group modular forms should exist as well, and

(acting on his own suggestion) tentatively identified some of them by Lagrange in-

terpolation. In this section, we offer a more detailed existence argument. Beyond

this introduction, the present article does not require such an argument because

2For further details, the reader is referred to the books by Carathéodory [14], [15] and by Berndt
and Knopp [4], the articles of Lehner and Raleigh [26], [31], to the dissertation of Leo [27], and
to a summary, including pertinent references to that material, in the 2021 article [8]. Finally, the
article by Hardy and Ramanujan on expansions of modular functions is reprinted in Ramanujan’s
Collected Papers [20].
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we will not construct models of interpolating polynomials other than (more or less)

those of Raleigh and Akiyama. But a referee, whom we thank, asked us to comment

on future directions of this investigation, and if the studies presented here are to be

extended to higher-weight modular forms, the existence argument will be relevant.

Our argument will apply to Hecke-group modular forms. The classical forms for

SL(2,Z) lie within that class.

1.2.1. Hecke’s theory of modular forms.

Using the weight-raising properties of differentiation and the Jm, E. Hecke con-

structed certain families H comprising modular forms of positive weight for each

G(λm) sharing certain properties ([21], [4].) (The weight of g is not necessarily

constant within such a family.) It seems apparent that Akiyama’s result can be

extended: there should exist polynomials QH,n(x) interpolating the coefficient of

Xn
m in the Fourier expansions of the members of Hecke families H.

To make this precise, we review results of Hecke described in the book of Berndt

and Knopp [4]. By Theorem 3.1 in that book, the region B(λm) defined below is a

fundamental region for G(λm).

Definition 1. 1. Let τλm
be the intersection of the circle |τ | = 1 with the line

ℜ(τ) = −λm/2.

2. Let B(λm) = {τ ∈ H : ℜ(τ) < λm/2, |τ | > 1}.

3. Let gm(τ) be the unique function guaranteed to exist by the Riemann mapping

function mapping B(λm) conformally and one-to-one onto the upper half plane

such that gm takes τλm
to zero, i to 1, and i∞ to itself. (Berndt and Knopp,

pages 47–48.)

4. Let

fλm
(τ) :=

{

g′m(τ)2

gm(τ)(gm(τ) − 1)

}1/(m−2)

,

fi,m(τ) :=

{

g′m(τ)m

gm(τ)m−1(gm(τ) − 1)

}1/(m−2)

,

and

f∞,m(τ) :=

{

g′m(τ)2m

gm(τ)2m−2(gm(τ) − 1)m

}1/(m−2)

.

By Theorem 5.5 in Berndt and Knopp [4], we know that the functions fλm
, fi,m, and

f∞,m are modular for G(λm) with weights 4/(m−2), 2m/(m−2), and 4m/(m−2),

respectively. (There is a subtlety about the multiplier in the functional equation

for the modularity of fi,m which we will pass over.)
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Because of its uniqueness, we know that gm = Jm from equation 2 in Raleigh’s

article. Therefore, corresponding to the three f ’s, we have the following definitions.

Definition 2. 1. Let Hλ,m(τ) :=

{

J ′
m(τ)2

Jm(τ)(Jm(τ) − 1)

}1/(m−2)

.

2. Let Hλ,4,m(τ) := Hλ,m(τ)m−2.

Definition 3. 1. Let Hi,m(τ) :=

{

J ′
m(τ)m

Jm(τ)m−1(Jm(τ) − 1)

}1/(m−2)

.

2. Let Hi,6,m(τ) :=
{

J ′
m(τ)m

Jm(τ)m−1(Jm(τ) − 1)

}3/m

.

Definition 4. 1. Let ∆∞,m(τ) :=

{

J ′
m(τ)2m

Jm(τ)2m−2(Jm(τ) − 1)m

}1/(m−2)

.

2. Let ∆∞,12,m(τ) :=

{

J ′
m(τ)2m

Jm(τ)2m−2(Jm(τ)− 1)m

}3/m

.

3. Let ∆⋄
m(τ) := Hλ,m(τ)3/Jm(τ).

4. Let ∆⋄
12,m(τ) := H3

λ,4,m(τ)/Jm(τ).

5. Let ∆†
m(τ) := Hλ,4,m(τ)3 −Hi,6,m(τ)2.

Remark 1. It is easy to see from the definitions (for example, in [36]) that in the

classical case (subgoups of SL(2,Z)), if f and g are modular for a particular group

with weights ωf and ωg, and a is a rational number, then fg and fa are modular

for the same group, with weights ωf +ωg and a ·ωf , respectively. These statements

hold in the case of the Hecke groups as well. Therefore it follows from Berndt and

Knopp’s Theorem 5.5 that we have the following tables of weights:

Hλ,m Hλ,4,m Hi,m Hi,6,m

4/(m− 2) 4 2m/(m− 2) 6

and

∆⋄
m ∆⋄

12,m ∆∞,m ∆∞,12,m ∆†
m

12/(m− 2) 12 4m/(m− 2) 12 12
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1.2.2. The existence argument.

The main goal of the present article is to describe conjectures about finite field

models of the Jm based on SageMath experiments [33]. Let 3

Jm(τ) =

∞
∑

n=−1

an(m)qm(τ)n.

For integers m ≥ 3 and n = 0, 1, 2, 3, m−2n−2a−1(m)−nAn(m) = an(m), where

An(x) is a polynomial with rational coefficients and degree 2n + 2, such that the

coefficient of xn is zero when n is odd (Raleigh, [31]). As we said in the introduc-

tion, similar relations exist among the an for all positive n.

In section four of [8] we wrote the Fourier expansions of the Jm by replacing qm
with another variable Xm(τ) in the expansions. (The number τ is a generic ele-

ment of the upper half-plane.) By Akiyama’s theorem, we have a series of the form

J (x,Xm) :=
∑∞

n=−1 P̃n(x)X
n
m for polynomials P̃n(x) in Q[x] with the property

that Jm = J (m,Xm). A reader willing to take that construction for granted can,

for present purposes, regard the expansion of Jm in Xm (truncated to n terms) as

the object defined in our SageMath code in the “dictionary” at the top of each note-

book as J(n,m). Now, just to provide the reader with some context, we normalize

the Jm themselves to obtain functions jm such that j3 is (apparently) the usual j

function.4 We begin by defining an operator on infinite series in Xm. It has the

effect when m = 3 of recovering the Fourier series of a variety of standard modular

forms.5

Definition 5. Let f =
∑∞

n=a knX
n
m, where kn is a rational number for n = a, a+

1, ..., and ka 6= 0. Let g =
∑∞

n=a kn(2
6m3Xm)n =

∑∞

n=a k̃nX
n
m (say). Then

f := g/k̃a.

3Relevant files in [7] are (1) the SageMath Jupyter notebook in which we generated Fourier
expansions of the Jm and of the An(x), namely “capital-J make data file1jun21.ipnyb”; (2)
the notebook “capital-J polynomials make file.ipynb” in which we generated the data file
“run14jun21no14.txt”, which is called in turn by many of our other notebooks; (3) a table
for an(m) divided into several files: “run2jun21no11”, “run2jun21no12”, “run2jun21no13” and
“run2jun21no14”; (4) a Mathematica notebook “conjecture 1.nb” documenting the table’s calcu-
lation; a table for the An(x) made in the same notebook under file name “run20apr21no5”; and (5)
files generated for the same purposes in the SageMath Jupyter notebook “conjecture1no1.ipnyb”
(which is also there.)

4Except to repeat a conjecture from our 2021 article, we do not study the jm in this one. But
the reader will notice in conjecture 1 below that that interpolating polynomials behave a little
more nicely for jm than for Jm.

5The substitution involved appears in [27]; see our article [8] for a fuller acknowledgement of
our debt to Leo.
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Definition 6. With Jm(τ) = 1/Xm +
∑∞

n=0 an(m)Xn
m, we set6

jm(τ) := Jm = 1/Xm +
∑

n≥0

cm(n)Xn
m (say).

The Fourier expansion of j3 is 7

j3(τ) = 1/X3(τ) + 744 + 196884X3(τ) + 21493760X3(τ)
2 + ...,

which matches the standard expansion j(τ) =

1/ exp(2πiτ) + 744 + 196884 exp(2πi · τ) + 21493760 exp(2πi · 2 · τ) + ....

We make the following

Definition 7. Let F = {f3, ..., fm, ...} where fm is modular for G(λm). Then we

write the Fourier expansion of fk
m in powers of Xm as

fm(τ)k =
∑

n

AF ,k,m(n)Xn
m.

Proposition 1. Let K = {J3, , J4, ...} and K = {j3, j4, ....} Then there exist poly-

nomials QK,k,n(x) and QK,k,n(x) in Q[x] such that

Jm(τ)k =

∞
∑

n=−k

QK,k,n(m)Xm(τ)n

and

jm(τ)k =
∞
∑

n=−k

QK,k,n(m)Xm(τ)n.

In other words, AK,k,m(n) = QK,k,n(m) and AK,k,m(n) = QK,k,n(m) for k =

1, 2, ...,m = 3, 4, ..., and n = −k, 1− k, ....

For k equal to one, the first claim is just Akiyama’s theorem and the claim for k

not equal to one is then obvious. The second statement follows immediately.

Proposition 2. With k as in proposition 1, let

H = {Hλ,m}, {Hλ,4,m}, {Hi,m}, {Hi,6,m},

6Some code for jm Fourier expansions appearing in SageMath notebooks cited below was gen-
erated in [7], notebook “j from scratch.ipynb”, which employs a “dictionary” (the definitions at
the top of the notebook) distinct from the corresponding dictionaries in the notebooks where it is
reproduced.

7See equation (23) of Serre’s book [36], section 3, and the SageMath notebook “jpower constant
term NewmanShanks 26oct22.ipynb” in our repository [5].
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{∆⋄
m}, {∆⋄

12,m}, {∆∞,m}, or {∆†
m},

permitting m to range over the integers greater than two. Then there exist polynomi-

als QH,k,n(x) in Q[x] such that the elements f3, f4, ... of Hk have Fourier expansions

fm(τ) =
∑

n

QH,k,n(m)Xm(τ)n.

For k equal to one, we justify this as follows. After substituting J (x,Xm) (the series

defined in the paragraph succeeding remark 1 above) for Jm in the various clauses

of definitions 2 - 4, the right sides become rational functions of fractional powers

of various series in powers of Xm with coefficients in Q[x], which by purely formal

operations should be expressible as other series in powers of Xm with coefficients

in Q[x], from which we recover Fourier expansions of each of the defined functions

by setting x equal to m. The statement for k other than one follows easily.

1.3. Finite field models.

1.3.1. How do finite field models help?

We want to understand as much as we can about the An(x). The most obvious

ways to analyze polynomials are through their coefficients and their roots. We have

not found patterns among the coefficients in these polynomials. In experiments

that we have not published, on the other hand, we did see that in some situations

the roots of relevant polynomials appear to be confined to the real axis, but we

had no proofs.8 We usually could not do better than approximations. The roots

of polynomials in a finite field, on the other hand, can be enumerated exactly, not

just in theory but (when the field is small enough) in practice, simply by doing

a brute-force search. We found that (by clearing denominators of a prime p) we

arrived at models of the An(x) in fields of characteristic p that displayed regularities

determined by the residue class of n modulo p. These regularities suggest, to the

author, at least, that the An in his 2021 article were correctly identified. They

are also evidence that the Fourier coefficient of the original Jm at Xn is governed

somehow by n modulo p for each prime p and all n. This vague claim is the moral

of our story.9

1.3.2. A sketch of the models.

If P (x) is in Q[x], we write Kp(P (x)) for a certain polynomial in Q[x] that agrees

with P (x) up to a multiplicative constant. The definition of the map Kp guarantees

8In some circumstances this is a significant property. For example, the proposition that all of
the roots of Jensen polynomials are real is equivalent to the Riemann hypothesis ([30], [19], [18],
[17].)

9The congruences for the coefficients c(n) of the j function discussed in the articles [2], [24],
and [25], and also in in Serre’s book [36] (chapter VII, section 3) are clearly related to this claim.
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that ordp is non-negative on all coefficients of Kp(P (x))–a property that allows us

to define its models in finite fields of characteristic p. We write A(n, p) for the small-

est splitting field (in a weak sense) of An(x) over Fp. We also write An[p](x) for

Kp(An(x)) considered as a polynomial self-map of A(n, p). These are the models of

our title. We study the An[p](x) with numerical experiments and make conjectures

describing their roots completely for primes p less than or equal to seven.

To recover the An(m) from the An[p](x), our experiments suggest that it would

be most useful to have in hand An[p](x) for all primes p less than or equal to the

smallest prime greater than n. But the feasibility of computing with p declines with

the size of A(n, p), which becomes large for n in certain residue classes modulo p.

Consequently, our conjectures only address primes less than or equal to seven. If our

conjectures are valid and the behavior of the A(n, p) is similar for all larger primes

as well, then the Fourier coefficients An(m) of the Jm = 1/Xm +
∑∞

n=0 An(m)Xn
m

behave in a uniform way that is independent of the Hecke group G(λm) and depends

only on congruences satisfied by the indices n.

Our identification of their roots for p less than or equal to seven only specifies

the An[p](x) themselves up to a multiplicative constant, and we have not been able

to understand how these constants vary with n, even for fixed small values of p.

On the other hand, the original polynomials An(x) behaved much better in this re-

gard in our experiments. We were able to write them as the product of a product of

monic polynomials and an explicitly known rational number. (See conjectures 1 and

2 below.) This seems to lessen the urgency of solving the problem of understanding

more fully the multiplicative constants associated with the An[p](x).

2. Triangle functions.

The material in the present section was sketched more fully in [8], which also in-

cludes citations to an even more thorough exposition of much of it in the second

volume of Carathéodory [15]. Let Z,Q,C and H denote, respectively, the set of

rational integers, the set of rational numbers, the set of complex numbers, and the

set of complex numbers with positive imaginary parts. (We will reserve the letter

τ for elements of the upper half-plane, and z for generic complex numbers.) We

write H∗ = H ∪ Q ∪ {i∞}, and we equip H∗ with the Poincaré metric. Figures T

made by three geodesics of H∗ are called hyperbolic or circular-arc triangles. Let

λm = 2 cosπ/m. For m = 3, 4, ..., we define the Hecke group G(λm) as the discrete

group generated by the maps z → −1/z and z → z + λm. The full modular group

SL(2,Z) is identical to G(λ3).
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For our purposes, Schwarz triangles T are hyperbolic triangles in H∗ with cer-

tain restrictions on the angles at the vertices. From a Euclidean point of view, their

sides are vertical rays, segments of vertical rays, semicircles orthogonal to the real

axis and meeting it at points (r, 0) with r rational, or arcs of such semicircles. We

choose λ, µ and ν, all non-negative, such that λ + µ + ν < 1; then the angles of T

are λπ, µπ, and νπ. By reflecting T across one of its edges, we get another Schwarz

triangle. The reflection between two triangles in H∗ is effected by a Möbius trans-

formation, so the orbit of T under repeated reflections is associated to a collection

of Möbius transformations. The group generated by these transformations is a tri-

angle group.10 By the Riemann Mapping Theorem there is a conformal, onto map

φ : T 7→ H∗ called a triangle function.

Hecke groups are triangle groups H that act properly discontinuously on H [21].

This means that for compact K ⊂ H, the set {µ ∈ H s.t. K ∩ µ(K) 6= ∅} is

finite. Recall that G(λm) is the Hecke group generated by the maps z 7→ −1/z

and z 7→ z + λm. Hecke established that G(λm) has the structure of a free prod-

uct of cyclic groups C2∗Cm, generalizing the relation ([36], [13]) SL(2,Z) = C2∗C3.

Let ρ = − exp(−πi/m) = − cos(π/m)+ i sin(π/m), and let Tm ⊂ H∗ denote the hy-

perbolic triangle with vertices ρ, i, and i∞. The corresponding angles are π/m, π/2

and 0 respectively. Let φλm
be a triangle function for Tm. The function φλm

has

a pole at i∞ and period λm. For P,Q ∈ H∗, let us us write P ≡H Q when µ ∈ H

and Q = µ(P ). Then φλm
extends to a function Jm : H∗ → H∗ by declaring that

Jm(P ) = Jm(Q) if and only if P ≡H Q. Jm is a modular function (a meromorphic

modular form of weight zero) for G(λm).

Schwarz ([34] or [35]), Lehner [26] and Raleigh [31] studied Schwarz triangle func-

tions, which map hyperbolic triangles T in the extended upper half z-plane onto the

extended upper half w-plane. For certain T = Tm, a triangle function φλm
: T → H∗

extends to a map Jm : H∗ → H∗ invariant under modular transformations from

G(λm).

3. Polynomial interpolation of Fourier coefficients of modular functions

for Hecke groups.

We reproduce parts of conjecture 1 and conjecture 2 from our earlier article [8].

10In the terminology of Isant and Grau [3], page 45, these are Fuchsian groups of signature
(0; 1/λ, 1/µ, 1/ν). We have not as yet examined the possibility of extending the experiments of
our article [8] (and of the present article) to a broader class of Fuchsian groups. Movasati [28]
provides relevant code for such studies, based on results of the article by Doran, Gannon and
himself [16].
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Conjecture 1. Let the Fourier expansion of jm(τ) be

jm = 1/Xm +
∑

n≥0

cm(n)Xn
m.

1. For each integer n greater than −2, there exists a polynomial Cn(x) ∈ Q[x]

that satisfies the relation cm(n) = Cn(m) for m = 3, 4, ... 11

2. Let {φ−1, φ0, ...} = {1, 24, ...} be the McKay-Thompson series of class 4A [40].

For some degree 2n, irreducible, monic polynomial γn(x) in Q[x] we have 12:

Cn(x) = φn · (x − 2)(x+ 2)xn+1γn(x).

3. The function j3 is identical to the modular function on SL(2,Z) usually de-

noted j.13

Conjecture 2. Let 14 the Fourier expansion of Jm(τ) be

Jm =

∞
∑

n=−1

am(n)Xn
m.

1. 15

(a) There exist polynomials An(x) such that A−1(x) ≡ 1, A0(x) = 3x2 + 4,

A1(x) = 69x4 − 8x2 − 48, and An(m) = m2n+2am(n) for m = 3, 4, .....

(b) Let Cn(x) be as in Conjecture 1. Then

An(x) = 2−6n−6x−n−1Cn(x).

2. Let πn be the set of prime numbers dividing the denominator of at least one

non-zero coefficient of An. Then the following statements are true 16

(a) π2 = {3}.

(b) If πn is ordered by size, it contains no gaps. That is, if p and p′ are

consecutive elements of πn with p = pk and p′ = pj, then j = k + 1.

(c) If n is an odd prime, then

πn = {2, ..., k, ..., p}k prime

where p is the greatest prime less than n.

11[7], notebook “conjecture 1.nb”.
12[7], notebook “conjecture 1 clause 2.ipynb’
13[7], notebook “conjecture 1 cause 3.nb”.
14Relevant documents in [7] are notebooks “conjecture 2.nb”, “conjecture2no1.ipynb”, “capital-J

make data file1jun21.ipynb” and associated data files.
15For clause 1, see [7], notebooks “conjecture 2.nb”, “conjecture 2 clause 1b.ipynb”, and “con-

jecture 2 clause 1b no2.ipynb”.
16[7], notebook “conjecture 2 clause 2 w code 14jun21.ipynb”.
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(d) If n is composite and n+ 1 is prime, then

πn = {2..., k, ..., n+ 1}k prime.

(e) If n and n+ 1 are both composite, then

πn = {2..., k, ..., p}k prime

where p is the greatest prime less than n.

Remark 2. Comparing the notation of clause 1(a) of conjecture 2 with that of

proposition 1, we see that An(m) = m2n+2QK,1,n(m) = m2n+2AK,1,m(n).

4. Finite-field models of interpolating polynomials.

Interpreting a polynomial f(x) as a self-map on a finite field Fpk is not possible if the

prime p divides the denominator of one of the coefficients of f(x). It appears that

all primes less than n occur in the denominators of coefficients of the interpolating

polynomials An(x) and that, as a result, we cannot make such an interpretation

when p is less than n. To get around this difficulty, we clear denominators to

obtain polynomials, either with integer coefficients, or at least with denominators

not divisible by a specified prime number, before applying maps from Q[x] to Fpk [x]

defined below to arrive at finite field models of the interpolating polynomials.17

Definition 8. 1. If F is a finite field of characteristic p, let 0F and 1F denote

the additive and multiplicative identities of F , respectively. Furthermore if n

is a positive integer, let nF denote the sum in F of n copies of 1F , and let

(−n)F be the additive inverse in F of nF . If n1 and n2 are positive integers

such that ordp(n2) ≥ 0 let (n1/n2)F be the quotient in F of (n1)F and (n2)F .

We refer to the map x 7→ xF as coercion.

2. (a) Let A(n, p) be the smallest characteristic p field in which An(x) splits

into factors of degree zero or one.

(b) Let A(n, p)∗ be the (cyclic) multiplicative group A(n, p)\{0F}.

3. (a) Let sA(n, p) denote the vector space dimension [A(n, p) : Fp].

(b) Integers n1 and n2 are (A, p)-equivalent if n1 ≡ n2 modulo p and

sA(n1, p) = sA(n2, p).

17In practice, these maps are SageMath coercions. Coercion is a concept from type theory.
For a recent discussion, see Buzzard’s preprint [11]. For SageMath’s own explanations of its
coercion routines, see the documents [42] and [22]. Caveat: In the article, we define the maps
mathematically; coercion in SageMath, on the other hand, is defined by code. Our conjectures are
based on the validity (which is left to the judgement of the reader) of the correspondence between
these definitions.
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4. (a) If P (x) =
∑

n∈I(Nn/Dn)x
n ∈ Q[x] where Nn and Dn are relatively

prime integers, d(P (x)) := lcm{Dn}n∈I .

(b) With µp(P (x)) = pordp(d(P (x)),

K(P (x)) := d(P (x)) × P (x)

and

Kp(P (x)) := µp(P (x)) × P (x).

5. Here we define finite field models of the An(x).

(a) Let αj , j = 0, 1, 2, ..., u, be rational integers, and letK(An(x)) =
∑u

j=0 αjx
j .

Then

An[p](x) :=

u
∑

j=0

(αj)F xj .

where F = A(n, p).

(b) Let α∗
j , j = 0, 1, 2, ..., u, be rational numbers and letKp(An(x)) =

∑u
j=0 α

∗
jx

j .

By construction, ordp(α
∗
j ) ≥ 0. Then

An[p](x) :=
u
∑

j=0

(α∗
j )F xj .

where F = A(n, p).

6. (a) Let mod(n, p) be the element ρ of {0, 1, ..., p− 1} such that

n ≡ ρ (mod p).

(b) We set δ(n, p) := (n− mod(n, p))/p.

(c) We set a(n, p) := the leading coefficient not divisible by p in K(An(x)).

(d) We set a∗(n, p) := the leading coefficient not divisible by p in Kp(An(x)).

(e) We set r(n, p) := mod(a(n, p), p).

(f) We set r∗(n, p) := mod(a∗(n, p), p).

(g) We set α(n, p) := r(n, p)F where F = A(n, p).

(h) We set α∗(n, p) := r∗(n, p)F where F = A(n, p).

(i) We write the Frobenius map as φp : F → F with φp(s) := sp.

(j) For s in F , the φp-orbit of s is written Op.
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Remark 3. 1. The models An[p](x) and An[p](x) agree up to multiplicative

constants. Therefore, the assertions summarized in tables 1 - 3 below are

valid for both of them. We require the An[p](x) in order to make the argument

in remark 5 concerning Frobenius orbits of the roots. But there is a loss of

information in An[p](x) from the clearing of denominators by the K-operator

which can only be reflected in the relevant multiplicative constant. To be

more precise, K takes distinct polynomials in Q[x] to a single element of

Z[x], and so it would seem to be difficult to constrain An(x) using K(An(x))

or the corresponding models An[p](x). On the other hand, let the set of

prime numbers πn be as in conjecture 2, clause 2 and let νn be the largest

element of πn. Then the obstacles to deriving conditions on An(x) from

information about the images {Kp(An(x))}p≤νn and the corresponding models

{An[p](x)}p≤νn would seem to be less formidable.

2. We have not considered the question whether or not the A(n, p) are splitting

fields in the full sense of, say, Definition A.5.7 in the book [29]. (The extra

condition is this: for a splitting field S of a polynomial P (x), the roots of

P (x) generate S over the base field.)

3. Typically when n1 and n2 are (A, p)-equivalent, the polynomials An1
[p](x)

and An2
[p](x) are distinct (tables 1-3.) Of course, the set of self-maps of

a finite set is also finite, so the infinite family {An[p](x)}n represents only

a finite set of self-maps on the A(n, p), and there is a natural equivalence

relation on {An[p](x)}n induced by this fact; we will study it below.

The conjectures below are based on numerical experiments documented in our

repository [6] in the range of n-values that were accessible to our tests, namely,

−1 ≤ n ≤ 200.

Conjecture 3. 18 Let p1 and p2 be prime numbers such that p1 < p2.
19

1. 20

(a) If An[p](x) is factored over A(n, p) as a field element γ times a product

of monic polynomials, then γ = α(n, p); by construction, γ belongs to

{1A(n,p), 2A(n,p), ..., (p− 1)A(n,p)}.

(b) If An[p](x) is factored over A(n, p) as a field element γ times a product

of monic polynomials, then γ = α∗(n, p) and γ belongs to

{1A(n,p), 2A(n,p), ..., (p− 1)A(n,p)}.

18[6], notebooks with titles “conjecture 4 ...” (sic.) for various primes p; these notebooks serve
several purposes, hence the file names. In the file names, “res” stands for “residue”, i.e., mod(n, p),
and “sd” stands for “splitting degree”, i.e., sA(n, p).

19[6], notebook ’conjecture 3 for An.ipynb’.
20[6], Jupyter notebook “numerical term on extension fields 17may22.ipynb”
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2. If p is a prime greater than 3, p < n and p ≤ 17, then sA(n, p) is determined

by mod(n, p); moreover, sA(n, 2) ≡ 1 identically. Here are tables for p = 3, 5

and 7.21

mod(n, 3) 0 1 2
sA(n, 3) 1 1, 2, 3 1, 2, 3, 4

mod(n, 5) 0 1 2 3 4
sA(n, 5) 1, 2 4 4 6 1

mod(n, 7) 0 1 2 3 4 5 6
sA(n, 7) 4 4 2 2 6 5 1

3. If p is a prime number greater than three and n ≡ p − 1 (mod p), then

sA(n, p) = 1.

4. (a) Either sA(0, p) = 1 or sA(0, p) = 2.

(b) If p is a prime number greater than three and sA(0, p) = 1, then

p ≡ 1 (mod 3).

(c) If p is a prime number greater than three and sA(0, p) = 2, then

p ≡ 2 (mod 3).

Remark 4. 1. We have not found statements like clause 4 about sA(n, p) for

values of n other than zero.

2. We found clause 4 after reading Sloane’s A002476 [39] and related pages.

Remark 5. By construction, the coefficients of K(An(x)) are rational integers;

hence the coefficients of An[p](x) lie in the prime sub-field of A(n, p). Let f(x)

be a polynomial self-map of A(n, p) with coefficients in its prime sub-field. If t

is a generator of A(n, p)∗, then tkp is a root of f(x) whenever tk is such a root.

(Proof: the Frobenius map φp : x 7→ xp is an automorphism of A(n, p) and fixes

its prime sub-field.22 So applying φp to the equation f(x) = 0 gives f(φp(x)) = 0.)

Consequently, the roots of An[p](x) and An[p] are (identical) collections of complete

φp orbits. (In particular, each root of the form nA(n,p) is a φp fixed point.)

21[6], notebook “conjecture 3 clause 2.ipynb”
22For example, see Chapter VII, section 5 of Lang’s book [23].
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Conjecture 4. 23 We state conjectures on An[p](x) for given (A, p) equivalence

class data and p = 2, 3, 5 and 7. Let t(n, p) = t (say) be a generator of A(n, p)∗.

Excepting members nF of the prime sub-field, we display the non-zero roots of

An[p](x) as φp-orbits Op(t
k) for some k.24 We do not make a general conjecture

regarding the sizes of the Frobenius orbits, but for p = 2, 3, or 5, let r be a non-zero

root of An[p](x). If r belongs to the prime sub-field of A(n, p) so that, for some

rational integer n, r = nF , then r is a fixed point of φp: #Op(r) = 1. Otherwise,

#Op(r) = sA(n, p).

The situation for p = 7 is more complicated. If we write r = tk, denote the base p

expansion of k as Xp(k), padded with zeros, necessary, so that its length is equal to

sA(n, p), then for any prime p the length of Op(r) is the same as the length of of the

orbit under cyclic permutations ofXp(k). For the smaller p, Xp(k) exhibits no inter-

nal symmetries, but X7(k) does. For example, if n ≡ 4(mod 7) and sA(n, 7) = 6,

we find that An[7] has roots r1 = tk for k = 29412 and r2 = tk for k = 88236.

Here X7(29412) = (5, 1, 5, 1, 5, 1) and X7(88236) = (1, 5, 1, 5, 1, 5). These expan-

sions comprise a complete orbit under cyclic permutation. Consequently, r1 and

r2 comprise a complete orbit under φ7. On the other hand, by a similar analysis,

sA(n, p) = 1 implies that all roots of An[p] are fixed points of φp, and sA(n, p) = 2

implies that all roots r of An[p] are either fixed by φp or satisfy #Op(r) = 2. Roots

r = tk fixed by φp must belong to the prime sub-field (for example, the notes of

Cañez [12], pp. 27-28).

We have dropped constant factors from our tables. For example, 3F (x− 1F ) would

be listed simply as x− 1F .
25 We use the δ(n, p) notation defined above and write

δ(n, p) = δ; the arguments will be clear. The letter “u” means unrestricted. When

we wish to abbreviate, “F” means A(n, p).

1. An[2] = x2n+2.

23This conjecture is based on numerical data available in our GitHub repository [6] in files with
filenames beginning “conjecture 4 p = (*), res=(**), sd=(***)” for various integers (*), etc. When
these are loaded, they show titles beginning “conjecture 4 clause 4”. The reader should disregard
the phrase “clause 4”.

24A reader who consults our Sagemath notebooks in the repository [6] will find that we kept
track of the action of Frobenius by computing the (appropriately padded) base p expansions of
the discrete logarithms k; when φp(tk) = tj , the expansion of j is the image of the expansion of
k under a cyclic permutation. For example, in the case p = 3, n ≡ 1 (mod3), sA(n, 3) = 2 (row 4
of table 2), our SageMath code outputs a root t + 2F with discrete logarithm base 3 expansion
(1, 2). This tells us that t+ 2 = t7 in A(n, 3) because (1, 2) is the base 3 expansion of 7, and that
the length of O3(t+2) is 2, because the length of the orbit of (1, 2) under cyclic permutation is 2.

25What we think might be true about the constant factors is stated in conjecture 3. We cannot
specify them ab initio.
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2. Table for p = 3:

mod(n, 3) sA(n, 3) An[3](x)

0 1 x2(x− 1F )
2δ(x− 2F )

2δ

1 1 x2(x− 1F )
2δ(x− 2F )

2δ

1 1 x2(x− 1F )
2δ−2(x− 2F )

2δ−2

1 2

x8(x− 1F )
2δ−6(x− 2F )

2δ−6

×
∏

s∈O3(t)
(x− s)2

×
∏

s∈O3(t2)
(x− s)2

×
∏

s∈O3(t7)
(x− s)2

2 1 (x − 1F )
2δ+1(x− 2F )

2δ+1

2 1 x6(x− 1F )
2δ−1(x− 2F )

2δ−1

table 1: An[3] up to constant factors

(In the ambiguous cases, we have not deciphered the conditions that choose

between the polynomials listed in table 1 for An[3].)
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3. Table for p = 5:

mod(n, 5) sA(n, 5) An[5](x)

0 1
(x− 1F )

2δ+2(x− 4F )
2δ+2 ×

(x− 2F )
2δ(x− 3F )

2δ

1 4

(x− 1F )
2δ(x− 4F )

2δ ×

(x− 2F )
2δ(x− 3F )

2δ×

∏

s∈O5(t91)
(x− s)

2 4

(x− 1F )
2δ(x− 4F )

2δ ×

(x− 2F )
2δ+1(x− 3F )

2δ+1×

∏

s∈O5(t169)
(x − s)

3 6

(x− 1F )
2δ(x− 4F )

2δ ×

(x− 2F )
2δ+1(x− 3F )

2δ+1×

∏

s∈O5(t2961)
(x − s)

4 1
(x− 1F )

2δ+2(x− 2F )
2δ+2 ×

(x− 3F )
2δ+2(x− 4F )

2δ+2

table 2: An[5] up to constant factors.
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4. Table for p = 7:

mod(n, 7) sA(n, 7) An[7](x)

0 4

(x− 1F )
2δ−2(x− 6F )

2δ−2×

(x− 2F )
2δ(x− 5F )

2δ×

(x− 3F )
2δ+1(x− 4F )

2δ+1×

∏

s∈O7(t173)
(x − s)

∏

s∈O7(t260)
(x− s)×

1 4

(x− 1F )
2δ(x− 2F )

2δ×

(x− 3F )
2δ(x− 3F )

2δ×

(x− 5F )
2δ(x− 6F )

2δ×

∏

s∈O7(t75)
(x− s)

2 2

(x− 1F )
2δ(x− 3F )

2δ×

(x− 4F )
2δ(x− 6F )

2δ×

(x− 2F )
2δ+1(x− 5F )

2δ+1×

∏

s∈O7(t4)
(x − s)2

part one of table 3: An[7] up to constant factors.
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This is a continuation of the preceding table:

mod(n, 7) sA(n, 7) An[7](x)

3 2

(x− 1F )
2δ(x− 3F )

2δ×

(x− 4F )
2δ(x− 6F )

2δ×

(x − 2F )
2δ+1(x− 5F )

2δ+1×

∏

s∈O7(t7)
(x− s)×

∏

s∈O7(t12)
(x− s)×

∏

s∈O7(t25)
(x− s)

4 6

(x− 1F )
2δ(x− 3F )

2δ×

(x− 4F )
2δ(x− 6F )

2δ×

(x − 2F )
2δ+1(x− 5F )

2δ+1×

∏

s∈O7(t29412)
(x− s)×

∏

s∈O7(t41280)
(x− s)×

∏

s∈O7(t81528)
(x − s)

part two of table 3: An[7] up to constant factors.



INTEGERS: 23 (2023) 20

This is part three of the preceding table:

mod(n, 7) sA(n, 7) An[7](x)

5 5

(x− 1F )
2δ(x− 3F )

2δ×

(x− 4F )
2δ(x− 6F )

2δ×

(x − 2F )
2δ+1(x− 5F )

2δ+1×

∏

s∈O7(t1513)
(x− s)×

∏

s∈O7(t11020)
(x − s)

6 1

(x − 1F )
2δ+2(x− 2F )

2δ+2×

(x − 3F )
2δ+2(x− 4F )

2δ+2×

(x− 5F )
2δ+2(x− 6F )

2δ+2

part three of table 3: An[7] up to constant factors.

In the case of the prime p = 7, there was only one example for which n ≡

0 (mod 7) and sA(n, 7) = 1 in the range of our observations. Namely, with

F = A(0, 7), A0[7] = 3F (x − 1F )(x − 6F ). For the other cases, we have

table 3 above. By remarks and footnotes above, it is only necessary to state

the value of #O7 on a root of An[7] when sA(n, 7) is larger than 2. For

roots of An[7] where n ≡ 4 (mod 7), #O7(t
29412) = 2, #O7(t

41290) = 3, and

#O7(t
81528) = 3. For roots of An[7] where n ≡ 5 (mod 7), #O7(t

1513) = 5

and #O7(t
11020) = 5.
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[21] E. Hecke, Über die bestimmung dirichletscher reihen durch ihre funktionalgleichung, Math.

Ann. 112.1 (1936), 664–699.

[22] S. King. “Sage’s category and coercion framework.”
(The URL below should be entered as a single line.)
https://doc.sagemath.org/html/en/thematic(understroke)tutorials/
coercion(understroke)and(understroke)categories.html.

http://math.colgate.edu/(tilde


INTEGERS: 23 (2023) 22

[23] S. Lang. Algebra Springer Science and Business Media, Berlin, 2012.

[24] J. Lehner, Divisibility properties of the Fourier coefficients of the modular
invariant j(τ), Amer. J. Math. 71.1 (1949), 136–148.

[25] J. Lehner, Further congruence properties of the Fourier coefficients of the
modular invariant j(τ), Amer. J. Math. 71.2(1949), pp. 373–386.

[26] J. Lehner, Note on the Schwarz triangle functions, Pacific J. Math. 4.2 (1954), 243–249.

[27] J. G. Leo, Fourier coefficients of triangle functions, Ph.D. thesis,
URL http://halfaya.org/ucla/research/thesis.pdf, 2008.

[28] H. Movasati, Modular forms/Automorphic forms for triangle groups,
URL https://w3.impa.br/ (tilde)hossein/computerprogramming.html.

[29] G. L. Mullen and C. Mummert, Finite Fields and Applications, Stud. Math. Libr., Amer.
Math. Soc., 2007.

[30] G. Polya and J. L. W. V. Jensen, Über die algebraisch-funktionentheoretische Untersuchungen

von JLWV Jensen, AF Høst, 1927.

[31] J. Raleigh, On the Fourier coefficients of triangle functions, Acta Arith. 8 (1962), 107–111.

[32] S. Ramanujan, Collected papers of Srinivasa Ramanujan, (Hardy, G. H., Seshu, P. V., and
Wilson, B. M., eds.), Cambridge University Press, 2015, 310–321.

[33] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.6).
URL https://www.sagemath.org. 2021.

[34] H. A. Schwarz, Ueber diejenigen F̈alle, in welchen die Gaussische hypergeometrische Reihe

eine algebraische Function ihres vierten Elementes darstellt, Walter de Gruyter, 1873.

[35] H. A. Schwarz, Ueber diejenigen F̈alle, in welchen die Gaussische hypergeometrische Reihe
eine algebraische Function ihres vierten Elementes darstellt, Journal für die reine und ange-

wandte Mathe- matik, 75 (1873), 292–335.

[36] J.-P.Serre, A course in arithmetic, Springer-Verlag, 1970.

[37] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Vandenhoeck and
Ruprecht, 1969.

[38] C. L. Siegel and K. G. Ramanathan, Advanced analytic number theory, Tata Institute of
Fundamental Research Bombay, 1980, 249–268.

[39] N. J. A. Sloane, Primes of the form 6n+ 1, The On-Line Encyclopedia of Integer Sequences,
URL http://oeis.org/A002476.

[40] M. Somos, McKay-Thompson series of class 4A for the Monster group with a(0) = 24, The

On-Line Encyclopedia of Integer Sequences, URL https://oeis.org/A097340.

[41] The Sage Development Team. Parents, conversion and coercion.
URL https://doc.sagemath.org/html/en/tutorial/tour (understroke)coercion.html.

http://halfaya.org/ucla/research/thesis.pdf
http://oeis.org/A002476

	Introduction
	Why Hecke groups?
	Existence of the interpolating polynomials.
	Hecke's theory of modular forms.
	The existence argument.

	Finite field models.
	How do finite field models help?
	A sketch of the models.


	Triangle functions.
	Polynomial interpolation of Fourier coefficients of modular functions for Hecke groups.
	Finite-field models of interpolating polynomials.

