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FIXED SETS AND FIXED POINTS FOR MAPPINGS IN

GENERALIZED Lim–SPACES OF FRÉCHET

VLADYSLAV BABENKO, VIRA BABENKO, AND OLEG KOVALENKO

Abstract. In this article we discuss a possibility to implement a well-known
scheme of proof for contraction mapping theorems in a situation, when conver-
gence, families of Cauchy sequences, and contractiveness of mappings are defined
axiomatically. We also consider ways to specify families of Cauchy sequences
and contractiveness conditions using distance-like functions with values in some
partially ordered set and establish fixed set and point theorems for generalized
contractions of the Ćirić and Caristi types.

Fixed point theorem, family of Cauchy sequences, Fréchet limit space.

1. Introduction

The theory of fixed point theorems is a well developed domain of Analysis and
Topology (see books [1, 2, 3] and references therein). In a series of papers (see, for
example, [4, 5, 6, 7]) the theory of fixed points was developed in abstract L-spaces
in the sense of Fréchet.

The classical contraction mapping theorem in metric spaces, which goes back
to Picard, Banach and Caccioppoli, was generalized in many various directions,
and in most cases, the following scheme was used to prove the obtained theorems.
Consider a Picard sequence (an orbit of f) O(f, x0) := {x0, x1 = f(x0), . . . , xn =
f(xn−1), . . . } and using the fact that f is contractive in some sense, establish that
it is a Cauchy sequence. Using completeness of the space, obtain a point x such
that xn → x as n→ ∞. Continuity (in some sense) of f gives f(x) = x.

The purpose of this note is to discuss the possibility of implementing this scheme
in the following abstract situation. Convergence of sequences {xn} ⊂ X is defined
axiomatically, essentially using an approach that goes back to Fréchet [8] (see
also [9]), but with less requirements on a limiting operator Lim. Continuity (weakly
orbital continuity) of a function is then defined as a requirement for operators Lim
and f to commute on orbits of f . The family of Cauchy sequences is also defined
axiomatically (our approach goes back to [10], but with less requirements). A
necessary relation between the family of Cauchy sequences and the Lim operator
is given by the (orbital) completeness requirement — Cauchy sequences which
are orbit of some f : X → X (actually, even not all – see e.g. [11]) must be
convergent. A sufficient for fixed point theorems definition of a contractive function
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is as follows: a function f is locally orbital contractive at a point x0 ∈ X , if the
orbit O(f, x0) is a Cauchy sequence (this definition will be refined later). Such a
definition is motivated by the fact that in the case when the set of Cauchy sequences
is determined using a distance function, it is quite consistent with intuitive ideas
about contractiveness. Various definitions of contractions can be considered as
sufficient conditions for contractiveness in the above presented general sense.

In Section 2 we give necessary notations and definitions. There we present the
definition and some properties of Lim-spaces, the definition of Cauchy structures,
and examples of Cauchy structures defined by a distance-like and a sum-like func-
tion taking values in some partially ordered set. An abstract version of a fixed set
and point theorem is given in Section 3.1. In Sections 3.2– 3.4 fixed set and point
theorems are presented for above mentioned specific Cauchy structures.

2. Notations and definitions

2.1. General notations. Let X be a nonempty set, s(X) be a set of all se-
quences {xn} of elements from X , s∞(X) be the set of sequences from s(X) with
pair-wise different elements, and P(X) be the family of all subsets from X . For
x1, . . . , xn ∈ X by 〈x1, . . . , xn〉 we denote the sequence {x1, . . . , xn, x1, . . . , xn, . . .}.
For {xn}, {yn} ∈ s(X) we set {xn}∨∧{yn} := {x1, y1, x2, y2, . . . , xn, yn . . .}. For a
mapping f : X → X, x0 ∈ X, n ∈ Z+ set On(f, x0) = {fn(x0), f

n+1(x0), . . .},
O(f, x0) = O0(f, x0) = {fn(x0)}, and O(f) = {O0(f, x0) : x0 ∈ X}. Finally, let
N = {{nk} ∈ s(N) : nk → ∞ as k → ∞}.

2.2. Limit spaces. We start with the following definition.

Definition 2.1. (cf. [8, 9]) A pair (X,Lim) of a setX and a mapping Lim: s(X) →
P(X) such that if {xn} ∈ s(X), then

Lim{xn} = Lim{xn+1},

is called a Lim–space. If for some {xn} ∈ s(X), Lim {xn} 6= ∅, then we say that
the sequence {xn} is convergent, and write {xn} ∈ c(X).

Example 2.1. If X is a metric space and for any {xn} ∈ s(X), Lim {xn} is the
set of all partial limits of {xn}, then (X,Lim) is a Lim–space.

Definition 2.2. (cf. [8]). Let a Lim–space (X,Lim) and A ⊂ c(X) be given.
We say that (X,Lim) is a A-Fréchet space, if for each {xn} ∈ c(X) ∩ A the set
Lim {xn} is a singleton. If Lim {xn} = {x}, then we say that {xn} converges to x
and write {xn} → x or as n→ ∞.

Definition 2.3. Let a Lim–space (X,Lim) and a mapping f : X → X be given.
We say that f is weakly orbital continuous, if for any {xn} ∈ O(f) ∩ c(X)

Lim{f(xn)} = f(Lim{xn}).

Remark 2.1. The definition of orbital continuity of the mapping f : X → X was
introduced in [12]. The definition of weak orbital continuity is less restrictive.
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2.3. Cauchy structures.

Definition 2.4. A set C ⊂ s(X) is called a Cauchy structure (we write C ∈ CS),
if {xn} ∈ C =⇒ {xn+1} ∈ C.

A Cauchy structure C is called a Strong Cauchy structure (we write C ∈ SCS)
if additionally 〈x〉 ∈ C for each x ∈ X , and

(2.1) (〈z1, . . . , zn〉 ∈ C) =⇒ (z1 = zn) for any z1 . . . , zn ∈ X.

A Lim-space (X,Lim) is called C-complete if arbitrary {xn} ∈ C ∩ s∞(X) is
convergent.

Remark 2.2. Of course, any classical set of Cauchy sequences forms a Cauchy
structure.

Remark 2.3. For generalized metric spaces, the fact that for completeness of a
space it is sufficient to require convergence of only Cauchy sequences with pairwise
different elements was noted and used in [11].

Example 2.2. The set c(X) of all convergent sequences in a Lim–space (X,Lim)
can be considered as a Cauchy structure.

Example 2.3. Let a mapping f : X → X be given. The set C = O(f) can be
considered as a Cauchy structure. In this case C-complete Lim-space can be called
f–orbital complete (cf. [12]).

Definition 2.5. (cf. [10]) Setting CLim{xn} := {x ∈ X : 〈x〉 ∨∧ {xn} ∈ C}, we
transform a Cauchy space (X,C) to a Lim–space (X,CLim).

If C ∈ SCS, and additionally the following condition is satisfied: for all {xn}, {zn} ∈
s(X) and {yn} ∈ C,

(2.2) {xn}∨∧{yn}, {yn}∨∧{zn} ∈ C =⇒ {xn}∨∧{zn} ∈ C,

then, as it is easily seen, the space (X,CLim) is a C-Fréchet space. Condition (2.2)
is a generalization of well-known Fréchet–Wilson conditions, see e.g. [13].

Generalizing the definition of the Cauchy sequence in a uniform space, (see
e. g. [14, Chapter 6]) we obtain the following example of a Cauchy structure in the
sense of definition 2.4.

Recall (see e.g. [15, Chapter 3.2]) that a family U of non-empty subsets of a
set X is called a base in X , if for any U, V ∈ U there exists W ∈ U such that
W ⊂ U ∩ V .

Example 2.4. Let X be a nonempty set and U be a base in X2. The class of
all sequences {xn} ∈ s(X) such that for any U ∈ U there exists N ∈ N with the
property m,n ≥ N =⇒ (xm, xn) ∈ U , forms a Cauchy structure CU . It is clear
that

CU Lim{xn} = {x ∈ X : {xn} ∈ CU and ∀U ∈ U ∃N ∈ N

such that (xn, x), (x, xn) ∈ U for any n ≥ N}.
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2.4. Cauchy structures defined by distance functions. Let X be a set and
(Y,LimY ) be a Lim–space.

Definition 2.6. A mapping d : X2 → Y is called an Y -valued distance, if for all
x, y ∈ X

(2.3) d(x, y) = d(y, x) = d(x, x) = d(y, y) =⇒ x = y.

Definition 2.7. The family Cd that consists of all sequences {xn} ∈ s(X) such
that

{d(xmk
, xnk

)} ∈ c(Y )

for any sequences {mk}, {nk} ∈ N, and LimY {d(xmk
, xnk

)} does not depend on
{mk} and {nk} is a Cauchy structure.

Lemma 2.1. Let (Y,LimY ) be such that 〈α〉, 〈β〉 ∈ c(Y ) for any α, β ∈ Y , and

(2.4) LimY 〈α〉 = LimY 〈β〉 =⇒ α = β.

Then Cd ∈ SCS.

Proof. Really, 〈x〉 ∈ Cd, and if 〈z1, z2, . . . , zn〉 ∈ Cd, then LimY {d(z1, zn)} =
LimY {d(z1, z1)} = LimY {d(zn, zn)} = LimY {d(zn, z1)}. Due to property (2.4),
we obtain d(z1, zn) = d(z1, z1) = d(zn, zn) = d(zn, z1), and due to (2.3), z1 = zn.
Hence Cd satisfies (2.1). �

Remark 2.4. The Lim–spaces from Example 2.1 satisfy property (2.4).

It follows from Definition 2.5 that for any {xn} ∈ Cd

Cd Lim{xn} ⊂
⋂

{mk},{nk}∈N

{x ∈ X : LimY {d(xmk
, x)}

= LimY {d(x, xnk
)} = LimY {d(xnk

, xmk
)} = LimY 〈d(x, x)〉},

which is consistent with the definition of convergence in almost all previously con-
sidered spaces, in particular in usual metric spaces, in partial metric spaces [16], du-
alistic partial metric spaces [17], dislocated metric spaces [18], metric-like spaces [19],
distance spaces [3], metric and distance spaces with more general than R sets of
values of a distance function (K-metric spaces, cone metric spaces, M-distance
spaces, probabilistic metric spaces, fuzzy metric spaces, and others – see [20] and
references therein).

2.5. Another way to define Cauchy structures. Let (Y,≤) be a partially
ordered set and ψ :

⋃

n∈N Y
n → Y be a function such that for any y1, y2, . . . , yn ∈ Y

(2.5) ψ(y2, . . . , yn) ≤ ψ(y1, y2, . . . , yn).

Example 2.5. In the case Y = R+, the function ψ(y1, y2, . . . , yn) =
∑n

k=1 yk
satisfies (2.5). Moreover, it is coordinate-wise monotone i.e.,

ψ(y1, y2, . . . , yn) ≤ ψ(z1, z2, . . . , zn),
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provided yi ≤ zi, i = 1, . . . n, n ∈ N, and for all y1, . . . , ym+n ∈ Y ,

ψ(y1, . . . , ym, ym+1, . . . , ym+n) = ψ(y1, . . . , ym, ψ(ym+1, . . . , ym+n)).

We say that a set A ⊂ Y is bounded from above, if there exists α ∈ Y such that
a ≤ α for all a ∈ A.

Definition 2.8. The following set forms a Cauchy structure:

Cψ = {{xn} ∈ s(X) : {ψ(x1, x2, . . . , xn)} is bounded from above} .

A partial case of the family Cψ can be obtained as follows.

Definition 2.9. Let an arbitrary function d : X2 → Y be given. The following set
forms a Cauchy structure:

Cψ,d =
{

{xn} ∈ s(X) : the sequence

{

ψ(d(x1, x2), . . . , d(xn−1, xn))
}

is bounded from above
}

.

3. Fixed sets and points theorems

3.1. A general fixed set and point theorem.

Definition 3.1. A set A ⊂ X is called a fixed set of a mapping f : X → X , if
f(A) = A. If a singleton A = {x} is a fixed set, then we say that x is a fixed point
of the mapping f .

Before stating the theorem, we discuss the question of how the contractiveness
of a mapping could be understood in an abstract situation. Let’s start with the
observation that contractiveness usually allows one to establish the fact that an
orbit O(f, x0) is a Cauchy sequence. On the other hand, if the property of being a
Cauchy sequence is defined using some distance function, then it means that the
elements of the sequence become arbitrarily close as their indices increase. This
is quite consistent with intuitive ideas (at least ours) about contractiveness. This
is also observed in other cases (see, for example, Example 2.4). Therefore, in our
opinion, in the abstract situation under consideration, it is natural to adopt the
following definition.

Definition 3.2. Let a mapping f : X → X and x0 ∈ X be such that

O(f, x0) ∈ (C ∩ s∞(X)) ∪ (s(X) \ s∞(X)).

Then f will be called locally orbital contractive at the point x0.

Theorem 3.1. Let a Lim–space (X,Lim), a set C ∈ CS be given, and (X,Lim)
be C-complete. Let also a weakly orbital continuous and locally orbital contractive

at some point x0 ∈ X mapping f : X → X be given. Then f has a fixed set.

If C ∈ SCS, the space (X,Lim) is a C-Fréchet space, and O(f, x0) ∈ C, then f

has a fixed point. If {fn(x)}∨∧{fn(y)} ∈ C for any x, y ∈ X, then the fixed point

is unique.
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Proof. Let C ∈ CS. Assume {fn(x0)} = O(f, x0) ∈ C ∩ s∞(X). Since the space
(X,Lim) is C-complete, Lim{fn(x0)} 6= ∅. Due to weakly orbital continuity of f ,
we obtain

Lim{fn(x0)} = Lim{fn+1(x0)} = Lim{f(fn(x0))} = f(Lim{fn(x0)}).

Thus Lim{fn(x0)} is a fixed set of f .
If {fn(x0)} ∈ s(X) \ s∞(X), then for some k < l one has fk(x0) = f l(x0) and

hence {fk(x0), f
k+1(x0), . . . , f

l−1(x0)} is a fixed set.
Let now C ∈ SCS, and let {fn(x0)} ∈ C. If {fn(x0)} ∈ C ∩ s∞(X), then there

exits x ∈ X such that Lim{fn(x0)} = {x}, and hence x is a fixed point of f . If
{fn(x0)} ∈ C\s∞(X) and fk(x0) = f l(x0), k < l, then in the case l = k+1, fk(x0)
is a fixed point of f . If l > k+1, then the sequence 〈fk(x0), f

k+1(x0), . . . , f
l−1(x0)〉

also belongs to C. By property (2.1), f l(x0) = fk(x0) = f l−1(x0) i.e., f
l−1(x0) is a

fixed point of f .
Let for any x, y ∈ X {fn(x)}∨∧{fn(y)} ∈ C. Assume that x, y are fixed points

of the function f . Using property (2.1), we obtain

{fn(x)}∨∧{fn(y)} = 〈x〉 ∨∧ 〈y〉 = 〈x, y〉 ∈ C =⇒ x = y

i.e., the fixed point is unique. �

3.2. A fixed set and point theorem in Cd-complete Lim-spaces. Let Y be
a LimY –space and at the same time a partially ordered set with a partial order ≤.
We assume that the partial order and the operator LimY agree in the following
sense: if two sequences {αn}, {βn} ∈ c(Y ) have equal limits, and αn ≤ γn ≤ βn for
each n ∈ N, then {γn} ∈ c(Y ) and

LimY {γn} = Lim{αn} = Lim{βn}.

Assume that a Lim-space (X,Lim) and Y –valued distance function d in X be such
that (X,Lim) is Cd-complete.

We say that a set A ⊂ X is bounded, if there exist α, β ∈ Y such that α ≤
d(x, y) ≤ β for all x, y ∈ A.

Denote by Λ(Y ) the set of all non-decreasing mappings λ : Y → Y such that for
some non-empty set Lim(λ) ⊂ Y and arbitrary α ∈ Y , LimY {λ

n(α)} = Lim(λ).
Observe that if Y is an ordinary metric space and λ is a contractive in the usual
sense mapping, then λ ∈ Λ(Y ), and Lim(λ) is a singleton.

Theorem 3.2. Assume that for a mapping f : X → X there exists a point x0 ∈ X

such that the orbit O(f, x0) is bounded, and two mappings λ1, λ2 ∈ Λ(Y ) are

such that Lim(λ1) = Lim(λ2). If for arbitrary x, y ∈ On(f, x0) one can find

x′, y′, x′′, y′′ ∈ On−1(f, x0) for which

(3.1) λ1(d(x
′, y′)) ≤ d(x, y) ≤ λ2(d(x

′′, y′′)),

then the mapping f has a fixed set. If the space (X,Lim) is Cd-Fréchet, then f has

a fixed point.
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Remark 3.1. Contraction conditions (3.1) given in this theorem are a generaliza-

tion of the Ćirić conditions [21, 22].

Proof. For arbitrary sequences {mk}, {nk} that tend to infinity, from condition (3.1)
and boundedness of O(f, x0) we obtain

λ
min(mk ,nk)
1 (α) ≤ d(xmk

, xnk
) ≤ λ

min(mk ,nk)
2 (β),

where α, β ∈ Y are the elements from the definition of boundedness. Since
min(mk, nk) → ∞ whenever k → ∞, we obtain that Lim{d(xmk

, xnk
)} = Lim(λ1) =

Lim(λ2), and hence O(f, x0) ∈ Cd. Application of Theorem 3.1 finishes the
proof. �

3.3. A fixed set and point theorem in Cψ–complete Lim-spaces. The fol-
lowing theorem is a variant of the Caristi theorem (see e.g. [23] and references
therein).

Theorem 3.3. Let Y be a partially ordered set, and a Lim–space (X,Lim) be Cψ–

complete, where ψ is a mapping that satisfies property (2.5). Assume that there

exists a function ψ : (
⋃

nX
n)×Y → Y and such that for arbitrary x1, . . . , xn ∈ X

and y, z ∈ Y ,

(3.2) ψ(x1, . . . , xn) ≤ ψ(x1, . . . , xn, y),

ψ(x1, . . . , xn, y) ≤ ψ(x1, . . . , xn−1, ψ(xn, y)),

and

y ≤ z =⇒ ψ(x1, . . . , xn, y) ≤ ψ(x1, . . . , xn, z).

If f : X → X is a weakly orbitally continuous function and there exists φ : X → Y

such that for some x0 ∈ X

(3.3) ψ(x, φ(f(x))) ≤ φ(x) for all x ∈ O(f, x0),

then f has a fixed set. If the space (X,Lim) is Cd-Fréchet, then f has a fixed point.

Proof. Let xn = f(xn−1), n ∈ N. We prove by induction on n that

ψ(x0, x1, . . . , xn−1, φ(xn)) ≤ φ(x0).

For n = 1 the inequality follows from (3.3). Assume it holds for some n = k ≥ 1.
Then for n = k + 1, we obtain

ψ(x0, x1, . . . , xk, φ(xk+1)) ≤ ψ(x0, x1, . . . , xk−1, ψ(xk, φ(xk+1)))

≤ ψ(x0, x1, . . . , xk−1, φ(xk)) ≤ φ(x0),

which finishes the induction step. Inequality (3.2) implies that O(f, x0) ∈ Cψ, and
in order to finish the proof, it is sufficient to apply Theorem 3.1. �
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3.4. Fixed set and point theorems in Cψ,d–complete Lim-spaces. The fol-

lowing theorem uses a generalization of the Ćirić-type contraction condition.

Theorem 3.4. Let a Lim–space (X,Lim) be Cψ,d complete, where ψ is a coordinate-

wise non-decreasing mapping that satisfies property (2.5), d : X2 → Y is some

function, and Y is a partially ordered set. Assume that there exists a non-decreasing

λ : Y → Y such that for each y ∈ Y the sequence

{ψ(y, λ(y), . . . , λn(y))}

is bounded from above, x0 ∈ X, and a weakly orbital continuous mapping f : X →
X are such that for all n > 1 and all x, y ∈ On(f, x0) there exist x

′, y′ ∈ On−1(f, x0)
that satisfy the inequality

(3.4) d(x, y) ≤ λ(d(x′, y′)).

If there exists α ∈ Y such that d(x, y) ≤ α for all x, y ∈ O(f, x0), then f has a

fixed set. If the space (X,Lim) is Cd-Fréchet, then f has a fixed point.

Proof. Let xn = f(xn−1), n ∈ N. Then for each n ∈ N, consecutively applying
inequality (3.4), we obtain that for some y, z ∈ O(f, x0) and α from the statement
of the theorem,

d(xn+1, xn) ≤ λn(d(y, z)) ≤ λn(α).

Thus for all n ∈ N

ψ(d(x0, x1), d(x1, x2), . . . , d(xn, xn+1)) ≤ ψ(α, λ(α), . . . , λn(α)),

which implies boudedness of the sequence {ψ(d(x0, x1), . . . , d(xn, xn+1))}. Hence
O(f, x0) ∈ Cψ,d, and it is enough to apply Theorem 3.1 in order to finish the
proof. �
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