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Abstract.

We generalize a famous tail Doob’s inequality, relative two non - negative
random variables, arising in the martingale theory, in two directions: on the more
general source data and on the random variables belonging to the so - called Grand
Lebesgue Spaces.

We bring also several examples in each sections in order to show the exactness
of our estimates.

Key words and phrases. Martingale, random variable (r.v.), expectation, gener-
ating function, inequalities, upper and lower estimates, moment, dilation operator,
Hölder’s inequality, event, tail of distribution, Lebesgue - Riesz. Grand Lebesgue
and Orlicz spaces and norms, Young - Fenchel transform, Doob’s and other inequal-
ities, probability space, examples.

1 Notations. Statement of problem.

Let (Ω = {ω},B,P) be non - trivial probability space with expectation E. The
classical Doob’s inequality, see e.g. [9], [10], see also [24], tell us that if the non
- negative numerical valued r.v. - s (ξ,X) are such that for some positive finite
constants β, C
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t P(ξ > βt) ≤ C E[X I(ξ > t)], t ≥ 0, (1)

here and further I(A) denotes as ordinary an indicator function of the random
event (predicate) A, then

||ξ||p = [E|ξp|]1/p ≤ C
p

p− 1
βp |X|p, p > 1. (2)

Henceforth ||η||p denotes as ordinary the classical Lebesgue - Riesz norm of
the r.v. η :

||η||p := [ E|η|p ]1/p , p ≥ 1.

This inequality (2) play a very important role in particular, in the martingale
theory, see [2], [3].

Our aim in this short report is generalization of Doob’s inequality in

two mentioned directions.

Statement of problem.

Given:

h(t) P(ξ > βt) ≤ C E[X I(ξ > t)], t ≥ 0, (3)

where h = h(t) is certain non - negative continuous strictly increasing deterministic
function and as before X be non - negative random variable, β, C = const ∈
(0,∞).

Let also g = g(t) be some non - negative continuous differentiable determin-
istic strictly increasing function such that g(0) = g(0+) = 0. We intent on the
assumption of (3) to find such a function g = g(t) for which the following moment
is finite:

Eg(ξ) ≤ Z(β, h,X) <∞ (4)

and moreover to estimate the right - hand side of the relation (4), i.e. the using in
practice functional Z = Z(β, h,X). We bring also the examples in order to show
the exactness of obtained estimates.

2 Main result.

We have
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P(ξ/β > t) ≤ C

h(t)
E{ X I(ξ > t) }, t > 0,

where as ordinary I(A) denotes the indicator function for the random event (pred-
icat) A. Hence

∫ ∞

0
ptp−1 P(ξ/β > t) dt ≤

∫ ∞

0

C p tp−1

h(t)
E{ X I(ξ > t) } dt, p ≥ 1. (5)

The left - hand side of (5) is equal to L := E|ξ/β|p = ||ξ||pp β−p. Let us
investigate the right - hand side R of (5). We deduce by virtue of Fubini’s theorem

R = C p E

[

X
∫ ξ

0

tp−1

h(t)
dt

]

.

Let us introduce the new important random variable (measurable function), if it
there exists:

κp(ξ) = κp
def
=
∫ ξ

0

tp−1

h(t)
dt,

then

||ξ||pp β−p ≤ C E [X κp(ξ)].

Denote now

Kp(θ) := ||κp(ξ)||θ <∞, ∃ θ > 1; α = α(θ) := θ/(θ − 1) = θ′ ∈ (1,∞).

and assume

∃ θ > 1 ⇒ Kp(θ) := ||κp(ξ)||θ <∞, (6)

and denote by Θ = Θ(p) = Θ(p)[h, ξ] the set all the values θ for which the value
Kp(θ) is finite:

Θ = Θ(p) = Θ(p)[h, ξ] = { θ, θ ≥ 1, Kp(θ) <∞ }.

We apply as expected the Hölder’s inequality for such a values of the auxiliary
parameter θ ∈ Θ

||ξ||pp ≤ C βp Kp(θ) ||X||α(θ).

We impose also the following condition on the source datum

Kp(θ) = ||κp(ξ)||θ ≤ v(θ, p, r) ||ξ||rp, (7)
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∃ r = r(θ, p) ∈ [1, p), ∃ v = v(θ, p, r) <∞. (8)

Denote by R = R(θ, p) the set of finiteness of the value r in the relation (7):

R = R(θ, p) := {r : 1 < r < p, Kp(θ) <∞}.

To summarize:

Theorem 2.1. We deduce under formulated above conditions

||ξ||p ≤ [ C v(θ, p) βp]1/(p−r) · ||X||1/(p−r)α(θ) . (9)

Of course,

||ξ||p ≤ inf
r∈R

inf
θ∈Θ

{ C v(θ, p, r) βp}1/(p−r) · ||X||1/(p−r)α(θ) . (10)

Some examples.

Example 2.1. Put now h(t) = t, so that

t P(ξ > β t) ≤ CE(X I(ξ > t)), t, ξ, X ≥ 0, p > 1.

We choose in the conditions of theorem 2.1 p = 1, r = p/(p− 1), then

v(t) = [p/(p− 1)] · tp−1.

We get using the proposition of theorem 2.1, after simple calculations, the
classical result, see e.g. [24]

|ξ|p ≤ C
p

p− 1
βp |X|p, p > 1. (11)

Example 2.2. A more general case. Suppose as before that ξ, X are non -
negative r.v. such that

∃ C = const > 0, ∃∆ = const > 1,

and

t∆ P(ξ > β t) ≤ CE(X I(ξ > t)), t ≥ 0, p > ∆. (12)

We get again using the proposition of theorem 2.1 after simple calculations the
following estimation
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|ξ|p ≤ C
p

p−∆
βp |X|p, p > ∆. (13)

3 Unimprovability of our estimations. Lower

bounds.

Let us show the exactness of obtained results, in particular, ones (11), (13).
Introduce the following important functionals, which are responsible for the lower
estimate.

Y [C, β,∆](ξ,X, p)
def
=

[

|ξ|p
C p (p−∆)−1 βp |X|p

]

,

U = U [C, β,∆, p] =
def
= sup

p>∆
sup
ξ∈Lp

sup
X∈Lp

Y [C, β,∆](ξ,X, p), (14)

where all the supremums are calculated over the r.v. - s ξ, X satisfying the
condition (12) and when p > ∆, ∆ = const > 1.

Proposition 3.1.

U(1, 1,∆) = 1. (15)

Proof. The upper estimate U(C, β,∆) ≤ 1 is contained in (13). In order to
deduce the lower one, we bring an example.

Let us choose C, β = 1 and bring as the variables ξ, X the following:
X0 = ξ0 and let the random positive variable ξ0, as well as one X0, has a
standard exponential distribution

P(ξ0 > t) = P(X0 > t) = e−t, ξ0, X0 > 0, t > 0;

then the natural generating function for these r.v.- s has a form

ν(p)
def
= |ξ0|p = |X0|p = Γ1/p(p+ 1), p ≥ 1,

where as ordinary Γ(·) is Euler’s Gamma function.

Note that as p → ∞ ⇒ ν(p) ∼ p/e. Note also that the condition (1) is
satisfied.

We have

Y [C, β,∆](ξ0, X0, p) =
p−∆

p
, p > ∆.
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Following,

U(1, 1,∆) ≥ sup
p>∆

{

p−∆

p

}

. (16)

Our proposition (15) follows immediately from the equality

lim
p→∞

{

p−∆

p

}

= 1.

Remark 3.1. The cases C, β 6= 1 may be considered quite analogously.

4 Generalization on the Grand Lebesgue Spaces

approach. Examples.

We intent in this section to extend the previous results upon the so - called Grand
Lebesgue Spaces (GLS) of the random variables.

Let (a, b) = const, 1 ≤ a < b ≤ ∞. Let also ψ = ψ(p), p ∈ (a, b) be
certain numerical valued measurable strictly positive: infp∈(a,b) ψ(p) > 0 function,

not necessary to be bounded. Denotation: Dom(ψ)
def
= { p : ψ(p) <∞ },

(a, b) := supp(ψ); Ψ(a, b) := { ψ : supp(ψ) = (a, b) },

Ψ
def
= ∪(a,b)Ψ(a, b).

Definition 4.1., see e.g. [19], [11], [17]. Let the function ψ = ψ(p), p ∈ (a, b)
belongs to the set Ψ(a, b) : ψ(·) ∈ Ψ(a, b), which is named as generating function

for introduced after space. The so - called Grand Lebesgue Space Gψ is defined
as a set of all random variables (measurable functions) τ having a finite norm

||τ ||Gψ def
= sup

p∈(a,b)

{

||τ ||Lp(Ω)
ψ(p)

}

= sup
p∈(a,b)

{

||τ ||p
ψ(p)

}

. (17)

The particular case of these spaces and under some additional restrictions on
the generating function ψ = ψ(p) correspondent to the so - called Yudovich spaces,

see [25], [26]. These spaces was applied at first in the theory of Partial Differential
Equations (PDE), see [6], [7].

These spaces are complete Banach functional rearrangement invariant; they are
investigated in many works, see e.g. [12], [11], [16], [17], [18], [13], [14], [15], [19],
[20], [21], [22], [23]. It is important for us in particular to note that there is exact
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of course up to finite multiplicative constant interrelations under certain natural
conditions on the generating function between belonging the r.v. τ to this space
and it tail behavior. Indeed, assume for the definiteness that τ ∈ Gψ and moreover
||τ ||Gψ = 1; then

Tτ (t) ≤ exp{ −h∗(ln t) }, t ≥ e, (18)

where h(p) = h[ψ](p) := p lnψ(p) and h∗(·) is the famous Young - Fenchel
(Legendre) transform of the function h(·) :

h∗(u)
def
= sup

p∈Dom(ψ)
(pu− h(p)).

Inversely, let the tail function Tτ (t), t ≥ 0 be given. Introduce the following
so - called natural function generated by τ

ψτ (p)
def
=
[

p
∫ ∞

0
tp−1 Tτ (t) dt

]1/p

= ||τ ||Lp(Ω), (19)

if it is finite for some value b ∈ (a,∞], following, it is finite at last for all the values
p ∈ (a, b).

As long as

E|τ |p = p
∫ ∞

0
tp−1 Tτ (t) dt = ψpτ (p), p ∈ [1, b),

we conclude that if the last natural for the r.v. τ function ψτ (p) is finite inside
some non - trivial segment p ∈ [1, b), 1 < b ≤ ∞, then

τ ∈ Gψτ ; ||τ ||Gψτ = 1.

Further, let the estimate (18) be given. Suppose in addition that the generating
function ψ = ψ(p), p ∈ Dom(ψ) is continuous and suppose in the case when
b = ∞

lim
p→∞

ψ(p)

p
= 0. (20)

Then the r.v. τ belongs to the Grand Lebesgue Space Gψ :

||τ ||Gψ ≤ K[ψ] <∞, (21)

see e.g. [21].
These conditions on the generating function ψ(·) are satisfied for example for

the functions ψm,L(p) of the form

ψm,L(p)
def
= p1/m L(p), m = const > 1, b = ∞, (22)

where L = L(p) be some continuous strictly positive slowly varying at infinity
function such that
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∀θ > 0 ⇒ sup
p≥1

[

L(pθ)

L(p)

]

= C(θ) <∞. (23)

For instance, L(p) = [ln(p+ 1)]r, r ∈ R.

We conclude that under formulated restrictions the r.v. τ belongs to the space
Gψm,L :

sup
p≥1

{

||τ ||p,Ω
ψm,L(p)

}

= C(m,L) <∞ (24)

if and only if

Tτ (u) ≤ exp ( −C2(m,L) u
m/L(u) ) , u ≥ e, ∃ C2(m,L) > 0. (25)

A very popular example of these spaces forms the so - called subgaussian space
Sub = Sub(Ω); it consists on the subgaussian random variables, for which ψ(p) =
ψ2(p) :=

√
p :

||τ ||Sub = ||τ ||Gψ2
def
= sup

p≥1

[

||τ ||p,Ω√
p

]

. (26)

The r.v. τ belongs to the subgaussian space Sub(Ω) iff

∃C > 0 ⇒ Tτ (u) ≤ exp(−Cu2), u ≥ 0. (27)

Example 4.1. Introduce the following GΨ function

ν[γ](p) = ν(p) := exp(0.5γ p), p ≥ 1, γ = const > 0. (28)

If the r.v. ζ belongs to the space Gν[γ] and has therein an unit norm:
||ζ ||Gν[γ] = 1, then

Tζ(t) ≤ exp
(

−0.5 γ−1 (ln2 t)
)

, t ≥ e. (29)

Conversely, let the estimation (29) holds true for some r.v. ζ ; then this r.v.
ζ belongs to the Grand Lebesgue Space Gν : ||ζ ||Gν[γ] ≤ C1(γ) <∞.

Remark 4.1. As a rule, on the the r.v. τ from the spaces Gψm,L is imposed
the condition of centering: Eτ = 0.

Another examples. Suppose that the r.v. τ be such that

Tτ (t) ≤ T β,γ,L(t), β > 1, γ > −1, L = L(t),

where

T β,γ,L(t)
def
= t−β (ln t)γ L(ln t), t ≥ e
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and L = L(t), t ≥ e be as before slowly varying at infinity positive continuous
function. It is known [21] that as p ∈ [1, β)

ψτ (p) = ||τ ||p ≤ C1(β, γ, L) (β − p)−(γ+1)/β L1/β(1/(β − p)), (30)

and conversely, if the relation (30) there holds, then

Tτ (t) ≤ C7(β, γ, L) T
β,γ+1,L(t).

Herewith both this estimations are unimprovable.

Let us return to the formulated above in this section problem. Indeed, we
assume that the r.v. X belongs to the certain Grand Lebesgue Space (GLS)
Gψ = Gψ(a, b) :

||X||Gψ = ||X||Gψ(a, b) <∞; 1 ≤ a < b ≤ ∞.

Of course, this generating function ψ(·) may be choosed as a natural for the
r.v. X : ψ0(p) := |X|p, if it is finite.

Let ∆ = const ∈ [a, b]; we introduce a new generating function

ψ∆,β(p) = ψ∆, β[ψ](p)
def
=

p

p−∆
βp ψ(p), ∆ < p ≤ b, β > 1. (31)

so that ψ∆,β(·) ∈ Ψ(∆, b).

Proposition 4.1. One has in these notations, definitions and under our condi-
tion (12)

||ξ||Gψ∆,β ≤ C ||X||Gψ, (32)

with correspondent tail estimation (18). Herewith the last estimation (32) is
in general case essentially non -improvable.

Proof. One can take without loss of generality ||X||Gψ = 1; then

∀p ∈ (∆, b) ⇒ |X|p ≤ ψ(p).

We apply the estimation (13) for these values p :

|ξ|p ≤ C
p

p−∆
βp ψ(p) = C ψ∆,β(p),

or equally by means of the direct definition of the norm in the Grand Lebesgue
Space Gψ∆

||ξ||Gψ∆,β ≤ C = C ||X||Gψ.
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The non - improvability of obtained estimate may be ground as before, as in
the proposition 3.1, by means of considering at the example ones analogously as in
the example 4.1:

Tξ(t) = exp
(

−0.5 γ−1 (ln2 t)
)

, t ≥ e, (33)

where γ = 2 ln β, β = const > 1; and X = 1.

In detail, it is easily to verify that the inequality (12) for these variables is
satisfied for all the values β > 1. It remains to note as before that

sup
∆>1

||ξ||Gψ∆,β

||X||Gψ = 1.

See for details the relation (13).

5 Multivariate case.

We extend obtained results on the multidimensional case. Denotations and re-
strictions:

d = dim t = dim~t = dim ξ = dim ~ξ = 2, 3, . . . ; β, C, ∆ = const > 0;

~t = { t1, t2, . . . , td }, ~ξ = { ξ1, ξ2, . . . , ξd };

∀j = 1, 2, . . . , d ⇒ tj , ξj ≥ 0; ~ξ > ~t ⇔ ∀j ξj > tj ;

|~t| def=

√

√

√

√

√

d
∑

j=1

t2j , |~ξ|p def=




d
∑

j=1

|ξj|pp





1/p

, p ≥ 1.

Given:

| ~t |∆ P(~ξ > β~t) ≤ C E[ X I(~ξ > ~t) ]. (34)

Proposition 5.1. We state for the values p > max(1,∆)

|~ξ|p ≤ C
p

p−∆
d1/p βp |X|p. (35)

Proof. We have for the values j = 1, 2, . . . , d
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tj P(ξj > β tj) ≤ CE[ XI(ξj > tj) ].

It follows from the one - dimensional estimates

|ξj|p ≤ C
p

p−∆
βp |X|p.

Further,

|~ξ|p =




d
∑

j=1

|ξj|pp





1/p

=





d
∑

j=1

|ξj|pp





1/p

≤

[

d

(

Cp

p−∆

)p

βp
2 |X|pp

]1/p

= C d1/p
p

p−∆
βp |X|p,

Q.E.D.

Remark 5.1. One can use instead the classical Euclidean norm for the vector
t : |t| arbitrary another one, for instance, ls one:

|t|s := (
d
∑

j=1

|tj |s)1/s, s = const ≥ 1.

6 Concluding remarks.

It is interest in our opinion to apply obtained in this preprint estimates, in par-
ticular, in the martingale theory.
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