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Abstract. This paper will give both the necessary and sufficient conditions required to find a
counter-example to the Goldbach Conjecture by using an algebraic approach where no knowl-
edge of the gaps between prime numbers is needed. To eliminate ambiguity the set of natural
numbers, N, will include zero throughout this paper. Also, for any sufficiently large a ∈ N the
set P is the set of all primes pi ≤ a. It will be shown there exists a counter-example to the
Goldbach Conjecture, given by 2a where a ∈ N>3, if and only if for each prime pi ∈ P there
exists some unique qi, αi ∈ N where a < qi < 2a and 2a = qi + pi along with the condition
that

∏

pi∈P
qi =

∏

pi∈P
pαi

i . A substitution of qi = 2a− pi for each qi from each sum gives the

product relationship
∏

pi∈P
(2a − pi) =

∏

pi∈P
pαi

i . Therefore, if a counter-example exists to
the Goldbach Conjecture, then there exists a mapping G− : C → C where

G−(z) =
∏

pi∈P

(z − pi)−
∏

pi∈P

pαi

i

and G−(2a) = 0. A proof of the Goldbach Conjecture will be given utilizing Hensel’s Lemma
to show 2a must be of the form 2a = pαi

i + pi for all primes up to a when a > 3. However, this
leads to contradiction since 2a < a# for all a > 4.

A similar method will be employed to give the necessary and sufficient conditions when
an even number is not the difference of two primes with one prime being less than that even
number. To begin, let a ∈ N>3 with the condition that the function γ(a+ 1) is equal to one if
a+ 1 is prime and zero otherwise. 2a is a counter-example if and only if for each prime pi ∈ P
there exists some unique ui, βi ∈ N where 2a < ui ≤ 3a and 2a = ui − pi along with product

relationship
∏

pi∈P
ui = (a + 1)γ(a+1)

∏

pi∈P
p
βi

i . A substitution of ui = 2a + pi for each ui

from each sum gives
∏

pi∈P
(2a+pi) = (a+1)γ(a+1)

∏

pi∈P
p
βi

i . Therefore, if a counter-example
exists, it is possible to define the mapping G+ : C → C where

G+(z) =
∏

pi∈P

(z + pi)− (a+ 1)γ(a+1)
∏

pi∈P

p
βi

i

and G+(2a) = 0. A proof will then be given that every even number is the difference of two

primes by showing 2a must be of the form 2a = p
βi

i − pi for all odd primes up to a when a > 3
to the equation above, leading to the same contradiction as the Goldbach Conjecture since
2a < a# for a > 4. These proofs will have implications for proving the Polignac Conjecture.
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1. Introduction

The Goldbach Conjecture, page 117 in [8], appeared in a correspondence between Leonard
Euler and Christian Goldbach in 1742 where it was suspected that every number greater than
two could be written as the sum of three primes. Since the number one was considered a prime,
however, no longer is, this conjecture has been split up into a strong and a weak version. The
strong version in some texts may be referred to as the "binary" Goldbach Conjecture. The
weak version is sometimes named the "ternary" conjecture as it involves three prime numbers.

The strong version of the Goldbach Conjecture states that for every even integer greater
than two there will exist two primes whose sum is that even number. Although this conjecture
is simple to state all attempts to prove it, or find a counter-example, have failed. With that
said, this conjecture has been verified to an astonishing degree. In July of 2000 Jörg Richstein
published a paper [10] using computational techniques showing that the Goldbach Conjecture
was valid up to 4× 1014. In November of 2013 a paper [4] was published by Thomás Oliveira e
Silva, Siegfried Herzog, and Silvo Pardi which also used advances in computational computing
proving that the binary form of the Goldbach Conjecture is true up to 4× 1018.

The weaker version of the Goldbach Conjecture, or Ternary Conjecture, states that every
odd number greater than 7 can be written as the sum of three prime numbers. Much like the
strong version, this conjecture has also been verified up to large orders of magnitude. As an
example, in 1998 [12] Yannick Saouter proved this conjecture up to 1020. In fact, it was shown
that if the generalization of the Reimann Hypothesis were true, that the Ternary Conjecture
would follow. This was proven by Hardy and Littlewood [5] in 1923. Since the Generalized
Reimann Hypothesis is still an open question, this did not give a definitive answer as to the
truth of the Ternary Conjecture, however, it did provide a possible path to follow.

Another breakthrough in the Ternary Conjecture came in 2013 when Herald Helfgott verified
in a paper [7] that the Ternary Conjecture was valid up to 1030. Later that year a preprint [6]
by Harold Helfgott was placed on the ARXIV claiming that the Ternary Conjecture is true.
Although this paper has not been published as of yet, it has been accepted by many in the
mathematics community as being true.

2. Motivation For Producing a New Thought Experiment

All attempts to prove the Goldbach Conjecture have failed. Many of these attempts rely on
an analytic number theory approach such as analyzing the gaps between primes [15]. Another
method is to assume a certain hypothesis is true, such as the Generalized Reimann Hypothe-
sis, to show that hypothesis implies one of these conjectures [5]. If that hypothesis can then
be proven, the conjecture would follow. There are also experimental [3] along with computa-
tional results from [10], [4], and [12], however, these methods will most likely require major
breakthroughs in order to proceed. For this reason, a new approach is needed.

The method which will be explored in this paper is a novel technique that will be used
to determine algebraically both the necessary and sufficient conditions for a counter-example
to the Goldbach Conjecture to be discovered. The advantage of this method lies in the fact
that it circumvents two main reasons why a proof of the Goldbach Conjecture has not been
discovered. The first of these difficulties in finding a proof is simply that there is no known
formula that allows one to determine precisely how many prime numbers there are in a given
range. The Prime Number Theorem1 [13] does give an approximation to the number of primes
up to a given value; however, this alone is not sufficient to give strong enough evidence that

1A good approximation for π(n), where n > 1, is given by n
ln(n)
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the conjectures hold for any value chosen. For this reason most probabilistic arguments about
how many primes pairs there could be which sum up to a desired even number will fail.

The second issue is that there is no known parameterization of the prime numbers, or even
a computationally efficient way to determine when a number is prime. Wilson’s Theorem2 [14]
does provide both the necessary and sufficient conditions for determining if a number is prime;
however, since it is a function of the factorial it is computationally inefficient to use in any
practical manner. Because of these two facts, any question about additive properties of the
primes has been destined to run into near insurmountable difficulties using current techniques.

To begin laying the foundation for this new method a thought experiment will be given.
Suppose one wished to show that the number 20 satisfied the Goldbach Conjecture. A simple
way to proceed is to take each prime up to 10, labeled by the sequence p1 < p2 < p3 < p4, and
assign to it a unique qi labeled by the sequence q1 > q2 > q3 > q4 where 20 = qi + pi. This
allows for the following set of arithmetic relationships.

(2.1) 20 = 18 + 2 = 17 + 3 = 15 + 5 = 13 + 7

Assuming that 20 is not the sum of two prime numbers, it then follows from The Fundamental
Theorem of Arithmetic [1] that there must exist a unique sequence of α1, α2, α3, α4 ∈ N where

(2.2) q1q2q3q4 = pα1
1 pα2

2 pα3
3 pα4

4 .

However,

(2.3) 18× 17× 15× 13 6= 2α1 × 3α2 × 5α3 × 7α4

for any sequence of exponents restricted to the natural numbers. Since each qi on the L.H.S.
ranges between 10 and 20 it can be seen that equation 2.3 is true if and only if at least one
number on the L.H.S. is not divisible by any prime on the R.H.S., thus proving at least one qi is
a new prime. Therefore, it may be concluded that 20 can be written as the sum of two primes
without having any particular knowledge about the distribution of the prime numbers or which
prime numbers sum up to 20. All that is needed is the closure property of the integers, page 1
in [8], along with the Fundamental Theorem of Arithmetic. This method can be extended to
a general case given by Definition 5.1 in the following section. An analysis of this polynomial,
along with the condition where 2a is a root will be explored.

This same method will be used to determine if every even number, again given by 2a, is
the difference of two primes where one prime is less than a. Slight modifications need to be
made which will be made evident with a similar thought experiment used for the Goldbach
Conjecture. To begin, assume that the number 20 was not the difference of two primes where
one prime was less than 10. Taking the same approach as in the Goldbach Conjecture shows
each prime up to 10, labeled by the sequence p1 < p2 < p3 < p4, may be assigned a unique qi
labeled by the sequence q1 < q2 < q3 < q4 where 20 = qi − pi. This allows for the following

(2.4) 20 = 22− 2 = 23− 3 = 25− 5 = 27− 7.

At this point careful attention needs to be given to the fact that the q1 = 22 term is divisible
by a prime greater than 10, but composite. Defining p5 = 11 will be useful since 11 is a prime
greater than 10. However, it is important to note that this is the only time this can occur since
q1 is the only even term and any odd 20 < qi ≤ 30 can not be divisible by any primes greater
than 10 unless it is itself prime. Assuming that 20 is not the difference of two prime numbers,
then The Fundamental Theorem of Arithmetic states that there exists a unique sequence of
α1, α2, α3, α4 ∈ N where

(2.5) q1q2q3q4 = pα1
1 pα2

2 pα3
3 pα4

4 p5.

However,

(2.6) 27× 25× 23× 22 6= 2α1 × 3α2 × 5α3 × 7α4 × 11

2A number p is a prime only if there is some integer n where (p− 1)! + 1 = pn.
3



for any sequence of exponents restricted to the natural numbers. Since each qi on the L.H.S.
ranges between 20 and 30 it can be seen that equation 2.6 is true if and only if at least one
number on the L.H.S. is not divisible by any prime on the R.H.S., thus proving at least one qi
is a new prime. Therefore, 20 can be written as the difference of two prime numbers. As with
the Goldbach Conjecture, formalizing to a general case will be done in Definition 10.1.

3. A Simpler Set of Problems

This section will give an idea of how to prove the Goldbach Conjecture, along with its
analogue for the differences of primes, based on solving a set of similar problems.

Notation 3.1. Let the set of primes be denoted by the set P.

Definition 3.2. Let a ∈ N \ {0} where the Prime Divisor Set of 2a is D = {pi ∈ P : pi|2a}.

The question to be answered in this section is what form 2a must take for there to exist
solutions to the equation

∏

pi∈D
(2a− pi) =

∏

pi∈D
pαi

i where each αi ∈ N∪ {0}. As an example

it may be seen that (6− 2)× (6− 3) = 22 × 3. To begin, note the following lemmas.

Lemma 3.3. Assume there exists some a ∈ N≥3 where for each pi ∈ D there exists some αi ∈ N
where the product relationship

∏

pi∈D
(2a− pi) =

∏

pi∈D
pαi

i holds. Then all αi > 0.

Proof. Note from the product
∏

pi∈D
(2a − pi) =

∏

pi∈D
pαi

i that all prime pi ∈ D satisfy the

condition that all pi|2a under Notation 3.1 and Definition 3.2. Hence, any pi|(2a− pi) on the
L.H.S. of the product and must be a divisor of the R.H.S. showing pi|p

αi

i where all αi > 0. �

Lemma 3.4. GCD(pi, 2a− pj) = 1 for any pi 6=j, pj ∈ D when
∏

pi∈D
(2a− pi) =

∏

pi∈D
pαi

i .

Proof. Assume
∏

pi∈P
(2a−pi) =

∏

pi∈D
pαi

i where all αi ∈ N from Lemma 3.3. Since pi|2a from

Definition 3.2, it is impossible for pi|(2a− pj) for any pj where i 6= j. �

Theorem 3.5. If
∏

pi∈D
(2a− pi) =

∏

pi∈D
pαi

i , then 2a = pαi

i + pi for all pi ∈ D.

Proof. Under Definition 3.2 it follows that each pi|2a in the product
∏

pi∈D
(2a−pi) =

∏

pi∈D
pαi

i .
Since the lemmas above show that all αi > 0 and no primes pi, pj ∈ D satisfies the condition
that pi|(2a−pj) when i 6= j, then solutions must be given by 2a−pi = pαi

i for each pi ∈ D. �

A similar question may be asked about sums of primes with the caveat that 2a+2 allows for
the possibility of a+ 1 being a new prime where the following function will be introduced.

Definition 3.6. Let the function γ(a+ 1) be defined by the conditions

(3.1) γ(a+ 1) =

{

1, if a + 1 is prime

0, if a + 1 is not prime.

Accounting for this fact allows for an inquiry into the form of 2a when it is a solution for
the equation

∏

pi∈D
(2a+ pi) = (a+1)γ(a+1)

∏

pi∈D
p
βi

i where each βi is assumed to be a natural
number. The solutions for 2a differ only in sign to the previous ones and will be shown below.

Lemma 3.7. Assume there exists some a ∈ N≥3 where for each pi ∈ D there exists some βi ∈ N

where the product relationship
∏

pi∈D
(2a+ pi) = (a+ 1)γ(a+1)

∏

pi∈D
p
βi

i holds. Then all βi > 0.

Proof. Note from the product
∏

pi∈D
(2a + pi) = (a + 1)γ(a+1)

∏

pi∈D
p
βi

i that all prime pi ∈ D

satisfy the condition that all pi|2a under Notation 3.1 and Definition 3.2. Hence, any pi|(2a+pi)

on the L.H.S. of the product and must be a divisor of the R.H.S. showing pi|p
βi

i where βi > 0. �

Lemma 3.8. GCD(pi, 2a + pj) = 1 for any pi 6=j, pj ∈ D when the product relationship
∏

pi∈D
(2a+ pi) = (a+ 1)γ(a+1)

∏

pi∈D
p
βi

i is met.

Proof. Assume
∏

pi∈D
(2a + pi) = (a + 1)γ(a+1)

∏

pi∈D
p
βi

i where all βi ∈ N from Lemma 3.7.

Since pi|2a from Definition 3.2, it is impossible for pi|(2a+ pj) for any pj where i 6= j. �

4



Theorem 3.9. If
∏

pi∈D
(2a+ pi) = (a+ 1)γ(a+1)

∏

pi∈D
p
βi

i , then 2a = p
βi

i − pi for all pi ∈ D.

Proof. Under Definition 3.2 each pi|2a in
∏

pi∈D
(2a + pi) = (a + 1)γ(a+1)

∏

pi∈D
p
βi

i . Since the
lemmas above show that all βi > 0 and no primes pi, pj ∈ D satisfies the condition that

pi|(2a+ pj) when i 6= j, then solutions must be given by 2a+ pi = p
βi

i for each pi ∈ D. �

An example of the above relationship is given by (6+2)× (6+3) = 23×32. The method that
will be explored in the paper is to see if a similar set of solutions exist to a counter-example
for the Goldbach Conjecture and its analogue for differences of primes.

4. The Goldbach Conjecture and Goldbach Difference Conjecture

In order to begin this paper each conjecture will be stated along with the necessary and
sufficient conditions required to find a count-example. Once this is done, it will be shown that
a counter-example cannot exist, hence proving the conjectures true. The method for finding
counter-examples to each conjecture is very similar.

Conjecture 4.1. Let a ∈ N>3 and the primes up to a are given by p1 < p2 < · · · < pπ(a). The
Goldbach Conjecture (G.C.) states there exists two primes qi, pi where 2a = qi + pi.

To begin, it is important to expand Definition 3.2. Notation 3.1 will stay the same.

Definition 4.2. Let a ∈ N≥3 where the Prime Set of a is P = {pi ∈ P : pi ≤ a}.

Theorem 4.3. Let a ∈ N>3. Then 2a is a counter-example to the G.C. if and only if for each
prime pi ∈ P there exists a unique αi ∈ N ∪ {0} where

∏

pi∈P
(2a− pi) =

∏

pi∈P
pαi

i .

Proof. If there exists a counter-example to the G. C. given by 2a, then for each prime pi ∈ P
there exists some unique qi where a < qi < 2a and

(4.1) 2a = qi + pi

with qi being a composition of primes up to a. Therefore, under the Fundamental Theorem of
Arithmetic it follows that for each prime pi ∈ P there must exist a unique αi ∈ N ∪ {0} where

(4.2)

π(a)
∏

i=1

qi =
∏

pi∈P

pαi

i .

A substitution of qi = 2a− pi for each qi from 4.1 in equation 4.2 gives

(4.3)
∏

pi∈P

(2a− pi) =
∏

pi∈P

pαi

i .

Conversely, if there exists some 2a > 6 where equation 4.3 holds for some α1, α2, . . . , απ(a) ∈
N, then equations 4.1 and 4.2 are true with the Fundamental Theorem of Arithmetic showing
no qi can be prime in equation 4.1. Therefore, the G.C. would be shown false. �

Lemma 4.4. For any αi it follows that αi > 0 if and only if pi|qi or pi|qj for some j 6= i.

Proof. From equation 4.2 it can be seen upon inspection that if any αi > 0, then that pi must
be a divisor of the R.H.S. of the equation and pi|p

αi

i . Therefore, that pi divides the L.H.S. of
the equation and must divide its corresponding qi or some other qj .

Conversely, from equation 4.2 if any prime pi is a divisor of its corresponding qi or some other
qj , then that pi divides the R.H.S. of equation 4.2 showing pi|p

αi

i where αi > 0. �

Lemma 4.5. For any prime pi ∈ P it follows pi|2a if and only if pi|qi.

Proof. Under equation 4.1 it is seen upon inspection if pi|qi, then pi|2a. Conversely, from
equation 4.1 it follows that if any pi|2a, then pi|qi. �

Lemma 4.6. For any prime pi ∈ P, if pi|qi, then pi ∤ qj for any j 6= i.
5



Proof. Under equation 4.1 of Theorem 4.3 it follows for any primes pi, pj ≤ a

(4.4) qi + pi = qj + pj.

If some pi existed where pi|qi and pi|qj for some j 6= i in equation 4.4, then pi|pj. Since both
pi, pj are primes, then pi ∤ pj when j 6= i. Thus, if any pi|qi, then pi ∤ qj for any j 6= i. �

Proposition 4.7. If pi|2a, there exists ni, αi ∈ N\{0} s.t. 2a = nip
αi

i +pi and GCD(pi, ni) = 1.

Proof. Suppose some pi|2a. From Lemmas 4.4 through 4.6 it can be seen that pi only divides
its corresponding qi in equations 4.1 and 4.2 showing that there exists some ni ∈ N where
qi = nip

αi

i . A substitution into equation 4.1 shows 2a = nip
αi

i + pi where GCD(pi, ni) = 1. �

A similar conjecture to the G.C. can be defined by asking whether or not every even number
may be written as the difference of two prime numbers.

Conjecture 4.8. Let a ∈ N>3. The Goldbach Difference Conjecture (G.D.C.) states that for
every value of a > 3 there exists two primes ui, pi such that 2a = ui − pi and pi ∈ P.

Remark 4.9. At this point it is necessary to recall the function in Definition 3.6 that will
account for the case where a + 1 is prime. This lies in the fact that in Conjecture 4.8 it is
possible for a + 1 to be prime, but 2a + 2 to be composite. Since all other 2a < ui ≤ 3a every
other ui is either a new prime greater than a+ 1 or a composition of primes up to a.

Theorem 4.10. Let a ∈ N>3. Then 2a is a counter-example to the G.D.C. iff for each prime
pi ∈ P there exists a unique βi ∈ N ∪ {0} where

∏

pi∈P
(2a+ pi) = (a+ 1)γ(a+1)

∏

pi∈P
p
β
i .

Proof. If there exists a counter-example to the G.D.C. given by 2a, then for each prime pi ∈ P
there exists some unique ui where 2a < ui ≤ 3a and

(4.5) 2a = ui − pi

with ui being a composition of primes up to a. Therefore, under the Fundamental Theorem of
Arithmetic it follows that for each prime pi ∈ P there must exist a unique βi ∈ N

(4.6)

π(a)
∏

i=1

ui = (a+ 1)γ(a+1)
∏

pi∈P

p
β
i .

Substituting ui = 2a+ pi from equation 4.5 into 4.6 gives

(4.7)
∏

pi∈P

(2a+ pi) = (a+ 1)γ(a+1)
∏

pi∈P

p
β
i .

Conversely, if there exists some 2a > 6 where equation 4.7 holds, then under the Fundamental
Theorem of Arithmetic equations 4.5 and 4.6 are true with no ui being prime in equation 4.5.
A substitution of each ui from 4.5 into equation 4.6 shows 2a is a solution to equation 10.1 and
it must be a counter-example to the G.D.C. �

Lemma 4.11. For any βi it follows that βi > 0 if and only if pi|ui or pi|uj for some j 6= i.

Proof. From equation 4.6 it can be seen upon inspection that if any βi > 0, then that pi must
be a divisor of the R.H.S. of the equation. Therefore, that pi divides the L.H.S. of the equation
and must divide its corresponding ui or some other uj.

Conversely, from equation 4.6 if any prime pi is a divisor of its corresponding ui or some
other uj, then that pi divides the R.H.S. of equation 4.6 showing pi|p

βi

i where βi > 0. �

Lemma 4.12. For any prime pi ∈ P it follows pi|2a if and only if pi|ui.

Proof. Under equation 4.5 it is seen upon inspection if pi|ui, then pi|2a. Conversely, from
equation 4.5 it follows that if any pi|2a, then pi|ui. �

Lemma 4.13. For any prime pi ∈ P, if pi|ui, then pi ∤ uj for any j 6= i.
6



Proof. Under equation 4.5 of Theorem 4.10 it follows for any primes pi, pj ≤ a

(4.8) ui − pi = uj − pj.

If some pi existed where pi|ui and pi|uj for some j 6= i in equation 4.8, then pi|pj. Since both
pi, pj are primes, then pi ∤ pj when j 6= i. Thus, if any pi|ui, then pi ∤ uj for any j 6= i. �

Proposition 4.14. If pi|2a, there exists mi, βi ∈ N\{0} s.t. 2a = mip
βi

i −pi, GCD(pi, mi) = 1.

Proof. Suppose some pi|2a. From Lemmas 4.11 through 4.13 it can be seen that pi only divides
its corresponding ui in equations 4.5 and 4.6 showing there exists some non-zero mi ∈ N where
ui = mip

βi

i . A substitution into equation 4.5 shows 2a = mip
αi

i −pi where GCD(pi, mi) = 1. �

5. Construction of the Goldbach Polynomial Type I and Its Properties

The G.C. 4.1 will be proven by assuming there exists a counter-example, given by 2a where
a ∈ N>3 along with the condition that 2a is a solution to equation 4.3 in Theorem 4.3. Using
Theorem 4.3 it is possible to define a polynomial based on the behavior of equation 4.3. It will
then be shown no counter-examples exist as they would lead to contradiction.

Definition 5.1. It was shown under Theorem 4.3 that a counter-example to the G.C. 4.1 is
given by 2a where a ∈ N>3 if and only if it is possible to assign to each prime pi ∈ P some
unique αi ∈ N where equation 4.3 holds. Assume 2a is a counter-example. To construct the
Goldbach Polynomial Type I (G.P.I.), it is possible to define the mapping G− : C → C where

(5.1) G−(z) =
∏

pi∈P

(z − pi)−
∏

pi∈P

pαi

i

and 2a is a root. This shows G−(2a) = 0 produces equation 4.3 in Theorem 4.3.

Definition 5.2. The Fundamental Theorem of Algebra ensures that there exists, with reci-
procity allowed, Goldbach Polynomial Roots where the set G = {rk ∈ C : G−(rk) = 0}. It then
follows that equation 5.1 may be written as

(5.2) G−(z) =
∏

rk∈G

(z − rk).

where Definition 5.1 in conjunction with the above factorization shows

(5.3)
∏

rk∈G

(z − rk) =
∏

pk∈P

(z − pk)−
∏

pk∈P

p
αk

k .

Lemma 5.3. There exists some root unique ri ∈ G where ri ≡ 0 (mod pi) iff αi > 0.

Proof. Assume αi > 0. From equation 5.3 in Definition 5.2 it follows for any integer 1 ≤ µ ≤ αi

(5.4)
∏

rk∈G

(z − rk) (mod p
αi−µ+1
i ) ≡

∏

pk∈P

(z − pk) (mod p
αi−µ+1
i )

where it can be seen that there is a singular root at z ≡ 0 (mod pi) proving if αi > 0, there
must exist a unique root ri ∈ G where ri ≡ 0 (mod pi).

Alternatively, assume some αi = 0. From equation 5.3 in Definition 5.2

(5.5)
∏

rk∈G

(z − rk) (mod pi) ≡
∏

pk∈P

(z − pk)−
∏

pk∈P

p
αk

k (mod pi).

Evaluating the equation above at z = pi gives
∏

pk∈P
(pi − pk) = 0 showing

(5.6)
∏

rk∈G

(pi − rk) (mod pi) ≡ −
∏

pk∈P

p
αk

k (mod pi).

Since the R.H.S. of the equation cannot be 0 because pαi

i = p0i = 1, it must follow that the
L.H.S. is also not zero. Thus, if αi = 0, there exists no ri ≡ 0 (mod pi). �
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Example 5.4. Let a = 3. There exists a G.P.I., G−(z) = (z−2)(z−3)−22×3 and G−(6) = 0.
Note 6 = 22 + 2 = 3 + 3 in accordance with equations 4.1 and 4.2. There exists another root
r2 = −1 in accordance with Definition 5.2. Thus, the roots are given by the set G = {−1, 6}.

Definition 5.5. The Goldbach Polynomial Type I Derivative is given by

(5.7) G ′
−(z) =

∏

pi∈P

(z − pi)

[

1

z − p1
+

1

z − p2
+ · · ·+

1

z − pπ(a)

]

and follows directly from equation 5.1.

Definition 5.6. The Goldbach Polynomial Type I Coefficients are produced by Vietas For-
mulas [14] for equation 5.1 of Definition 5.1. It is possible to write out each constant term
cπ(a), cπ(a)−1, . . . , c0 for the G.P.I. in equations 5.1 and 5.7 in Definitions 5.1 and 5.5 in terms
of the primes pi ∈ P. For this paper the only constants of importance are given by c1 = G ′

−(0)
and c0 = G−(0) below.

(5.8) G ′
−(0) = (−1)π(a)−1a#

(

1

p1
+

1

p2
+ · · ·+

1

pπ(a)

)

and

(5.9) G−(0) = (−1)π(a)a#−
∏

pi∈P

pαi

i

Corollary 5.7. For any prime pi ∈ P the GCD(pi, c1) = 1.

Proof. The c1 term in equation 5.8 of Definition 5.6 is the sum of π(a) products consisting of
π(a)−1 primes. Since any prime pi ∈ P is only absent from one product in the sum, pi ∤ c1 �

Corollary 5.8. If αi > 1, then p2i ∤ G−(0)

Proof. This is a direct consequence of equation 5.9. �

Proposition 5.9. αi > 0 if and only if G−(0) ≡ 0 (mod pi).

Proof. This follows directly From equation 5.9 where G−(0) = (−1)π(a)a#−
∏

pi∈P
pαi

i . �

Proposition 5.10. For all prime pi ∈ P the G ′
−(0) 6≡ 0 (mod pi).

Proof. This is a direct consequence of equation 5.8 of Definition 5.6. �

Corollary 5.11. For any prime pi ∈ P the G ′
−(0) ≡ (−1)π(a)−1 a#

pi
(mod pi).

Proof. Using equation 5.8 proves the corollary since only one term is not divisible by pi. �

Proposition 5.12. for any pi, pj ∈ P it follows G−(pi) = G−(pj).

Proof. For any pk ∈ P equation 5.1 shows G−(pk) = −
∏

pi∈P
pαi

i , proving the proposition. �

6. Preliminary Analysis of G−(z) when G−(2a) = 0

Proposition 6.1. Under equation 5.1 of Definition 5.1 it follows that 2a|G−(0).

Proof. With it assumed G−(2a) = 0 in 5.1, it then follows that 2a|G−(0) since 2a is a root. �

Proposition 6.2. The GCD(2a, G−(0)
2a

) = 1.

Proof. From Definition 5.6 and Corllary 5.7, it follows that the GCD(2a, c1) = 1. With
G−(2a) = 0 the equation 5.1 becomes

(6.1) 2a

[

(2a)π(a)−1 + cπ(a)−1(2a)
π(a)−2 + cπ(a)−2(2a)

π(a)−3 + · · ·+ c1

]

= −c0

where the only term in the brackets not multiplied by 2a is the c1 term. Therefore, the
GCD(2a, c0

2a
) = 1 is a consequence of G−(2a) = 0 in equation 5.1 and Corollary 5.7. �
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Corollary 6.3. 2a is not a repeated root when G−(2a) = 0.

Proof. This follows directly from Proposition 6.2 and the Rational Root Theorem. �

Corollary 6.4. Any rational root other than 2a is odd when G−(2a) = 0.

Proof. Under Proposition 6.2 it was shown that GCD(2a, c0
2a
) = 1. Taking all roots with

multiplicity to be r1, r2, . . . rπ(a) ∈ C with r1 = 2a, it then follows that GCD(2a,
r2···rπ(a)

2a
) = 1.

Thus, W.L.O.G. assume there exist a rational root r2. With the G.P. being monic, it follows
that all rational roots are integers. Therefore, r2 ∈ Z. Since r2|c0 and c0 ∈ Z, there exists some
integer x where c0

2a
= r2x and the GCD(2a, r2x) = 1, proving that GCD(2a, r2) = 1. �

Corollary 6.5. If G−(2a) = 0, then there are no other rational roots to the G.P. for π(a) > 2.

Proof. W.L.O.G. let the G.R. r1 = 2a and assume for the sake of contradiction there exists
some other rational root r2. Since the G.P. is monic, the Rational Root Theorem shows that
r2 ∈ Z. Proposition 6.2 ensures 2a can not be a repeated root, and Corollary 6.4 ensures 2 ∤ r2.
Therefore, it must follow from equation 5.1 with G−(r2) = 0 that

(6.2)
∏

pi∈P

(r2 − pi) =
∏

pi∈P

pαi

i .

With 2 ∤ r2, only one term of the L.H.S. above is not divisible by 2. Hence,

(6.3) 2α1 ≥ 2π(a)−1.

Knowing the minimum value for α1, equation 4.1 allows for again to write

(6.4) 2a = q1 + 2.

It follows from Corllary 4.6 that q1 is the only even qi corresponding to the root 2a, as all other
qi>1 must be odd since all other prime pi>1 are odd. Hence, from equation 6.3 in conjunction
with equation 6.4 it may be seen that q1 ≥ 2π(a)−1. Therefore, it follows

2a ≥ 2π(a)−1 + 2

a− 1 ≥ 2π(a)−2.

However, when a = 19 and π(19) = 8 a substitution of a = 19 in the equations above gives

18 6≥ 26

producing a contradiction. Furthermore, Chebyshev’s Theorem says that there for any a ∈ N
where a > 1 there is always some prime p such that a ≤ p < 2a. Therefore, whenever a ≥ 19
then a 6≥ 2π(a)−2. This result can even be made stronger given there are no solutions to the
G.P. where 2a is a G.R. and 2 < π(a) ≤ 19. Therefore, the corollary is true. �

7. Hensel’s Lemma

A proof of Hensel’s Lemma [2] is given below.

Theorem 7.1. Hensel’s Lemma.

Proof. Let f : C → C where f(z) = anz
n + an−1z

n−1 + · · · a1z + a0 and f(z) ∈ Z[z]. It is
possible to use a Taylor Series f(z0 + tµp

µ
i ) (mod p

µ+1
i ) ≡ f(z0) + tµp

µf ′(z0) (mod p
µ+1
i ). If

f(z0 + tµp
µ
i ) ≡ 0 (mod p

µ+1
i ) and f ′(z0) 6≡ 0 (mod pi), then tµp

µ
i f

′(z0) ≡ −f(z0) (mod p
µ+1
i )

where lifting allows z0 = t0+t1pi+· · ·+tµ−1p
µ−1
i +tµp

µ
i for a unique set t0, . . . , tµ−1, tµ ∈ Zpi �

Corollary 7.2. From Propositions 5.9 and 5.10 Hensel’s Lemma may be used for any pαi

i > 1.

Proof. Hensel’s Lemma 7.1 states that for any s ∈ Zp where G−(s) ≡ 0 (mod p) along with
condition G ′

−(s) 6≡ 0 (mod p), then there exists a unique t ∈ Zp where G−(t) ≡ 0 (mod p) and
s ≡ t (mod p). From Proposition 5.9 and 5.10, Hensel’s Lemma is satisfied for any pαi

i > 1. �
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8. A Derivation of the Hensel-Goldbach Equations

Given everything so far it is actually possible to construct solutions for the Goldbach Poly-
nomial. The strategy is to Use Hensel’s Lemma 7.1 to construct solutions for 2a based on the
Lemmas 4.4, 4.5, and 4.6.

Lemma 8.1. Any αi > 0 if and only if 2a ≡ 0 (mod pi) or 2a ≡ pj (mod pi) for some j 6= i.

Proof. This follows directly from equations 4.1 and 4.2 in Theorem 4.3 and Lemma 4.4. �

The strategy now is to use Hensel’s Lemma 7.1 in conjunction with Lemma 8.1 to construct
the form of 2a in terms of its prime divisors. The Hensel-Goldbach Equations are defined below.

Definition 8.2. From Proposition 5.9 it was shown any αi > 0 if and only if 0 is a root of
G−(z) (mod pi). It was also shown from Proposition 5.10 that for any prime pi ∈ P that
G ′
−(0) 6≡ 0 (mod pi) where Corollary 5.11 shows G ′

−(0) ≡ (−1)π(a)−1 a#
pi

(mod pi). Therefore,

for any αi > 0 Theorem 7.1 and Corollary 7.2 show there exists some unique root ri ∈ G from
Definition 5.2 where ri ≡ 0 (mod pi) and G ′

−(0) 6≡ 0 (mod pi). This allows for the production
of the Hensel-Goldbach Equations for any integer 0 ≤ µ ≤ αi below

(8.1) −tαi−µp
αi−µ
i G ′

−(ri) ≡ G−(ri) mod p
αi−µ+1
i .

Therefore, for any αi > 0, Definition 5.2 allows the following relation for all integers 1 ≤ µ ≤ αi

(8.2)
∏

pk∈P

p
αk

k (mod p
αi−µ+1
i ) ≡ 0 (mod p

αi−µ+1
i ),

showing equation 5.1 may be simplified greatly to
(8.3)
{

−tαi−µp
αi−µ
i G ′

−(ri) ≡
∏

pk∈P
(ri − pk) (mod p

αi−µ+1
i ) for all integers 1 ≤ µ ≤ αi

−tαi+µp
αi+µ
i G ′

−(ri) ≡
∏

pk∈P
(ri − pk)−

∏

pk∈P
p
αk

k (mod p
αi+µ+1
i ) for all integers µ ≥ 0

where

(8.4) ri = t0 + t1pi + · · ·+ tαi−1p
αi−1
i + tαi

pαi

i + · · ·

for unique t0, . . . , tαi−1, tαi
, . . . ,∈ Zpi and ri ≡ t0 (mod pi).

Example 8.3. Let G−(z) = (z − 2)(z − 3) − 22 × 3 where G ′
−(z) = 2z − 5. It can be seen

that G−(0) ≡ 0 (mod 2) and G ′
−(0) ≡ −5 (mod 2) ≡ 1 (mod 2). Using the Hensel-Goldbach

Equations gives the 2-adic root approximation rk = 0+ t12+ t22
2 + · · · with the next iteration

−t1 × 2× G ′
−(0) ≡ G−(0) (mod 22)

−t1 × 2× (2× 0− 5) ≡ (0− 2)× (0− 3)− 22 × 3 (mod 22)

t1 ≡ 1 (mod 2)

where the root is rk = 0 + 2 + t22
2 + · · · where the next iteration gives

−t2 × 22 × G ′
−(2) ≡ G−(2) (mod 23)

−t2 × 22 × (2× 2− 5) ≡ (2− 2)× (2− 3)− 22 × 3 (mod 23)

t2 ≡ 1 (mod 2)

where rk = 0+2+22+ · · · . However, note that G−(6) = (6− 2)(6− 3)− 22 × 3 = 0 identically.
Therefore any lifts of 2 in the 2-adic root will vanish. It can also be seen that 6 = 2 × 3 is
3-adic and is also a root derived working in (mod 3).

Theorem 8.4. There exists a unique root ri ∈ G to equations 8.3 of Definition 8.2 where
ri ≡ tαi

pαi

i + pi (mod pαi+1
i ) and tαi

∈ Zpi is non-zero if and only if αi > 0.
10



Proof. Assume αi > 0. Using the Hensel-Goldbach Equation in 8.3 gives the set of equations

−t0G
′
−(r̄i) ≡

∏

pk∈P

(r̄i − pk) (mod pi)(8.5)

...(8.6)

−tαi−1p
αi−1
i G ′

−(ri) ≡
∏

pk∈P

(ri − pk) (mod pαi

i )(8.7)

−tαi
pαi

i G ′
−(ri) ≡

∏

pk∈P

(ri − pk)−

π(a)
∏

i=k

p
αk

k (mod pαi+1
i ).(8.8)

From Proposition 5.9 Corollary 5.11 it follows that 0 (mod pi) is a root to the Hensel-Goldbach
Equations above where plugging in the root zero to equation 8.5 shows t0 ≡ 0 (mod pi). To
solve for the next term it is possible to use the fact that ri may be written as the pi-adic series

(8.9) ri = 0 + t1pi + t2p
2
i + · · ·+ tαi−1p

αi−1
i + tαi

pαi

i + · · ·

where all t ∈ Zpi. Moving to the second iteration and plugging in ri = 0 (mod pi) gives

−t1piG
′
−(0) ≡ G−(0) (mod p2i )

−t1piG
′
−(0) ≡ (−1)π(a)a# (mod p2i )

where a substitution from Corollary 5.11 for G ′
−(0) on the L.H.S. shows

−t1piG
′
−(0) ≡ (−1)π(a)a# (mod p2i )

−t1G
′
−(0) ≡ (−1)π(a)

a#

pi
(mod pi)

−t1(−1)π(a)−1 a#

pi
≡ (−1)π(a)

a#

pi
(mod pi)

t1 ≡ 1 (mod pi)

where the root becomes

(8.10) ri = 0 + pi + t2p
2
i + · · ·+ tαi−1p

αi−1
i + tαi

pαi

i + · · ·

This allows equation above to be used in the next iteration to give

−t2p
2
iG

′
−(pi) ≡

∏

pk∈P

(pi − pk) (mod p3i )

−t2p
2
iG

′
−(pi) ≡ (pi − p1)(pi − p2) · · · (pi − pi) · · · (pi − pπ(a)) (mod p3i )

−t2p
2
iG

′
−(pi) ≡ 0 (mod p3i )

t2 ≡ 0 (mod pi)

where

(8.11) ri = 0 + pi + 0× p2i + · · ·+ tαi−1p
αi−1
i + tαi

pαi

i + · · ·

Note the root above shows the R.H.S. of equations 8.5 to 8.7 must be 0 and gives the value for
all t1<k<αi

= 0 where the roots becomes

(8.12) ri = pi + tαi
pαi

i + · · · .
11



Moving to the final iteration and plugging in the appropriate value for ri into 8.8 shows

−tαi
pαi

i G ′
−(pi) ≡

∏

pk∈P

(pi − pk)−

π(a)
∏

i=k

p
αk

k (mod pαi+1
i )

−tαi
pαi

i G ′
−(pi) ≡ (pi − p1)(pi − p2) · · · (pi − pi) · · · (pi − pπ(a))−

∏

pk∈P

p
αk

k (mod pαi+1
i )

−tαi
pαi

i G ′
−(pi) ≡ −

∏

pk∈P

p
αk

k (mod pαi+1
i )

where a simplification by dividing each side by pαi

i and using the appropriate substitution from
Corollary 5.11 for G ′

−(0) on the L.H.S. shows

(8.13) tαi
(−1)π(a)−1 a#

pi
≡

∏

pk∈P\{pi}

p
αk

k (mod pi).

Since pαi

i was cancelled from both sides above, the R.H.S. of the equation above is never 0.
Hence, tαi

6= 0 where equation 8.9 shows 2a ≡ tαi
pαi

i + pi (mod pαi+1
i ) for some tαi

∈ Zpi \ {0}.
Alternatively, assume that αi = 0. From Proposition 5.9 there is no root r̄i ≡ 0 (mod pi). �

9. Constructing the Root 2a when G−(2a) = 0

It was shown in Proposition 6.5 that 2a is the only rational root to the G.P. in Definition 5.1.
Under Theorem 8.4 it was shown that there exists a root of the form ri ≡ tαi

pαi

i +pi (mod pαi+1
i )

iff αi > 0. The final step to show no solutions exist when deg(G−) > 2 and G−(2a) = 0. This can
be accomplished because it was shown in Lemma 8.1 that 2a is related directly to each αi. The
final question that needs to be answered is whether repeated roots emerge if 2a ≡ pj (mod pi)
for some pj ∈ P where i 6= j. It is possible to show there are not. The reason this is important
lies in the fact that when αi = 1, that prime may only divide one q in equation 4.2. Similarly,
it was shown under Corollaries 4.5 and 4.6 that if a prime is a divisor of 2a, it only divides one
q. The question seeking an answer is if this pattern continues for any αi > 1 where pi does not
divide 2a. This will be the focus of the following theorem and corollary.

Lemma 9.1. If a pi ∈ P exists in 4.1 where pi|qj and pi|qk, then 2a ≡ pj ≡ pk (mod pi).

Proof. Assume there exists some pi ∈ P where pi|qj and pi|qk. From equation 4.1

(9.1) qj + pj = qk + pk

where pj ≡ pk (mod pi). Since 2a = qj + pj = qk + pk it follows that 2a ≡ pj ≡ pk (mod pi). �

Proposition 9.2. For any pj ∈ P the G ′
−(pj) =

∏

pk∈P\{pj}
(pj − pk)

Proof. This follows directly from equation 5.7 in Definition 5.5. �

Corollary 9.3. If pi ∈ P where pi|qj and pi|qk, then G ′
−(pj) ≡ 0 (mod pi).

Proof. This follows directly from Proposition 9.2 and Lemma 9.1. �

Proposition 9.4. If αi > 1, there are no pj, pk ∈ P where pj ≡ pk (mod pi).

Proof. Suppose there exists some αi > 1 and 2a 6≡ 0 (mod pi). From Lemma 8.1 it can be
seen that there must exist some pj ∈ P where 2a ≡ pj (mod pi). The question now is if the
Hensel-Goldbach Equations 8.3 may be used for the root approximation for 2a ≡ pj (mod pi).
Recall from Proposition 5.12 that G−(pi) = G−(pj) where it follows G−(pi) ≡ G−(pj) (mod pki )
for any integer k > 0. This allows for G−(0) ≡ G−(pj) (mod pi). Since αi is assumed to be
greater than one, Corollary 5.8 and Propositions 5.9, 5.10 show that G−(0) has a singular root
(mod pi), thus proving that G−(pj) is a singular root (mod pi). Hence, it may be concluded
that there exists no prime pk ∈ P where pj ≡ pk mod pi. From Lemma 9.1 it may be seen
that no prime pi ∈ P divides any qj and qk. �
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Corollary 9.5. For any qi, qj in equations 4.1 and 4.2 in Theorem 4.3, the GCD(qi, qj) = 1.

Proof. Under Proposition 9.4 it was shown that no two qj, qk are divisible by the same prime
pi ∈ P. Since all q’s must be divisible by some prime in P, the GCD(qi, qj) = 1. �

The final step is to use the proof Catalan’s Conjecture [9] which showed that the largest
solutions to the Diophantine Equation of the form xµ − yν = 1 is given by 32 − 23 = 1.

Theorem 9.6. There are no solutions to equation 5.1 where G−(2a) = 0 and a > 3.

Proof. From Corollary 9.5 it was shown that no prime pi divides any two q’s. Therefore, each
q is a perfect prime power and for any pi ∈ D from 3.2 it follows that

(9.2) 2a = pαi

i + pi for all prime pi ∈ D.

Since, there are π(a) q’s that share no primes, it follows from the Pigeon Hole Principle that
all αi > 0. Using the transitive property from equation 4.1, and the fact that 2|2a, it follows
that there exists some prime power where 2α1 + 2 = p

αj

j + 3. However, the proof of Catalan’s

Conjecture ensures that the largest values this equation has is 22 + 2 = 3 + 3. Therefore,
that the largest value for 2a satisfying G−(2a) = 0 is when a = 3. Under Theorem 4.3 no
counter-examples to the Goldbach Conjecture exists and it must be true. �

Theorem 9.7. The Ternary Conjecture3 is true.

Proof. For any odd n ∈ N such that n ≥ 7 there exists some even m ∈ N where n = 3 + m.
Under Theorem 9.6 for any even m > 2 there exists p2, p3 ∈ P where m = p1 + p2. Thus, for
any odd n ≥ 7 there exists p1, p2, p3 ∈ P where n = p1 + p2 + p3. �

Corollary 9.8. Every prime larger than 7 is the sum of three odd primes.

Proof. This follows trivially from Theorem 9.7 since all primes greater than seven are odd. �

Definition 9.9. Let a ∈ N such that a > 1. Since

(9.3) 2a = (a + b) + (a− b)

for any b ∈ N, a Prime Reflective Point (P.R.P.) is any bR ∈ N where a± bR ∈ P and bR < a.

Theorem 9.6 along with Definition 9.9 allow for a slightly stronger conjecture than the G.C.
if it can be shown that there are no solutions to the G.P. when a > 3 and 2a is a G.R.

Theorem 9.10. Every a ∈ N where a > 3 has some non-zero P.R.P.

Proof. Since no solutions exist to Theorem 4.3 when 2a > 6, this must also hold when a is
prime. This would allow for a cancellation of a from both sides of equation 4.2. Since solutions
would still not exist, another qi must be prime in equation 4.1. Thus, since every prime has a
non-zero P.R.P. and any composite a must also have a non-zero P.R.P., the theorem is true. �

The next section will follow a nearly identical approach to this section in order to prove that
there are no counter-examples to the G.D.C. 4.8

10. Construction of the Goldbach Polynomial Type II

Using a nearly identical procedure as was used in the previous section it is also important to
expand this idea to Theorem 4.10 below.

Definition 10.1. It was shown under Theorem 4.10 that a counter-example to the G.D.C. is
given by 2a where a ∈ N>3 if and only if it is possible to assign to each prime pi ∈ P some
unique βi ∈ N where equation 4.7 holds. Assume 2a is a counter-example. To construct the
Goldbach Polynomial Type II (G.P.II), it is possible to define the mapping G+ : C → C

(10.1) G+(z) =
∏

pi∈P

(z + pi)− (a+ 1)γ(a+1)
∏

pi∈P

p
β
i .

3Harald Helfgott’s 2013 work is generally accepted as sufficient for proving this conjecture.
13



and 2a is a root. This shows G+(2a) = 0 produces equation 4.7 in Theorem 4.10.

Definition 10.2. The Fundamental Theorem of Algebra ensures that there exists, with reci-
procity allowed, Goldbach Difference Polynomial Roots where G′ = {r′k ∈ C : G+(r

′
k) = 0}. It

then follows that equation 10.1 may be written as

(10.2) G+(z) =
∏

r′
k
∈G′

(z − r′k).

where Definition 10.1 in conjunction with the above factorization shows

(10.3)
∏

r′
k
∈G′

(z − r′k) =
∏

pk∈P

(z + pk)− (a+ 1)γ(a+1)
∏

pk∈P

p
βk

k .

Lemma 10.3. There exists some root unique r′i ∈ G′ where r′i ≡ 0 (mod pi) iff βi > 0.

Proof. Assume βi > 0. From equation 10.3 in Definition 10.2, for any integer 1 ≤ µ ≤ βi

(10.4)
∏

r′
k
∈G′

(z − r′k) (mod p
βi−µ+1
i ) ≡

∏

pk∈P

(z + pk) (mod p
βi−µ+1
i )

where it can be seen that there is a singular root at z ≡ 0 (mod pi) proving if βi > 0, there
must exist a unique root r′i ∈ G′ where r′i ≡ 0 (mod pi).

Alternatively, assume some βi = 0. From equation 10.3 in Definition 10.2

(10.5)
∏

r′
k
∈G′

(z − r′k) (mod pi) ≡
∏

pk∈P

(z + pk)− (a + 1)γ(a+1)
∏

pk∈P

p
βk

k (mod pi).

Evaluating the equation above at z = pi gives
∏

pk∈P
(pi + pk) ≡ 0 (mod pi) showing

(10.6)
∏

r′
k
∈G′

(pi − r′k) (mod pi) ≡ −(a + 1)γ(a+1)
∏

pk∈P

p
αk

k (mod pi).

Since the R.H.S. of the equation cannot be 0 because p
βi

i = p0i = 1 and Definition 3.6 ensures
pi ∤ (a+ 1), the L.H.S. is not zero. Thus, if βi = 0, there exists no r′i ≡ 0 (mod pi). �

Example 10.4. Let a = 3. There exists a G.P.II, G+(z) = (z + 2)(z + 3) − 23 × 32 since
G+(6) = 0. Note 6 = 23 − 2 = 32 − 3 in accordance with equations 4.5 and 4.6. There exists
another root r′2 = −11 in accordance with Definition 10.2 the roots are given by G′ = {−11, 6}.

Definition 10.5. The Goldbach Polynomial Type II Derivative is given by

(10.7) G ′
+(z) =

∏

pi∈P

(z + pi)

[

1

z + p1
+

1

z + p2
+ . . .

1

z + pπ(a)

]

and follows directly from equation 10.1.

Definition 10.6. The Goldbach Polynomial Type II Difference Coefficients are produced by
Vietas Formulas [14] in the same manner as equations 5.1 and 5.5 of Definitions 5.1 and 5.5. It
is possible to write out each constant term dπ(a), dπ(a)−1, . . . , d0 for the G.P.II in equations 10.1
and 10.7 in Definitions 10.1 and 10.5 in terms of the primes pi ∈ P. For this paper the only
constants of importance are given by d1 = G ′

+(0) and d0 = G+(0) below. The only difference in
these equations from previous sections are the minus signs and a+ 1 term below.

(10.8) G ′
+(0) = a#

(

1

p1
+

1

p2
+ · · ·+

1

pπ(a)

)

and

(10.9) G+(0) = a#− (a+ 1)γ(a+1)
∏

pi∈P

p
β
i .

Corollary 10.7. For any prime pi ∈ P the GCD(pi, d1) = 1.
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Proof. The d1 term in equation 10.8 of Definition 10.6 is the sum of π(a) products consisting of
π(a)−1 primes. Since any prime pi ∈ P is only absent from one product in the sum, pi ∤ d1 �

Corollary 10.8. If βi > 1, then p2i ∤ G+(0)

Proof. This is a direct consequence of equation 10.9. �

Proposition 10.9. βi > 0 if and only if G+(0) ≡ 0 (mod pi).

Proof. This follows From Definition 10.1 where G+(0) = a#− (a + 1)γ(a+1)
∏

pi∈P
p
βi

i . �

Proposition 10.10. For all prime pi ∈ P the G ′
+(0) 6≡ 0 (mod pi).

Proof. This is a direct consequence of equation 10.8 of Definition 10.6. �

It is actually possible to calculate an explicit value for G ′
+(0) using Definition 10.6

Corollary 10.11. For any prime pi ∈ P the G ′
+(0) ≡

a#
pi

(mod pi).

Proof. Using equation 10.8 proves the corollary since only one term is not divisible by pi. �

Proposition 10.12. for any pi, pj ∈ P it follows G+(−pi) = G+(−pj).

Proof. For any pk ∈ P equation 10.1 shows G+(−pk) = −(a+ 1)γ(a+1)
∏

pi∈P
p
βi

i . �

It is possible to use this same line of reasoning to analyze the structure of 2a when G+(2a) = 0.

11. Preliminary Analysis of G+(z) when G+(2a) = 0

Proposition 11.1. Under equation 10.1 of Definition 10.1 it follows that 2a|G+(0).

Proof. With it assumed G+(2a) = 0 in 10.1, it then follows that 2a|G+(0) since 2a is a root. �

Proposition 11.2. The GCD(2a, G+(0)
2a

) = 1.

Proof. From Definition 10.6 Corollary 10.7 any prime pi ∈ P has GCD(pi, d1) = 1. Hence, it
follows that the GCD(2a, d1) = 1. With G+(2a) = 0 the equation 10.1 becomes

(11.1) 2a

[

(2a)π(a)−1 + dπ(a)−1(2a)
π(a)−2 + dπ(a)−2(2a)

π(a)−3 + · · ·+ d1

]

= −d0

where the only term in the brackets not multiplied by 2a is the d1 term. Therefore, the

GCD(2a, G+(0)
2a

) is a consequence of G+(2a) = 0 in equation 10.1 and Corollary 10.7. �

Corollary 11.3. 2a is not a repeated root when G+(2a) = 0.

Proof. This follows directly from Proposition 11.2 and the Rational Root Theorem. �

Corollary 11.4. Any rational root other than 2a is odd when G+(2a) = 0.

Proof. Under Proposition 11.2 it was shown that GCD(2a, d0
2a
) = 1. Taking all roots with

multiplicity to be r′1, r
′
2, . . . r

′
π(a) ∈ C with r′1 = 2a, it then follows that GCD(2a,

r′2···r
′

π(a)

2a
) = 1.

Thus, W.L.O.G. assume there exist a rational root r′2. With the G.P. being monic, it follows
that all rational roots are integers. Therefore, r′2 ∈ Z. Since r′2|d0 and d0 ∈ Z, there exists some
integer x where d0

2a
= r′2x and the GCD(2a, r′2x) = 1, proving that GCD(2a, r′2) = 1. �

Corollary 11.5. If G+(2a) = 0, then there are no other rational roots to the G.P. for π(a) > 2.

Proof. W.L.O.G. let the G.R. r′1 = 2a and assume for the sake of contradiction there exists
some other rational root r′2. Since the G.P. is monic, the Rational Root Theorem shows r′2 ∈ Z.
Proposition 11.2 ensures 2a can not be a repeated root, and Corollary 11.4 ensures 2 ∤ r′2.
Therefore, it must follow from equation 10.1 with G+(r

′
2) = 0 that

(11.2)
∏

pi∈P

(r′2 + pi) = (a+ 1)γ(a+1)
∏

pi∈P

p
βi

i .
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With 2 ∤ r′2, only one term of the L.H.S. above is not divisible by 2. Hence,

(11.3) 2β1 ≥ 2π(a)−1.

Knowing the minimum value for β1, equation 4.5 allows for again to write

(11.4) 2a = u1 − 2.

It follows from Corollary 4.13 u1 is the only even ui corresponding to the root 2a, as all other
ui>1 must be odd since all other prime pi>1 are odd. Hence, from equation 11.3 in conjunction
with equation 11.4 it may be seen that u1 ≥ 2π(a)−1. Therefore, it follows

2a ≥ 2π(a)−1 − 2

a + 1 ≥ 2π(a)−2.

However, when a = 19 and π(19) = 8 a substitution of a = 19 in the equations above gives

20 6≥ 26

producing a contradiction. Furthermore, Chebyshev’s Theorem says that there for any a ∈ N
where a > 1 there is always some prime p such that a ≤ p < 2a. Therefore, whenever a ≥ 19
then a 6≥ 2π(a)−2. This result can even be made stronger given there are no solutions to the
G.D.P. where 2a is a G.D.R. and 2 < π(a) ≤ 19. Therefore, the corollary is true. �

Corollary 11.6. From Propositions 10.9 and 10.11 Hensel’s Lemma may be used for p
βi

i > 1.

Proof. Hensel’s Lemma 7.1 states that for any s ∈ Zp where G+(s) ≡ 0 (mod p) along with
condition G ′

+(s) 6≡ 0 (mod p), then there exists a unique t ∈ Zp where G+(t) ≡ 0 (mod p) and

s ≡ t (mod p). From Proposition 10.9 and 10.11, Hensel’s Lemma is satisfied if pβi

i > 1. �

The strategy now is to Use Hensel’s Lemma to construct 2a based on Lemmas 4.11 - 4.13.

12. A Derivation of The Hensel-Goldbach Difference Equations

Lemma 12.1. βi > 0 if and only if 2a ≡ 0 (mod pi) or 2a ≡ −pj (mod pi) for some j 6= i.

Proof. This follows directly from equations 4.5 and 4.6 in Theorem 4.10 and Lemma 4.11. �

Definition 12.2. From Proposition 10.9 it was shown that any βi > 0 if and only if pi is
a root of G+(z) (mod pi). It was also shown from Proposition 10.10 that for for any prime
pi ∈ P that G ′

+(0) 6≡ 0 (mod pi) where Corollary 10.11 shows G ′
+(0) ≡

a#
pi

(mod pi). Therefore,

for any βi > 0 Theorem 7.1 and Corollary 11.6 show there exists some unique root r′i ∈ G′

from Definition 10.2 where r′i ≡ 0 (mod pi) and G ′
+(0) 6≡ 0 (mod pi). This root allows for the

Hensel-Goldbach Difference Equations given below

(12.1) −t′βi−µp
βi−µ
i G ′

+(r
′
i) ≡ G+(r

′
i) mod p

βi−µ+1
i

for any 0 ≤ µ ≤ βi. Therefore, for any βi > 0, Definition 10.1 allows the following relation for
all integers 1 ≤ µ ≤ βi

(12.2) (a+ 1)γ(a+1)
∏

pk∈P

p
βk

k (mod p
βi−µ+1
i ) ≡ 0 (mod p

βi−µ+1
i )

where using equation 10.1 and equation 12.1 may be simplified greatly to

(12.3)

{

−t′βi−µp
βi−µ
i G ′

+(r
′
i) ≡

∏

pk∈P
(r′i + pk) (mod p

βi−µ+1
i ) : for all 1 ≤ µ ≤ βi

−t′βi
p
βi

i G
′
+(r

′
i) ≡

∏

pk∈P
(r′i + pk)− (a+ 1)γ(a+1)

∏

pk∈P
p
βk

k (mod p
βi+1
i )

where it is now possible to use these equations to find roots for the G.P.II given by

(12.4) r′i = t′0 + t′1pi + t′βi−1p
βi−1
i + t′βi

p
βi

i + · · ·

for unique t′0, . . . , t
′
βi−1, t

′
βi
∈ Zpi and r′i ≡ t′0 (mod pi).
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Example 12.3. Let G+(z) = (z+2)(z+3)−23×32 where G ′
+(z) = 2z+5. It can be seen that

G+(0) ≡ 0 (mod 3) and G ′
+(0) ≡ 5 (mod 3) ≡ 2 (mod 3). Using the Hensel-Goldbach Difference

Equations allows for the 3-adic root r′k = 0 + t′13 + t′23
2 + · · · where the next iteration gives

−t′1 × 3× G ′
+(0) ≡ G+(0) (mod 32)

−t′1 × 3× (2× 0 + 5) ≡ (0 + 2)× (0 + 3)− 23 × 32 (mod 32)

−t′1 × 3× (2× 0 + 5) ≡ (0 + 2)× (0 + 3) (mod 32)

−t′1 × 5 ≡ 2 (mod 3)

t′1 ≡ 2 (mod 3)

At this point it is best to write 2 = (3− 1) where the root is rk = 0 + (3− 1)× 3 + t23
2 + · · · .

However, note that G+(6) = (6 + 2)(6 + 3)− 23 × 32 = 0 identically. Therefore any higher lifts
in the 3-adic root will vanish. Notice also that 6 = (3 − 1) × 3 = 32 − 3 in accordance with
Proposition 4.14 and will have relevance in the following theorem.

Theorem 12.4. There exists a unique root r′i to the Hensel-Goldbach Difference Equations of

Definition 12.2 where r′i ≡ t′βi
p
βi

i − pi (mod p
βi+1
i ) and t′βi

∈ Zpi \ {0} iff βi > 0.

Proof. Assume βi > 0. Using the Hensel-Goldbach Difference Equations in 12.3 gives

−t′0G
′
+(r

′
i) ≡

∏

pk∈P

(r′i + pk) mod pi(12.5)

...(12.6)

−tβi−1p
βi−1
i G ′

+(r
′
i) ≡

∏

pk∈P

(r′i + pk) mod p
βi

i(12.7)

−t′βi
p
βi

i G
′
+(r

′
i) ≡

∏

pk∈P

(r′i + pk)− (a+ 1)γ(a+1)
∏

pk∈P

p
βk

k (mod p
βi+1
i ).(12.8)

From Proposition 10.9 Corollary 10.11 it follows that 0 (mod pi) is a root to the Hensel-
Goldbach Difference Equations above where plugging in the root zero to equation 12.5 shows
t′0 ≡ 0 (mod pi). To solve for the next term it is possible to use the fact that r′i may be written
as a series of the prime powers pi below

(12.9) r′i = 0 + t′1pi + t′2p
2
i + · · ·+ t′βi−1p

βi−1
i + t′βi

p
βi

i + · · ·

where all t′ ∈ Zpi. Moving to the next iteration and plugging in the root r̄i = 0 gives

−t′1piG
′
+(0) ≡ G+(0) mod p2i(12.10)

−t′1piG
′
+(0) ≡ a# mod p2i(12.11)

where a simplification of the R.H.S. and a substitution from Corollary 10.11 for G ′
+(0) on the

L.H.S. shows t1 ≡ −1 (mod pi) showing t1 = pi − 1. This allows equation 12.9 to be written as

(12.12) r′i = 0 + (pi − 1)pi + t′2p
2
i + · · ·+ t′βi−1p

βi−1
i + t′βi

p
βi

i + · · ·
17



where r′i = p2i − pi (mod p3i ). Moving to the next iteration to solve for t2 gives

−t′2p
2
iG

′
+(p

2
i − pi) ≡

∏

pk∈P

(p2i − pi + pk) mod p3i

−t′2p
2
iG

′
+(p

2
i − pi) ≡ (p2i − pi + p1)(p

2
i − pi + p2) · · · (p

2
i − pi + pi) · · · (p

2
i − pi + pπ(a)) mod p3i

−t′2p
2
iG

′
+(p

2
i − pi) ≡ p2i

∏

pk∈P\{pi}

(p2i − pi + pk) mod p3i

−t′2G
′
+(p

2
i − pi) ≡

∏

pk∈P\{pi}

(p2i − pi + pk) mod pi

−t′2G
′
+(0) ≡

a#

pi
mod pi

where Corllary 10.11 gives t′2 ≡ −1 (mod pi) showing t′2 = pi − 1. Plugging into 12.12 gives

r′i = 0 + (pi − 1)pi + (pi − 1)p2i + · · ·+ t′βi−1p
βi−1
i + t′βi

p
βi

i + · · ·

r′i = p3i − pi + t′3p
3
i + · · ·+ t′βi−1p

βi−1
i + t′βi

p
βi

i + · · ·

Note, that this pattern continues in the R.H.S. of all equations 12.5 to 12.7 where it must follow
that all t′1<k<αi

= pi − 1. This allows for

r′i = 0 + (pi − 1)pi + (pi − 1)p2i + · · ·+ (pi − 1)pβi−1
i + (pi − 1)pβi−1

i + t′βi
p
βi

i + · · ·

r′i = p
βi

i − pi + t′βi
p
βi

i + · · ·

where it is possible to substitute in r′i = p
βi

i − pi into equation 12.8 to find t′βi
below.

−t′βi
p
βi

i G
′
+(p

βi

i − pi) ≡
∏

pk∈P

(pβi

i − pi + pk)− (a+ 1)γ(a+1)
∏

pk∈P

p
βk

k (mod p
βi+1
i )

−t′βi
p
βi

i G
′
+(p

βi

i − pi) ≡ (pβi

i − pi + p1) · · · (p
βi

i − pi + pπ(a))− (a+ 1)γ(a+1)
∏

pk∈P

p
βk

k (mod p
βi+1
i )

−t′βi
p
βi

i G
′
+(p

βi

i − pi) ≡ p
βi

i

∏

pk∈P\{pi}

(pβi

i − pi + pk)− (a + 1)γ(a+1)p
βi

i

∏

pk∈P\{pi}

p
βk

k (mod p
βi+1
i )

−t′βi
G ′
+(p

βi

i − pi) ≡
∏

pk∈P\{pi}

(pβi

i − pi + pk)− (a+ 1)γ(a+1)
∏

pk∈P\{pi}

p
βk

k (mod pi)

−t′βi
G ′
+(0) ≡

a#

pi
− (a+ 1)γ(a+1)

∏

pk∈P\{pi}

p
βk

k (mod pi)

From Corollary 10.11 the equation above becomes

(12.13) −t′βi

a#

pi
≡

a#

pi
− (a+ 1)γ(a+1)

∏

pk∈P\{pi}

p
βk

k (mod pi)

where a simplification gives

(12.14) −(t′βi
+ 1)

a#

pi
≡ −(a + 1)γ(a+1)

∏

pk∈P\{pi}

p
βk

k (mod pi)

From Definition 3.6 there are no solutions to 12.14 where t′βi
≡ −1 (mod pi) since the R.H.S.

is never divisible by pi. Therefore, it must follow that 0 ≤ t′βi
< pi − 1 showing t′βi

+ 1 ∈ Zpi.

A rescaling of t′βi
7→ t′βi

+ 1 shows r′i ≡ t′βi
p
βi

i − pi (mod p
βi+1
i ) where t′βi

∈ Zpi .
Alternatively, assume that βi = 0. Then, from Proposition 10.9 it can be seen that there is

no root where r′i ≡ 0 (mod pi). �

Following a similar approach to the one in this section it is possible to derive a set of equations
that will allow for the construction of roots to the G.P.II in Definition 10.1
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13. Constructing the Root 2a when G+(2a) = 0

It was shown in Proposition 11.5 that 2a is the only rational root to the G.P. in Definition 10.1.
Under Theorem 12.4 it was shown that there exists a root of the form r′i ≡ t′βi

p
βi

i +pi (mod p
βi+1
i )

iff βi > 0. The final step to show no solutions exist when deg(G+) > 2 when G+(2a) = 0.
This can be accomplished because it was shown in Lemma 12.1 that 2a is related directly to
each βi. The final question that needs to be answered is whether repeated roots emerge if
2a ≡ −pj (mod pi) for some pj ∈ P where i 6= j. It is possible to show there are not. The
reason this is important lies in the fact that when αi = 1, that prime may only divide on u

in equation 4.6. Similarly, it was shown under Corollaries 4.11 and 4.12 that if a prime is a
divisor of 2a, it only divides one u. The question seeking an answer is if this pattern continues
for any βi > 1 where pi does not divide 2a. This will be the focus of this section.

Lemma 13.1. If a pi ∈ P exists in 4.5 where pi|uj and pi|uk, then 2a ≡ −pj ≡ −pk (mod pi).

Proof. Assume there exists some pi ∈ P where pi|qj and pi|qk. From equation 4.5

(13.1) uj − pj = uk − pk

where pj ≡ pk (mod pi). Since 2a = uj − pj = uk − pk it follows 2a ≡ −pj ≡ −pk (mod pi). �

Proposition 13.2. For any pj ∈ P the G ′
+(−pj) =

∏

pk∈P\{pj}
(pk − pj)

Proof. This follows directly from equation 10.7 in Definition 10.7. �

Corollary 13.3. If pi ∈ P where pi|uj and pi|uk, then G ′
+(−pj) ≡ 0 (mod pi).

Proof. This follows directly from Proposition 13.2 and Lemma 13.1. �

Proposition 13.4. If βi > 1, there are no pj, pk ∈ P where pj ≡ pk (mod pi).

Proof. Suppose there exists some βi > 1 and 2a 6≡ 0 (mod pi). From Lemma 12.1 it can be
seen that there must exist some pj ∈ P where 2a ≡ −pj (mod pi). The question now is if
the Hensel-Goldbach Difference Equations 12.3 may be used for the root approximation for
2a ≡ −pj (mod pi). Recall from Proposition 10.12 that G+(−pi) = G+(−pj) where it follows
G+(−pi) ≡ G+(−pj) (mod pki ) for any integer k > 0. This allows for G+(0) ≡ G+(−pj) (mod pi).
Since βi > 1 is assumed to be greater than one, Corollary 10.8 and Propositions 10.9, 10.10
show that G+(0) has a singular root (mod pi), thus proving that G+(−pj) has a singular root
(mod pi). Hence, it may be concluded from above that there exists no prime pk ∈ P where
pj ≡ pk mod pi. From Lemma 13.1 it may be seen no prime pi ∈ P divides any qj and qk. �

Corollary 13.5. For any ui, uj in equations 4.1 and 4.2 in Theorem 4.10, the GCD(ui, uj) = 1.

Proof. Under Proposition 13.4 it was shown that no two uj, uk are divisible by the same prime
pi ∈ P. Since all u’s must be divisible by some prime in P, the GCD(ui, uj) = 1. �

Theorem 13.6. There are no solutions to equation 10.1 where G+(2a) = 0 and a > 3.

Proof. From Corollary 13.5 it was shown that no prime pi divides any two u’s. Therefore, each
u is a perfect prime power and for any pi ∈ D from 3.2 it follows that

(13.2) 2a = p
βi

i − pi for all prime pi ∈ D.

Since, there are π(a) u’s that share no primes, it follows from the Pigeon Hole Principle that
all βi > 0. Using the transitive property from equation 4.5, and the fact that 2|2a, it follows

that there exists some prime power where 2β1 − 2 = p
βj

j − 3. However, the proof of Catalan’s

Conjecture ensures that the largest values this equation has is 23 − 2 = 32 − 3. Therefore,
that the largest value for 2a satisfying G+(2a) = 0 is when a = 3. Under Theorem 4.10 no
counter-examples to the Goldbach Difference Conjecture exists and it must be true. �
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Definition 13.7. Let a ∈ N such that a. Since

(13.3) 2a = (a + b) + (a− b)

for any b ∈ N, a Prime Difference Point (P.D.P.) is any bD ∈ N where a± bD ∈ P and bd > a.

Theorem 13.8. Every a ∈ N where a > 3 has some non-zero P.D.P.

Proof. Since no solutions exist to Theorem 4.10 when 2a > 6, this must also hold when a is
prime. This would allow for a cancellation of a from both sides of equation 4.7. Since solutions
would still not exist, another ui must be prime in equation 4.5. Thus, since every prime has a
non-zero P.D.P. and any composite a must also have a non-zero P.D.P., the theorem is true. �

Theorem 13.9. The Polginac Conjecture is true.

Proof. Under Theorems 9.6 and 13.6 it follows for all even m,n ∈ N, with m ≥ 6, there exists
odd p4, p3, p2, p1 ∈ P, where p4− p3 = m+n, and p2+ p1 = m. Allowing n to be fixed for some
even number, and m to cycle through all of the positive even numbers greater than 4 gives an
infinite set of equations for n of the form p4 − (p3 + p2 + p1) = n. If the Polignac Conjecture
were false for some n, there would be only finitely many primes that were the sum of three
odd, prime numbers. Theorem 9.7, and Euclid’s proof for the infinitude of the primes, shows
this cannot be the case, proving the Polignac Conjecture is true. �
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