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INF-SUP STABILIZED SCOTT-VOGELIUS PAIRS ON GENERAL
SIMPLICIAL GRIDS BY RAVIART-THOMAS ENRICHMENT

VOLKER JOHN, XU LI, CHRISTIAN MERDON, AND HONGXING RUI

ABSTRACT. This paper considers the discretization of the Stokes equations with Scott—
Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel
way of stabilizing these pairs with respect to the discrete inf-sup condition is proposed
and analyzed. The key idea consists in enriching the continuous polynomials of order k of
the Scott—Vogelius velocity space with appropriately chosen and explicitly given Raviart—
Thomas bubbles. This approach is inspired by [Li/Rui, IMA J. Numer. Anal, 2021], where
the case k = 1 was studied. The proposed method is pressure-robust, with optimally
converging H 1—Conforming velocity and a small H (div)-conforming correction rendering
the full velocity divergence-free. For k > d, with d being the dimension, the method is
parameter-free. Furthermore, it is shown that the additional degrees of freedom for the
Raviart—-Thomas enrichment and also all non-constant pressure degrees of freedom can be
condensated, effectively leading to a pressure-robust, inf-sup stable, optimally convergent
P, x P, scheme. Aspects of the implementation are discussed and numerical studies confirm
the analytic results.

1. INTRODUCTION

The research on divergence-free schemes for incompressible flow equations is a very active
field of research as these schemes have desirable properties with respect to mass conservation
and other structure preservation features. A very important feature is pressure-robustness
[31, 25], which guarantees that the balancing of gradient forces by the pressure gradient is
correctly transferred from the continuous problem to the discrete problem, such that the
discrete velocity is zero whenever the right-hand side force is a gradient. The same holds for
the balancing of the irrotational part of the material derivative in time-dependent Navier—
Stokes flows [17]. It was shown that non-pressure-robust schemes can lead to discrete velocity
solutions that have errors which scale with the inverse viscosity [30, 25], or even to suboptimal
convergence rates in time-dependent Stokes problems [32]. Also optimal estimates for more
complicated flow problems seem to benefit from pressure-robustness [35, 34, 1, 5, 23, 16].

It should be also noted that the set of divergence-free schemes and the set of pressure-
robust schemes are not subsets of each other, as there are non-divergence-free schemes that
can be made pressure-robust by a reconstruction operator technique [31, 26]. On the other
hand, there are divergence-free methods that are not necessarily pressure-robust, like virtual
element methods without a proper right-hand side discretization, see [15, 12]. In practice,
many non-divergence-free schemes are used together with grad-div stabilization. This tech-
nique reduces or even removes the explicit dependence of the constants in error bounds on
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inverse powers of the viscosity, e.g., see [14] for the evolutionary Navier—-Stokes equations.
However, it possesses also certain drawbacks, as it introduces a user-chosen parameter and
it is not mass-conservative.

This paper focuses on divergence-free inf-sup stable schemes, where the notion ‘divergence-
free’ will be always used in the sense of ‘weakly divergence-free’, i.e., the divergence is zero
in the sense of L2(Q). To this end, the stationary Stokes equations in a bounded domain

Q < R% de {23}, are considered

—vAu+Vp = f in (),
(1.1) div(u) = 0 inQ,
u = 0 on 0.

The boundary 02 of Q is assumed to be polyhedral and Lipschitz continuous. Problem (1.1)
is already written in a dimensionless form, where the kinematic viscosity v € R with v > 0
and the forces f are the given data. The unknown functions are the velocity field w and the
pressure p. System (1.1) is transferred in the usual way to a weak formulation, which reads:
Find (u,p) € V x Q := Hp(Q) x L3(Q) such that
(vVu, Vo) — (div(v),p) = (f,0) VveV,

(div(u),q) = 0 VgeQ.

Here, H (1)(9) is the vector-valued Sobolev space of functions where each component is in
H'(Q) and has a vanishing trace on 0, L3(Q) is the space of functions from L?*(€) with
vanishing integral mean value, (-, -) denotes the inner product in L*(€2) and L*(R), and it is

(1.2)

assumed that f e L2(Q). By the theory of linear saddle point problems, using the so-called
inf-sup condition, it is known that (1.2) possesses a unique solution, e.g., see [18, 24].

Since the inf-sup stability is a necessary condition for the well-posedness of a linear saddle
point problem, the construction of classical Galerkin finite element schemes traditionally
focused on the satisfaction of a discrete counterpart of this condition. Let V; and Q)
denote finite element velocity and pressure spaces, respectively, then the Galerkin method
seeks (uy,,py) € V', x @y, such that

(vVuy, Vo) — (div(vy),pr) = (f,vp) YV v,eVy,
(div(wp),q,) = 0 V qy € Qp.

It turned out that the goal of satisfying a discrete inf-sup condition was often achieved only
by relaxing the divergence constraint, i.e., the mass conservation is, often by far, not satisfied
exactly, e.g., see [25]. Given a finite element velocity space V', then the properties of inf-sup
stability and mass conservation lead in fact to different requirements: for the satisfaction of
the discrete inf-sup condition, Q;, should be sufficiently small and for the exact satisfaction
of the divergence constraint, @, should be sufficiently large, compare [24, Rem. 3.56].

The starting point of the method proposed and analyzed in the current paper is the pair
of spaces V), x Q, = P, x PY¢, k > 1, on simplicial triangulations, where P, is the space
of continuous and piecewise polynomial vector-valued functions with polynomial degree k

(1.3)

and P,gi_sf is the space of piecewise polynomial functions with polynomial degree kK — 1. As
usual, the notation does not contain the facts that P, is intersected with V' and P;?i,sf with
Q. For k > d, this pair of spaces is also known as Scott—Vogelius pair [36, 37, 4, 41, 33]. It
is div(Py) < P, so that if uy, is a velocity solution of (1.3), one can choose g, = div(uy,)
in the discrete divergence constraint, leading to

(1.4) (div(uy), div(uy)) = |div(u,)|* = 0,
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which means that u,, is divergence-free. This property is our major motivation for studying
Scott—Vogelius pairs. However, it is well known that the discrete inf-sup condition for these
pairs is valid only for certain classes of meshes and if k is sufficiently large, e.g., see [42, 21, 22].
In particular, for d = 3, which is the interesting case in applications, the smallest value is
k = 3 for so-called barycentric-refined meshes [41]. For k = 2 there is a related method on
Powell-Sabin tetrahedral grids with an implicitly defined pressure subspace [43].

This paper addresses the cases where the inf-sup stability is not given. For such cases, an
enrichment of the discrete velocity space is proposed that consists of local functions, locally
very few, which leads to discrete velocity fields that satisfy (1.4) and to pressure-robust
velocity error estimates. The last two properties are in contrast to previous proposals,
like the family of Bernardi-Raugel elements that add higher-order polynomial bubbles [6].
Moreover, the proposed method is easy to implement, in particular it does not involve any
face integrals.

In the literature there are meanwhile several approaches for constructing divergence-free
pairs of finite element spaces. In [19, 20, 10], H 1—001r1f01r1rning functions are utilized for
enriching the velocity space, which are however non-standard and not available in many
finite element codes. Another strategy employs the Stokes complex of lowest regularity
where the velocity is searched only in H(div), e.g., see [11, 38, 2]. This approach leads to
the nowadays quite popular hybrid discontinuous Galerkin methods (HDG) [9, 28].

In this paper we propose and analyze an approach for enriching Scott—Vogelius pairs by
H (div)-conforming functions. The main idea of the method is inspired by [29], where the
lowest-order case k = 1 is studied. Therein a novel scheme was suggested which preserves
the features of the H 1—conformimg formulation while using a simple lowest-order Raviart—
Thomas enrichment. It turns out that there are for k > 2 new aspects in the construction of
the method and additional difficulties in their numerical analysis. The standard polynomial
space P}, is enriched with an H (div)-conforming subspace of specially chosen but standard
Raviart—-Thomas functions, which ensures that the discrete inf-sup condition holds and that
the divergence constraint is satisfied exactly on general unstructured shape-regular simpli-
cial meshes. In particular no assumption on non-singular vertices is needed. The added
H (div)-conforming part vanishes in the limit A — 0, while the H 1—(:onforming part is an
approximation of the velocity of optimal order. If k < d, the lowest-order Raviart—Thomas
space is involved, while for the higher order cases k > d, only interior non-divergence-free
Raviart-Thomas bubbles of order k£ — 1 are used for the enrichment. These additional de-
grees of freedom ensure the inf-sup stability of the scheme and lead to a pressure-robust
H 1-conforming solution, which can be turned into a divergence-free solution by adding the
H (div)-conforming Raviart—Thomas correction.

A subtle point of the proposed method is that the space Py, k > 2, and the enrichment
space might have a non-zero intersection on certain triangulations, for which we also provide
an example. Nevertheless, it is ensured that the method selects a unique discrete solution.
For k < d there is a stabilization on the lowest-order Raviart—Thomas part, which involves a
parameter and essentially penalizes this part of the enrichment component, as in the original
scheme for k = 1 from [29]. For any higher-order Raviart—-Thomas part, no stabilization is
needed, hence the scheme is parameter-free for £ > d, and the uniqueness follows instead
from the bijectivity of the divergence operator with respect to the enrichment space and the
divergence constraint.
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The final result of the paper concerns a condensed method in the spirit of other divergence-
free schemes [27, 13, 39]. Indeed, it is possible to statically condensate the additional Raviart—
Thomas velocity degrees of freedom and the higher order pressure degrees of freedom, effect-
ively resulting in a P, x Py scheme. The condensed scheme preserves all the properties of the
full scheme and the missing degrees of freedom can be restored by a cheap post-processing.
Behind this transformation of the problem is a correction operator that maps each conform-
ing polynomial test function to a Raviart-Thomas correction such that the divergence of
their sum is a piecewise constant.

The paper is structured as follows. Section 2 explains the main concept of the scheme and
explicitly constructs the needed Raviart—Thomas subspaces for enrichment up to a certain
order. The full discrete problem is presented in Section 3 and the mechanisms behind the
uniqueness of the solution are discussed. In Section 4 it is shown that the enrichment spaces
ensure inf-sup stability, i.e., the missing ingredient for unique solvability. Section 5 derives
optimal a priori error estimates for the velocity and the pressure via standard arguments.
The derivation of the condensed scheme and the post-processing technique for recovering
the full solution are presented in Section 6. Some numerical studies in Section 7 confirm the
results in two and three dimensions and for different polynomial orders k. The paper closes
with a summary and outlook.

2. MAIN CONCEPT

This section explains the main concept and the design of the Raviart—Thomas enrichment
spaces used in the suggested method.

2.1. Notation and preliminaries. Consider a regular triangulation 7 of the domain
with nodes N and facets F. The set of all interior faces is denoted by FY. Denote by hy
the diameter of elements 7' € 7 and define h := maxp.7 hy as well as the piecewise constant
function hy via hy|p := hyp for all T € T.

The space of scalar-valued polynomials of order k£ on a subdomain w is denoted by P, (w)
and is written in bold for vector-valued polynomial spaces. The subspace of divergence-free
functions is denoted by

Vy:={veV:div(v) =0}.
Also define
P.(T) := {qh e H'(Q) : q|p € Po(T) for all T € T} ,
and
PIs(T) = {qh e L2(Q) : qlp € Po(T) for all T e T} .
Furthermore, the space of Raviart—Thomas functions on a cell T' € T is given by
RT,(T) := {ve LX(T) : 3p e Py(T),q € K(T), vlr(z) = p(@) + q(z)a}
and it is the building block of the global space
RT,(T) :={ve H(div,Q):VT € Tv|p € RT,,(T)}.
The Raviart-Thomas subspace of interior bubble functions reads

RT(T) :={ve RT(T) :v-nplyr =0 forall Te T},
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where np is the outer unit normal vector along ¢7. The subspace of RT}Cnt(T) consisting
of divergence-free functions and its arbitrary but fixed complement space are denoted by

RTlnt o(T) and If%\f’;,cnt(T), respectively, i.e.,

int

RT™(T) = RTYN(T) ® RT), (T).

—~ int
The only divergence-free function in RT}Cn (T) is the zero function, which implies that the
—~ int
divergence operator on this space is injective. Note that RT}Cn (7)) is not unique in general

—~ int
cases. Here we require that its local spaces RT;n (T'), T € T, have the same structure in the
sense that all of them are connected to a same reference space via Piola’s transformation (see

—~ int
e.g. [7, Eq. 2.1.69]). This is natural for RT, (T) since it is characterized by the normal trace
and the divergence, which are preserved (in a scaled meaning) by Piola’s transformation.
The subspace of P]g1 ®“(T) consisting of elementwise zero-mean functions is defined as

(2.1) Pse(T) = {qh e PU(T) : (g, 1)p = O for all T e T}
Note that RT(T) = RT, (T) = {0} and B(T) = {0}.

Throughout this paper, for any (scalar or vector-valued) finite element space S (with or
without an argument like 7), its local version on each element T is denoted by S(T') if not

specially indicated. The symbol 7g (WS(T)) is used to denote the L? projection operator onto
S (S(T), respectively).

2.2. Enrichment approach. For a given k > 1, we define the H 1—(:onforming velocity
ansatz space of piecewise vector-valued polynomials

V= P(T)nV
and the desired pressure space

Q= PSi(T) 0 Q.

In general, without further assumptions on the mesh or k, one has to expect a violation
of the inf-sup stability. However, we can always assume the existence of a sufficiently small
auxiliary piecewise pressure subspace Qj, = (Urer Qh( )) N Q with Qu(T) = P_y(T) (it
can be sometimes only the zero space) such that (Vh ,Qh) is inf-sup stable. Consider now
the L? orthogonal split of @y, into Q;, = Qh D, 2 Qh The main motivation for finding the

enrichment space Vh is twofold: on the one hand, VE should fix the potential spurious
pressure modes in @,J{, on the other hand, div(Vs) C (@, guarantees that the discrete
velocity is still divergence-free.

In fact, we suggest to select a subspace of RT';,_; such that either

(2.2) div: ViR — Qi s bijective for k > d,
or
(2.3) div: VR — Qi s surjective for k < d.

Eventually, it is shown that an inf-sup stable scheme for the velocity space V7, := Vﬁt X VE

and the full pressure space (J;, can be established, such that its solution u; = (u,cf,uﬁ) €

V§t x V¥ is divergence-free in the sense that div(u® + uj) = 0.
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TABLE 2.1. Enrichment spaces for d =2 and k = 1,2, 3,4.
k Qu(T) dim(Qi(T)) dim(Vi(T))

T {0 1 3 Full RT,(T)
2 Py(T) 2 2 full RT(T)
3 P(T) 3 3 from ﬁ;ﬂt(T)
4 Py(T) 4 4 from RT3 (T)

TABLE 2.2. Enrichment spaces for d = 3 and k = 1,2, 3.
k_ Qu(T) dim(Qy (7)) dim(V}(1))

1 {0} 1 4 full RT(T)
2 {0} 4 7 full RT(T) & full RTT™(T)
3 Ry(T) 9 9 from R\i“;nt (T)

Of course, the choice of Q) is not unique in general. Properties (2.2) and (2.3) are the
fundamental principles/\for selecting the spaces. Tables 2.1 and 2.2 list some guaranteed inf-
sup stable pairs (V%t7 Q},), implied, e.g., by [7, Sec. 8.6-8.7], for different k in two and three
dimensions, respectively. The other columns in these tables state the expected dimension
of the enrichment spaces and some hint on how the enrichment functions can be chosen in
each case. Their detailed construction is explained in the next subsection where it is also
shown that the divergence operator between V% and @i is bijective (except for k < d).
Generalizing the examples from Tables 2.1 and 2.2, the space @h can be chosen as

~ {0} k<d,
(24) Q”‘{mﬂmij k>d,

and the corresponding Raviart-Thomas enrichment space VE is chosen as
RT(T) n Hy(div,Q) k=1,

(2.5) VR = { (RTo(T) n Hy(div,Q)) ® RT(T) k=2,d=3,
{’Uh € R/\jq}{:njl(T) : diV('Uh) € @]J{} k = d.

Here, H(div, §2) denotes the space of functions from H (div, Q) with zero normal trace along
o). The local dimension of V% is

d+1 k=1,
im (Py_1(7) — dim (P,5(T)) = >92,d =2
dim (V%(ﬂ) - dim (P, (7)) —dim (P, _o(T)) =k  k>2,d=2,
7 k—=2d=3,

dim (P,_,(T)) — dim (P,_3(T)) = k* k=>3,d=3.

Throughout this paper, the analysis for k < d cases is based on the spaces by (2.5), while
for k > d cases we only require Qp,(T) 2 Py(T) and further Vi x Qi < /R?Tzljl(T) x PSS
satisfies (2.2). Indeed, from the separation of H (div)-conforming finite element spaces, e.g.,
as in [27, §2.2.4] and [40, §5.2-5.3], one can verify that div : RT™(T) — PI(T) is a
surjective operator and thus div : RT ;Cnt(T) — P{¢(T) is a bijective operator. Also note
that RT, (T) = RT™(T).
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Remark 2.1 (On over-enrichment). There may be cases where a larger space @ » and hence a
smaller enrichment space is sufficient. This is certainly also connected to the mesh properties.
To give one example: if the mesh is a barycentric refinement of some given mesh, then inf-sup
stability is already ensured for the full pressure space, i.e., @h = @y, for k = d is a valid
choice, which results in the Scott—Vogelius finite element family [36, 4, 41]. Also in case of
unstructured grids with non-singular vertices, positive results for £ > 3 in two dimensions
are known [21, 22]. From this perspective our schemes can be seen as a stabilization of the
Scott—Vogelius family that ensures inf-sup stability on general shape-regular meshes, even
with singular vertices, that works for any k > 1.

Moreover, it turns out that a potential over-enrichment is not really an issue in practice.
In fact, Section 6 explains how all additional enrichment degrees of freedom can be effectively
condensated. By ‘over-enrichment’, the pressure space can be even decreased to piecewise
constants without compromising any qualitative properties of the scheme.

2.3. Explicit constructions of the enrichment space. This subsection discusses explicit
element-wise constructions of basis functions of VE for k =2,...,6 —d beyond the k =1
case in [29]. To fix local enumerations, consider a simplex T' € T with faces F; and their
respective opposing vertex P; with nodal basis function ;. The lowest-order Raviart—
Thomas functions read

RT 1 RT
P = m (ar: — Pj) such that i P70 npds = oy,

for j,k =1,...,d+ 1. By a multiplication of these basis functions with their opposite nodal
basis functions, one obtains the interior Raviart—Thomas functions

RT RT, _ prpint
1/1] ! = QDJ'l/J] 0 € RTl (T)

Note that only d of them are linearly independent. Indeed it holds ngﬂ =— Z?zl ¢§{T1.

Lemma 2.2 (Explicit design of VE for d = 2). On any T € T, the following statements
hold:

(a) The functions {@b?Tl}j:m c ﬁ’;ﬂt(T) are linearly independent and it holds
f div(ep; ) dz = 0.
T

For VE(T) = Span{'t,blf”Tl 2RT1} = ﬁ’;ﬁt(T) the restricted divergence operator
div: VI(T) - Qi (T) for Q,(T) = Py(T) is bijective.
(b) The functions

YT = (5, —2) i e RT, (T) for j = 1,2,3,

are linearly independent and it holds

f div(zp?TQ)wk de =0 forjk=1,23.
T

For VE(T) = Span{'t,lJ;f»{T2 :j = 1,2,3} the restricted divergence operator

div: VI(T) - Qi (T) for Q,(T) = P,(T) is bijective.
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(c) The three auxiliary face-related functions

1 —~—in
P = 7 (RD? —6p; + 1) vy e RT3 (T) forj=1,23,

and additionally

RT RT 2 RT RT
4 0= 2000315 + 1 <1/’1 '+ 51, 1)

1 —~~—int
= (3wl + 2™ — syl € RT3 (D),

are linearly independent and it holds

f div(gp )\ dz =0 for A, € Py(T),j = 1,2,3,4.
T

For VE(T) = span{'t,b;»w3 :j =1,2,3,4} the restricted divergence operator
div: VR(T) — @IJ{(T) for @h(T) = P)(T) is bijective.

Proof of (a). By simple calculations on the reference element and a dimension argument,
one can obtain

R, 36, — 1

(2.6) f div(yh )y d = ];T for j, k =1,2,3.
T

Then the linear independence of wlf”Tl and ¢2RT1 follows from det(A) = 145 # 0 with A =

(aj) == ({4 diV(’l,b?Tl)ng dx) € R*¥?. In fact, if there exists a vector & = (¢p,¢) € R?

which makes cldiv(wlf”Tl) + czdiv(inRTl) = 0, one has A¢ = 0 and further ¢ = 0, which
demonstrates that wlf”Tl and szRTl are linearly independent (and their divergence also). The
second assertion follows from the Gauss theorem and the fact that the constructed functions
are normal-trace-free (or alternatively by summing up (2.6) for k& = 1,2,3). Finally, the
bijectivity of the divergence map follows from the orthogonality (to Py(T")) and the linear
independence of the divergence of @b?Tl and ’l,bng.

Proof of (b). Similar calculations as in (a) yield
36

—1
SR~ and (with (2.6)) f div(y2) g da = 0,
T

. RT
| aivte ™ de - s J

for j,k = 1,2,3. The linear independence and the bijectivity of the divergence map follow
from looking at the higher order divergence moments

465, — 3

———— for j,k=1,2,3,
180

. RT
(2.7) ajp = JT div(ep; ?)xp dx =
for the three face bubbles x; = ¢p 19,1 (the subscript values here should be understood
in a circular way). The matrix A := (a;},); k123 is nonsingular, since det(A4) = —=1-.
Proof of (c). These statements can be proven in a similar way as in the other cases or
simply checked numerically, by computing the necessary matrices on the reference domain.

O

Lemma 2.3 (Explicit design of V% for d = 3). On any T € T, the following statements
hold:
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(a) The functions {zp 0}] 1 234 and {zp "}ic123 © RT1 (T) are linearly independ-
ent. For V(T )= span{wj cj=1,2 ,3,4}6—)span{¢j : 7 = 1,2, 3} the restricted
divergence operator

div: V}(T) — Py(T) is surjective (but not bijective).
int

(b) The functions {1,ZJRT1}]-:172,3 < RT), (T") and

Wi = (69, — D™ + (6, — D € BTy (T) for (k) €5,

with S = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} are linearly independent and it holds

div(e RT1 Ydx =0 forj=1,23,
T

L div(ep3) da = 0 for (j k) € S.

For VX(T) := span{qp?Tl 2 j = 1,2,3} @span{wg%) : (4, k) € S} the restricted
divergence operator
div: VR(T) — @ﬁ(T) for @h(T) = Py(T) is bijective.

Proof. The proof of this lemma follows the same arguments as the proof in two dimensions.
O

3. THE FULL SCHEME AND THE UNIQUENESS OF ITS SOLUTION

This section formulates the full scheme and discusses the uniqueness of the solution.

3.1. The scheme. Consider the ansatz space
V, =V x v
with V§' := P.(T) n V and the enrichment space Vi « Hg(div,Q) selected according
to the description in Subsection 2.2 (hence either (2.2) or (2.3) holds). Given a function
vy, € Vﬁt X VE the two components in Vzt and VE are denoted by vzt and vg, respectively.
The pressure space is Qj, := P;?l_sf(T) N Q.
Any v% € V% can be split into

int

’UE —’USTO + Z dOfF ’Uh )¢F+vh ERT(](T)@ﬁk,l(T),
FeF°
where ¥ € RT((T) is the standard face basis corresponding to F' € F ¥ and the operators
dofp : RTo(T) — R, F € F°, satisfy

dof (v RTO) = fF ’UE O np ds/ fF Yp-npds for all UETO € RT(T),

with np being an unit normal vector of F. For k = 1, ’lNJ% is always zero; for k > d, UETO is
always zero.

Define a(u,v) := (Vau, Vo) for all u,v € V.. For v, := (v5', vy) € V5 x V¥ consider the
(non-symmetric) bilinear form

D, RTo  RT
ap(wp,, vp,) :=a(uff,'v;°f) (VAN Uh,vh) (A, vhauh)+ah(uh % v,70),
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where A, is the piecewise Laplacian operator with respect to 7. Note that the Laplacian
terms vanish for k = 1, which is the case in [29]. The stabilization aj. : RTo(T) x RTo(T) —
R is the same as [29] and has several equivalent choices which satisfy

D, RT RT 1/2, -1 RTy)2
(3.1 af (@570, o) ~ ! 2 ol 2,

where « is a given positive piecewise constant. For simplicity, « is chosen to be constant
on the whole domain 2. In numerical experiments, we choose the form which results in a
diagonal block

ay, (uy vy, ) i= o Y. dofp(uy, 0)dof (v}, 0) (divep e, divipp).
FeF®
Note, that the method is stabilization-free for k > d.
Remark 3.1. As in DG methods for elliptic equations (cf. [3]) or for the viscosity term
in the Stokes equations (cf. [25, Sec. 4.4]), the second term and the fourth term of a; are

added to guarantee consistency and coercivity, respectively. The choice of the third term

can be different. Here, a term which is skew-symmetric to the second term is used. However,

one can also employ a symmetric one (i.e., —(prvﬁt, UE)) The analysis of the latter case

is indeed very similar to the skew-symmetric case except that one should require that « is
sufficiently large to guarantee coercivity and a similar stabilization should also be added to

—~ inf
the RT}:,l(T) part then. The reason for choosing the skew-symmetric form here is that
our method is parameter-free in this case for k£ > d due to the divergence constraint. The
numerical experiments show that this non-symmetry does not affect the convergence rate of
the L? norm.
On the product space, the bilinear form for the divergence constraint reads
. t R

b(vh, qp) == —(div(vy, +vp), qn)-
The full discrete problem seeks (uy,pp) € V), x @}, such that
(3.2) vay(up,vp) + b(vp,pp) = (f,vp) forall v, € Vy,
’ b(uy,qy) =0 for all ¢, € Q.

Here and throughout the rest of the paper, the L? inner product on the right-hand side is
to be understood as

(f,vn) == (£, 05 +vp).

In the space of discretely divergence-free functions
Vi i={on = (051, 0) € Vi blog, 1) = 0 for all gy € Q) |
= {vh = (V' o) € V), 1 div(vsy + vf) = O} ,
the above problem is also equivalent to
(3.3) vap(up,vy) = (f,v,) forall v, e V.

Note, that a;, can be naturally extended to ay, : (V x Vi) x (V x V) = R and similarly
for b. We introduce two seminorms ||| ¢ ||| and ||| ® |||, on V x V' which are characterized
by

2 2 2 t)2 N NP
(34)  [ll[" :=ap(v,v) and |[[v]|[ = [[[o]lI + [hrdpv™ | + |div(@)]",

ct R)

for all v =: (v, v™) =: (v, 00 + ) € V x VT, respectively.
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FIGURE 3.1. A mesh of (0,1) x(0,1). Orange numbers denote the local series
number of vertices, and black numbers denote the element series number.

Lemma 3.2. ||| ¢ ||| is a norm on V7, ;.

Proof. It suffices to prove that

R
ap(vp,vp) = 0= vf = v = v, + D
Consider vy, € V', o with 0 = ay (v, v),) = VoSt + ||'UhTO |7, where | o p is a natural norm

on RT(T) n Hy(div,Q) from aj; (e, e).
RT,

First, [V e | and | e |5 being norms implies v§; = v, = 0.
Second, since also div(vy,) = div(v§) + div(vg 0) + div(TR) = 0, we have div(v)) = 0
and by injectivity of diV‘ﬁ_’int o it follows ’lNJE = 0 also. This completes the proof. O
k—1
Lemma 3.3. ||| ¢|||, is a norm on V x V3.

Proof. The additional term |div(3™)|? implies div(d") = 0 also for any v € V x V3 if
l||v]|]l, = 0. Then Lemma 3.3 follows with a similar analysis as in Lemma 3.2. O

Note that the two norms are equivalent on V', ; due to an inverse inequality and div(ﬁ%) =
—div(v§') — div('vsTO) for vj, € Vj, o. The Laplacian term in ||| e ||, is mainly introduced to

prove the boundedness of a; on (V' x V%) x (V' x VE).

Remark 3.4 (Remark on uniqueness). It has to be stressed that, apart from the lowest-order
case as shown in [29], the spaces V%t and VE might have a non-zero intersection. That means
there might be some functions w € V§' A V) which can be represented by (Sw, (1 — 3)w)
for arbitrary 8 € R in the product space V%t X VE. Such an example can be found, e.g.,
for Kk = 2 on a partition as in Fig. 3.1. It is not difficult to verify that <p31p3RT° € VE is
also in V7§, because ¢3RT° — 2(z —m) on the whole domain with m = (0.5,0.5)" (which
is certainly continuous) and ¢3 is continuous with vanishing boundary value. However, if
a solution exists (which is proven also later) our method selects a unique representation in
V0 according to Lemma 3.2.

4. INF-SUP STABILITY

This section proves the inf-sup stability of the proposed method for which we assume inf-

sup stability of Vh X Q 5, for some auxiliary pressure space Q 5, as explained in Subsection 2.2.
—~—int

We first introduce two operators R : V. — V3 A RTk 1(’7') and R:Q — Vi A RT,, 1(T)
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which are characterized by

div(Rgq) := Mok n iy d = {71 ¢ E<d for all g € Q,

BT
with PS5 (T) as defined in (2.1) and

~

Rv :=R(div(v)) forallveV.

Due to the bijective property of the divergence operator with respect to the corresponding
spaces, these two operators are well-defined. From the definition of R and R one has

(4.1) div (Rv) = W@imﬁsi_si:(,].)dlv (v).
Meanwhile, according to the stability of L? projection, we have

(4.2) |div(Rg)| < [l¢] and |div(Rw)| < |div(v)| < |[Vo| forallge QueV.

4.1. Fortin operator. Due to the inf-sup stability of (V%t, @h), there exists an H '-stable
Fortin operator II" : V' — V' i.e.,

(4.3) |VII| < CF |V,
and
(4.4) (div(TTv), ;) = (div(v),q,) for all g, € Q.

In cases where @h = {0}, a quasi-interpolation operator e, e.g. the one from [8, Section
4.8], is chosen, which satisfies

(4.5) |lv — 1% < hyp [VVlyqy forallTeT,veV,
with w(7T) being the union of all nodal patches of vertices in T [26].
Lemma 4.1. The operator Il : V' — V;, defined by
%, R@) k> d,

IIv :=
M, 05 + Rf)) k<d,

forallve V,

is a Fortin operator, i.e.,

IMo[ll, < Cp[ Vo] and  b(Ilw, gy) = —(div(v),g;) for allve V., g, € Qp,
where v := (1— HCt)'U and IT°70 is the standard lowest-order Raviart-Thomas interpolation.
Proof. Recall the approximation property of o [7],

(4.6) o — 1|1 < hy [Vo|, forall TeT,veV.

Note that (4.2) and (4.3) yield

[div(R®)| < [div(®)] < [div(v)] + |div(II®v)| < (1 + CF)|Vo].
For k < d, (4.5) and (4.6) show
—1RToA —1 A ~
hy' T8 p < by Bl + V8l < [Vl + VI 0]
Then the stability property
9 ) o\ 1/2
Iimtofll, < (ITll* + |div (R)[*) < Vo]

follows from an inverse inequality, (4.3) and the above two inequalities.
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Let us prove b(Ilv, q;,) = —(div(v), q,) for all g, € Q. For k > d and for any q; € Q),
due to div(Rv) = W@idiv(ﬁ) by (4.1) it holds
(div (R), q) = (W@idiv (v) ,W@iqh) = (div ('v - HCt'U) ,W@iqh> ,
which implies that
b(Ilv, q) = — <div (Hthv) ,thqh> - (div <HCt'u> aW@iQh)
. ct
— (le (v —1I 'v) ,W@iqh>
(by (4.4)) = - <diV (v) 77T@th) - <diV (v) aW@iQh) = —(div (v) ,q5) -
For k < d, one obtains similarly
. RTy~ _ . et )
<d1v <H v) ,qh> = <d1V (v II v) ,nglsc(,r)qh> ,
and
. ~ . . ct )
(div (Rv), q,) = (le (v —1I v) ,ﬂlg]gl_s,;;(,]_)qh) )

Hdisc

Then the L2—0rthogonality between Pgl 8¢ and P, gives
(div (Rv), q) + (div (HRT‘)@) ,qh) = (div ('v - HCtv> ,qh) .
It follows from the above equality that
b (H’U, Qh) == (le (U) 7qh) .
This completes the proof. ]

The existence of a Fortin interpolator implies that the discrete inf-sup condition holds,
which is stated in the following theorem.

Theorem 4.2 (Inf-sup stability). There exists a constant 8 > 0 independent of h such that

sup b(vh7 Qh)

————= = Bq,| for all q; € Q.
oneV, vnllls

Together with aj, being coercive and bounded on V', o (see Section 5 below), the discrete
problem is well-posed and uniquely solvable. In summary, the Raviart—Thomas enrichment
of the Scott—Vogelius pairs leads to inf-sup stable pairs on general shape-regular simplicial
grids.

5. A PRIORI ERROR ANALYSIS

For the subsequent analysis recall that the bilinear form a;, is extended to V' x V;, and
the solution u of (1.2) satisfies

ah((ua O)avh) = a(uavzt) - (A’UJ,’UE) for any vy, € Vh'
Lemma 5.1 (Consistency). For the solution u € Vj of (1.2) with Aw € L*(Q), it holds
vay((u,0),v,) = (f,v,) forallv, e V.

Moreover, if w € V! then it is u;, = (u,0).
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Proof. The first statement follows from
vay((u,0),v;) = v(Vu, Vo) — v(Au,vy) = —v(Au, v§ + vyy) = (£,05 + vy).

If w e V', this also shows that u), = (u, 0) is a discrete solution and due to unique solvability
also the only one. O

Lemma 5.2. The following inequality is valid for v, € RT Lnt(T):
(5.1) |vplly < Chy|div (vy,)| forall TeT.

Proof. Recall that we have required in Subsection 2.1 that all local spaces RT }Cnt(T). are ob-

—~ int
tained by Piola’s transformation from a same reference space, which is denoted by RT}Cn (Tref)
in what follows. Due to the injectivity of the divergence operator, both |e| et and [[dive | rer

—~ int —~ int
are norms on RT, (T*). Since the dimension of RT), (T**) is finite, the two norms are
equivalent, i.e., there must be two constants C, and C* which satisfy

(5.2) O, |div () oot < [Bp e < C* [div (D) for all 3, € RTy (T™),

HTref
The constants C, and C* are independent of h since the above inequality is related to

reference space only
—~—int

For any v, € RTk (T'), there exists a corresponding reference function v, € RT), (T
Then a combination of (5.2) and [7, Eqgs. 2.1.75 & 2.1.78] gives (5.1). O

ref).

Lemma 5.3 (Coercivity and boundedness of a;,). The bilinear form a;, satisfies
2 2
ap(vp,vp) = [[|vplll” 2 [[[vpllls for all v, € Vi,
and
R
ap(w,v) < |[[ul[l[l[v]]l, forall w,v eV x V.

Proof. The coercivity of a; is obvious. Let us prove the boundedness. It follows from the
Cauchy—Schwarz inequality and Lemma 5.2 that

ap(u,v) = (Vu, Vo) — (A,u, o) + (A o™, u®) + ap (w0, 0" 10)
C C C -1 R C -1 R
< [Vu [V | + [hr Apgu |Ihr o™ | + [hrAp o™ [[hr u|
n ahD(uRTO’ uRTO)1/2ahf:)(vRT07 URTO)l/Q

< [l ]l

This concludes the proof. ]

Theorem 5.4 (Pressure-robust a priori velocity error estimate). Denote by u € Vj and

uy, € V), o the velocity solutions of (1.2) and (3.2), respectively. Assume u € H"(Q). Tt
holds

. . ct k
I1.0) ~wall. < inf 110.0) = willl < (1+Cp) V(= 0)] < Wl goos

Up
Here, C'r denotes the stability constant of the Fortin interpolator II. The above inequality

implies

2 -1, R 2 2 2k, |2
1V (u = i) + a7y ° < [11(w,0) — w12 < Bl g -
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Proof. Lemma 5.1 yields that
ah((u,O) — uh,'uh) =0 for all vy, € Vh,O'
Therefore, it follows from Lemma 5.3 that
2
[[wn = villls < an(up — vi, up —vi) = a5 ((w,0) — vy, uy —vy)
< [[(w, 0) = vp[[[[Jwy, —wpll. for any v), € V.
This and a triangle inequality shows
t
IV (u = up)l| < [[I(w,0) — up|ll, < [[](w, 0) = vplls + [, — vallle < [[(w;0) = vyl
Since vy, is arbitrary, one gets

(2, 0) —wylll, < inf [[|(u,0) — vyl
’UhEVh’O

Consider now wj, = (w',0) with any w§’ in V' and choose vy, := I(u — w$’) +w), € Vo
Due to the properties of the Fortin operator, one obtains
t t
[11(w, 0) = wpll. < [ll(w,0) = wyl[l. + [|TI(w — w})[]. < (1 + Cp)|V(u —wj)].
Since 'wzt is arbitrary, this inequality also holds for the infimums on both sides. Hence, one

arrives at

l124,0) — wylll < (1L+Cp) inf |9 (u — ).
wp EV Y

This finishes the proof. O

Theorem 5.5 (A priori pressure error estimate). Denote by p € @ and p;, € @}, the pressure
solutions of (1.2) and (3.2), respectively. Assume u € HkH(Q) and p e Hk(Q) It holds

. k k
lp=all < inf o= aul + #11102.0) = wnlll  H¥1plye ) + VH¥ 0l o

Proof. First, there is an identity for the L? best-approximation g, p within @, which gives
2 . 2 2
— = inf — + | — .
lp=pnl” = b llp=anl” + |7q,p = pul

To estimate the last term, the inf-sup stability guarantees the existence of some v, € V,
such that div(v§ +v)) = 7g, P —pp and [[|vy]|[. S |7g, p—pp/. This allows for the estimate

2
HWQhP —pul” = _b<vh=7Tth —pn) = —b(vy,p—pp)
= vay((u,0) — up, vp)
< vl[(w, 0) — wp |l [[lv ]l

Inserting the bound for |||vy|||, concludes the proof. O

6. REDUCTION TO DIVERGENCE-FREE SCHEMES WITH ONLY PO PRESSURE

This section derives a reduced scheme that allows to remove the additional Raviart—
Thomas degrees of freedom and only requires a F, pressure, effectively resulting into a
P, x Py-like system. Similar reduced schemes can be found in [27, 13, 39]. The idea of

our scheme is based on the important fact that the divergence operator from RT }:ﬁl(T) to
PISC(T) is bijective.

Firstly a general framework is given for k > d, where it is shown that our method is
equivalent to a computable Py x Q,-like system. Then taking Q; = PS°(T) A Q results
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in a P}, x Py-like system for arbitrary k > d. The reduced scheme for k < d is seperately
discussed.

6.1. General framework for k > d. Due to the divergence constraint, there are a series of
equivalent reduced schemes which seek the velocity in a subspace of V. The scheme (3.3)
is such an example which is commonly used in theoretical analysis. However, (3.3) is not
connected to practical computations in general because the divergence-free basis functions
are usually non-trivial to construct. This subsection discusses a computable reduced scheme
(P}, x Qy-like), where the operators R and R play an important role again.

The velocity ansatz space that incorporates the divergence constraint by @,J; reads

(6.1) V), = {vh = (W o) eV, : f div(v§ + o)Ay de =0 Y, € @ﬁ}.
Q

Due to the inclusion relationship div(V§' + V) < @), and the L*-orthogonal relationship
between @), and Qﬁ, V;, can be also characterized as

vV, = {vh = (W', o) € V), 1 div(vs! + o)) € @h}
Then our method is also equivalent to seeking u,, € Vh and Py, € @h, such that

(6.2) vay (uy, vy) + b(vy, py) = (f,05) for all v, € V7,
. b(uy,qy) =0 for all ¢, € Qy,.

Lemma 6.1. The following identity holds:
vV, = {vh = <'v§f, —szt> AR Vzt}.

Proof. This proof is based on the L2—orth0g0nality between @h and @ﬁ For any 'vzt € Vzt,
one has div(v)) + div(—Rvj) = div(v§)) — W@idiv(vzt) = W@hdiv(vzt) € Qp,, which implies
that

V, 2 {vh = <'v§f, —vaf) AR V,Cf}.
Conversely, for any v, = ('U,Cf,’vs) € V, which satisfies div(v§ + ’UE) € @h, it follows from
the orthogonality that

(div('vlclt + ’UE), qh) =0 forall g€ @ﬁ

The above equality means that div(vy) = *W@LdiV('UZt) and further vy is exactly —Rv5’,
h

which implies that

A~

V, < {'vh = <vzt, —szt> A= Vzt} .
This completes the proof. ]

According to Lemma 6.1 one can rewrite (6.2) as seeking uj, € V' such that

63) vap((uf,, —Ruj), (vf, —Rof)) — (div(vy), pp) = (f,v; — Rvy) for all vf € V7,
' (div(us), q) = 0 for all gj, € Qy,

In this rewriting we apply also the fact that (div(RvS)), q,) = 0 for all (v5', q,) € V' x Q.

~

The scheme (6.3) is the so-called Pj, x Qj-like scheme herein. The implementation of
(6.3) relies on the simple implementation of R. Note that V% consists of some interior
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cell functions. The computation of R can be done on each element T, and clearly we have
Ro$|p = 0 if div(v§')|r € Q). Denote by {;,7 = 1,..., Ny} the basis of VH(T), where
Ny = dim(V(T)). The computation is equivalent to solving a local problem Apup = by,
where

(6.4) Ap = (deiv(z,z;j)div(zpk)dx) and by = (deiv(th)div(wj)d:c>

3k J
Then up = (u;) € R™ is indeed the vector of coefficients of the expansion of Rvj on T,

ie., Rv,CﬂT = 2. u;9,;. Moreover, one even does not need to solve local problems on each
element. This computation can be achieved by affine transformation from the unit reference
element (see Subsection 6.4 below).

6.2. The P,, x P,-like scheme for arbitrary order. For k > d, taking Q,, = P{™(T)nQ
in Subsection 6.1 results in a P}, x Py-like scheme. For k < d, PYS(T) and ﬁ’znil(T) play a
similar role as @ﬁ and V% before in Subsection 6.1. Then the corresponding reduced scheme
for k < d seeks uy, = (u%t,usTO) e VS x (RT(T) n Hy(div,Q)) such that

vay (@, — (0, Ruy)), o), — (0, Rvy)) + b(®y, pr) = (f, 0, — (0, Rvy)),

b(ay, q,) =0,

for all B, = (v, vp °) € Vi x (RTo(T) n Ho(div,Q)), g, € P{™(T) n Q. Note that (6.5)
can be further reduced to a P;, x P, system, after removing the RT; unknowns by static

condensation since the RTy — RT, block is diagonal [29].
Here, V% should be chosen as

- {RVT;HL(T) k> d,

(6.5)

h .

—~—1int

(RT(T) n Hy(div,Q)) ® RT),_(T) k <d.
Indeed, this approach results in the same space as in Tables 2.1 and 2.2 for k < d but in a
larger space for k = d + 1. For k = 3,4 in two dimensions, RT }:ﬁl(T) is exactly the sum of

the chosen Raviart—-Thomas subspaces from 2 to k£ in Table 2.1.

Remark 6.2. For a general order k, one can also use the non-divergence-free interior shape
functions in [27, §2.2.4] (two dimensions) and [40, pp. 106-107] (three dimensions), which

—~—int
forms a subspace of the Brezzi-Douglas—Marini spaces of order k, isomorphic to RT;,Cn_l(T),
and makes the divergence operator bijective onto P,?isf (7). This subspace fulfills all the

—~—int
properties needed in our methods and plays a similar role as RT;,Cn_l(T).

6.3. Recovering p;, = p, — p;, locally on each element T'. For simplicity, we use k > d
as an example. Due to the inf-sup stability of (fo, @), it holds that W@hdiV(V,Cf) = Qy

and further div(‘/}h) = @h- Meanwhile, since Vh is a subspace of V,, the full pressure p;,
also satisfies

(6.6) vay(uy, vy) + b(vy,py) = (f,0,)  for all v, € V).
Subtracting (6.6) from (6.2) one gets, for all vj, € Vi,
b(vy, py) = b(vp, Pr),

which implies p;, = 76, Ph and py, = p, — Py, € @ﬁ
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Now let us introduce the recover method for p, on T € T. Like Subsection 6.1, let
{¢;,j =1,..., Ny} be the set of basis functions of VE. Note also that div(e;),5 =1,..., N,
are linearly independent and

. . AL
Span {dlv('lnb])a.] =1, ""NO} = Qh (T)a

by bijectivity of div‘vfj' Hence the following equations form a local problem for p;, on T":

(P, div(;))r = —(F, ;)7 +vap(up, (0,%;))r, j=1,...,No.
The above system forms the matrix Ay also if one uses {dive);} as the basis for representing
Ph-
6.4. Implementation. This subsection comments on the algebraic structure of the full and

the reduced scheme and some remarks on the efficient implementation. Algebraically the
full scheme solves a system of the form

T T
Acc ARC B c Uc F, ¢
— ARC ARR B g UR = F R |>»
B. Br 0 P 0

where U, Ur, and P are the coefficients for V,Cf, VE and @y, respectively. The blocks A,
B, F, are the standard blocks related to a and b and f, respectively. The blocks By, Fy
represent the b and f applied to functions from VE. The stabilization block Arg refers to
ahD and is only needed when k < d. In the lowest-order case k = 1 it holds Ag. = 0, but for
k > 1 it corresponds to (pruzt, vp)
For brevity, we restrict the remaining presentation to the case k > d, such that no RT

part is involved. Given a representation matrix R for the linear mapping R : Vﬁt — VE
from the previous section, the reduced scheme solves instead the much smaller system
Acc - AFT{CR + RTARC BOT UC — FC - RTFR
By 0 )\ 0 ’
where U, and P, are the coefficients for V' and Péj iSC('T) N @, respectively. The Raviart—
Thomas part can be recovered by Ug = —RU..

Next, an efficient assembly of the representation matrix R will be explained. It is sparse
and can be computed by solving local problems for each degree of freedom on each cell T € T .
In fact, for each basis function v? € V§' with support in 7 € T, one has to solve a system
formed by (6.4), and to add the solution to the j-th row of R.

These solutions can be obtained very efficiently via the following strategy. Assume k = 2
in two dimensions as an example. We compute R via R by the relationship Rvﬁt = ﬁ(divvzt)
for all v§ € V§'. Note that divV§'|; < Py(T) = span {¢1, s, ¢3} and a nodal interpolation

allows to determine the coefficients c; in divv%t = >,c;p;. Hence the problem reduces to
n e images of R(¢p; =>" xr.. orj=1,2,3 an e particular basis functions
find the images of R(¢, |7 S @p ;" for j =1,2,3 and the particular basis funct

w?Tl on T. In principle one needs to solve the linear system of equations Apxy; = by ;

with Ap from (6.4) and
br; = ( L pdiv(gp ) d:c)

However, employing the properties of the standard (Piola) transformations between the

k=1,2,3

reference simplex 7™ and the general simplex T, sce ,e.g., [7, Chapter II, §2] for details,
it holds Ap = J 71ATref and by ; = bTrefj where J is the determinant of the matrix of the
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FIGURE 7.1. Example 1: Convergence history for |u — (' +uj )| (top left),
IV (u — u})| (top right), |u’| (bottom left), and |p — pp| (bottom right)
for different k. The solid lines coresspond to the full schemes, while dashed
lines coresspond to the reduced schemes. The slopes of the gray dotted lines
coresspond to the expected optimal order of the curve(s) right above them.

affine transformation, i.e., J = d!|T|. In other words, it holds zp; = J et . and the local
systems for j = 1,2,3 only have to be solved once on the reference domain. Of course, the
process can be generalized to larger k.

Similarly, for the pressure recovering process, one has A}l =J A;rlef. Thus we only need
to solve the inverse of A . and all inverses of Ay can be obtained from it directly. Then
the process of pressure recovering only requires matrix-vector multiplications.

7. NUMERICAL RESULTS

This section confirms the theoretical findings in two numerical examples. For k& < d, the
lowest-order Raviart—Thomas part is stabilized with o = 1 in all numerical studies.
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FIGURE 7.2. Example 2: Convergence history for |u — (' +uj )| (top left),
IV (u — u})| (top right), |u’®| (bottom left), and |p — pp| (bottom right)
for different k. The solid lines coresspond to the full schemes, while dashed
lines coresspond to the reduced schemes. The slopes of the gray dotted lines
coresspond to the expected optimal order of the curve(s) right above them.

7.1. Example 1 - Two-dimensional planar lattice flow. Consider the planar lattice
flow

_»(shﬂwa)sHﬂwa)

~ \cos(27x) COS(27Ty)> and  p = (cos(4mx) — cos(4my))/4

with f chosen such that (u,p) solves the Stokes problem with v = 1073

Figure 7.1 displays the convergence histories for the velocity and pressure errors and con-
firms that all methods converge optimally for order k = 1,2, 3,4 according to Theorems 5.4
and 5.5. Further studies, which are not presented for the sake of brevity, showed also that
uff + ug is exactly divergence-free and that the scheme is pressure-robust, i.e., the velocity
does not change for other values of v. The reduced schemes for k = 2,3,4 also produce
optimally converging velocity and pressure approximations. Here the reduced scheme refers
to the Pj, — Fy-like scheme in Subsection 6.2, while the full scheme refers to (3.2) with the
enrichment space discussed in Subsection 2.3. For k = 2 the solutions of the full scheme and
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the reduced scheme coincide, while for k£ > 2 the solutions slightly differ in the sense that
the VE is a bit larger in case of the reduced scheme.

7.2. Example 2 - A three-dimensional example with analytic solutions. On Q =
3 . .
(0,1)”, the solution is prescribed as
1
U= curl {[sin(w:c) sin(my)]? sin(ﬂz)e3} and p = sin(z) sin(y) sin(z) — (1 — cos 1),
m
with e; = (0,0, 1)T. Again, we consider a Stokes equation with v = 1073 by choosing a
suitable body force.
Figure 7.2 displays the convergence histories for the velocity and pressure errors, where
the enrichment space discussed in Subsection 2.3 is employed. The expected convergence
orders from Theorems 5.4 and 5.5 are obtained. The reduced scheme for k = 2 and k = 3

produces exactly the same solution as the full scheme, while solving a smaller linear system
of equations.

8. SUMMARY AND OUTLOOK

This paper presents a novel way how to stabilize the Scott—Vogelius finite element method
for arbitrary polynomial degree k and general shape-regular simplicial meshes that preserves
optimal convergence and the divergence-free property of the velocity. This is realized by
enriching the velocity space with carefully chosen Raviart—Thomas functions that stabilize
the orthogonal complement of a small enough sub-pressure space that is known to be inf-sup
stable. Finally, a reduced scheme is studied which only involves the degrees of freedom of
the H 1—conforming velocity and a piecewise constant pressure.

In the future, extensions to Navier—Stokes problems will be studied, which is able to
preserve some conservation properties (e.g., conservation of linear momentum) and is Re-
semi-robust. The latter property refers to estimates where the constants do not blow up as
the Reynolds number becomes large.
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