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Abstract

We produce a complete list of group presentations for singly-cusped Bianchi groups, PSL2(Od) where Od is
the ring of integers for Q(

√
d) and d is −1, −2, −3, −7, −11, −19, −43, −67, or −163. To do this, we apply a

theorem due to Macbeath to a sufficiently large horoball, treating the Bianchi groups as discrete subgroups of
isometries for H3. As far as we know, explicit presentations were not previously known when d is −43, −67, or
−163.

1 Introduction

Hyperbolic spaces admit rather intricate groups of isometries. Studying the geometry of these discrete subgroups
can give useful information about the algebraic structures underpinning these groups. As a particular case, we
can consider discrete subgroups of orientation-preserving isometries of three-dimensional hyperbolic space, H3,
known as Kleinian groups. The group of orientation-preserving isometries of H3 can be identified with PSL2(C)
using Möbius transformations. The three-dimensional case is of special interest, because of the role of hyperbolic
3-manifolds in studying 3-manifold topology.

When defining discrete subgroups of isometries, there are broadly two approaches. One may consider the
subgroup geometrically, in which we view it as being generated by isometries of certain geometric types, such as
reflections. In the particular case of subgroups generated by reflections, H.S.M. Coxeter classified these groups for
spherical and Euclidean spaces of arbitrary dimension, see [Cox]. Though there are many important open questions
about hyperbolic reflection groups, the construction of these groups provides an immediate description of their
group presentations and fundamental domains, see [AVS].

The other approach is to consider the group of isometries as a matrix group, in this case PSL2(C). Then, we can
naturally construct subgroups by considering matrices whose coefficients are algebraic integers of a particular number
field. Of special interest are those subgroups which have finite covolume and so form lattices. Unlike geometrically
constructed subgroups, these groups do not have easily determined group presentations. The simplest example of
these are those classical matrix groups with integer coefficients such as PSL2(Z). The special linear group on Z
has been studied and presentations determined for all dimensions. Steinberg determined presentations for SLn(Z)
with n ≥ 3 (see [St]), while SL2(Z) is classical.

The Bianchi groups arise by restricting the components to the algebraic integers over a complex quadratic
number field. Every complex quadratic number field can be represented as an extension Q(

√
d) for some negative

square free integer d. Then, its set of algebraic integers is the ring of integers OQ(
√
d) = Od. It is well known that

Od = Z[ω] where

ω =

{√
d if d ≡ 2, 3 (mod 4)

1+
√
d

2 if d ≡ 1 (mod 4)
.

The Bianchi group Γd is defined as
Γd = PSL2(Od)

When clear from context, we may omit d and use Γ to refer to a Bianchi group and O to refer to its ring of integers.
These are, in some sense, the simplest examples of isometry subgroups constructed in this way besides those with
integer coefficients. Because these rings of integers are complex and quadratic, they can be viewed as lattices in the
complex plane. This simplifies their characterization in comparison to real number fields or those of higher degree.

The goal of this paper is to find presentations for singly cusped Γd. Because the number of cusps of H3/Γd is
equal to the class number of Od (see [MR]), we need only consider those d for which Od is a principal ideal domain.
It was conjectured by Gauss and proven by Heegner (with modification by Stark) that the only such d values are
{−1,−2,−3,−7,−11,−19,−43,−67,−163}, see [Sta]. To actually find a group presentation, we will consider the
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orbit of a horoball V under Γd. Assuming its orbit covers the space, we can use Macbeath’s Theorem (see Theorem
1) to determine a set of generators and relations from the horoballs and their intersections. Since H3/Γd has only
one cusp, it is ensured that a single sufficiently large horoball will exist whose orbit covers the space.

The approach used here is adapted from the one presented by Mark and Paupert, see [MP]. It differs from the
typical method of determining face-pairings of the fundamental domain. Yasaki considers Voronöı polyhedra and
their stabilizer subgroups to find presentations, see [Yas]. Page uses a method in which face-pairings are generated
until a complete set is found, see [Page]. Unlike these methods, here a fundamental domain for the group is not
determined directly nor are a limited set of relations determined. Instead, a large number of generators and relations
are found before using purely algebraic methods to simplify the presentation.

Ultimately, we have found presentations for the cases of d = −43,−67,−163 which along with the previously
known cases of d = −1,−2,−3,−7,−11,−19 (discovered by Swan, see [Sw]) completely describes the singly cusped
Bianchi groups. The abelianizations of the novel presentations were found to be

Γab
−43 = C2

∞

Γab
−67 = C3

∞

Γab
−163 = C7

∞

These group presentations can be used to compute the homology of the quotient space. Specifically, Γab
d =

H1(H3/Γd,Z). Further, a better understanding of the group structure provides information about a variety of
topological information as demonstrated by Şengün, see [Sen].

The paper is structured as follows. In section two, we review properties of hyperbolic three-space and introduce
the model of H3 that will be used. In section three, we present our method using Macbeath’s Theorem including
implementation details for the algorithms. In section four, we present the full group presentations.

I would like to thank my advisor, Julien Paupert. He introduced me to this method for determining group
presentations, advised me on its implementation, and edited the various drafts of this paper. I would also like to
thank Nancy Childress for reviewing and editing.

2 Hyperbolic Space

Hyperbolic spaces, Hn, are simply connected Riemannian manifolds of constant negative curvature. For a given
dimension, such a space is unique up to scaling of the curvature. As a general reference for information about
hyperbolic manifolds, one can consult Foundations of Hyperbolic Manifolds, see [Rat]. The work by Swan also
provides an introduction to the topology of hyperbolic manifolds, see [Sw]. To study Bianchi groups, we are
interested in the particular case of n = 3. While several models exist for representing H3 in a convenient form, we
will be using the Poincaré half-space model. In this model,

H3 = {(z, λ) ∈ C× R : λ > 0}

the boundary of which is represented by the λ = 0 plane along with the point at infinity, ∂H3 = (C× {0}) ∪ {∞}.
Here, ∞ represents the value of the limit limλ→∞(z, λ) for any z ∈ C. The Riemannian metric is defined as

ds2 =
|dz|2 + dλ2

λ2

So the distance between two points (z1, λ1), (z2, λ2) ∈ H3 is

d((z1, λ1), (z2, λ2)) = arccosh

(
1 +
|z1 − z2|2 + (λ1 − λ2)2

2λ1λ2

)
The metric can also be used to define geodesics. For this model, the geodesics are the semicircles whose center lies
in the boundary plane along with the vertical rays perpendicular to the boundary plane. Similarly, the planes of the
space are semispheres whose center lies in the boundary plane and vertical planes perpendicular to the boundary
plane.

As in Euclidean space, we can also define balls,

B(c, r) = {x ∈ H3 | d(c, x) < r}
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which clearly will also be closed under isometries. Further, in the half-space model, these hyperbolic balls will
appear as Euclidean balls, though not with the same centers or radii. If one takes the limit of a ball as the radius
approaches infinity, while keeping a point with a tangent plane fixed, then one obtains a horoball based at some
infinite point. In the half-space model, every horoball is of one of the two following types. In the first case, it is a
ball tangent to and above the boundary plane,

B = {(z, λ) | |z − z0|2 + (λ− λ0)2 < λ20}

and we say B is based at z0 ∈ ∂H3. In the second case, it is a half-space above and parallel to the boundary plane,

B = {(z, λ) | λ > h}

for some h > 0. We say B is based at ∞ ∈ ∂H3 with a height of h. Note that with this definition of height,
horoballs of smaller height are in fact larger. Horoballs, like the geodesics, are a closed set under isometries.

With the metric, we can also consider isometries. That is mappings σ : H3 → H3 which preserve the metric,

d(σ(x), σ(y)) = d(x, y)

for all x, y ∈ H3. Because the metric is fixed, the sets of geodesics, planes, balls, and horoballs are all closed under
isometries. If an isometry does not cause a reflection of the space, then it is said to be orientation-preserving.

It happens that the group of orientation-preserving isometries has a convenient representation in terms of
matrices. We can see this by considering the action of such an isometry on the infinite boundary points, ∂H3,
of H3. Looking at the Poincaré ball model, these infinite boundary points can be viewed as the Riemann sphere,
Ĉ = C∪{∞}. It happens that the action of any of these isometries on Ĉ takes the form of Möbius transformations.
Further, the action of an isometry on the points at infinity fully characterizes it on the hyperbolic space. Thus, for
any such isometry σ, it will send z ∈ Ĉ to

σ(z) =
az + b

cz + d

and σ(∞) = a
c . Because of the invariance under scaling the numerator and denominator by a common factor, the

group of these isometries is PSL2(C). Using the behavior of the geodesics to extend σ from ∂H3 to H3,

σ(z, λ) =

(
(d− cz)(az − b)− λ2ca
|cz − d|2 + λ2|c|2

,
|ad− bc|λ

|cz − d|2 + λ2|c|2

)
for any (z, λ) ∈ H3, see [Sw].

Throughout this text, we will use Γ∞ to refer to the stabilizer subgroup of∞ ∈ ∂H3 in Γ. We will also be using
Ts ∈ Γ∞ to denote [

1 s
0 1

]
which, for any s ∈ Od, is a translation of H3.

3 The Method

3.1 Background

As mentioned above, Macbeath’s Theorem allows us to determine a presentation for any subgroup of isometries
using an arbitrary subset, V , of the space.

Macbeath’s Theorem 1. [Mac] Let X be a topological space and let G be a group acting continuously on X. Let
V be an open subset of X whose orbit under G covers X.

If X is connected then the elements, S = {g ∈ G : g(V ) ∩ V 6= ∅}, generate G. If X is simply connected then
the relations,

R = {a−1b = c : a, b, c ∈ S, a−1b = c, a(V ) ∩ b(V ) ∩ V 6= ∅}

along with the generators S form a presentation G = 〈S|R〉.
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We will apply this theorem to a horoball based at ∞ of height h > 0 which we will call V . Let us consider the

orbit of such a horoball. For each σ =

[
a b
c d

]
∈ Γd, σ(∞) = a

c . Thus, σ(V ) will be a horoball based at a
c ∈ Q(

√
−d)

of some size. The orbit of V consists of horoballs based at rational points along with V .
Since our method is limited to singly cusped quotient spaces, we require Od to be a PID and so will only

be considering Bianchi groups, Γd where d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}. Further, because of
implementation difficulties, we will only consider cases where Od has no non-trivial units. There exist non-trivial

units
√
−1 ∈ O−1 and 1+

√
3

2 ∈ O−3 eliminating these cases.

Lemma 1. Let V be a horoball based at ∞ of height h > 0. Suppose σ ∈ PSL2(C) with

σ =

[
a b
c d

]
does not fix ∞ (that is c 6= 0). Then, σ(V ) considered as a Euclidean ball in the upper half-space will have diameter

1
h|c|2 .

Proof. Let B = C×h be the boundary of V so σ(B) is the horosphere bounding σ(V ). Let A = (ac , r) be the apex of
σ(B) so that r is the supremum of λ values on the ball. Then, we consider the vertical geodesic, ν, running through
the apex. Since the geodesic’s endpoints are a/c and ∞ the geodesic’s pre-image, σ−1(ν) will have endpoints
σ−1(a/c) =∞ and σ−1(∞) = −d/c.

We know A = ν ∩ σ(B) so σ−1(A) = σ−1(ν) ∩ B = (−d/c, h). Now, construct the geodesic µ tangent to B at
σ−1(A). In the Euclidean half-space, µ will then be a semicircle with radius h. So we can take one of the endpoints
of µ to be −d/c+ h. Thus, σ(µ) will have endpoint

a
(
h− d

c

)
+ b

c
(
h− d

c

)
+ d

=
hac− ad+ bc

c2h− cd+ dc
=
hac− 1

c2h
=
a

c
− 1

c2h
.

Since µ is tangent to B as σ−1(A), we know σ(µ) is tangent to σ(B) at A. Thus, the center of the semicircle σ(µ)
is a/c. The distance from A to a/c (which is the diameter of σ(B) and σ(V )) is then equal to |σ(a/c)−σ(h−d/c)| =

1
h|c|2 . In particular, the diameter is less than 1

h for all c 6= 0.

Lemma 2. Let V be a horoball based at ∞ of height h > 0. Say that D is a fundamental domain of C/Od so that
for all z ∈ C, there exist s ∈ Od and r ∈ D with z = s + r. If for all r ∈ D, (r, h) ∈ σ(V ) for some σ ∈ Γ then
Γ(V ) covers H3.

Proof. We prove by contradiction. Suppose S = Γ(V ) does not cover H3. Since S is open and H3 is connected,
H3 \ S cannot be open so S ( S. Thus, there exists x ∈ ∂S. By local finiteness, there exists a neighborhood U of
x in which S ∩ U = (σ1(V ) ∪ . . . ∪ σn(V )) ∩ U . Thus, there exists σ such that x ∈ σ(∂V ). Taking the pre-image,
we get σ−1(x) ∈ ∂V = C × {h} so σ−1(x) = (z + s, h) where z ∈ D and s ∈ Od. Contradicting the fact that
σ−1(x) /∈ Γ(V ) since by assumption x /∈ Γ(V ).

Lemma 3. For all a, c ∈ O with gcd(a, c) = 1, there exists a matrix

σ =

[
a b
c d

]
where b, d ∈ O and ad− bc = det(σ) = 1.

Proof. Since O is a PID, 〈a〉 + 〈c〉 = 〈g〉 for g ∈ O. But then g|a and g|c so g| gcd(a, c) = 1 so g = 1. Thus,
1 ∈ 〈a〉+ 〈c〉 meaning there exist ad ∈ 〈a〉 and −bc ∈ 〈c〉 such that 1 = ad− bc.

Definition 1. Let a, b ∈ O with gcd(a, c) = 1. We define the notation Mat
(
a
c

)
to mean a matrix[

a b
c d

]
∈ SL2(O)

for some c, d ∈ O. Such a matrix exists by Lemma 3.
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While such a matrix will always exist, it won’t be unique. Pre-multiplication of Mat
(
a
c

)
by an element in Γ∞

will leave a and c unaffected. So we must choose a particular matrix for each Mat
(
a
c

)
.

Using the size of the horoballs in Γ(V ) again, we consider the intersection σ(V ) ∩ ∂V .

Definition 2. Let V be a horoball based at ∞ of height h > 0. For any element σ ∈ Γ \ Γ∞, we define

Circ(σ) = {z ∈ C : (z, h) ∈ σ(V )} = σ(V ) ∩ ∂V.

Further, for any a, c ∈ Od, we say

Circ
(a
c

)
= Circ

(
Mat

(a
c

))
.

Proof. We will prove the well-definedness of the second definition. Suppose, for a, c ∈ Od that

σ = Mat
(a
c

)
=

[
a b
c d

]
Then, by lemma 1, σ(V ) will be the horoball based at a

c whose Euclidean diameter is 1
h|c|2 . Since both the location

and size of σ(V ) are independent of the choice of b and d, the intersection σ(V ) ∩ ∂V will only depend on a
c .

We will use these circles to simplify the process of checking for covering. To do this, we derive some properties
about these circles. First, it is immediately clear that the basepoint of the horoball will have the same coordinate
in the complex plane as the center of Circ(σ). Then, it remains to determine the radius of the circle.

Lemma 4. Let A = Circ

([
a b
c d

])
where the main horoball, V , has height h. Then, the radius of A will be

√
1

|c|2
− h2

Proof. Below is a diagram of the side view of the circle. Circ(σ) is the red line.

σ(∂V )

∂V

1
h|c|2

h

r

s

Noticing the similar triangles, we have
h

s
=

s
1

h|c|2

so s2 = 1/|c|2. Thus, r2 = 1
|c|2 − h

2.
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Lemma 5. For any two Euclidean spheres, A and B, tangent to a plane P , A intersects B if and only if

d2 ≤ 4sr

with tangency at equality where r is the radius of A, s is the radius of B, and d is the distance between A ∩ P and
B ∩ P .

Proof. For a given r and s, if two spheres are closer than the distance necessary for tangency then they will have
an intersection. It remains to show that when d2 = 4sr, A and B are tangent. If we consider a plane perpendicular
to P passing through the centers of A and B then we get the following cross-sectional diagram.

A

B
r

sd

Then, clearly, (r + s)2 = (r − s)2 + d2 so

d2 = (r2 + 2rs+ s2)− (r2 − 2rs+ s2) = 4rs

Lemma 6. Let A and B be closed Euclidean spheres tangent to the horizontal plane P . Suppose A has radius r, B
has radius s, and d is the distance between P ∩A and P ∩B. If r ≥ s then the height of the highest point in A∩B
is 2s if d2 ≤ 4s(r − s)

(s+r)+
√
4sr−d2

2
(
1+( s−r

d )
2
) otherwise

Proof. If we consider a plane perpendicular to P passing through the centers of A and B then we get the following
cross-sectional diagram.

A

B

r

s

x y

k

6



Then, from the similar triangles, we have the equations

d = x+ y

k√
k2 + x2

=

√
k2+x2

2

r
2kr = k2 + x2

k√
k2 + y2

=

√
k2+y2

2

s
2ks = k2 + y2

which we can simplify to

2kr = k2 + (d− y)2 =k2 + y2 + d2 − 2yd = 2ks+ d2 − 2d
√

2ks− k2√
2ks− k2 =

d

2
+
k

d
(s− r)

2ks− k2 =
d2

4
+
k2

d2
(s− r)2 + k(s− r)

0 = k2

(
1 +

(
s− r
d

)2
)
− k(s+ r) +

d2

4

k =
(s+ r)±

√
4sr − d2

2
(

1 +
(
s−r
d

)2)
Since we want the largest value of k, we will take ± to be +. Notice that if d < 4s(r− s) = r2 − (2s− r)2, though,
then the apex of B (at height 2s) will lie inside A and so will always be the highest point.

3.2 Finding the Generators

Definition 3. Let V be a horoball based at ∞ of height h > 0. Let D be a fundamental domain of C/O. We define
a set of “generators at h” to be a subset of Γ,

Gens(h) =

{
Mat

(a
c

) ∣∣∣∣ a, c ∈ O, |c| ≤ 1

h
, gcd(a, c) = 1,

a

c
∈ D

}
.

As before, although we are using the expression Gens(h) to represent this set, the particular choice of represen-
tative for each horoball is arbitrary.

Theorem 1. Let V be a horoball based at ∞ of height h > 0. Suppose S∞ is a generating set for Γ∞. If

D ⊆
⋃
|c|≤ 1

h

 ⋃
gcd(a,c)=1, ac∈D

Circ
(a
c

)
then,

Gens(h) ∪ S∞
will be a generating set for Γ.

Proof. We can prove this primarily by applying Macbeath’s Theorem to V and Γ. First, to use Macbeath’s Theorem,
we must show that the orbit of V covers H3.

If

D ⊆
⋃
|c|≤ 1

h

 ⋃
gcd(a,c)=1, ac∈D

Circ
(a
c

)
then for all z ∈ D, there exists a, c ∈ O with z ∈ Circ

(
a
c

)
. Thus, (z, h) ∈ σ(V ) where σ = Mat

(
a
c

)
∈ Γ. Because

this holds for all z ∈ D, we can conclude, by lemma 2, that Γ(V ) covers H3.
By Macbeath’s Theorem, since the orbit of V covers H3 and H3 is simply connected, the set {σ ∈ Γ : σ(V )∩V 6=

∅} generates Γ. Now, we show that Gens(h) and S∞ will generate this set.

7



Let σ ∈ Γ with σ(V ) ∩ V 6= ∅ and

σ =

[
a b
c d

]
We consider the cases when c = 0 and c 6= 0.

If c = 0 then 1 = ad− bc = ad which means a = d = ±1, because O has no non-trivial units. Further, because
Γ = PSL2(O) only distinguishes transforms up to scaling, we can say without loss of generality that a = d = 1.
Thus,

σ =

[
1 b
0 1

]
which fixes ∞ so σ ∈ Γ∞ and σ is generated by S∞.

Otherwise, c 6= 0 and so by the definition of the fundamental domain there exists a′, s ∈ O with a′

c ∈ D such

that a′

c + s = a
c . Thus,

σ =

[
1 s
0 1

]
·
[
a′ b− sd
c d

]
= Ts · σ′

Of course, Ts is generated by S∞. Further, since σ(V ) ∩ V 6= ∅, the Euclidean diameter of the horoball σ(V ) must
exceed the height of V ,

1

h|c|2
≥ h

so |c| ≤ 1
h . Also, we know σ ∈ Γ so a′d− c(b− sd) = 1 meaning gcd(a′, c) = 1. From these two facts, we know there

exist b′, d′ ∈ O such that

τ =

[
a′ b′

c d′

]
∈ Gens(h)

This leads to

σ′ =

[
a′ b− sd
c d

]
=

[
a′ b′

c d′

]
·
[
1 d−d′

c
0 1

]
= τ · T d−d′

c

and, obviously, T d−d′
c

is generated by S∞ and τ ∈ Gens(h). Finally, we conclude that every σ = Ts · τ · T d−d′
c

is

generated by Gens(h) ∪ S∞.

From the above theorem, we can find a generating set for Γ as long as we can find a height, h, such that

D ⊆
⋃
|c|≤ 1

h

 ⋃
gcd(a,c)=1, ac∈D

Circ
(a
c

) .

To check if the circles for a given height cover the fundamental domain, we can use the method described in
Appendix A.

Algorithm 1 Find generators

repeat
Find denominators

{
c ∈ Od : |c| < 1

h

}
;

for each denominator c do
Find all a ∈ Od coprime to c;
Calculate σ = Mat

(
a
c

)
;

Add σ to Gens(h);
Add Circ(σ) to Circles;

end for
until D ⊆

⋃
Circles

8



3.3 Finding the Relations

We now assume that we have an h such that Gens(h) ∪ S∞ is a generating set for Γ. To obtain the relations, we
must find all the triple intersections. That is the intersections between V , σ(V ), and τ(V ) where σ, τ ∈ Γ. This
can be simplified substantially by removing certain redundancies.

Lemma 7. For any σ ∈ Γ \ Γ∞ such that σ(V ) ∩ V 6= ∅,

σ = TrgTs

for some g ∈ Gens(h) and r, s ∈ Od.

Proof. Let σ =

[
a b
c d

]
for a, b, c, d ∈ Od. First, by definition of the fundamental domain, there exists f ∈ D with

a
c ∈ f +Od. So, a = cf + cr for r ∈ Od and take a′ = cf so a′

c ∈ D. Then,

σ =

[
1 r
0 1

]
·
[
a′ b− rd
c d

]
= Tr · σ′.

In order for σ(V )∩V 6= ∅, we know that the horoball σ(V ) must be large enough. Thus, its Euclidean diameter
must be greater than h which by lemma 1 means

1

h|c|2
≥ h

Then, |c| ≤ 1
h . So by the definition of Gens(h), there exists g = Mat

(
a′

c

)
∈ Gens(h) with g =

[
a′ b′

c d′

]
. Then,

g−1σ′ =

[
d′ −b′
−c a′

]
·
[
a′ b− rd
c d

]
=

[
a′d′ − b′c (b− rd)d′ − b′d
−a′c+ a′c −(b− rd)c+ a′d

]
=

[
1 −rdd′
0 1

]
= Ts

where s = −rdd′. Finally, σ = Tr · σ′ = Tr · g · Ts.

Theorem 2. Assuming that the commutation relation between the generators of Γ∞ is given, all relations produced
using Macbeath’s Theorem are equivalent to a relation of one of the following forms

A−1TaB = TbCTc

A−1 = TbCTc

where A,B,C ∈ Gens(h) and a, b, c ∈ Od. Further, these relations correspond to the triple intersections A(V ) ∩
(TaB)(V ) ∩ V and A(V ) ∩ V ∩ V , respectively.

Proof. Suppose we have the triple intersection σ(V ) ∩ τ(V ) ∩ V with σ, τ ∈ Γ. First, we consider the trivial case
σ(V ) = τ(V ) = V so σ, τ ∈ Γ∞. So let σ = T a1 T

b
ω and τ = T c1T

d
ω for some a, b, c, d ∈ Z. Then, clearly, the

corresponding relation T a1 T
b
ω · T c1T dω = T a+c1 T b+dω is equivalent to the commutation relation T1 · Tω = Tω · T1.

Before treating the other cases, we will take φ = σ−1τ and notice

σ−1(σ(V ) ∩ τ(V ) ∩ V ) = V ∩ φ(V ) ∩ σ−1(V ) 6= ∅.

We conclude φ(V ) intersects V .
Second, we consider when σ(V ) 6= V and τ(V ) = V . Thus, τ ∈ Γ∞ so τ = Tt. Also, σ /∈ Γ∞ which means

φ = σ−1τ /∈ Γ∞. Hence, because σ(V ) ∩ V 6= ∅ and φ(V ) ∩ V 6= ∅, using lemma 7, we know σ = TrATs and
φ = TuCTv for A,C ∈ Gens(h). Then,

TuCTv = φ = σ−1τ = T−sA
−1T−rTt

A−1 = Tu+sCTv+r−t.

Taking b = u+ s and c = v + r − t, we get the second form from the Lemma’s statement.
Notice that

T−r(σ(V ) ∩ τ(V ) ∩ V )T−s = A(V ) ∩ Tt−r−s(V ) ∩ T−r−s(V ) = A(V ) ∩ V ∩ V
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. Then, the relation can be formed from the triple intersection A(V ) ∩ V ∩ V 6= ∅.
Third, we consider when σ(V ) 6= V 6= τ(V ) and φ ∈ Γ∞ so φ = Tp. Using lemma 7, σ = TrATs and τ = TxBTy.

Then,
Tp = T−sA

−1T−rTxBTy

ATp+s−y = Tx−rB.

Now, take u = p+ s− y and v = x− r as well as let A =

[
a1 b1
c1 d1

]
and B =

[
a2 b2
c2 d2

]
. Then,

ATu =

[
a1 ua1 + b1
c1 uc1 + d1

]
=

[
a2 + vc2 b2 + vd2

c2 d2

]
= TvB.

so c1 = c2 and a1 − a2 = vc2 which means a1
c1
− a2

c2
= a1−a2

c2
∈ Od. Since a1

c1
, a2c2 ∈ D, their difference must be zero

and v = 0. But if a1
c1

= a2
c2

then A = B since Gens(h) has only a single matrix for each basepoint. So the relation
becomes ATu = TvB = B = A which is tautological.

Fourth, we consider when σ(V ) 6= V 6= τ(V ) and φ /∈ Γ∞. Using lemma 7, σ = TrATs, τ = TxBTy, and
φ = TuCTv. Then,

TuCTv = φ = σ−1τ = T−sA
−1T−rTxBTy

A−1Tx−rB = Tu+sCTv−y.

Taking a = x− r, b = u+ s and c = v − y, we get the first form from the Lemma’s statement.
Notice that

T−r(σ(V ) ∩ τ(V ) ∩ V )T−s = A(V ) ∩ (Tx−rBTy−s)(V ) ∩ T−r−s(V ) = A(V ) ∩ (TaB)(V ) ∩ V

Then, the relation A−1TaB = TbCTc can be generated from the triple intersection A(V ) ∩ (TaB)(V ) ∩ V 6= ∅.

Theorem 3. For all X,Y ∈ Gens(h) with X = Mat
(
ax
cx

)
and Y = Mat

(
ay
cy

)
, if X(V ) ∩ (TsY )(V ) 6= ∅ for some

s ∈ Od then

Tang(cx) :=
1

|cx|h
+ |1 + ω| ≥ |s|

Proof. Suppose X =

[
ax bx
cx dx

]
and Y =

[
ay by
cy dy

]
. Then,

TsY =

[
ay + scy by + sdy

cy dy

]
.

Using lemma 1, we know X(V ) and (TsY )(V ) will have Euclidean diameters of 1
|cx|2h and 1

|cy|2h . Using lemma 5,

since X(V ) ∩ (TsY )(V ) 6= ∅, we know∣∣∣∣axcx − ay + scy
cy

∣∣∣∣2 ≤ 4
1

2|cx|2h
1

2|cy|2h
=

1

|cx|2|cy|2h2

Now, because ax
cx
,
ay
cy
∈ D, we know ax

cx
= α + βω and

ay
cy

= γ + δω. where 0 ≤ α, β, γ, δ < 1. So taking
ax
cx
− ay

cy
= (α − γ) + (β − δ)ω = u + vω. We have 0 − 1 < u, v < 1 − 0 so u, v ∈ (−1, 1) meaning u2, v2 < 1 and

uv ∈ (−1, 1). Then,∣∣∣∣aycy − ax
cx

∣∣∣∣2 = (u+ vω)(u+ vω) = u2 + uv(ω + ω) + v2|ω|2 ≤ 1 + (ω + ω) + |ω|2 = |1 + ω|2.

Then, by the triangle inequality,

|s| ≤
∣∣∣∣axcx − ay + scy

cy

∣∣∣∣+

∣∣∣∣aycy − ax
cx

∣∣∣∣ ≤ 1

|cx||cy|h
+ |1 + ω|

Further, since cy 6= 0 and cy ∈ Od, we know |cy| ≥ 1 so

|s| ≤ 1

|cx|h
+ |1 + ω|
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From the above bound and the fact that Gens(h) is finite, it is clear that all possible A,B ∈ Gens(h) and a ∈ Od
can be searched for with

A(V ) ∩ (TaB)(V ) ∩ V 6= ∅

in finite time.
To actually determine the relations, we need to consider

Algorithm 2 Find relations

for each denominator c do
S ← {s ∈ Od : |s| ≤ Tang(c)};
for each A ∈ Gens(h) where the basepoint of A has denominator c do

Find r, t ∈ Od and C ∈ Gens(h) such that A−1 = TrCTt;
Add the relation ATrCTt = 1 to the list of relations;
for each B ∈ Gens(h) do

for each s ∈ S do
if A(V ) ∩ (TaB)(V ) ∩ V 6= ∅ then

C ′ ← A−1TaB;
Find r, t ∈ Od and C ∈ Gens(h) such that C ′ = TrCTt;
Add the relation B−1T−sATrCTt = 1 to the list of relations;

end if
end for

end for
end for

end for
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4 Results

We have found presentations for the cases of d = −43,−67,−163 which along with the previously known cases of
d = −1,−2,−3,−7,−11,−19 (discovered by Swan, see [Sw]) completely describes the singly cusped Bianchi groups.
The presentations given below for d = −1,−2,−3,−7,−11,−19 come from Finis, Grunewald, and Tirao, see [FGT].

The abelianizations for the groups are

Γab
−1 = C2 × C2

Γab
−2 = C6 × C∞

Γab
−3 = C3

Γab
−7 = C2 × C∞

Γab
−11 = C3 × C∞

Γab
−19 = C∞

Γab
−43 = C2

∞

Γab
−67 = C3

∞

Γab
−163 = C7

∞

where Cn is the group with order n generated by a single element.
Clearly from the description of this method, many redundant generators and relations are produced before

simplifying the relation. To perform this simplification, we used the Magma Computational Algebra System. The
precise commands involved in this can be found in the files simpl43.mgm, simpl67.mgm, and simpl163.mgm on the
GitHub page. In the below table, the “Raw” columns list the numbers of generators and relations for the group
presentations before simplification. The “Simplified” columns list the numbers for the presentations after being
simplified by Magma.

Ring
Simplified Raw

Height Depth
Generators Relations Generators Relations

O−2 3 4 10 78 0.5000 4
O−7 3 4 10 52 0.5000 4
O−11 3 4 18 186 0.4220 5
O−19 4 7 34 407 0.3218 9
O−43 5 10 146 1986 0.2071 23
O−67 8 15 218 3311 0.1690 35
O−163 11 18 1290 25997 0.0982 103

Here, the “Height” refers to the Euclidean height, h, of the main horoball V , The “Depth” is

max

{
|c|2 :

[
a b
c d

]
∈ Gens(h)

}
and so give some indication about the number of cases that needed to be searched to find the generators.

We can represent the generators in the following presentations with the matrices

A =

[
1 1
0 1

]
B =

[
0 1
−1 0

]
U =

[
1 ω
0 1

]
.

For d = −1,−2,−3,−7,−11, we have

Γ−1 = 〈A,B,U | B2, (AB)3, (BUBU−1)3, AUA−1U−1, (BU2BU−1)2, (AUBAU−1B)2〉

Γ−2 = 〈A,B,U | B2, (AB)3, AUAU−1, (BU−1BU)2〉

Γ−3 = 〈A,B,U | B2, (AB)3, AUA−1U−1,

(UBA2U−2B)2, (UBAU−1B)3, AUBAU−1BA−1UBA−1UBAU−1B〉

Γ−7 = 〈A,B,U | B2, (BA)3, AUA−1U−1, (BAU−1BU)2〉
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Γ−11 = 〈A,B,U | B2, (BA)3, AUA−1U−1, (BAU−1BU)3〉.

For d = −19, we can represent the C generator by the matrix

C =

[
1− ω 2

2 ω

]
. Then, the presentation is

Γ−19 = 〈A,B,C,U | B2, (BA)3, AUA−1U−1, C3, (CA−1)3, (BC)2, (BA−1UCU−1)2〉.

For O−43, we can represent R and S with the matrices

R =

[
1 + ω ω − 6

2 ω

]
S =

[
3 ω

1− ω 4

]
.

Then, the presentation is

Γ−43 = 〈A,B,U,R, S |
B2, (BA)3, AUA−1U−1, (R−1U)3,

A−1RA−1U−1RA−1R−1UR−1,

A−1RU−1SR−1UBS−1B,

(UAS−1BSR−1)2,

(BSU−1RS−1A)2,

A−1U−1SR−1US−1BA−1SR−1US−1BU,

UBU−1A−1RS−1BSA−1BS−1BUR−1ASR−1〉.

For O−67, the generators additional generators can be represented by

K =

[
2ω −23 + 2ω
3 1 + 2ω

]
L =

[
2 + ω −4 + ω

4 1 + ω

]
M =

[
1 + 3ω −13 + ω

4 ω

]

N =

[
−2 + ω −10
ω −9 + ω

]
P =

[
2 ω

1− ω 9

]
.

The presentation is

Γ−67 = 〈A,B,U,K,L,M,N, P |
B2, AUA−1U−1,

UP−1A−1NP−1B,

(BU−1M)2, (AB)3, (MU−1)3,

BUP−1BUN−1A,

P−1A−1NAN−1BA−1PA,

L−1BA−1LU−1KP−1BUK−1U,

LBU−1ML−1BA−1NK−1UM−1KA−1U−1,

AUL−1ABLM−1UAL−1ABLM−1,

L−1AUK−1UP−1BA−1KA−1U−1LBA,

U−1LBU−1ML−1AUK−1MU−1KP−1A−1N,

(ML−1BA−1LP−1BA−1)3,

(L−1ABLM−1ABA−1N)3〉.
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For O−163, we can represent the additional generators with

D =

[
1 + ω −21 + ω

2 ω

]
E =

[
1 + ω −10 + ω

4 2 + ω

]
F =

[
3 + ω −23 + 3ω

5 3 + 3ω

]
G =

[
3 + ω −6 + ω

6 2 + ω

]

H =

[
15 4ω

1− ω 11

]
T =

[
31 3ω

1− ω 4

]
V =

[
−7 + ω −12
ω −6 + ω

]
W =

[
2 + 4ω −23 + 2ω

7 2 + ω

]
.

The presentation is

Γ−163 = 〈A,U,B,D,E, F,G,H, T, V,W |
B2, AUA−1U−1, (UD−1)3, (AB)3,

(TBU−1)3, A−1D−1UD−1A−1DU−1A−1D,

D−1WG−1A−1V A−1BW−1DU−1WAV −1GA−1BW−1U, (AEU−1TBAE−1)3,

BT−1UH−1UAF−1V A−1BAV −1GBAG−1V A−1BAV −1FA−1U−1H,

(V A−1BU−1TW−1UD−1WBAV −1ABA−1)2,

(EA−1BT−1UE−1A−1V A−1BW−1DU−1WBAV −1)2,

(HU−1TBAE−1A−1V A−1BW−1DU−1WBAV −1FA−1D−1AU

F−1EA−1U−1TBH−1UAF−1V A−1BAV −1FU−1),

(GE−1HU−1TBD−1WG−1EA−1BT−1UH−1A−1DU−1HU−1TB

AE−1GW−1DBT−1UH−1EA−1BW−1UD−1WG−1BA−1),

(A−1EA−1BT−1UE−1HU−1TBU−1WBAG−1V A−1BAV −1F

A−1D−1UAF−1GW−1DBT−1UH−1UAF−1V A−1BAV −1FU−1),

(AF−1EA−1BT−1UE−1A−1V A−1BW−1DU−1WBAV −1F

A−1U−1DAF−1V A−1BW−1UD−1WBAV −1AEU−1TBAE−1FU−1A−1D),

(BAV −1ABA−1V A−1BG−1BA−1GE−1HU−1TBD−1WG−1E

A−1BT−1UH−1A−1DAF−1V A−1BAV −1GA−1BW−1UAD−1

WG−1FU−1HU−1TBAE−1GW−1DBT−1UH−1E),

(BT−1UH−1UF−1V A−1BAV −1FA−1U−1HU−1TBD−1WG−1

FU−1HU−1TBAE−1GW−1DBT−1UH−1EBAV −1ABA−1

V A−1BE−1HU−1TBD−1WG−1EA−1BT−1UH−1UF−1GW−1DA−1),

(WG−1FU−1HU−1TBAE−1GW−1DBT−1UH−1EU−1TBA

E−1HU−1TBD−1WG−1EA−1BT−1UH−1AUF−1V A−1BAV −1GA−1

BW−1DU−1A−1WG−1FU−1HU−1TBAE−1GW−1DBT−1UH−1EU−1TBAE−1

HU−1TBD−1WG−1EA−1H−1UAF−1V A−1BAV −1GBAW−1DU−1A−1)〉.
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A Circle Covering Algorithm

In order to check if a set of horoballs (and their shifts) cover the boundary of V , we can instead check that the
circular intersections of the horoballs cover the fundamental domain. One could check this manually by drawing all
of the circles, but for hundreds of generators this becomes prohibitive. Instead, we describe an algorithm that can
verify if a set of circles covers a parallelogram.

To do this, we subdivide the fundamental domain into an n×n grid of parallelograms 1
n2 the size of the original.

We then check that each sub-parallelogram is entirely covered by one of the circles in the set. If this is the case
for all sub-parallelograms then certainly the fundamental domain is covered. It should be noted, though, that this
method can produce false negatives if the circles do not have sufficient overlap.

Algorithm 3 Check if a set of Generators is complete

Subdivide D into P ←
{[

i

n
,
i+ 1

n

]
+

[
j

n
,
j + 1

n

]
ω : i, j ∈ {0, 1, . . . , n}

}
for each parallelogram A ∈ P do

for σ ∈ Gens(h) do
if A ⊆ Circ(σ) then

Go to next parallelogram;
end if

end for
if No circles contain A then

Gens(h) fails to be complete;
end if

end for
Gens(h) along with the generators of Γ∞ are complete;

Figure 1: Circles for each generator of Γ−19 covering the fundamental domain (red parallelogram). The domain is
split into a 100× 100 grid to apply the above algorithm.
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B Finding Representatives of Residue Classes

In the process of finding matrices with a given c value, it is necessary to search through all residue classes of Od/cOd.
To do this, we need representatives of each of these classes.

Lemma 8. If c ∈ Od and D is a fundamental domain of C/Od then

R =
{
a :

a

c
∈ D

}
is a complete set of representatives for cOd.

Proof. Suppose x+ cOd is a residue class. Then, by definition of the fundamental domain, there exists s ∈ D such
that s− x

c = k ∈ Od. Then, take a = sc = ck + x ∈ x+ cOd so that a
c ∈ D. Thus, a ∈ R and a ∼ x meaning every

residue class is represented in R.

It is also necessary during the computations to find the representative of the residue class that an arbitrary
element belongs to.

Lemma 9. For any a, c ∈ Od, there exist q, r ∈ Od such that a = qc+ r and r
c ∈ D.

Proof. Suppose a, c ∈ Od with c = xc + ycω and a = xa + yaω. Further, we assume ω + ω = t and ωω = n. Then,
take

q =

⌊
xaxc + txayc + nyayc

|c|2

⌋
+

⌊
xcya − xayc
|c|2

⌋
ω = bx′c+ by′cω

and simply take r = a− qc. It remains to show that r
c ∈ D.

First,

r

c
=
a

c
− q =

ac

cc
− q

=
(xa + yaω)(xc + ycω)

|c|2
− q

=
xaxc + yaxcω + xaycω + yaycωω

|c|2
− q

=
xaxc + yaxcω + txayc − xaycω + nyayc

|c|2
− q

= x′ + y′ω − bx′c − by′cω
= (x′ − bx′c) + (y′ − byc)ω

and by definition of bx′c, we know 0 ≤ x′ − bx′c < 1. Similarly, 0 ≤ y′ − by′c < 1 so r
c ∈ D.
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