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SPACES OF BOUNDED MEASURABLE FUNCTIONS INVARIANT

UNDER A GROUP ACTION

SAMUEL A. HOKAMP

Abstract. In this paper we characterize spaces of L∞-functions on a compact Hausdorff
space that are invariant under a transitive and continuous group action. This work gener-
alizes the author’s 2021 results, found in [1], concerning the specific case of unitarily and
Möbius invariant spaces of L∞-functions defined on the unit sphere in C

n.

1. Introduction

To understand this paper’s place in the literature, we must first understand the re-
lationships between the papers [2] (Nagel and Rudin, 1976), [1] (Hokamp, 2021), and
[3] (Hokamp). Brief descriptions are given below.

In [2], Nagel and Rudin determine the closed unitarily invariant spaces of continuous and
Lp-functions on the unit sphere of Cn, for 1 ≤ p < ∞. That is, there exists a collection C
of (minimal and invariant) spaces of continuous functions such that each closed unitarily
invariant space is the closed direct sum of some subcollection of C. The same result is not
shown for L∞-functions, since for each L∞-function f , the map u 7→ f ◦ u from the unitary
group into the L∞ -functions need not be continuous under the norm topology.

In [1], the author formulates a result for L∞-functions on the unit sphere that is analogous
to the results of Nagel and Rudin when the L∞-functions are endowed with the weak*-
topology. The conclusion of this paper is that the same collection of (minimal and invariant)
spaces of continuous functions described in [2] serves as the “building blocks” of the weak*-
closed unitarily invariant spaces of L∞-functions via closures of direct sums of subcollections.

In [3], the author generalizes the results of Nagel and Rudin in [2] by considering spaces
of complex continuous and Lp-functions, for 1 ≤ p < ∞, defined on an arbitrary compact
Hausdorff space X, on which a compact group G acts continuously and transitively. In
particular, when a collection G of (minimal and invariant) spaces of continuous functions
with certain properties exists, this collection plays the same role in constructing the closed
spaces of continuous and Lp-functions on X as the collection from [2].

This paper generalizes the results in [1] and acts as an analogue to [3], in that we explore
the case of L∞-functions defined on X endowed with the weak*-topology. The main result
(Theorem 4.1) is that when the same collection G of continuous functions on X from [3]
exists (Definition 2.9), all weak*-closed invariant spaces of L∞-functions can be constructed
by closing the direct sum of some subcollection of G .
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2. Preliminaries

Let X be a compact Hausdorff space and C(X) the space of continuous complex functions
with domain X. Let G be a compact group (with Haar measure m) that acts continuously
and transitively on X. When we wish to be explicit, the map ϕα : X → X shall denote the
action of α on X for each α ∈ G; otherwise, αx denotes the action of α ∈ G on x ∈ X.

Let µ denote the unique regular Borel probability measure on X that is invariant under
the action of G. Specifically,

(2.1)

∫

X

f dµ =

∫

X

f ◦ ϕα dµ,

for all f ∈ C(X) and α ∈ G. The existence of such a measure is a result of André Weil
from [4], and a construction of µ can be found in [5] (Theorem 6.2). Throughout the paper,
µ shall refer to this measure.

The notation Lp(µ) denotes the usual Lebesgue spaces, for 1 ≤ p ≤ ∞. For Y ⊂ C(X),
the uniform closure of Y is denoted Y , and for Y ⊂ Lp(µ), the norm-closure of Y in

Lp(µ) is denoted Y
p
. When L∞(µ) is equipped with the weak*-topology, Y

∗

denotes the
weak*-closure of Y ⊂ L∞(µ).

Remark 2.1. For Y ⊂ L∞(µ) convex and 1 ≤ p <∞, we have

Y
∗

⊂ Y
p
∩ L∞(µ).

This follows from the local convexity of Lp(µ), and from the fact that the weak*-topology
on L∞(µ) is stronger than the topology which L∞(µ) inherits from each Lp(µ) endowed
with the weak topology.

The following is an easy consequence of (2.1):

Remark 2.2. Let 1 ≤ p <∞ and let p′ be its conjugate exponent. Then
∫

X

(f ◦ ϕα) · g dµ =

∫

X

f · (g ◦ ϕα−1) dµ,

for f ∈ Lp(µ), g ∈ Lp′(µ), and α ∈ G.

The following definition has appeared in several sources, such as [3], [6], or [7], but no
attribution is given. The last citation is the specific case of the unitary group acting on the
unit sphere in C

n.

Definition 2.3. A space of complex functions Y defined on X is invariant under G
(G-invariant) if f ◦ ϕα ∈ Y for every f ∈ Y and every α ∈ G.

Remark 2.4. Since the action is continuous, C(X) is G-invariant. Conversely, if C(X) is
G-invariant, then each action ϕα must be continuous.

Remark 2.5. The invariance property (2.1) means µ(αE) = µ(E) for every Borel set E ⊂ X
and every α ∈ G. Consequently, (2.1) holds for every Lp-function, and Lp(µ) is G-invariant
for all 1 ≤ p ≤ ∞.

Definition 2.6 and Definition 2.7, stated in [3], are generalizations of definitions found in
[7] related to the unitary group.

Definition 2.6 (2.3 [3]). If Y is G-invariant and T is a linear transformation on Y , we say
T commutes with G if

T (f ◦ ϕα) = (Tf) ◦ ϕα
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for every f ∈ Y and every α ∈ G.

Definition 2.7 (2.4 [3]). A space Y ⊂ C(X) is G-minimal if it is G-invariant and contains
no nontrivial G-invariant spaces.

The remaining definitions all come from [3].

Definition 2.8 (4.1 [3]). For each x ∈ X, the space H(x) is the set of all continuous
functions that are unchanged by the action of any element of G which stabilizes x. That is,

H(x) = {f ∈ C(X) : f = f ◦ ϕα, for all α ∈ G such that αx = x}.

Definition 2.9 (4.2 [3]). Let G be a collection of spaces in C(X) with these properties:

(1) Each H ∈ G is a closed G-minimal space.
(2) Each pair H1 and H2 in G is orthogonal (in L2(µ)): If f1 ∈ H1 and f2 ∈ H2, then

∫

X

f1f̄2 dµ = 0.

(3) L2(µ) is the direct sum of the spaces in G .

We say G is a G-collection if it also possesses the following property:

(∗) dim(H ∩H(x)) = 1 for each x ∈ X and each H ∈ G .

Throughout the paper, G shall denote a G-collection of C(X), indexed by I, whose
elements are denoted Hi, for i ∈ I, and further, we assume that a G-collection exists for X.

Remark 2.10. It should be stressed that we are not implying that a G-collection always
exists for any X and G. However, a collection of spaces in C(X) lacking at most only
property (∗) of Definition 2.9 always exists, as a consequence of the Peter-Weyl theorem
from [8]. This collection is necessarily unique.

Definition 2.11 (4.7 [3]). We define πi to be the projection of L2(µ) onto Hi.

Remark 2.12. In Theorem 4.5 of [3], it is shown that each πi commutes with G, and to each
x ∈ X there exists a unique Kx ∈ Hi such that

πif =

∫

X

f(x)Kx dµ(x),

for all f ∈ L2(µ). The domain of πi can then be extended to L1(µ) by defining πif to be
the above integral for all f ∈ L1(µ).

Definition 2.13 (4.8 [3]). For Ω ⊂ I, EΩ denotes the direct sum of the spaces Hi for i ∈ Ω.

Remark 2.14. The G-invariance of each EΩ is a natural consequence of the definition.

Remark 2.15. Definition 2.9 yields that each f ∈ L2(µ) has a unique expansion f =
∑

fi,
with each fi ∈ Hi, which converges unconditionally to f in the L2-norm. Since πi is the
identity map on Hi and the spaces Hi are pairwise orthogonal, we have fi = πif for i ∈ I.
Thus,

f =
∑

πif.

Each πi is continuous as the orthogonal projection of L2(µ) onto the closed subspace Hi.
Thus, πi annihilates a subset of L2(µ) if and only if it annihilates its closure. The following
is a consequence of this and Remark 2.15:
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Remark 2.16. For each set Ω ⊂ I, we have

E
2

Ω = {f ∈ L2(µ) : πif = 0 when i /∈ Ω}.

Finally, the classical results used in this paper can be found in many texts, with the
reference given in each instance being just one such place.

3. Closures of G-Invariant Sets

In this section, we show that G-invariance is preserved by closures in the spaces C(X) and
Lp(µ) for 1 ≤ p ≤ ∞ (Corollaries 3.2 and 3.4). In particular, G induces classes of isometries
on Lp(µ) and on C(X) (Theorem 3.1), as well as a class of weak*-homeomorphisms on
L∞(µ) (Theorem 3.3).

Theorem 3.1. Suppose X is any of the spaces C(X) or Lp(µ) for 1 ≤ p ≤ ∞ and α ∈ G.
If Lα : X → X is the map given by Lαf = f ◦ ϕα, then Lα is a bijective linear isometry.

Proof. The bijectivity of each Lα is clear because each has an inverse map Lα−1 . The
linearity of each Lα is also clear. Further, the invariance property (2.1) of µ yields that
each Lα is an isometry on Lp(µ) (the case for L∞(µ) follows from Remark 2.5).

To show the same on C(X), we observe that

|(Lαf)(x)| = |f(αx)| ≤ ||f || and |f(x)| = |(Lαf)(α
−1x)| ≤ ||Lαf ||

for all x ∈ X. These inequalities yield that ||Lαf || = ||f ||. �

Corollary 3.2. Suppose X is any of the spaces C(X) or Lp(µ) for 1 ≤ p ≤ ∞. If Y ⊂ X

is G-invariant, then the closure of Y in X is G-invariant.

Theorem 3.3. Let α ∈ G. If Lα : L∞(µ) → L∞(µ) is the map given by Lα(f) = f ◦ ϕα,
then Lα is a weak*-homeomorphism.

Proof. Recall the weak*-topology on L∞(µ) is a weak topology induced by the maps on
L∞(µ) of the form

Λgf =

∫

X

fg dµ,

for some g ∈ L1(µ). Thus, Lα is continuous with respect to the weak*-topology if and only
if Λg ◦ Lα is continuous for all maps Λg.

Fix g ∈ L1(µ). We observe that

(Λg ◦ Lα)(f) = Λg(f ◦ ϕα) =

∫

X

(f ◦ ϕα) · g dµ =

∫

X

f · (g ◦ ϕα−1) dµ = Λg◦ϕ
α
−1
f,

for every f ∈ L∞(µ), by Remark 2.2. We conclude Lα is continuous on L∞(µ) with respect
to the weak*-topology.

Finally, the map Lα−1 : L∞(µ) → L∞(µ) given by Lα−1(f) = f ◦ ϕα−1 is the inverse of
Lα. By a similar argument, Lα−1 is continuous with respect to the weak*-topology, and
thus Lα is a weak*-homeomorphism. �

Corollary 3.4. If Y ⊂ L∞(µ) is G-invariant, then Y
∗

is G-invariant.

Remark 3.5. From Remark 2.14 and Corollary 3.4, each E
∗

Ω is a weak*-closed G-invariant
subspace of L∞(µ).
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4. Characterization of Weak*-Closed G-Invariant Subspaces of L∞(µ)

In this section, we state and prove our main result (Theorem 4.1), which shows that the

spaces E
∗

Ω are the only weak*-closed G-invariant subspaces of L∞(µ).

Theorem 4.1. If Y is a weak*-closed G-invariant subspace of L∞(µ), then Y = E
∗

Ω for
some Ω ⊂ I.

This result is an analogue to Theorem 5.1 of [3], which is used in its proof:

Theorem 4.2 (5.1 [3]). Let X be any of the spaces C(X) or Lp(µ) for 1 ≤ p < ∞. If Y
is a closed G-invariant subspace of X , then Y is the closure of EΩ for some Ω ⊂ I.

The set Ω from Theorem 4.2 is the set {i ∈ I : πiY 6= 0}. The proof of Theorem 4.1
further requires Lemma 4.3, which we prove in Section 5.

Lemma 4.3. Let Y ⊂ L∞(µ) be a G-invariant space. Then for g ∈ L∞(µ), we have that

g /∈ Y
2
whenever g /∈ Y

∗

.

Remark 4.4. From Remark 2.1 and Lemma 4.3, for any G-invariant space Y ⊂ L∞(µ),

Y
∗

= Y
2
∩ L∞(µ).

Remark 4.5. Remark 4.4 and Remark 2.16 give a description of the sets E
∗

Ω:

E
∗

Ω = E
2

Ω ∩ L∞(µ) = {f ∈ L∞(µ) : πif = 0 when i /∈ Ω}.

Proof of Theorem 4.1. Let Y ⊂ L∞(µ) be a weak*-closed G-invariant space. Then

Y = Y
∗

= Y
2
∩ L∞(µ)

from Remark 4.4. Since Y is G-invariant, so is Y
2
from Corollary 3.2. By Theorem 4.2,

Y
2
= E

2

Ω′ ,

where Ω′ = {i ∈ I : πiY
2
6= 0}.

We define Ω = {i ∈ I : πiY 6= 0}. Then, Remark 4.5 yields

E
2

Ω ∩ L∞(µ) = E
∗

Ω.

We have Ω = Ω′ by the continuity of each πi, and thus E
2

Ω = E
2

Ω′ . �

5. Proof of Lemma 4.3.

In this section, we prove Lemma 4.3, which we note is an analogue to Lemma 5.4 of [3],
as well as a generalization of Lemma 4.2 from [1].

Lemma 5.1. Let g ∈ L∞(µ). Then the map φ : G → L∞(µ) given by φ(α) = g ◦ ϕα is
weak*-continuous.

Proof. To show that φ is weak*-continuous, we verify each Λh ◦ φ is continuous, where Λh

is the map L∞(µ) → C given by integration against the function h ∈ L1(µ).
Observe the map Λh ◦ φ is given by

(Λh ◦ φ)(α) =

∫

X

(g ◦ ϕα) · hdµ.
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From Lemma 6.2 of [3], the map α 7→ h ◦ ϕα is continuous from G into L1(µ). Thus, the
map α 7→ g · (h ◦ ϕα−1) is continuous. We apply Remark 2.2 to get that

α 7→

∫

X

g · (h ◦ ϕα−1) dµ =

∫

X

(g ◦ ϕα) · hdµ

is continuous, as desired. �

Proof of Lemma 4.3. Suppose g ∈ L∞(µ) and g /∈ Y
∗

. Then there exists a weak*-
continuous linear functional Γ on L∞(µ) such that Γf = 0 for f ∈ Y , and Γg = 1, due to the
Hahn-Banach theorem (Theorem 3.5 [9]). Since each weak*-continuous linear functional on
L∞(µ) is induced by an element of L1(µ), there exists h ∈ L1(µ) such that ΓF =

∫

X
Fhdµ

for F ∈ L∞(µ).
From Lemma 5.1, there exists a neighborhood N of the identity in G such that

Re

∫

X

(g ◦ ϕα) · hdµ >
1

2

for α ∈ N . We choose a continuous map ψ : G → [0,∞) such that
∫

ψ dm = 1 and the
support of ψ is contained in N (recall m denotes the Haar measure on G).

We now define a map Λ on L∞(µ) by

ΛF =

∫

X

h(x)

∫

G

ψ(α) · F (αx) dm(α) dµ(x), for F ∈ L∞(µ).

We fix F ∈ L∞(µ) and x ∈ X and define the map Fx : G→ C by α 7→ F (αx). Since
∫

G

|Fx|
2 dm =

∫

G

|F (αx)|2 dm(α) =

∫

X

|F |2 dµ = ||F ||22 <∞,

we get Fx ∈ L2(G), and since ψ is continuous, we have that ψ ∈ L2(G). Further,
∣

∣

∣

∫

G

ψFx dm
∣

∣

∣
≤

(

∫

G

|ψ|2 dm
)

1

2

(

∫

G

|Fx|
2 dm

)
1

2

= ||ψ||2 · ||F ||2,

so that for F ∈ L∞(µ),

|ΛF | ≤ ||ψ||2 · ||F ||2

∫

X

|h| dµ = ||ψ||2 · ||F ||2 · ||h||1.

The linearity of Λ on L∞(µ) is clear. Thus, Λ defines an L2-continuous linear functional
on L∞(µ), and hence extends to an L2-continuous linear functional Λ1 on L2(µ) by the
Hahn-Banach theorem (Theorem 3.6 [9]). By interchanging the integrals in the definition
of Λ, we see that Λ1 annihilates Y , since Y is G-invariant. Further,

Re Λ1g =

∫

G

ψ(α)
(

Re

∫

X

g(αx) · h(x) dµ(x)
)

dm(α) >

∫

N

ψ(α) ·
1

2
dm(α) =

1

2
.

We conclude that g /∈ Y
2
. �

6. Future Questions

(1) Does a G-collection exist for all groups G acting continuously and transitively on
X? What conditions might exist on G or X that yield a collection lacking (∗)?

(2) Under what conditions can the restrictions on X, G, and the action of G on X be
loosened? Can the compactness of X and G be substituted with local compactness?
Can the continuity of the action be substituted with separate continuity?
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(3) Suppose H is a subgroup of G and H is a collection of closed H-minimal spaces
satisfying the same conditions as G . What is the relationship between H and G ?
What if H and G lack (∗)? The uniqueness of µ shows that H does not induce a
new H-invariant measure on X. Further, G-invariance implies H-invariance (of a
space).

We note that (3) is prompted from the study of M -invariant and U -invariant
spaces of continuous functions on the unit sphere of Cn from [2], in which it is shown
that there are infinitely many U -invariant spaces and only six M -invariant spaces.
These six M -invariant spaces are found by combining the U -minimal spaces in a
specific way (see Lemma 13.1.2 of [7]), and we are curious if this method can be
generalized.

(4) Under what conditions can a G-collection characterize the closed G-invariant alge-
bras of continuous functions? We note that the case for the unitary group acting
on the unit sphere of Cn is discussed in [10] and is also summarized in [7].

7. Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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