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MARKED LENGTH PATTERN RIGIDITY

FOR ARITHMETIC MANIFOLDS

YANLONG HAO

ABSTRACT. In this paper, we prove a cocycle version of marked length spec-
trum rigidity. There are two consequences. The first is marked length pattern
rigidity for arithmetic hyperbolic locally symmetric manifolds. The second
is strengthen marked length spectrum rigidity for surfaces and closed locally
symmetric manifolds.

1. INTRODUCTION

Let (M , g ) be a closed Riemannian manifold whose sectional curvatures are
all negative, Γ=π1(M ) its fundamental group, and CΓ the set of conjugacy classes
of non-trivial elements of Γ. Then classes in CΓ correspond to free non-trivial
homotopy classes of loops in M , and each such class contains a unique loop of
minimal g -length - a closed geodesic. Marked length spectrum is the function

ℓg : CΓ−→[0,∞)

that assigning the g -length ℓg (〈γ〉) of the closed geodesic corresponding to the
conjugacy class 〈γ〉 ∈CΓ of γ ∈Γ\ {1}.

Marked Length Spectrum Rigidity Conjecture (cf. Burns and Katok [6]) states
that function ℓg determines (M , g ), up to isometry.

This conjecture was proved for surfaces by Otal [22] and, independently but
in greater generality, by Croke [8] slightly later. For higher dimensions, Katok
[17] had a short proof for metrics in fixed conformal class, the proof is given
in dimension 2 only, but can be easily extended to all dimensions. Beside this,
for higher dimension Hamenstädt [13] proved the conjecture in the case where
(M , g ) is a locally symmetric space by applying the famous entropy rigidity work
of Besson-Courtois-Gallot [3]. For general negatively curved metrics the prob-
lem is largely open. Guillarmou and Lefeuvre showed in [11] that the marked
length spectrum of a Riemannian manifold (M , g ) with Anosov geodesic flow
and non-positive curvature locally determines the metric g .

In this paper we consider a slightly different problem, that concerns rigidity
of what we call marked length pattern. Given, say closed, negatively curved
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2 YANLONG HAO

Riemannian manifold (M , g ) with fundamental group Γ = π1(M ) and conju-
gacy classes CΓ, the length pattern is the equivalence relation Rg on CΓ given
by equality of g -length:

Rg =
{
(c1,c2) ∈CΓ×CΓ / ℓg (c1) = ℓg (c2)

}
.

We emphasize that the relation Rg describes equality of g -lengths, but not their
values.

Theorem A. Let (M , g0) be a closed arithmetic locally symmetric manifold of rank

1, and let g be an arbitrary negatively curved Riemannian metric on M. Then

Rg0 ⊂ Rg only if (M , g ) is isometric to (M ,λg0) for some λ> 0 by an isometry iso-

topic to identity.

On the other hand. there are strengthen marked length spectrum rigidity.
A. Katok [17] proved that marked length spectrum in a fixed homology class

determines the negatively curved metric on the surface in a fixed conformal
class. In [10], Gogolev and Rodriguez Hertz showed that the marked length
spectrum restricted to the set of conjugacy classes represented by homologically
trivial geodesics is enough to uniquely determine the marked length spectrum.
Noelle [21] showed the same is true for compliment of a ‘small’ set when the
manifold is a closed surface. The following Theorem extends some of these re-
sults, including [10].

Theorem B. Let (M , g1) and (M , g2) be two arbitrary closed negatively curved

Riemannian metrics on a manifold M with fundamental group Γ. Let H be a

subgroup of Γ such that the limit set of H is all of ∂M̃.

Then, ℓg1 = ℓg2 on classes from H only if ℓg1 = ℓg2 on all of Γ. Moreover, if M is

a surface or (M , g1) is a locally symmetric rank one space, then (M , g1) is isometric

to (M , g2).

For example, this applies to any non-trivial H which is a normal subgroup Γ,
or a normal subgroup of normal subgroup, etc.

In a forthcoming paper, joint work with Alexander Furman, we give a gener-
alization of Noelle’s work [21] using a different method.

Theorem A and B deal with different perspectives. However, the key of their
proofs relies on the same framework: marked length spectrum rigidity for B-
cocycles. To state it, let us start with the following

Definition 1.1. Let X be a compact space. An element φ 6= I dX in Homeo(X ) is

called hyperbolic if φ has two distinct fixed points φ−,φ+ ∈ X and φn , n →+∞,

contract X \ {φ−} towards φ+ uniformly on compact subsets, and φn , n → −∞,

contracts X \ {φ+} towards φ−.

This is often called north-south dynamics. Note that the points φ± ∈ X are
uniquely determined by a hyperbolic φ. Note also that if φ is hyperbolic, then so
is φ−1 and its attracting/repelling points are (φ−1)± =φ∓.

Definition 1.2. Let Γ be a topological group. A nontrivial compact Hausdorff Γ-

space X is called a geometric boundary if
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(1) Γ acts on X minimally,

(2) Every γ ∈Γ\ {e} is hyperbolic,

(3) There are Γ-quasi-invariant measures µ, µ′ on X such that the Γ-action

on (X ×X ,µ×µ′) is ergodic.

If in addition, µ=µ′, we call X a symmetric geometric boundary.

There are many examples of symmetric geometric boundaries. A typical ex-
ample is a hyperbolic group G and its boundary ∂G , or any non-elementary
subgroup of a hyperbolic group with its limit set (using Kaimanovich [16] and
Bader-Furman [2]), or some subgroups of acylindrically hyperbolic groups and
their limit sets (using Maher-Tiozzo [20]).

In this paper, we mainly consider the applications to the marked length spec-
trum related problems.

Let Γ = π1(M ) be the fundamental group of a closed negatively curved Rie-
mannian manifold M . The fundamental group Γ acts continuously on ∂M̃ . In
fact,Γ-space ∂M̃ is a geometric boundary. Fixed a base point, there is Busemann
cocycle α : Γ×∂M̃ → R. The cocycle α encodes many geometric properties of the
metric. In particular, for any nontrivial γ ∈Γ, α(γ,γ+) = ℓg (〈γ〉).

This inspires us to define the marked length spectrum function for general
cocycle β on a geometric boundary X by setting

(1.1) ℓβ(〈γ〉)=β(γ,γ+)

for all γ ∈Γ\ {1}.
It is more straightforward to define the marked length spectrum of β by a pair

of numbers ℓβ(〈γ〉) = (β(γ,γ+),β(γ,γ−)). However, our definition is enough for
the special type of cocycles, namely B-cocycles that we define below, where we
shall see β(γ,γ−) =−β(γ,γ+) and ℓβ(〈γ−1〉)= ℓβ(〈γ〉) (see section 4 below).

Definition 1.3. Let X be a Γ-space. A cocycle c : Γ×X → R is a B-cocycle if

(1) The map x 7→ c(γ, x) is continuous for all γ ∈Γ.

(2) There exists a continuous function C : X ×X \∆→ R such that

C (γx,γy)−C (x, y) = c(γ, x)+c(γ, y)

for all γ ∈Γ, x 6= y ∈ X where ∆ is the diagonal {(x, x) / x ∈ X } of X ×X .

We also call (c ,C ) a B-cocycle when it is necessary to point out the function C .

Denote by Z 1
c (Γ, X ,R) the vector space of all continuous cocycles c : Γ× X →

R, and by B 1
c (Γ, X ,R) the subspace consisting of cocycles of the form c(γ, x) =

ϕ(γ.x)−ϕ(x) for some continuous function ϕ : X → R. Denote by H 1
c (Γ, X ,R) =

Z 1
c /B 1

c the associated cohomology. Equivalently, we can view this as cohomol-
ogy H 1(Γ,C (X ,R)) with coefficients in C (X ,R) viewed as a Γ-module.

Note that the collection of all B-cocycles over Γ-space X forms a vectors sub-
space of Z 1

c (Γ, X ,R) that contains B 1
c (Γ, X ,R), hence one can talk about coho-

mology classes of B-cocycles, or just B-classes. B-classes form the kernel of the
map

[i ] : H 1
c (Γ, X ,R) → H 1

c (Γ, X ×X \∆,R)
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induced by iα(g , (x, y)) =α(g , x)+α(g , y). We have the following rigidity results.

Theorem C. Let Γ-space X be a geometric boundary, and α,β : Γ× X → R two

B-cocycles. Then ℓα = ℓβ if and only if [α] = [β] in H 1
c (Γ, X ,R).

Remark 1.4. Even though lattices in semisimple Lie groups G and their Fursten-

berg boundaries X =G/P are not necessarily geometric boundaries, there is a sim-

ilar definition of B-cocycles in this case where the diagonal ∆ in (2) is replaced by

the set of pairs of points not in general position. B-cocycle can be defined also for

the general acylindrical groups and their limit sets.

Theorem C is still true in both cases. However, the proof is not cover in our

framework. We will prove it for general acylindrical groups in the appendix. The

proof of higher rank lattices need a little bit more work, but follows form the same

construction. The detailed proof for higher rank lattices will be given in other

place.

In the setting of negatively curved space (M , g ) and Γ= π1(M ) acting on X =

∂M̃ the theorem implies that the cross-ratios on the boundaries is determined
by the Busemann cocycles when restricted to Busemann cocycles coming from
various Riemannian metrics. Hence it is a weaker statement than the marked
length spectrum rigidity and is well-known in this case. In fact, for the Buse-
mann cocycle of a closed negatively curved manifold, there is a corresponding
length cocycle for its geodesic flow. Fix one visual metric on the boundary asso-
ciated to a specified negatively curved metric. All pullbacks of Busemann cocy-
cles for different metrics are Hölder. And in this case, Theorem C can be deduced
from a Theorem of Livšic [19].

Even though it is not new in many cases, Theorem C provides us a new view-
point to see more patterns behind the marked length spectrum of an arithmetic
locally symmetric space. It is not the length themselves, but rather some iden-
tities between them determine the metric up to homothecy. Theorem A follows
from this observation. Indeed, Theorem of Livšic [19] about Hölder cocycles and
our construction together is enough to prove Theorem A.

It is natural to ask: what is the case for non-arithmetic lattices? The short
answer is: they do not have marked length pattern rigidity in general.

Theorem D. For a general hyperbolic surface (S, g ), the relation Rg is the minimal

relation among all relations from hyperbolic metrics. In other words, Rg is a sub-

relation of Rg ′ for any hyperbolic metric g ′ on S.

Here, hyperbolic metric means a Riemaniann metric with constant curvature
−1. Hyperbolic surface is a surface with a finite volume complete hyperbolic
metric.

We do not know any example of higher dimension locally symmetric manifold
which do not have the marked length pattern rigidity. By Mostow rigidity, the
locally symmetric structure is determined by the fundamental group itself. We
need more tools to discuss general metrics.
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Similar to Remark 1.4, Theorem A and B have weaker generalization to finite
volume manifolds and orbifolds. Since all these need a slightly different setup
and the results are weaker, we discuss them in the appendix.

The paper is organized as follows. In Section 2 we recall some basic facts
about Gromov-hyperbolic spaces, Patterson-Sullivan measure and Busemann
cocycles. We also define the B-cocycles there. In Section 3, we give some exam-
ples of geometric boundaries and show some very basic properties. In Section
4, we prove Theorem C. Section 5 contains a proof of Theorem B. Section 6 is
concerned on extension of B-cocycles from arithmetic lattice Γ < G to the Lie
group G . In Section 7, we apply the results in Section 6 to negatively curved Rie-
maniann manifolds, this yields Theorem A. In section 8, we discuss the marked
length spectrum of hyperbolic surfaces. And give examples of hyperbolic met-
ric without marked length patter rigidity. The Appendix A is devoted to show
marked length spectrum rigidity for cocycles of general acylindrical groups.

I would like to acknowledge and give my thanks to my supervisor Alexander
Furman who made this work possible. His guidance and advises help me work
over all the challenges.

2. GROMOV-HYPERBOLIC SPACES AND PATTERSON-SULLIVAN MEASURES

We use [5] as a general reference for Gromov hyperbolic spaces, and here only
add some specifics that are not covered there.

Let X be a proper CAT(-1) space. Fix a base-point p ∈ X . The Gromov prod-
uct (·, ·)p on X ×X extends continuously and therefore canonically to a function

X × X → [0,∞], and for each ǫ ∈ (0,1] the expression dǫ(ξ,η) = e−ǫ(ξ,η)p defines a
metric on the boundary ∂X = X \ X compatible with the topology of X (cf. Bour-
don [4]). We call them visual metrics. In particular, ξ = η on ∂X if and only if
(ξ,η)p =∞.

Let (M , g ) be a strictly negatively curved complete Riemannian manifold, the
universal cover of M is a Gromov-hyperbolic space, in fact, a CAT(−k) space,
for some k > 0. Its visual boundary is the same as its Gromov boundary. By
renormalizing the metric, we see that the Gromov product extends continuously
to the boundary. There are still visual metrics dǫ for all ǫ≤ ǫ0.

2.A. Patterson-Sullivan measures.

LetΓbe a non-elementary discrete group of isometries of a connected, simply-
connected, complete Riemannian manifold (M , g ) with the curvature κ≤−a2 <

0. Denote by M = M ∪∂M the compactification of M , it is homeomorphic to a
closed ball.

In the case of dimension 2 and of constant curvature, Patterson ([23]) gave a
construction of a family of measures on ∂M indexed by points x ∈ M . It has been
extended to higher dimensions by Sullivan ([26]). Generalizing their work, a
number of authors, including Coornaert, Albuquerque, and Knieper constructed
the so-called Patterson-Sullivan measures νx on ∂M in variable curvature case.
See [1] and [18] for the construction of Patterson-Sullivan measures.
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Let us discuss some key properties of Patterson-Sullivan measures νx .

(1) Equivariance: νγx =γ∗νx for all γ ∈Γ.
(2) Explicit Radon-Nikodym derivative: For all x, y ∈ M ,

(2.1)
dνx

dνy
(ξ) = eh(g )Bx,y (ξ),

where Bx,y (ξ) is the Busemann function on M and h(g ) in the volume
entropy of M .

For points x, y ∈ M and ξ ∈ ∂M , the function B : M ×M ×∂M → R is
defined by

Bx,y (ξ) = lim
t→∞

(dX (y,γξ(t ))− t )

where γξ is the unique geodesic ray with γ(0) = x and γ(∞) = ξ.

Remark 2.1. In general, νx are just finite measures, not probability mea-

sures.

Remark 2.2. The Radon-Nikodym derivative is defined almost everywhere

with respect to νy . However, using the fact that B is continuous, and the

support of νy is the limit set of Γ, we can assume Equation (2.1) is true for

all points in the limit set of Γ.

(3) Marked length spectrum is determined by νx : When M/Γ is a manifold,
Γ is torsion free. Let γ ∈ Γ be a hyperbolic element. There is a unique
attracting fixed point γ+ of γ on ∂M .

Claim 2.3. Bx,γx (γ+) = ℓg (〈γ〉) for all x ∈ M.

Proof. By equation 2.1, we have

Bx,γx (γ+) = By,γy (γ+)+Bx,y (γ+)−Bγx,γy (γ+).

Since γ is an isometry, by the definition of Busemann function,

Bγx,γy (γ+) =Bγx,γy (γγ+)= Bx,y (γ+).

Hence Bx,γx (γ+) is independent of the choice of x. Let x be a point on
the axis of γ. The claim follows. �

For a parabolic element η, there is only one fixed point ξ on ∂M , and

Bx,ηx (ξ) = 0.

Hence we set ℓg (〈η〉) = 0.
(4) Bowen-Margulis-Sullivan geodesic current on ∂M×∂M : Fix a base point

p ∈ M . Let ǫ > 0 be small enough so that dǫ is a metrics for all x ∈ M . A
direct computation shows that

dµ(ξ,η) = dǫ(ξ,η)−2h(g )/ǫ
·d vp (ξ)d vp (η)

defines a Γ-invariant measure on ∂M ×∂M . In fact, dµ is the Bowen-
Margulis-Sullivan geodesic current. It is independent of the choice of p

and ǫ.
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2.B. Cocycles.

Recall that when X is a Γ-space, a continuous function α : Γ×X → R is called
a cocycle if for all γ, η ∈Γ, and x ∈ X ,

α(γη, x) =α(γ,ηx)+α(η, x).

For any map k : X → R, define the coboundary of k by

dk(γ, x)= k(γx)−k(x) (γ ∈Γ, x ∈ X ).

All coboundaries are cocycles.

Definition 2.4. Two cocycle α, β are called equivalent, if there is a continuous

map k : X → R such that

α−β= dk .

It is not surprising that we can define cohomology group of a Γ-space by iden-
tify all equivalent cocycles as a cohomological class. Let Z be the set of cocycles,
and B the set of coboundaries of continuous maps. Z is an abelian group, and B

is a subgroup of Z . The first cohomology group H 1
c (Γ, X ,R) is just Z /B . In fact,

it is the same thing as the usual group cohomology of Γ with coefficient C (X ,R),
all continuous map from X to R viewed as a Γ-module.

Notice that there is a more general definition of cocycles. The target could be
any second countable group, instead of R, and the cohomology is not necessarily
a group in this setting. There are also Borel cocycles and measurable cocycles
when theΓ-space X admit a non-singular measure, see [27]. Recall the following
definition in [27].

Definition 2.5. Two Borel cocycles α, β are called strictly equivalent if there is a

Borel function φ such that

α−β= dφ.

It looks a little bit strange to define strictly equivalence in this way. It is the
notion taken in [27]. The notion of equivalence of cocycles here is different form
that in [27]. We will work for continuous map in this paper in most cases. Only
refer to Borel cocycles and Borel maps for some technical issues.

Let G0 be a closed subgroup of G . Then G acts on G/G0 via left translation. Let
H be a second countable group. The following Proposition was showed in [27].

Proposition 2.6. There is a bijection
{
Bor el Coc ycl es G ×G/G0 → H

}
→ Hom(G0, H )

between strict equivalence classes of Borel cocycles and conjugacy classes of ho-

momorphisms.

2.C. B -Cocycles.

There are Busemann-cocycles closely related to the Patterson-Sullivan mea-
sures. Fix a base point o ∈ M , the Busemann-cocycle B (γ,ξ) is given by

B (γ,ξ) =Bγ−1o,o(ξ) =
1

h(g )
ln

d (γ−1
∗ νo)

dνo
(ξ),
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for all γ ∈Γ and ξ ∈ ∂M .
By (3) in 2.A, the marked length spectrum is determined by the Busemann-

cocycle. And (4) in 2.A is equivalent to

−2(γξ,γη)o +2(ξ,η)o = B (γ,ξ)+B (γ,η)

for all γ ∈Γ, ξ,η ∈ ∂M and ξ 6= η.
In general, for any Γ-space X .

Definition 2.7. A cocycle c : Γ×X → R is a B -cocycle if

(1) c(γ,ξ) is continuous for all γ ∈Γ.

(2) There exist continuous function C : X ×X \∆→ R such that

C (γx,γy)−C (x, y) = c(γ, x)+c(γ, y)

for all γ ∈Γ, x 6= y ∈ X where ∆ is the diagonal of X ×X .

We say (c ,C ) is a B-cocycle when it is necessary to point out the function C .

For any Γ-space X , there is diagonal action of Γ on X ×X . Consider the map

[i ] : H 1
c (Γ, X ,R) → H 1

c (Γ, X ×X \∆,R),

defined by i (α)(γ, (x, y)) = α(γ, x)+α(γ, y). Then B-cocycles are exactly the co-
cycles represent classes in Ker([i ]).

Lemma 2.8. In a B-cocycle (c ,C ), the function C : X × X \∆→ R determines the

cocycle c : Γ×X−→R.

Proof. Let h(x, y, z)=C (x, y)+C (x, z)−C (y, z) for three pairwise different points
x, y , z ∈ X . Then

2c(γ, x) = h(γx,γy,γz)−h(x, y, z).

�

3. GEOMETRIC BOUNDARIES

In this section, we give some basic properties of geometric boundaries which
will be useful in next section.

Recall the definition of geometric boundaries.

Definition 3.1. Let Γ be a topological group. A nontrivial compact Hausdorff Γ-

space X is called a geometric boundary if

(1) Γ acts on X minimally,

(2) Every γ ∈Γ\ {e} is hyperbolic,

(3) There are Γ-quasi-invariant measures µ, µ′ on X such that the Γ-action

on (X ×X ,µ×µ′) is ergodic.

If in addition, µ=µ′, we call X a symmetric geometric boundary.

Note that the support of µ is a Γ-invariant closed subset of X . Hence µ has
full support since the Γ-action is minimal. Same is true for µ′.

In Lemma 2.8, it was showed that for a B-cocycle (c ,C ), the function C deter-
mines the cocycle c . On the other hand, we have the following:
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Lemma 3.2. Let Γ-space X be a geometric boundary, and (c ,C ) a B-cocycles on

X . Then the cocycle c determines C up to a constant.

Proof. Assume (c ,C ) and (c ,C ′) are both B-cocycles.
By definition C −C ′ is a Γ-invariant function. Since Γ is ν×ν′-ergodic, ν×ν′

has full support and C −C ′ is continuous, C −C ′ is a constant function. �

We give some examples of geometric boundaries.

Example 3.3. Let Γ be the fundamental group of a closed negatively curved Rie-

mannian manifold (M , g ), and ∂M̃ the boundary of the Riemanian universal

cover M̃. The Γ-space ∂M̃ is a symmetric geometric boundary.

(1) Since the limit set of Γ coincide with ∂M̃ , the action is minimal.
(2) It is well-known and can be deduced by the classification of isometries

of hyperbolic spaces.
(3) Consider the Patterson-Sullivan measuresνx on ∂M̃ . There is the Bowen-

Margulis-Sullivan geodesic current on ∂2M̃ which is in the measure class
[νx ×νx ]. It is well-known that the Bowen-Margulis-Sullivan geodesic
current is Γ-ergodic.

Example 3.4. Now, with same setting as in Example 3.3. Let H ⊳Γ be a normal

subgroup such that Γ/H is a finite extension of Z or Z2. Then ∂M̃ is a symmetric

geometric H-boundary.

(1) Since H is normal, the limit set of H is the same as the limit set of Γ. The
action is minimal.

(2) H is not a trivial group.
(3) The Bowen-Margulis-Sullivan geodesic current is a H-invariant ergodic

measure (cf. Guivarc’h [12]).

Now we give some basic properties of geometric boundaries. All statements
are well known. We give some short proofs for completeness.

Lemma 3.5. Geometric boundaries have infinite many points.

Proof. Let X be a geometric boundary of Γ. There exists a hyperbolic element
γ by (2) in Definition 1.2. Since γ fixes γ+, γ−, and γ acts on X non-trivially, X

contains at least 3 points. For any x 6= γ+, x 6=γ−,

lim
n→+∞

γn x = γ+.

It is clear that γn x 6=γ+ for all n. This completes the proof �

It is not hard to show that in fact, geometric boundaries are perfect spaces.

Lemma 3.6. Let Γ-space X be a geometric boundary. Let γ be a hyperbolic ele-

ment. There exist θ ∈Γ such that θγ+ 6= γ−, θγ− 6= γ−.

Proof. Assume not. Take any element θ in Γ. θγ+ = γ− or θγ− = γ−.
If θγ+ = γ−, θ2γ+ = θγ− 6= γ−. It follows that θ2γ− = γ−. Hence θγ− = θ−1γ− =

γ+.
The Γ-orbit of γ− is just the set of two points {γ+,γ−}. The action of Γ is not

minimal by Lemma 3.5. This is a contradiction. �
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A direct computation shows that

Lemma 3.7. Conjugations of a hyperbolic element are hyperbolic. And

(θγθ−1)± = θγ±

when γ is hyperbolic.

Lemma 3.8. Let γ,η ∈Γ with γ hyperbolic, then ηγn is hyperbolic for all but pos-

sibly one n. Furthermore, if ηγ+ 6= γ−, then

lim
n→+∞

(ηγn)+ = ηγ+,

lim
n→+∞

(ηγn)− = γ−.

Proof. First claim follows by the fact that γ acts on X non-trivially and has an
infinite order. Hence at most one of ηγn acts trivially on X .

Let U , V be two open sets such that U ∩V =;, ηγ+ ∈U , γ− ∈V .
By definition, there exists M such that for all n ≥ M , γn(X −V ) ⊂ η−1U . It

implies ηγn(X −V ) ⊂U . Therefore ηγn is hyperbolic for n big enough. And for
the hyperbolic element ηγn , when x 6= (ηγn)−,

lim
k→+∞

(ηγn)k x = (ηγn )+.

Hence (ηγn)+ ∈U for n big enough. Since U can be chosen arbitrary small,

lim
n→∞

(ηγn)+ = ηγ+.

Similarly, for n big enough, γ−nη−1(X −U ) ⊂V and (γ−nη−1))+ ∈V .

lim
n→∞

(ηγn)− = lim
n→∞

(γ−nη−1))+ = lim
n→∞

η(η−1γ−n))+ = γ−,

since η−1γ−n = η−1(γ−nη−1)η. �

4. MARKED LENGTH SPECTRUM RIGIDITY FOR B -COCYCLES

We prove Theorem C in this section.
Before the proof, we first make the following observation. Let (c ,C ) be a B-

cocycle over a geometric Γ-boundary X . Since

c(γ,γ+)+c(γ,γ−) =C (γγ+,γγ−)−C (γ+,γ−) = 0

for all γ ∈Γ\ {1}. We have
c(γ,γ−) =−c(γ,γ+).

By

0 = c(1,γ−)= c(γ−1γ,γ−)= c(γ−1,γγ−)+c(γ,γ−) = c(γ−1,γ−)+c(γ,γ−),

ℓc (〈γ−1
〉)= c(γ−1,γ−) = c(γ,γ+) = ℓc (〈γ〉).

We restate Theorem C here for reader’s convenience.

Theorem 4.1. Let Γ-space X be a geometric boundary and α,β : Γ× X → R two

B-cocycles. Then ℓα = ℓβ if and only if [α] = [β] in H 1
c (Γ, X ,R).
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Proof. The ‘if part’ is trivial.
For ‘only if part’, let δ = α−β. It is again a B-cocycle and ℓδ = 0. We need to

show δ = dϕ for some continuous function ϕ. Let us assume the pair (δ, f ) is a
B-cocycle.

The proof has 3 steps.

Step 1: The cocycle δ is bounded.
Choose any hyperbolic element γ ∈ Γ with fixed points γ+ and γ−. Let η ∈ Γ

be any element such that ηγ+ 6= γ−. We have

δ(ηγn ,γ+) = δ(η,γnγ+)+δ(γn ,γ+) =δ(η,γ+)

for all n by assumption.
Now for n big enough,

δ(η,γ+) = δ(ηγn ,γ+) = δ(ηγn ,γ+)+δ(ηγn , (ηγn)−).

Here, the last equality follows from the fact δ(ηγn , (ηγn)−) =−δ(ηγn , (ηγn)+) = 0.
Since (δ, f ) is a B-cocycle,

δ(ηγn ,γ+)+δ(ηγn , (ηγn)−) = f (ηγnγ+,ηγn(ηγn)−))− f (γ+, (ηγn)−)).

The right hand side is just f (ηγ+, (ηγn)−))− f (γ+, (ηγn)−)).
Taking limit as n →+∞, by Lemma 3.8,

δ(η,γ+)= f (ηγ+,γ−)− f (γ+,γ−).

Choose θ ∈Γ such that θ(γ+) 6= γ−, θ(γ−) 6= γ−. This is possible by Lemma 3.6.
The same argument for θγθ−1 instead of γ as before implies when ηθγ+ 6= θγ−,

δ(η,θγ+) = f (ηθγ+,θγ−)− f (θγ+,θγ−).

Fix two open neighbourhood U1 and U2 of γ− and θγ−, respectively such that
U1 ∩U2 =;, γ+ ∉U1, θγ+ ∉U1, θγ+ ∉U2. The existence of U1 and U2 is guaran-
teed since X is Hausdorff.

Recall that f is continuous, in particular, f (·,γ−) : X − {γ−} → R is continuous.
Since X is compact, and U1 is open, X −U1 is compact. The extreme value the-
orem provides M1 with | f (x,γ−)| ≤ M1 for all x ∉ U1. Similarly, there exists M2

with | f (y,θγ−)| ≤ M2 for all y ∉U2.
Set M = max{M1, M2}. Now we are ready to show that δ is bounded.
First, we show δ has an uniform bound on a point. For any element ζ ∈ Γ.
Case 1: ζγ+ ∉U1. Then

|δ(ζ,γ+)| = | f (ζγ+,γ−)− f (γ+,γ−)| ≤ 2M .

Case 2: ζγ+ ∈U1. Then ζγ+ ∉U2, and

|δ(ζθ−1,θγ+)| = | f (ζγ+,θγ−)− f (θγ+,θγ−)| ≤ 2M ,

|δ(θ,γ+)| = | f (θγ+,γ−)− f (γ+,γ−)| ≤ 2M .

Hence

|δ(ζ,γ+)| = |δ(ζθ−1θ,γ+)| = |δ(ζθ−1,θγ+)+δ(θ,γ+)| ≤ 4M .

In both cases, there is an uniformly bounds: |δ(ζ,γ+)| ≤ 4M for all ζ ∈Γ.
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Second, δ is bounded on a Γ-orbit. By cocycle identity,

δ(ρ,̺γ+)= δ(ρ̺,γ+)−δ(̺,γ+)

is bounded by 8M for all ρ,̺ ∈Γ.
Since the orbit of γ+ is dense and δ is a continuous cocycle, δ is globally

bounded.

Step 2: Find φ as a Borel function.
It is well known that a bounded cocycle is a coboundary dϕ′ for some Borel

function ϕ′, see, for example, [9]. It is trivial to show that f (x, y)−ϕ′(x)−ϕ′(y) is
a Γ-invariant Borel function.

Step 3: φ is essentially continuous.
Γ acts ergodicly on (X ×X ,µ×µ′). We know f (x, y)−ϕ′(x)−ϕ′(y) is constant

µ×µ′-a.e.. A Fubini type argument shows that there is a µ′-conull subset A, such
that for all y0 ∈ A, f (x, y0)−ϕ′(x)−ϕ′(y0) is constant µ-a.e.. ϕ′(x) is µ-a.e. equal
to the continuous function ϕ(x) := f (x, y0)−ϕ′(y0) up to a constant. Technically,
f (y0, y0) is undefined. Hence ϕ is just continuous on X \ {y0}. However, run the
same argument for y1 6= y0 in A. And by gluing the two functions together, ϕ is
continuous on X .

Since dϕ and δ are two continuous cocycles µ-a.e. identical, they are the
same cocycle, and δ= dϕ. �

The marked length spectrum ℓ defines a map from H 1(Γ, X ,R) to C (Γ)R. What
we have showed so far is that when restricted on Ker([i ]), this map is injective.
The image of this map is mysterious to us. ℓ is not injective in general even for
geometric boundaries.

5. PROOF OF THEOREM B

Proof. Let (M , g ) be a closed Riemannian manifold of negative curvature, Γ =

π1(M ) its fundamental group, X = ∂M̃ – boundary of the universal covering, and
H < Γ a subgroup that acts minimally on X .

Let µ be a symmetric, generating measure on H that has a finite first moment
with respect to the distance dg̃ on M̃ , i.e.

∑
h∈H µ(h) ·dg̃ (e,h) < ∞. It follows

from the work of Kaimanovich [16, §7.3] that the Poisson boundary of (H ,µ) is
realized on X , more precisely that there is a (unique) µ-stationary probability
measure ν on X , so that (X ,ν) is the Poisson boundary for (H ,µ).

It follows from Bader and Furman [2, Theorem 2.7] that ν×ν on X × X is H-
ergodic. Therefore X is a symmetric H-boundary.

Let g1 and g2 be two negatively curved Riemannian metrics on M , and let
β1,β2 ∈ Z 1

c (Γ, X ,R) be the Busemann cocycles associated with the lifted metrics
g̃1 and g̃2 on M̃ . Recall that these are B-cocycles: there exist (geometrically de-
fined) continuous functions f1, f2 : X ×X \∆→ R so that

βi (γ, x)+βi (γ, y)= fi (γx,γy)− fi (x, y) (γ ∈Γ, x 6= y ∈ X , i = 1,2).
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The restrictions β̄i : H × X → R are still B-cocycles, namely (β̄i , fi ). By assump-
tion, ℓβ̄1

= ℓβ̄2
. By marked length spectrum rigidity of cocycles, there exist con-

tinuous map ϕ such that β̄1 − β̄2 = dϕ.
Direct calculation show that the continuous function X ×X \∆→ R given by

f1(x, y)− f2(x, y)−ϕ(x)−ϕ(y)

is H-invariant. Since H is ν×ν-ergodic, while ν has full support the function
is ν×ν-a.e. constant. Being continuous, and since ν×ν has full support on
X ×X , the functions are actually constant. This implies that β1−β2 = dϕ. Hence
ℓβ1 = ℓβ2 on Γ. In other words, (M , g1) and (M , g2) have the same marked length
spectrum.

The results for surface and locally symmetric spaces follow from the marked
length spectrum rigidity. �

6. EXTENSION OF B -COCYCLES

In this section, Γ will be a torsion-free uniform arithmetic lattice in a rank 1
simple center-free Lie group G . Let X be the Furstenberg boundary of G , which
is the same as the Gromov boundary of G/K . All cocycles in this section will
be understood defined over X . Let G ′ < G be a subgroup. We call a cocycle
ω : G ′×X → R a cocycle of G ′.

Denote by α the Busemann-cocycle associated to the locally symmetric space
Γ\G/K with base point [e]. Let (β, f ) be another B-cocycle of Γ. Define equiva-
lence relation Rα on CΓ by

(〈γ1〉,〈γ2〉)∈ Rα ⇐⇒ ℓα(〈γ1〉) = ℓα(〈γ2〉).

We define Rβ similarly.
The main goal for this section is the following Proposition.

Proposition 6.1. If Rα is a sub-relation of Rβ, then there is a cocycle β̄ : G×X → R

which extends β to the Lie group G.

There are two steps for this extension. First, we extend β to the commensu-
rability subgroup CommG (Γ) of Γ in G . Then we extend β from CommG (Γ) to
G using a density type argument. We shall use the following observation. Since
α is a restriction of a G-cocycle G × X → R, if γ1,γ2 ∈ Γ are conjugate in G , then
(〈γ1〉,〈γ2〉)∈ Rα and so (〈γ1〉,〈γ2〉)∈ Rβ.

6.A. Extension to the Commensurability subgroup.

Let s be an element of CommG (Γ). By definition, there are finite index sub-
groups Γ

′, Γ′′ of Γ, so that sΓ′s−1 = Γ
′′. Denote by β′ and β′′ the restrictions of

β : Γ×X → R toΓ
′ andΓ

′′ respectively. There is another cocycle s∗β
′′ of Γ′ defined

by
s∗β

′′(γ,ξ) =β′′(sγs−1, sξ) (γ ∈Γ
′).

Similar construction gives α′ and s∗α
′′.

Since γ and sγs−1 are conjugate in G , it follows that (〈γ〉,〈sγs−1〉) ∈ Rα′ ⊂ Rβ′

for γ ∈ Γ
′, and so ℓβ′ = ℓs∗β′′ on Γ

′. Note that (s∗β
′′, fs ) is a B-cocycle, where
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fs (x, y)= f (sx, s y). Applying the marked length spectrum rigidity for cocycles of
Γ
′, there exists a continuous function ϕs such that s∗β

′′−β′ = δϕs .
Now f (sξ, sη)− f (ξ,η)−ϕs (ξ)−ϕs (η) is a Γ

′-invariant continuous function.
Let m be a G-invariant measure on X ×X \∆. Recall that Γ′ acts on (X ×X \∆,µ)
ergodicly by Howe-Moore Ergodicity Theorem, f (sξ, sη)− f (ξ,η)−ϕs (ξ)−ϕs (η)
is m-a.e. a constant. Since it is a continuous function and m has full support,
the function is constant. Let

β̂(s,ξ)=ϕs (ξ)+
f (sξ, sη)− f (ξ,η)−ϕs (ξ)−ϕs (η)

2
.

It is clear that

f (sξ, sη)− f (ξ,η) = β̂(s,ξ)+ β̂(s,η).

We now shows that β̂ defines a cocycle of CommG (Γ). Define a new function
h(ξ,η,ω) = f (ξ,η)+ f (ξ,ω)− f (η,ω) on triples of X . It is straightforward that for
all s ∈ CommG (Γ), ξ,η,ω ∈ X pairwise different,

h(sξ, sη, sω)−h(ξ,η,ω) = 2β̂(s,ξ).

The left hand side is a cocycle. Hence the right hand side is a cocycle, too. How-
ever, the right hand side depends on the first factor only.

It implies that β̂(s,ξ) is a B-cocycle of CommG (Γ).

6.B. Extension to G.

By the fact that Γ is arithmetic, CommG (Γ) is dense in G with the Hausdorff
topology, see [27].

We will finish the argument by the following lemma.

Lemma 6.2. Let L < G be a dense subgroup, with a B-cocycle (β̂, f ) of L, then β̂

extends to a B-cocycle (β̄, f ) of G.

Proof. Same as before, define h(ξ,η,ω) = f (ξ,η)+ f (ξ,ω)− f (η,ω). It is clear that
for all l ∈ L, ξ,η,ω ∈ X ,

h(lξ, lη, lω)−h(ξ,η,ω)= 2β̂(l ,ξ).

Fix an arbitrary element g ∈G , and a sequence {ln}∞n=1 in L so that

lim
n→∞

ln = g .

For any element l ∈ L, we can identify β̂(l ,ξ) as a function on triples. With this
in mind,

2β̂(ln ,ξ)−2β̂(lm ,ξ) =h(lnξ, lnη, lnω)−h(lmξ, lmη, lmω).

The right hand side is the same as

Ω(n,m) := [h(lnξ, lnη, lnω)−h(gξ, gη, gω)]− [h(lmξ, lmη, lmω)−h(gξ, gη, gω)].

Fix ξ, we can choose η, ω so that the three points are different pairwise. G acts
on X continuously. Hence

lim
n,m→∞

Ω(m,n) = 0
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uniformly on compact subset of pairwise different triples. That is, β̂(ln , x) con-
verges uniformly on compact set. It implies that β̂(ln ,ξ) is a Cauchy sequence
that uniformly converge to some continuous function, denote by β̄(g ,ξ). We
have

h(gξ, gη, gω)−h(ξ,η,ω) = 2β̄(g ,ξ).

Hence as before β̄ is a cocycle, and β̄(g ,ξ)+ β̄(g ,η) = f (gξ, gη)− f (ξ,η) by defi-
nition of h. �

7. MARKED LENGTH PATTERN RIGIDITY

We prove marked length pattern rigidity here.

Proof of Theorem A. Let Γ be the fundamental group of a closed arithmetic lo-
cally symmetric manifold (M , g ). And (M ′, g ′) is another closed Riemannian
manifold with negative curvature and homotopically equivalent to M .

Let (M̃ , g̃ ) and (M̃ ′, g̃ ′) be the Riemannian universal cover of (M , g ) and (M ′, g ′),
respectively. We first identify their Gromov boundaries.

The lifting map of the homotopical equivalence map between M and M ′ is a
quasi-isometry of (M̃ , g̃ ) and (M̃ ′, g̃ ′). This map extends to a Γ-equivalent home-
morphism Φ of their boundaries.

We then pull back the Busemann-cocycle β′ for (M̃ ′, g̃ ′) to a cocycle on the
boundary of (M̃ , g̃ ), call it β. β is given by β(γ,ξ) =β′(γ,Φξ). Notice that the pull
back does not change the marked length spectrum of cocycles, since Φ maps
γ+ ∈ ∂M̃ to γ+ ∈ ∂M̃ ′ for all γ ∈ Γ \ {1}. Furthermore, pullbacks of B-cocycles are
B-cocycles.

Let α be the Busemann-cocycle for the locally symmetric manifold (M , g )
with base-point [e]. α is a restriction of a cocycle ᾱ of G . By assumption, Rα

is a subrelation of Rβ. Proposition 6.1 implies that β extends to a cocycle β̄ for
G .

Recall that the Borel G-cocycle on the Furstenberg boundary X = G/P up to
strictly equivalence is classified by Hom(P,R) = Hom(A,R) up to equivalence
[27]. In rank one case, A = R. Each class in Hom(A,R) has a B-cocycle repre-
sentative λᾱ for some λ ∈ R.

It follows that the continuous B-cocycle β̄ is strictly equivalent to λᾱ for some
λ∈ R. It is clear that marked length spectrum of cocycle is an invariant of strictly
equivalence relation. We conclude that there exist λ such that λℓg = ℓg ′ . In fact,
by marked length spectrum rigidity for cocycles, β−λα= dϕ for some continu-
ous map ϕ.

Then the Riemannian manifold (M ′, 1
λg ′) have the same marked length spec-

trum as (M , g ). By marked length spectrum rigidity for locally symmetric mani-
folds [13], (M , g ) and (M ′, 1

λg ′) are isometric. �

8. HYPERBOLIC SURFACES WITHOUT MARKED LENGTH PATTERN RIGIDITY

In this section, we will show that most finite volume complete hyperbolic sur-
faces do not have marked length pattern rigidity.
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8.A. Fricke moduli.

We first introduce a good coordinate system of the Teichmuller space for our
purpose. It is called Fricke space in [15].

Let S be a surface with genus g and n punctures where 2−2g −n < 0. Denote
Γ the fundamental group of S, and Tg ,n the Teichmuller space of S. A hyperbolic
structure on S induce an lattice embedding of Γ into G := PSL2(R).

Let {αi , βi , γ j }, (1 ≤ i ≤ g , 1 ≤ j ≤ n) be a canonical system of generators of Γ
with the fundamental relation

g∏

i=1
[αi ,βi ]

n∏

j=1
γ j = e.

Assume π is an lattice embedding of Γ into G . Up to conjugacy, we impose the
normalization conditions:

(1) π(α1) has its repelling and attractive fixed points at 0 and∞, respectively,
(2) π(β1) has a fixed point at 1.

Then the matrix representation of π(α1) and π(β1) are given by
(
λ 0
0 λ−1

)
, λ> 1,

(
a1 b1

c1 d1

)
, a1d1 −b1c1 = 1, a1 +b1 = c1 +d1 > 0

respectively.
For 2 ≤ i ≤ g , π(αi ) and π(βi ) are represented uniquely by the matrices

(
ai bi

ci di

)
, ai di −bi ci = 1, ci > 0,

(
a′

i
b′

i
c ′

i
d ′

i

)
, a′

i
d ′

i
−b′

i
c ′

i
= 1, c ′

i
> 0,

Similarly, for 1 ≤ j ≤n, π(γ j ) is written uniquely in the form
(

e j f j

g j h j

)

with e j h j − f j g j = 1, e j +h j = 2.
We define the Fricke coordinates by assign a lattice embedding to the se-

quence (ai ,ci ,di , a′
i
,c ′

i
,d ′

i
,e j , g j ), 2 ≤ i ≤ g , 1 ≤ j ≤ n. In [15], it is showed that

the Fricke coordinates defines an embedding of the Teichmuller space Tg ,n into
R6g−6+2n.

We recall the algorithm to recover π from its Fricke coordinates. For more
details, see [15].

It is clear that π(αi ), π(βi ) and π(γ j ), 2 ≤ i ≤ g , 1 ≤ j ≤ n are uniquely deter-
mined by the Fricke coordinates. Note that all the bi , b′

i
, 2 ≤ i ≤ g are rational

functions of the coordinates. The same is true for f j and h j , 1 ≤ j ≤ n.
What remains to show is that π(α1) and π(β1) are determined by the Fricke

coordinates. Let

(π(
g∏

i=2
[αi .βi ]

n∏

1=1
γ j ))−1

=

(
a b

c d

)
.
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From the fundamental relation of Γ:
(
λ 0
0 λ−1

)(
a1 b1

c1 d1

)(
λ−1 0

0 λ

)
=±

(
a b

c d

)(
a1 b1

c1 d1

)
.

Replacing

(
a b

c d

)
by

(
−a −b

−c −d

)
, if necessary, we have

(8.1) λ2
=

a −1

1−d
.

And

a1 =
b

1−a
c1,

d1 =
c

1−d
b1.

By a1 +b1 = c1 +d1,
a +b −1

1−a
c1 =

c +d −1

1−d
b1.

Recall that a1d1 −b1c1 = 1, it follows

(8.2) c2
1[

bc(a +b −1)

(1−a)2(c +d −1)
−

c +d −1

1−d
] = 1.

Equation 8.1 and 8.2 show that λ2 and c2
1 are rational functions of the Fricke

coordinates.
From now on, we identify Teichmuller space as a subset of R6g−6+2n via Fricke

coordinates.

8.B. Length of geodesic and Horowitz’s Theorem.

For any hyperbolic element A in PSL2(R), let ℓA be the translation length of A.
Then |tr(A)| = 2cosh(ℓA). Hence the marked length pattern of a Fuchsian group
is determined by traces of its elements.

Let π be a lattice representation of the surface group Γ into PSL2(R). Denote
the Fricke coordinates of π by X . Recall that λ and c1 are determined by equa-
tions 8.1, 8.2 and the normalization conditions.

Let s, t be two real numbers with st 6= 0. Then there is a family of representa-
tions π′

s,t : F2g+n → GL2(R),

π′
s,t (α1) =

(
s 0
0 s−1

)
,

π′
s,t (β1) =

(
bt

1−a
(1−d)(a+b−1)t
(1−a)(c+d−1)

t (a+b−1)ct
(1−a)(c+d−1)

)
,

π′
s,t (αi ) =

(
ai

ai di−1
ci

ci di

)
,

π′
s,t (βi ) =

(
a′

i

a ′
i
d ′

i
−1

c ;i

c ;i d ′
i

)
,
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π′
s,t (γ j ) =

(
e j

2e j−e2
j
−1

g j

g j 2−e j

)
,

2 ≤ i ≤ g , 1 ≤ j ≤ n where a, b, c , d is given by
(

a b

c d

) g∏

i=2
[π′

s,t (αi ),π′
s,t (βi )]

n∏

j=1
π′

s,t (γ j ) =±

(
1 0
0 1

)

as before. When s =λ and t = c1, π′
λ,c1

induces the representation π.

It is clear that all the traces of π′
s,t (w ) where w ∈ F2g+n are rational functions

of X , s and t . An induction shows that for any word w ∈ F2g+n , tr(π′
s,t (w )) has

the form

tr(π′
s,t (w ))= t k

∞∑

l=−∞

ωi sl

where ωi are rational functions on X , k ∈ Z and all but finite many of ωi are 0.
Fix s and t . There are four different representations π′

±s,±t all with the same
traces up to sign. Indeed, we just replace π′

s,t (α1) and π′
s,t (β1) by ±π′

s,t (α1) and
±π′

s,t (β1), respectively. It follows that (tr(π′
±s,±t (w )))2 is independent of the choice

of these four representations. Hence (tr(π′
s,t (w )))2 has the form

(tr(π′
s,t (w )))2

= t 2k
∞∑

l=−∞

Ωi s2l

where Ωi are rational functions on X , and all but finite many of Ωi are 0.
Let s =λ, t = c1. π′

λ,c1
is indeed a representation of F2g+n to SL2(R). By 8.1 and

8.2, (tr(π′
λ,c1

(w )))2 is a rational function on X for all w ∈ F2g+n . Moreover,

π′
λ,c1

(
g∏

i=1
[αi ,βi ]

n∏

j=1
γ j ) =±

(
1 0
0 1

)
.

Hence π′
λ,c1

is a lifting of the representation π. Let p be the natural projection

of F2g+n to Γ. The traces of π and π′
λ,c1

are the same up to sign, i.e., for any
w ∈ F2g+n ,

(8.3) tr(π′
λ,c1

(w)) =±tr(π(p(w ))).

We conclude that (tr(π(γ)))2 are rational functions on X for all γ ∈ Γ. Since
Teichmuller space is an open subset of R6g−6+2n in the Hausdorff topology, it is
Zariski dense. There are unique extensions of (tr(π(γ)))2 as rational functions on
R6g−6+2n. We call the function (tr(π(γ)))2 the rational function of γ, and denote
it by Qγ.

There is a stronger version from a theorem of Horowitz [14].

Theorem 8.1. Let F = 〈s1, s2, · · · , sm〉 be a free group on m generators. For any

word w ∈ F . There is a polynomial Pw depends only on w with integer coefficients

in 2m −1 characters such that for any representation φ : F → SL2(R),

tr(φ(w )) = Pw (t1, t2, · · · , t12, · · · , t12···m),

where ti1i2···iv
= tr(φ(si1 si2 · · · siv

)), 1 ≤ i1 < i2 < ·· · < iv ≤m.
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Define a relation Rmin on Γ as follows: γRminη when Qγ =Qη. It is clear now
that for any hyperbolic metric g on S, Rmin is a sub-relation of Rg .

For any γ and η ∈ Γ, the rational equation Qγ = Qη defines a algebraic sub-
set of R6g−6+2n. The intersection of this set and the Teichmuller space is either
everything or a subset of positive codimension. Since there are just countably
many pair of elements, we get countably many algebraic subsets of positive
codimension. By dimension reasons or refer to Lebesgue measure, we know
that the union of all these countable subsets of positive codimension Tsingular is
a proper subset of the Teichmuller space.

Choose two points in the complimentary of Tsingular. We have two hyperbolic
metrics g1 and g2, with Rmin = Rg1 = Rg2 . Hence g1 do not share marked length
pattern rigidity.

APPENDIX A. GENERAL GEOMETRIC BOUNDARIES

We generalize our result to general acylindrical groups in this appendix. The
proof are almost the same as in the paper. We just point out some necessary
changes and restate the theorems in this case.

General acylindrical groups and their Possion-Furstenberg boundaries are
not necessarily geometric boundary, since there are elliptic and parabolic ele-
ments. To deal with it, we introduce the following notation.

Let X be a Γ-space and γ ∈ Γ acts on X hyperbolicly. For any η ∈ Γ such that
ηγ+ 6= γ−, let

Aη,γ =
{

n / ηγn i s h y per bol i c.
}
=

{
n / γnη i s h y per bol i c.

}
.

The last equation is true because ηγn = η(γnη)η−1. Notice that Aη,γ = Aη−1,γ−1 .

Definition A.1. Let Γ be a topological group. A nontrivial compact Hausdorff

Γ-space X is call a general geometric boundary if

(1) Γ acts on X minimally,

(ii) There are hyperbolic elements and sup Aη,γ = +∞ for all hyperbolic ele-

ment γ when ηγ+ 6= γ−,

(3) There are Γ-quasi invariant measures µ, µ′ on X such that Γis µ×µ′-

ergodic.

If in addition, µ=µ′, we call X a symmetric general geometric boundary.

We just replace (2) in the definition of geometric boundary by (i i ).
First, we show that general acylindrical groups and their Possion-Furstenberg

boundaries are general geometric boundaries.
Recall that a group G is called acylindrically hyperbolic if G admits a non-

elementary acylindrical isometric action on a geodesic Gromov-hyperbolic space
M . It was showed by Maher and Tiozzo in [20] that the Furstenberg-Poisson
boundary of a spread-out generating measure on G is the same as the limit set
of G in ∂M with the hitting measure. By the work of Bader and Furman [2], (3)
follows. (1) is true since G acts on its limit set minimally.

For (i i ), recall that there is visual metric d on the limit set X . For hyperbolic
element γ, and any compact subset K ⊂ X − {γ−}, there exist L, κ > 0 such that
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d (γn x,γ+) ≤ L exp(−nκ) for all x ∈ K . Let η ∈ Γ. η acts on (X ,d ) by Lipschitz
homemorphism. Take an open neighbourhood U of ηγ+ with γ− ∉U . There is
a N such that for all n ≥ N , γnU ⊂ η−1U . Increasing n if necessary, ηγn |U is a
contraction. Hence there is a contracting fixed point of ηγn in U . By classifying
of isometries of hyperbolic spaces, ηγn is hyperbolic for all n big enough.

Second, all lemmas in section 3 still hold. The proofs are the same, we restate
them here.

Lemma A.2. General geometric boundaries have infinite many points.

Lemma A.3. Let Γ-space X be a general geometric boundary. Let γ be a hyperbolic

element. There exist θ ∈Γ such that θγ+ 6=γ−, θγ− 6= γ−.

Lemma A.4. Conjugations of a hyperbolic element are hyperbolic. And

(θγθ−1)± = θγ±

when γ is hyperbolic.

Lemma A.5. Let γ and η ∈Γ with γ hyperbolic. If ηγ+ 6= γ−, then

lim
n∈Aη,γ,n→∞

(ηγn)+ = ηγ+,

lim
n∈Aη,γ,n→∞

(ηγn )− = γ−.

Define the marked length spectrum function for general cocycleβ on a general
geometric boundary X by setting

(A.1) ℓβ(〈γ〉)=β(γ,γ+)

for all hyperbolic elements γ ∈Γ\ {1}.
The same proof of Theorem C using these lemmas gives

Theorem A.6. Let Γ-space X be a general geometric boundary andα,β : Γ×X → R

two B-cocycles. If ℓα = ℓβ, then α−β = dϕ for some continuous function ϕ. In

other words, [α] = [β] in H 1
c (Γ, X ,R).

We generalise the definition of Marked length spectrum function to finite vol-
ume negatively curved manifolds.

Let (M , g ) be a complete finite volume manifold with negative curvature. The
fundamental group Γ = π1(M ) contains parabolic elements. Let γ ∈ Γ be para-
bolic, there is arbitrary short closed geodesic represents γ. We take the conven-
tion that ℓg (〈γ〉) = 0 for parabolic classes. It was called minimal marked length
spectrum in some papers. It is the infimum of the length of all closed geodesics
in class 〈γ〉. We define the marked length pattern by the same way as before:

Rg =
{
(c1,c2) ∈CΓ×CΓ / ℓg (c1) = ℓg (c2)

}
.

As a application of Theorem A.6. By the same construction in this paper, we
are able to show the following two Theorems.
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Theorem A.7. Let (M , g1) and (M , g2) be two arbitrary finite volume complete

closed strictly negatively curved Riemannian metrics on a manifold M with fun-

damental group Γ. Let H be a subgroup of Γ such that the limit set of H is all of

∂M̃.

Then, ℓg1 = ℓg2 on classes from H only if ℓg1 = ℓg2 on all of Γ.

Theorem A.8. Let (M , g0) be a finite volume arithmetic locally symmetric mani-

fold of rank 1, and let g be an arbitrary strictly negatively curved complete finite

volume Riemannian metric on M. Then Rg0 ⊂ Rg only if ℓg0 =λℓg for some λ> 0.

Remark A.9. In [7], Cao showed that if two orientable, uniform visibility surfaces

of finite area and bounded non-positive curvature have the same marked length

spectrum, then they must be isometric. Hence we can strength Theorem A.7 and

A.8 in dimension 2.

In higher dimension, we do not know the marked length spectrum rigidity.

Peigné and Sambusetti [24] showed the following:

Let M be a finite volume n-manifold with pinched, negative curvature −b2 ≤

κ ≤ −1 which is homotopy equivalent to a locally symmetric manifold M0 with
curvature normalized between -4 and -1. If M and M0 has same marked length
spectrum, then they are isometric.
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