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Abstract

In this article we show that for every prime number p, any irreducible homogeneous
locally nilpotent derivations of rank 2 and degree p− 2 are triangularizable. Further, we
describe the structure of irreducible non-triangularizable homogeneous locally nilpotent
derivations of rank 2 and degree pq−2, where p, q are prime numbers. Consequently, we
give explicit descriptions of the generators of the image ideals of certain homogeneous
locally nilpotent derivations of rank 2.
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1 Introduction

Throughout this article k denotes a field of characteristic zero. Let R be an integral
domain containing k and S a subring of R containing k. Then LNDS(R) denotes the set
of all locally nilpotent derivations (LNDs) D on R such that D|S = 0. By R[n] we denote
a polynomial ring in n(> 1) variables over R. For an LND D ∈ LNDR(R

[n]), the rank
of D, denoted by rank(D), is defined as the smallest positive integer r such that there
exists a coordinate system {V1, · · · , Vn} of R[n] for which DVi 6= 0 for 1 6 i 6 r, and
DVi = 0 for i > r. By homogeneous LND D on B = k[X,Y,Z](= k[3]), we mean D is
homogeneous with respect to the standard grading (1, 1, 1) on B (see Definition 2.1(vi)),
and for any f ∈ B, deg(f) denotes its degree with respect to the above grading.

By a theorem of Rentschler (see [16]) it follows that there is no non-zero LND having
full rank on k[2]. For n > 3, Freudenburg has constructed examples of LNDs (homoge-
neous) of full rank on k[n] (see [10, Sections 2 and Section 3]). However several mysteries
about rank 2 LNDs on k[n] (n > 3), are still unsolved. In [5], Daigle and Freudenburg
have done an extensive study on rank 2 LNDs on k[n] for n > 3 and they have given the
first example of an irreducible non-triangularizable LND of rank 2 on k[3] ([5, Example
4.3]). Further, in [3] and [6], Daigle has given two different characterizations of trian-
gularizable LNDs on k[3]. However, when the LNDs are homogeneous, from these two

1

http://arxiv.org/abs/2206.05906v4


characterizations it is not clearly understood whether the degree of the LNDs have any
connection to their triangularizability property.

In this article, our objective is to understand the structure of homogeneous non-
triangularizable LNDs of rank 2 on k[X,Y,Z] and their kernels. We first observe that
if an LND D of rank 2 on k[X,Y,Z] is irreducible and homogeneous, then its degree
(defined in section 2) plays a crucial role in determining whether D is triangularizable.
More precisely, we show that for a prime number p, every irreducible homogeneous
LND of rank 2 and degree p − 2 is triangularizable (Corollary 3.5). Since 4 is the
smallest non-prime integer, the smallest possible degree of an irreducible homogeneous
non-triangularizable LND can be 2 (see Remark 3.6). Note that 2 is an integer of type
pq − 2, where p, q are prime numbers.

Our study on non-triangularizable LNDs is motivated by the above observations.
Over an algebraically closed field k, and for prime numbers p and q, not necessarily
distinct, we characterize irreduclible homogeneous non-triangularizable LNDs of rank 2
and degree pq−2 on k[X,Y,Z] in Theorem 3.7. In particular, we characterize irreducible
homogeneous non-triangularizable LNDs of rank 2 and of the smallest possible degree
on k[X,Y,Z].

In a recent work, Khaddah, Kahoui and Ouali have shown that for a PID R, R[2] is
a free module with a D-basis (see Definition 4.1) over ker(D) for any locally nilpotent
R-derivation D on R[2] (see [1]). That means the image ideals (see Definition 2.1(iv)) of
any locally nilpotent R-derivation D on R[2] are principal ideals and in particular, the
image ideals of every rank 2 LND on k[X,Y,Z] are principal. However, no study has
been done to describe the generators of the image ideals. In section 4 of this article, we
show that our results in section 3 can be applied to study the generators of the image
ideals of certain LNDs of rank 2. To be specific, for a field k and for an homogeneous
LND D on k[X,Y,Z] of rank 2, we have described the generator of the n-th image ideal
In := Dn(k[X,Y,Z])∩ ker(D) for every integer n > 0 where D is either triangularizable
or irreducible non-triangularizable of degree pq−2, p and q being primes (see Theorem 4.6
and Theorem 4.7).

In the next section we record some well known results, definitions and properties of
LNDs.

2 Preliminaries

We first recall some definitions and basic properties of locally nilpotent derivations (cf.
[11]).

Definition 2.1. Let B be an integral domain containing k, D a non-trivial locally nilpo-
tent derivation on B, and A = ker(D).

(i) An element r ∈ B is called a local slice of D, if Dr ∈ kerD \ {0}.

(ii) D defines a degree function µ := degD on B such that degD(0) = −∞ and for
every nonzero b ∈ B

µ(b)(= degD(b)) = max{n ∈ N |Dn(b) 6= 0}.
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(iii) Let µ be the degree function on B induced by D. For a non-negative integer n, we
define the n-th degree A-module with respect to µ, as follows :

Fn = {b ∈ B | µ(b) 6 n}.

(iv) For a non-negative integer n, the n-th image ideal ofD is defined as In := DnB∩A.

(v) D is said to be irreducible if the ideal (DB) is not contained in any proper principal
ideal of B.

(vi) Let G be a totally ordered Abelian group and B a G-graded ring such that B =⊕
i∈GBi be the G-graded structure on B. Then D is said to a homogeneous

derivation on B, if there exists some d ∈ G, such that DBi ⊆ Bi+d for every i ∈ G,
and degG(D) := d is said to be the degree of D. If G = Z, then degZ(D) will be
denoted by deg(D).

(vii) For B = k[n], D is said to be triangularizable if there exists a system of coordinates
{X1, . . . ,Xn} of B such that DX1 ∈ k and DXi ∈ k[X1, . . . ,Xi−1], for every i > 2.

(viii) Let B = k[X1, . . . ,Xn] and f1, . . . , fn−1 ∈ B. For f := (f1, . . . , fn−1), the Jacobian
derivation ∆f on B is defined as follows:

∆f (g) :=
∂(f1, . . . , fn−1, g)

∂(X1, . . . ,Xn)
,

for every g ∈ B.

(ix) A collection {Bn |n ∈ Z} of k-subspaces of B is said to be a proper Z-filtration if

(a) Bn ⊆ Bn+1 for every n ∈ Z.

(b) B =
⋃

n∈ZBn.

(c)
⋂

n∈ZBn = {0}.

(d) (Bn \Bn−1).(Bm \Bm−1) ⊆ Bm+n \Bm+n−1 for all m,n ∈ Z.

Lemma 2.1. Let B be an integral domain containing k, D a non-trivial locally nilpotent
derivation on B, and A = ker(D). Then the following statements hold:

(i) A is a factorially closed subring of B and hence algebraically closed.

(ii) For an element r ∈ B \ A such that D2r = 0, we have BDr = ADr[r] = A
[1]
Dr.

(iii) Let S be a multiplicatively closed subset of A \ {0}. Then D will induce a locally
nilpotent derivation S−1D on S−1B and ker(S−1D) = S−1A.

(iv) Let k be an algebraic closure of k and D denotes its natural extension to B :=
B ⊗k k. Then D ∈ LND(B) and ker(D) = A⊗k k.

Next we recall some known results. The first one is the Rentschler Theorem ([16]).

Theorem 2.2. Let D be a non-zero locally nilpotent derivation on k[X,Y ]. Then there
exist p(X) ∈ k[X] and a tame automorphism σ of k[X,Y ] such that σDσ−1 = p(X) ∂

∂Y
.

Next we quote an important result of Miyanishi ([15]).

Theorem 2.3. Let D be a non-zero locally nilpotent derivation on k[X,Y,Z]. Then
ker(D) = k[2].
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The following theorem is due to Zurkowski ([18]).

Theorem 2.4. Let D be a nonzero homogeneous locally nilpotent derivation with respect
to some positive grading ω on k[X,Y,Z] and A = ker(D). Then there exist homogeneous
polynomials F,G with respect to that grading such that A = k[F,G].

Next we record two easy lemmas.

Lemma 2.5. Let D be a homogeneous triangularizable locally nilpotent derivation of
degree d on k[U, V,W ] with respect to the standard weights (1, 1, 1). Then there exists a
linear system of variables {X,Y,Z} with respect to which D is triangular.

Proof. Since D is triangularizable, there exists a system of variables {U1, U2, U3} such
that

DU1 = 0, DU2 = f(U1), DU3 = g(U1, U2), (1)

for some f ∈ k[1] and g ∈ k[2]. Suppose Li denotes the linear part of Ui for every
i, 1 6 i 6 3. Since D is homogeneous of degree d, from (1), it follows that

DL1 = 0, DL2 = λLd+1
1 , DL3 = g̃(L1, L2),

for some λ ∈ k∗ and homogeneous polynomial g̃ of degree d+1. Therefore, the assertion
holds for {X,Y,Z} = {L1, L2, L3}.

Lemma 2.6. Let B be an affine k-algebra which is a UFD and D a non-trivial locally
nilpotent derivation on B. Let k be an algebraic closure of k and D denotes the natural
extension of D on B, where B = B ⊗k k. If D is irreducible then so is D.

Proof. Let J = (DB) and J = (D(B)). Clearly, J = JB. Suppose, if possible, D is
irreducible but D is not. Then there exists b ∈ B and a prime ideal p of B such that
ht p = 1 and J ⊆ (b) ⊆ p; and hence J ⊆ p ∩ B = q . Since B ⊆ B is a flat extension, it
satisfies the going down property (cf. [13, 5.D, Theorem 4]), and hence ht q = 1. Now,
since B is a UFD, q is principal, which contradicts that D is irreducible. Hence the
result follows.

The following result of Daigle ([4, Corollary 2.5]) describes the structure of LNDs on
k[3] in terms of the Jacobian derivation.

Theorem 2.7. Let B = k[n] and D ∈ LND(B). Suppose that {f1, · · · , fn−1} is a set
of algebraically independent elements in B such that ker(D) = k[f1, . . . , fn−1] = k[n−1].
Then ∆(f1,...,fn−1) ∈ LND(B) and D = a∆(f1,...,fn−1), for some a ∈ ker(D).

We now recall the concept of Newton polygon. Let A be a commutative k-domain
and B = A[X,Y ] be a Z

2-graded domain with respect to the following weights:

wt(X) = (1, 0), wt(Y ) = (0, 1) (2)

and wt(a) = (0, 0) for all a ∈ A. We record the definition of the Newton polygon of
f ∈ B below.

Definition 2.2. Let f ∈ B := A[X,Y ]. The Newton polygon of f is denoted by
NewtZ2(f) and is defined to be the convex hull in R

2 of the following set:

S =
{
(i, j) ∈ Z

2 | f =
∑

aijX
iY j , aij ∈ A \ {0}

}
∪ {(0, 0)}
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The following well known result ([11, Theorem 4.5]) is needed in section 3 of this
note.

Theorem 2.8. Let A be a rigid affine k-domain, i.e., there is no non-trivial LND on
A. Suppose B = A[X,Y ] is a Z

2-graded domain with respect to the weights defined in
(2) and D a non-trivial locally nilpotent derivation on B. Then, for f ∈ ker(D) \ A,
NewtZ2(f) is a triangle with vertices (0, 0), (m, 0), (0, n) where m,n ∈ N and m | n or
n | m.

Remark 2.9. By Theorem 2.8, it follows that if A = k, B = k[X,Y ], and f ∈ ker(D)\k
is such that n = degX(f) > degY (f) = m, then f has the following form:

f = f̃(X) +

m−1∑

j=1

fj(X)Y j + αY m,

where degX(f̃) = n, α ∈ k∗, n = mq for some positive integer q and degX(fj) 6 n− jq.

Let B be an affine domain with a proper Z-filtration {Bn | n ∈ Z}. If D is a non-zero
LND on B such that for all n ∈ Z, D(Bn) ⊂ Bn+t for some t ∈ Z (i.e., D respects the
filtration on B), then it will induce gr(D) ∈ LND(gr(B)), where gr(B) is the associated
graded ring of B with respect to the given filtration ([11, pg. 10]). Now suppose that
ρ : B → gr(B), denote the natural map defined by ρ(b) = b+Bi−1, where b ∈ Bi \Bi−1

for some i ∈ Z. Then we have the following result due to Derksen et al. ([9]). For
reference one can see [2, Theorem 2.6].

Proposition 2.10. Let B,G, ρ and D be the same as mentioned in the above paragraph.
Then gr(D) 6= 0 and ρ(ker(D)) ⊂ ker(gr(D)).

The following result is a special case of a result of Daigle [7, Theorem 1.7]. This
result first appeared in the thesis of Wang (see [17]).

Theorem 2.11. Let B be a Z-graded affine k-domain. Then every non-zero D ∈
LND(B) respects the Z-filtration induced by the grading.

We also fix a notation which will be used in the note. Let f ∈ k[U, V,W ]. Then
fU , fV , fW will denote the partial derivatives of f with respect to U, V,W respectively.

3 Homogeneous locally nilpotent derivations of

rank two

(∗) We first fix a few notation for this section. Throughout this section, unless specified,
D denotes an irreducible homogeneous LND of rank 2 on k[U, V,W ] such that deg(D) =
d (> 0) with respect to the standard weights (1, 1, 1). Since rank(D) = 2, without loss
of generality we can assume that DU = 0 and ker(D) = k[U,P ] for some homogeneous
polynomial P ∈ k[U, V,W ] (cf. Theorem 2.3 and Theorem 2.4). As D is irreducible,
multiplying P by a suitable constant in k we have D = ∆(U,P ) (cf. Theorem 2.7). Hence
DU = 0,DV = −PW ,DW = PV . If deg(D) = d, then P is a homogeneous polynomial
of degree d+ 2.

First we observe some results (Lemmas 3.1, 3.2 and 3.3) which exhibit the structure
of P .
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Lemma 3.1. Let D and P be the same as in the paragraph (∗). Then there exists a
linear system of variables {X,Y,Z} of k[U, V,W ] such that upto multiplication by a unit,
P has the form

Y d+2 +Xq(X,Y,Z)

where q(X,Y,Z) is a degree d+1 homogeneous polynomial, DX = 0 and 0 < degD(Y ) < degD(Z).

Proof. Since DU = 0, D induces an LND D = D (mod U) on k[U,V,W ]
(U)

∼= k[V,W ]. Note

that D is a non-zero homogeneous LND of degree d. By Theorem 2.2, there exists
a system of variables {V1, V2} of k[V,W ] such that D = f(V1)

∂
∂V2

for some f ∈ k[1],

and ker(D) = k[V1]. Further, {V1, V2} can be chosen to be linear in V and W , as
D is homogeneous. Since P is a homogeneous polynomial of degree d + 2, if P =
P (mod U), then P is a homogeneous polynomial in ker(D) = k[V1] of degree d + 2.
Therefore, with respect to the linear system of variables {U, V1, V2} of k[U, V,W ], we get
a homogeneous polynomial q of degree d + 1, such that upto multiplication by a unit,
P = V d+2

1 + Uq(U, V1, V2).
Suppose degD(V1) > degD(V2). From the structure of P , it is clear that degD(P ) =

(d+ 1) degD(V1), and hence degD(V1) = 0. This contradicts the fact that rank(D) = 2.
Therefore, we must have degD(V1) < degD(V2). Hence renaming the coordinate system
{U, V1, V2} as {X,Y,Z}, the result follows.

Lemma 3.2. Let D and P be the same as in the paragraph (∗). Then there exists a
linear system of variables {X,Y,Z} of k[U, V,W ] such that 0 = degD(X) < degD(Y ) <
degD(Z), and upto multiplication by a unit, the polynomial P has the following form:

(i) For d = 0, P = Y 2 +XZ.

(ii) For d > 1,

P = Y d+2 +Xfd+1(X,Y ) +Xfd(X,Y )Z + · · ·+Xfi+2(X,Y )Zd−i−1 + βXi+2Zd−i

where 0 6 i 6 d − 1 such that d − i | d + 2, β ∈ k∗ and fj(X,Y ) is a homogeneous
polynomials of degree j, for every j, i+ 2 6 j 6 d+ 1.

Proof. In Lemma 3.1, we see that P = α′P ′ such that

P ′ = Y d+2 +Xq(X,Y,Z),

and α′ ∈ k∗, where 0 = degD(X) < degD(Y ) < degD(Z) and q(X,Y,Z) is a homoge-
neous polynomial of degree d+ 1. We rename P ′ as P and proceed.

Now for d = 0, P = Y 2 +X(αX + βY + γZ), for some α, β, γ ∈ k. If γ = 0, then
P = Y 2 + αX2 + βXY . Since X ∈ ker(D), it follows that Y (Y + βX) ∈ ker(D), and
hence Y ∈ ker(D), as ker(D) is factorially closed (Lemma 2.1(i)). But this contradicts
that rank(D) = 2. Therefore, γ ∈ k∗, and with respect to the system of variables
{X,Y, αX + βY + γZ}, we have P = Y 2 +XZ.

We now consider the case d > 1. By Lemma 2.1(iii), D extends toD′ ∈ LND (k(X)[Y,Z])
such that ker(D′) = k(X)[P ]. Therefore, by Theorem 2.8, either degY P | degZ P
or degZ P | degY P and P is almost monic in Z as a polynomial in k(X)[Y,Z]. As
degY P > degZ P , we have degZ P | degY P . Again gcd(d + 1, d + 2) = 1 for d > 1.
Therefore, expanding the expression of P we get

P = Y d+2 +Xfd+1(X,Y ) +Xfd(X,Y )Z + · · ·+Xfi+2(X,Y )Zd−i−1 + β1X
i+2Zd−i,
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such that β1 ∈ k∗, d − i | d + 2 for some i, where 0 6 i 6 d − 1 and every polynomial
fj(X,Y ) is a homogeneous polynomials of degree j, where i+ 2 6 j 6 d+ 1.

The next lemma gives the structure of P for irreducible, homogeneous triangulariz-
able LNDs on k[3]. Here we mention that in [6, Corollary 5.2], Daigle has shown that for
D to be a triangularizable LND on k[3], it is necessary and sufficient that a coordinate
of k[3] is a local slice for D. The following Lemma 3.3 can be deduced from this result of
Daigle. However, we give an independent proof using the definition of triangularizable
derivations.

Lemma 3.3. Let D and P be the same as in the paragraph (∗). Then D is triangu-
larizable if and only if there exists a system of variables {X,Y,Z} which is linear in
{U, V,W} such that 0 = degD(X) < degD(Y ) < degD(Z) and D = γ∆(X,P ) for some
γ ∈ k∗, where

P = Y d+2 +Xfd+1(X,Y ) + βXd+1Z,

fd+1(X,Y ) is a homogeneous polynomial of degree d+1 and β ∈ k∗. Moreover, degD(Y ) =
1 and degD(Z) = d+ 2.

Proof. It is easy to see that for the given structure of P and γ ∈ k∗, D = γ∆(X,P ) is
triangularizable.

Conversely, suppose D is triangularizable. Since D is homogeneous, by Lemma 2.5,
there exists a linear system of variables {X,Y,Z} such that

DX = 0, DY = µXd+1, DZ = g(X,Y ),

for some µ ∈ k∗ and a homogeneous polynomial g of degree d+1. Therefore, degD(Y ) =
1. Now by Theorem 2.3 and Theorem 2.4, ker(D) = k[X,P1] for some homogeneous
polynomial P1. Since D is irreducible, by Theorem 2.7, with respect to the coordinate
system {X,Y,Z}, D = ∆(X,P1), upto multiplication by a nonzero constant. Therefore,

DY = −λ(P1)Z = µXd+1

for some λ ∈ k∗, and hence P1 = λ−1(f̃(X,Y )− µXd+1Z), where f̃(X,Y ) is a homoge-
neous polynomial of degree d+2. Now using the fact that P1 is irreducible, we get that
P1 is of the form

P1 = α(Y d+2 +Xfd+1(X,Y ) + βXd+1Z)

for some α, β ∈ k∗ and a homogeneous polynomial fd+1(X,Y ) of degree d+1. Therefore,
we obtain that D = γ∆(X,P ) for some γ ∈ k∗, and ker(D) = k[X,P ] where P is in the
desired form.

Now
DZ = γPY = γ

(
(d+ 2)Y d+1 +X(fd+1)Y

)
.

Since X ∈ ker(D) and degD(Y ) = 1, we have degD(Z) = (d+1) degD(Y )+1 = d+2.

Remark 3.4. Let D be an irreducible homogeneous LND of rank 2 on B = k[U, V,W ]
such that ker(D) = k[U,P ]. By Lemma 3.1, we see there exists a linear system of
variables {X,Y,Z} of B such that

0 = degD(X) < degD(Y ) < degD(Z). (3)

7



Let k be an algebraic closure of k and D extends to D ∈ LND(k[X,Y,Z]). If D is
triangularizable, then by Lemma 3.3, there exists a system of variables {X1, Y1, Z1} of
k[X,Y,Z], which are linear in X,Y,Z such that

0 = degD(X1) < degD(Y1) < degD(Z1), (4)

ker(D) = k[X1, P ], where P = Y d+2
1 + X1fd+1(X1, Y1) + βXd+1

1 Z1 ∈ k[X1, Y1, Z1], for
some homogeneous polynomial fd+1(X1, Y1) and β ∈ k

∗

. From (3) and (4), it is easy
to see that X1 = a11X, Y1 = a21X + a22Y and Z1 = a31X + a32Y + a33Z, where every
aij ∈ k and a11, a22, a33 6= 0. Since P ∈ k[X,Y,Z], upto multiplication by a non-zero
constant in k, P = Y d+2 +Xgd+1(X,Y ) + γXd+1Z, where γ ∈ k∗ and gd+1(X,Y ) is a
homogeneous polynomial in k[X,Y ] of degree d + 1. Hence by Lemma 3.3, D must be
triangularizable.

As an application of the above two Lemmas 3.2 and 3.3, we get the following result.

Corollary 3.5. Let p be a natural number and D an irreducible homogeneous LND of
rank 2 and degree p− 2 on k[U, V,W ]. If p is a prime, then D is triangularizable.

Proof. Since p is a prime, by Lemma 3.2 there exists a linear system of variables {X,Y,Z}
of k[U, V,W ] such that D = γ∆(X,P ) and P = Y p+Xfp−1(X,Y )+βXp−1Z, where γ, β ∈
k∗ and fp−1(X,Y ) is homogeneous polynomial of degree p− 1. Hence by Lemma 3.3, D
is triangularizable.

Remark 3.6. In view of Corollary 3.5, it can be noticed that the smallest possible degree
of a non-triangularizable irreducible homogeneous LND of rank 2 on k[U, V,W ] is 2 which
comes from the case “p is not a prime”. The next theorem gives a structure of P for such
LNDs. Specifically, it establishes the structure of P for irreducible homogeneous LNDs
of rank 2 and degree pq− 2 on k[U, V,W ], where p, q are prime numbers, not necessarily
distinct.

Theorem 3.7. Let k be an algebraically closed field and p, q are prime numbers, not
necessarily distinct. Suppose D and P are as in the paragraph (∗) such that deg(D) =
d = pq−2. Then D is not triangularizable if and only if there exists a system of variables
{X,Y,Z} linear in {U, V,W} and a homogeneous polynomial h(X,Y ), monic in Y , such
that D = γ∆(X,P ) where γ ∈ k∗ and P takes the following form where the roles of p and
q are interchangeable:

P = T p + c1X
qT p−1 + · · · + ciX

iqT p−i + · · ·+ cp−1X
pq−qT + cpX

pq−1Y,

where T = h(X,Y ) + Xq−1Z, deg(h(X,Y )) = q, ci ∈ k for i, 1 6 i 6 p and cp 6= 0.
Moreover, degD(Y ) = p, degD(Z) = pq and T is a local slice for D.

Proof. Suppose D is not triangularizable. By Lemma 3.2 and Lemma 3.3, there exists
a system of variables {X,Y,Z} which are linear in {U, V,W} such that D = γ∆(X,P ),
where γ ∈ k∗ and P has either of the following forms:

P = Y pq +Xfpq−1(X,Y )+XZfpq−2(X,Y )+ · · ·+XZi−1fpq−i(X,Y )+ · · ·+ βXpq−pZp

(5)
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where 0 = degD(X) < degD(Y ) < degD(Z), β ∈ k∗ and fpq−i(X,Y ) is a homogeneous
polynomial of degree pq − i for 1 6 i 6 p or

P = Y pq +Xf̃pq−1(X,Y )+XZf̃pq−2(X,Y )+ · · ·+XZi−1f̃pq−i(X,Y )+ · · ·+ β̃Xpq−qZq

(6)
where 0 = degD(X) < degD(Y ) < degD(Z), β̃ ∈ k∗ and f̃pq−i(X,Y ) is a homogeneous
polynomial of degree pq − i for 1 6 i 6 q. Therefore without loss of generality we take
P as in (5) and proceed.

Now D extends to an LND D̃ of k(X)[Y,Z] and P ∈ ker(D̃) (cf. Lemma 2.1(iii)).
By Remark 2.9, degY (fpq−i(X,Y )) 6 pq − (i − 1)q. We consider the following grading
on k(X)[Y,Z]:

gr1(Y ) = 1, gr1(Z) = q.

Therefore, if P1 denotes the highest degree homogeneous summand of P with respect to
gr1, then

P1 = Y pq + γ1Y
pq−q(Xq−1Z) + · · ·+ γp−1Y

q(Xq−1Z)p−1 + β(Xq−1Z)p,

where γi ∈ k, for 1 6 i 6 p− 1. As k is algebraically closed, we have

P1 =

p∏

i=1

(Y q + αiX
q−1Z),

where αi ∈ k, for 1 6 i 6 p. By Theorem 2.11, gr1(D̃) ∈ LND(k(X)[Y,Z]), and
by Proposition 2.10, P1 ∈ ker(gr1(D̃)). Now as ker(gr1(D̃)) is factorially closed (cf.
Lemma 2.1(i)), if there exist i, j such that αi 6= αj , then it follows that Y,Z ∈ ker(gr1(D̃)).

But then gr1(D̃) = 0 which is a contradiction (cf. Proposition 2.10). Therefore, we have
P1 = (Y q + αXq−1Z)p, where αi = α ∈ k∗ for every i, 1 6 i 6 p. We now rename αZ as
Z. For Z1 = (Y q +Xq−1Z), as k(X)[Y,Z] = k(X)[Y,Z1], we have the following form of
P .

P = Zp
1 +XZp−1

1 g1q−1(X,Y ) + · · ·+XZp−j
1 g1jq−1(X,Y ) + · · ·+Xg1pq−1(X,Y ), (7)

where g1jq−1(X,Y ) is a homogeneous polynomial of degree jq − 1, 1 6 j 6 p and

g1pq−1(X,Y ) 6= 0.

Since k(X)[Y,Z] = k(X)[Y,Z1], if degY (g
1
pq−1(X,Y )) > p, then p | degY (g

1
pq−1(X,Y ))

(cf. Theorem 2.8). Therefore, degY (g
1
pq−1(X,Y )) = rp for some r, where 1 6 r < q. By

Remark 2.9, degY (g
1
jq−1(X,Y )) 6 rp − (p − j)r = jr, for 1 6 j 6 p. We now consider

the following grading on k(X)[Y,Z1]:

gr2(Y ) = 1, gr2(Z1) = r.

If P2 denotes the highest degree homogeneous summand of P with respect to gr2, then by
the similar arguments used for P1, we get that P2 = Zp

2 where Z2 = (Z1 + λXq−rY r) =
(Y q + λXq−rY r +Xq−1Z) for some λ ∈ k. Hence

P = Zp
2 +XZp−1

2 g2q−1(X,Y ) + · · ·+XZp−j
2 g2jq−1(X,Y ) + · · ·+Xg2pq−1(X,Y ),
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where g2jq−1(X,Y ) is a homogeneous polynomial of degree jq − 1, for 1 6 j 6 p,

g2pq−1(X,Y ) 6= 0 and degY (g
2
pq−1(X,Y )) < rp.

Since k(X)[Y,Z] = k(X)[Y,Z2], if degY (g
2
pq−1(X,Y )) > p, then we can repeat the

above process until we get the following form of P :

P = T p +XT p−1g̃q−1(X,Y ) + · · ·+XT p−j g̃jq−1(X,Y ) + · · · +Xg̃pq−1(X,Y ), (8)

where T = (h(X,Y ) + Xq−1Z) for some homogeneous polynomial h(X,Y ) of degree
q which is monic in Y , g̃jq−1(X,Y ) is homogeneous polynomial of degree jq − 1, for
1 6 j 6 p, g̃pq−1(X,Y ) 6= 0 and degY (g̃pq−1(X,Y )) < p.

Now, since k(X)[Y, T ] = k(X)[Y,Z], and degY (g̃pq−1(X,Y )) < p, by Theorem 2.8
degY (g̃pq−1(X,Y )) | p, and therefore, degY (g̃pq−1(X,Y )) = 1. Hence we see that P has
the following form:

P = T p + c1X
qT p−1 + · · · + ciX

iqT p−i + · · ·+ cp−1X
pq−qT + cpX

pq−1Y (9)

where ci ∈ k for i, 1 6 i 6 p and cp 6= 0 (cf. Remark 2.9). Thus we have the desired
form of P .

Next, we investigate the degD-values of Y and Z. Note that DY = −γPZ and
DZ = γPY . Since ker(D) = k[X,P ], DY or DZ can be in ker(D) only if PZ or PY

is a polynomial entirely in X. But from the expression of P it is clear that this is
not possible. Hence DY and DZ are not in ker(D) and therefore, degD(Y ) > 1 and
degD(Z) > 1. Now it is easy to check that

DT = D(h(X,Y ) +Xq−1Z) = γ
(
−hY PZ +Xq−1PY

)
= γcpX

pq+q−2.

Hence, T = (h(X,Y ) +Xq−1Z) is a local slice of D. Since degD(h(X,Y ) +Xq−1Z) = 1
and h(X,Y ) is monic in Y , we have degD(Z) = degD(h(X,Y )) = q.degD(Y ). Since
degD(P ) = 0, and both degD(T ) and degD(Y ) are non-zero, from (9) we have degD(Y ) =
p.degD(T ). Hence, degD(Y ) = p and degD(Z) = pq.

4 An application: Finding generators of image

ideals

In this section we discuss an application of our main results. More precisely, we shall use
Lemma 3.3 and Theorem 3.7 to find generators of the image ideals In’s of homogeneous
triangularizable LNDs and irreducible homogeneous non-triangularizable LNDs of rank
two and degree pq − 2 on k[3], where p, q are prime numbers.

4.1 Definitions and preliminary results

We start with some properties of the degree module Fn corresponding to an LND D on
B = k[X,Y,Z] = k[3]. These properties have been described in [12].

We first fix a few notation for the rest of this subsection. Let r ∈ B be a local slice
for D and Dr = f , where f ∈ A := ker(D). Consider the following A submodule M of
Fn:

M =

n∑

i=0

A.rn.

10



Let M0 be an A-module such that M ⊆ M0 ⊆ Fn and Mi = {b ∈ B | fb ∈ Mi−1} for
every i > 1. The following theorem ([12, Theorem 9]) of Freudenburg gives the structure
of the n-th degree module Fn.

Theorem 4.1. Let s be a non-negative integer. Then with respect to the above notation,
the following conditions are equivalent:

(a) fB ∩Ms = fMs.

(b) Fn = Ms.

We now recall the definition of a D-set and a D-basis ([12, Definition 1]).

Definition 4.1. A subset S of B is said to be a D-set, if degD values of the elements
of S are distinct. Let F be a free A-submodule of B. A basis for F is said to a D-basis,
if that is a D-set.

The following lemma ([12, Lemma 3]) by Freudenburg gives a condition for freeness
of an A-submodule of B = k[X,Y,Z].

Lemma 4.2. Let M be an A-submodule of B generated by {mi | 1 6 i 6 n} ⊂ M .
Suppose there exists h ∈ B such that degD(mi) < degD(h) for 1 6 i 6 n. Then, for the
A-module M ′ =

∑
i>0Mhi, the following properties hold.

(a) M ′ =
⊕

i>0 Mhi

(b) If M is a free A-module with D-basis {b1, · · · , bn}, then M ′ is a free A-module with
a D-basis of the form {bih

j |1 6 i 6 n, j > 0}

We now state the Quillen-Suslin theorem.

Theorem 4.3. Every finitely generated projective module over k[n] is free.

4.2 Generators of the image ideals

We first observe the following lemmas. The first one is a generalised version of Corollary
15 of [12].

Lemma 4.4. Let D be a locally nilpotent derivation on B = k[X,Y,Z], A = ker(D)
and degD(Z) = n > 0. Consider the following surjective A-module morphism

π : B →
B

ZB
.

Suppose there exists a degree module Fm such that m < n and π(Fm) = k[X,Y ]. Then
B =

∑
i>0 FmZi.

Proof. Since π(B) = π(Fm), B = Fm + ZB. That means,

B =
r−1∑

i=0

FmZi + ZrB,
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for every r > 1. Therefore, for N =
∑

i>0 FmZi, we get B = N + ZrB for all r > 1.
Let b ∈ B and t = degD(b). Since B = N + Zt+1B, if b /∈ N , then there exist
a =

∑t
i=0 aiZ

i ∈ N and b′ ∈ B such that ai ∈ Fm for 1 6 i 6 t, b′ 6= 0 and

b = a+ b′Zt+1.

Now degD(a) 6 tn +m and degD(b
′Zt+1) > n(t + 1). Since m < n, we get degD(b) =

degD(b
′Zt+1) > n(t+ 1). But this contradicts the assumption that degD(b) = t. There-

fore, b ∈ N . Hence, B = N .

For the next lemma one may refer to [8, pg. 5]. However, for the sake of completeness
of this note we are giving a proof here.

Lemma 4.5. Let B = k[X,Y,Z] and D ∈ LND(B). Let k be an algebraic closure of
k and D = D ⊗k k denote the extension of D in LND(B), where B = k[X,Y,Z]. For
n ∈ N, suppose In and In denote the n-th image ideal of D and D respectively. If In is
principal, then so is In.

Proof. Let A = ker(D) = k[2] and A = A ⊗k k = ker(D) = k
[2]
. Now, In = DnB ∩ A

and In = D
n
B ∩A, for every integer n > 0.

Suppose that In = (an) for some an ∈ A. That means In is a free A-module. Since
In = In ⊗k k = In ⊗A A, and A is a faithfully flat A-module, we have In is a projective
A-module. Hence by Theorem 4.3, we have In is free A-module, and hence a principal
ideal.

Let D be a homogeneous triangularizable LND on k[3]. Then, D = aD′ for some
a ∈ ker(D) and an irreducible triangularizable LND D′. For n ∈ Z, if In and I ′n denote
the n-th image ideals of D and D′ respectively, then In = aI ′n. Hence it is enough to find
the generators of the image ideals of irreducible homogeneous triangularizable LNDs.

The following theorem explicitly describes the image ideals of irreducible homoge-
neous triangularizable LNDs on k[3].

Theorem 4.6. Let B = k[U, V,W ] and D ∈ LND(B) be irreducible homogeneous and
triangularizable of degree d(> 0). Let A = ker(D). Then for n ∈ N, we have In =
(Xt(d+1)2+r(d+1)) where t and r are respectively the quotient and reminder of n when
divided by d+ 2, and X is a linear variable of B such that X ∈ ker(D).

Proof. Since D is irreducible and triangularizable, by Lemma 3.3, we get a system of
variables {X,Y,Z} which are linear in {U, V,W} such that D = γ∆(X,P ) where

P = Y d+2 +Xfd+1(X,Y ) + βXd+1Z,

γ, β ∈ k∗, fd+1(X,Y ) is homogeneous polynomial of degree d + 1 and degD(Y ) = 1,
degD(Z) = d + 2. Now A = ker(D) = k[X,P ]. Consider the following surjective
A-algebra homomorphism

π : B →
B

ZB
.

Now B
ZB

= k[X,Y ] and π(A) = k[X,Y d+2 + Xfd+1(X,Y )]. Clearly k[X,Y ] is free
π(A)-module with a basis

A = {1, Y, Y 2, . . . , Y d+1}.
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As degD(Y ) = 1, A ⊂ π(Fd+1). Hence we get π(Fd+1) = k[X,Y ] as π(A)-module.
Now by Lemma 4.4, we obtain that

B =
∑

i>0

Fd+1Z
i.

Since degD(Z) = d+ 2, by Lemma 4.2(a), we get the above sum is direct sum. That is

B =
⊕

i>0

Fd+1Z
i.

Now if we show Fd+1 is a free A-module having a D-basis, then applying Lemma 4.2(b),
we get a D-basis for B.

Consider the A-submodule M0 =
⊕d+1

i=0 AY i of Fd+1. Note that DY = −γβXd+1.
Now consider the surjection

π′ : B →
B

XB
.

Since π′(A) = k[Y d+2], π′(M0) =
⊕d+1

i=0 π′(A)Y i is a free π′(A)-module. Therefore,
XB ∩M0 = XM0 and hence (Xd+1)B ∩M0 = (Xd+1)M0.

Now applying Theorem 4.1, we get that Fd+1 = M0, which is a free A module with
D-basis {1, Y, . . . , Y d+1}. Therefore, we obtain that B is free A-module with a D-basis
{Y iZj | 0 6 i 6 d+ 1, j > 0}.

Let n be a positive integer such that n = t(d + 2) + r, for some t > 0 and 0 6 r 6

d + 1. Now degD(Y
rZt) = r + t(d + 2). Therefore, from the D-basis it is clear that

In =
(
Dn(Y rZt)

)
. Note that D is a homogeneous LND of degree d, DY = −γβXd+1

and DZ = γPY . Therefore, D
d+2Z = λXd(d+2)+1 for some λ ∈ k∗ and hence Dn(Y rZt)

is a constant multiple of a power of X. Now using the homogeneous degree of D, we
have In = (Xnd+t+r) = (Xt(d+1)2+r(d+1)).

We now describe the generators of the image ideals of irreducible homogeneous non-
triangularizable LNDs of rank 2 and degree pq− 2 on k[3] where p, q are prime numbers,
not necessarily distinct.

Theorem 4.7. Let p, q be prime numbers, not necessarily distinct and D be an ir-
reducible non-triangularizable homogeneous locally nilpotent derivation of rank 2 and
degree pq − 2 on B = k[U, V,W ] and A = ker(D). Let X be a linear variable of B such
that X ∈ ker(D). Then the image ideals have either of the following forms:

(a) For every n ∈ N, In = (Xn(pq−2)+qr+s+t), where r is the reminder of n modulo p,
and if t′ is the quotient of n when divided by p, then t and s are the quotient and
reminder of t′ when divided by q.

(b) For every n ∈ N, In = (Xn(pq−2)+pr+s+t), where r is the reminder of n modulo q,
and if t′ is the quotient of n when divided by q, then t and s are the quotient and
reminder of t′ when divided by p.

Proof. Let k,B,D, In be the same as in Lemma 4.5. As D is irreducible, so is D (cf.
Lemma 2.6). Also deg(D) = deg(D). As D is non-triangularizable, by Remark 3.4, we
get D is also non-triangularizable. By Lemma 4.5, In is principal if and only if In is so.
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Now, since In = In ⊗k k, if we assume In is principal, then the generator of In is same
as the generator of In upto multiplication by a non-zero constant in k. Therefore, it is
enough to assume that k is algebraically closed, B = B and D = D.

Now, by Theorem 3.7 there exists a system of variables {X,Y,Z} of B which are
linear in {U, V,W} such that D = γ∆(X,P ) for some γ ∈ k∗, and P takes either of the
following forms:

P = T p + c1X
qT p−1 + · · · + ciX

iqT p−i + · · ·+ cp−1X
pq−qT + cpX

pq−1Y, (10)

where T = h(X,Y ) + Xq−1Z, h(X,Y ) is a homogeneous polynomial of degree q and
monic in Y , ci ∈ k, cp 6= 0 and degD(Y ) = p,degD(Z) = pq. Or,

P = T q
1 + c̃1X

pT q−1
1 + · · ·+ c̃iX

ipT q−i
1 + · · ·+ c̃q−1X

pq−pT1 + c̃qX
pq−1Y, (11)

where T1 = h1(X,Y ) +Xp−1Z, h1(X,Y ) is a homogeneous polynomial of degree p and
monic in Y , c̃i ∈ k, c̃q 6= 0 and degD(Y ) = q,degD(Z) = pq. Therefore, without loss of
generality we take P as in (10) and proceed.

Let A = ker(D). Now, as in Theorem 3.7, T is a local slice of D such that DT =
γcpX

pq+q−2. Consider the surjective A-algebra homomorphism

π : B →
B

ZB
.

Note that π(P ) = Y pq+a1XY pq−1+ · · ·+apq−1X
pq−1Y , where ai ∈ k, for 1 6 i 6 pq−1.

Now B
ZB

= k[X,Y ] and π(A) = k[X,Y pq + a1XY pq−1 + · · ·+ apq−1X
pq−1Y ]. Therefore,

k[X,Y ] is a free π(A)-module with basis

B = {1, Y, . . . , Y pq−1}.

Now S := {1, Y, . . . , Y q−1, T, TY, . . . , TY q−1, . . . , T p−1, T p−1Y, . . . , T p−1Y q−1} ⊂ Fpq−1.
Since π(S) ⊂ π(Fpq−1) and π(T ) is monic in Y of degree q, it follows that B ⊂ π(Fpq−1).
Hence we obtain that π(Fpq−1) = k[X,Y ] as π(A)-modules. Therefore, by Lemma 4.4
we get B =

∑
i>0 Fpq−1Z

i. Since degD(Z) = pq, by Lemma 4.2(a) we get

B =
⊕

i>0

Fpq−1Z
i.

We now show that Fpq−1 is free A-module with a D-basis. Take the A-submodule of
Fpq−1 as follows:

N0 =
⊕

06i6q−1
06j6p−1

AY iT j.

Note that from (10),

T p = P − c1X
qT p−1 − · · · − ciX

iqT p−i − · · · − cp−1X
pq−qT − cpX

pq−1Y.

Therefore, N :=
∑pq−1

i=0 AT i ⊆ N0. Now consider the surjection

π′ : B →
B

XB
.
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π′(A) = k[Y pq] and π′(N0) =
⊕pq−1

i=0 π′(A)Y i is a free π′(A)-module. Therefore,XB∩N0 =
XN0 and hence (Xpq+q−2)B∩N0 = (Xpq+q−2)N0 i.e., (DT )B∩N0 = (DT )N0. By The-
orem 4.1, Fpq−1 = N0 is a free A-module with D-basis

{Y iT j | 0 6 i 6 q − 1, 0 6 j 6 p− 1}.

Hence B is a free A-module with D-basis

B1 = {Y iT jZ l | 0 6 i 6 q − 1, 0 6 j 6 p− 1, l > 0}.

Let n = t′p+r for some t′ > 0 and 0 6 r 6 p−1, and (t′, q) we have t′ = tq+s for some
t > 0 and 0 6 s 6 q−1. Therefore, n = tpq+sp+r. Now degD(Y

sT rZt) = sp+r+tpq =
n. Therefore, from the structure of the D-basis it is clear that In =

(
Dn(Y sT rZt)

)
. As

DT = γcpX
pq+q−2, DY = −γPZ and DZ = γPY , from (10), it is clear that DpY and

DpqZ are constant multiples of some powers of X. Now, since deg(D) = pq− 2 and T is
a polynomial of degree q, we get In = (Xn(pq−2)+qr+s+t) which is same as the structure
in (a).

If the structure of P is as in (11), proceeding similarly we get the generators of the
image ideals as in (b).
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