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GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS
WITH MAGNETIC FIELD

LILI DU' AND DAN LI?

ABSTRACT. In this paper, the three-dimensional primitive equations with magnetic field
(PEM) are considered on a thin domain. We showed the global existence and uniqueness
(regularity) of strong solutions to the three-dimensional incompressible PEM without
any small assumption on the initial data. More precisely, there exists a unique strong
solution globally in time for any given H?-smooth initial data.

1. INTRODUCTION AND THE MAIN RESULTS

1.1. Background and motivation. In the context of the geophysical flow concerning
the large-scale oceanic dynamics, the ratio of the depth to the horizontal width is very
small. With the aid of this fact, by scaling the incompressible Navier-Stokes equations
with respect to the aspect ratio parameter and taking the small aspect ratio limit, one
obtains formally the primitive equations for the large-scale oceanic dynamics. The rig-
orous mathematical justification of the small aspect ratio limit from the Navier-Stokes
equations converges to the primitive equations, which was studied by Azérad-Guillén
in [2]. By relying on the result in [2] to prove the weak convergence, it was shown in [24]
that the Navier-Stokes equations strongly converge to the primitive equations. The prim-
itive equations are widely considered as the basic equations of atmospheric dynamics
in meteorology. These equations are the foundation in the weather prediction models,
see [17,23]28,B30H32,38]. The mathematical analysis of primitive equations was initialed
in 1990s by Lions, Temam, and Wang in [25H27], where they established the global exis-
tence of weak solutions. The uniqueness of weak solutions for the two-dimensional case
was later proved by Bresch et al. in [4]. However, the uniqueness of the weak solution
for the three-dimensional case is still unclear. An important progress for the global well-
posedness of the strong solutions to the three-dimensional primitive equations in a general
cylindrical domain has been made by Cao and Titi in [7]. This observation and careful
study for the primitive equations allow to establish the well-posedness theory with differ-
ent boundary conditions and partial viscosity and diffusivity in [SHIOL2T] and references
therein for various generalizations.
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Compared with the Navier-Stokes equations, the magnetohydrodynamic (MHD) equa-
tions, which consist of the Navier-Stokes equations of fluid dynamics and Maxwell’s equa-
tions of electromagnetism, contain much richer structure than Navier-Stokes equations.
The MHD equations reflect the basic physics laws governing the motion of electrically
conducting fluids such as plasmas, liquid metals, and electrolytes, and have played piv-
otal roles in the study of many phenomena in geophysics, astrophysics, cosmology and
engineering (see, e.g., [3l[13]). Beside their wide physical applicability, the MHD equations
are also of great interest in mathematics. The existence and uniqueness results for weak
and strong solutions of the 2D MHD equations are well known in Duvaut and Lions [15].
For 3D case, it is currently unknown whether the solutions can develop finite time sin-
gularities even if the initial value is sufficiently smooth. Different criteria for regularity
in terms of the velocity field, the magnetic field, the pressure or their derivatives have
been proposed (see [5], 11 18-20,29,B33H37] and references therein). One of the most el-
egant works is given by He and Xin in [I9,20], and they first realized that the velocity
fields played a dominate role in the regularity of the solution to 3D incompressible MHD
equations.

The study of the viscous flow in the thin domains started in the seminal paper of
Hale and Raugel [16], which was dedicated to a damped hyperbolic equation. More
precisely, it is proved that the global attractors are upper semicontinuous. It is shown
also that a global attractor exists in the case of the critical sobolev exponent. In present
paper, based on this work about the thin domains mentioned above and motivated by the
idea where the Navier-Stokes equations converge globally uniformly and strongly to the
primitive equations in [24]. We analysis the 3D incompressible MHD equations by the
scale technique to derive the primitive equations with magnetic field (PEM) on the thin
3D domains. Because a thin 3D domain is somehow close to a 2D domain, it is natural to
use the good properties of the 2D MHD equations to study the global regularity of strong
solutions to 3D PEM in the thin domains, which is the main idea of our paper.

1.2. Set-up and main results. Consider the incompressible three-dimensional MHD
equations in an e-dependent thin domain Q. := M x (—¢,¢) C R®, where € > 0 is a very
small parameter, and M = (0, Ly) x (0, Lo), for two positive constants L; and Lo of order
O(1) with respect to e. The incompressible three-dimensional anisotropic MHD system is

O+ u - Vu+ Vp — pAgu — vd*u =b - Vb,
Ob+u-Vb— kAyb—0d*b=1b-Vu, (1.1)
V-u=0, V-b=0,

where u = (@1, us) and b = (b, bs) are the velocity field and the magnetic field, respec-
tively. @ = (up,us) and b = (by,by) denote the horizontal velocity field and magnetic
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field, respectively, while us and b3 stand for the vertical one. The scalar function p is the
pressure. Similar to the case considered in Azérad-Guillén [2], which emphasized that the
anisotropic viscosity hypothesis is fundamental for the derivation of the primitive equa-
tions. In our paper, we suppose that the horizontal and the vertical viscous coefficient
p and v have different orders, that is 4 = O(1) and v = O(e?). The orders of magnetic
diffusivity coefficient x and o are similar to the viscous coefficient. For the sake of sim-
plicity, we set 1 = 1 and v = &2, similarly, kK = 1 and o = 2. Throughout this paper, we
emphasize that the operators Ay act only on horizontal Laplacian, that is Ay = 92 + 85.
Note that it is necessary to consider the above anisotropic viscosity and magnetic diffusiv-
ity scaling in the horizontal and vertical directions, so that the MHD equations converge
to some specific equations that would be called the primitive equations with magnetic
(PEM), as the aspect ratio € goes to zero.

We carry out the following scaling transformation to the equations (ILI]) such that the
resulting system is defined on a fixed domain independent of €. To this end, we introduce

the new unknowns,

Ue = (ﬁaaui’»ﬁ)a be = (Baab3,a)> pa(IayaZ>t) :p(x,y,ez,t),

te(z,y, 2, t) = u(x,y,e2,t) = (u1(x,y,e2,t), us(z,y,£2,1)),

Be(x,y,z,t) = i)(x,y,az,t) = (bi(z,y,e2,t),bo(z,y,e2,1)),
and
1 1
u3,€(x7 Y, z, t) = gUg(flJ’, Y, ez, t)v b3,€(x7 Y, z, t) - gbg(fﬁ, Y,EZ, t)
For any (z,y,2) € Q := M x (—1,1) and ¢t € (0,00), then u., b. and p. satisfy the

following scaled incompressible MHD equations (SMHD)

( Oyt + ue - Viie + Vgp, — be - Vb, — At = 0,
e2(Opuze + ue - Vuge — Auge — b - Vbs.) + 9.p. = 0,
b +ue - Vb — Ab. — b, - Vi, = 0, (1.2)
e2(Oyb3 . + u. - Vbg . — Abs. — b, - Vuz,) = 0,

( V-u.=0, V-b.=0.

The above equations ([2)) are defined in the fixed domain Q. Throughout this paper,
we set Vy to denote (0,,0,). In addition, we equip the system ([2) with the following
initial value conditions and periodic boundary conditions,

(T, uge)|t=0 = (Te0, Use0)s (Z?a, bse)|t=o0 = (55,0, b3.c0)s (1.3)

and

Ue, Uge, be, bse, p- are periodic in z, y, z. (1.4)
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It should be noticed that in (L4]), as well as in all the cases of periodic boundary
conditions below, the periods in x and y are Ly and Lo, respectively, while that in z is 2.

Furthermore, (@, usc0) and (b, bsc0) are given, for simplicity, we suppose in addition
that the following symmetry conditions hold

Ue, ug. and p, are even, odd and odd with respect to z, respectively, (1.5)

and

b., bs. are even and odd with respect to z, respectively. (1.6)

Note that these symmetry conditions are preserved by the dynamics of (SMHD), in
other words, they are automatically satisfied as long as they are satisfied initially. So in
this article, without further mention, we always assume that the initial horizontal velocity
and magnetic field 1y, BO satisfy that

U , by are periodic in x, y, z, and are even in z.

By taking the limit as ¢ — 0 in (SMHD) (L.2)), it is natural to obtain the following
primitive equations with magnetic field (PEM)

Oi+u-Vi—Ai—b-Vb+Vgp=0,
0.p =0,

Ob+u-Vb—Ab—b-Vi=0,
Viy-t+0u;=0 Vg -b+0d.by=0.

(1.7)

Recalling that we consider the periodic initial-boundary value problem to the (SMHD)
equations (LZ), it is clear that one should impose the same boundary conditions and
symmetry conditions to the corresponding limiting system (7). However, one only needs
to impose the initial conditions on the horizontal velocity field and magnetic field. In fact,
since ug o and bz are odd in z, we have ugo(x,y,0) = bso(z,y,0) = 0. Then, usg, b3 can
be determined uniquely by the incompressibility conditions, namely,

wso(@,y,2) = — /0 Vi oz, y, €) de (18)
and

bso(x,y,2) = —/Z V- Bo(z,y,f) dg. (1.9)
0

Similarly, (us,bs) can also be determined uniquely by (@,b) via the incompressibility

conditions as

ug(z,y, z,t) = —/Z Vu-u(x,y, & t)dE, (1.10)
0
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and
b3(IayaZ>t) = _/ VH : B(x>y>€>t) df (111)
0

Due to these facts, throughout this paper, concerning the solutions to ([L.7)), we only
specify the horizontal components (@,b), and (us, b3) are determined uniquely by (LI0)

and (LI)).

Our main results on the global existence and uniqueness (regularity) of strong solutions
to the three-dimensional incompressible PEM ([L7)) without any small assumption on the
initial data are stated in the following.

Theorem 1.1. Suppose that (i, by) € H*(Q), then there exists a unique global strong
solution, (1i,b) € L=([0, 00); H*()) N L*([0, 00); H*(Q)) of the PEM (I.7), subject to the
boundary and initial conditions (L3)-(1.8). Moreover, we have the following estimate,
sup [||7: (¢) + s 1032(2) +/0 (IV a7 + llocall3) dt

0<t<o0o
+ [ VB + 0B de < €.
0

for a constant C' depending only on ||io||m2, ||bo|lm2, L1 and Lo. Moreover, the unique
global strong solution (1, l~)) depends continuously on the initial data.

Remark 1.2. If the initial data (i, by) belongs to H(Q), then there exists a unique global
strong solution to the PEM ({I7), it satisfies (i, b) € L=(]0, 00); HY(Q))NL?([0, 00); H*(R2)),
which proof follows directly from the corollary of Proposition [3.4.

Remark 1.3. Generally, if (1’20,50) e H* with k > 2, there exists a unique global strong
solution to the PEM (I7), it satisfies (1i,b) € L>([0, 00), H*(Q)) N L*([0, 00); H*1(Q)),
then one can show that

sup ||ﬁ||§1k(t)+0§3<13 ||5||?{k(t)+/ (IVallfe + l0ell ) dt
St<oo 0

0<t<o0o
+/ (IVD]%k + 10:D]|%0) dt < O,
0
for a constant C' depending only on ||tg|| gr, HZ;()HHk, Ly and Ly.

Remark 1.4. In our forthcoming paper [1j|], we will rigorously justify that the (SMHD)
equations (1.3) converge strongly to the PEM (1.7), globally and uniformly in time.

Here we give the main idea for the proof in this paper. First, in order to obtain the
required uniform H?-norm estimates, we need to get first-order estimate on (i, l~)) The
first-order estimates depend on the L ([0, 00), L*(€)) on (.1, d,b), therefore, to establish
the estimates (9.4, 0.b), we will need the estimates of L>®(0,00; L*(€2)) on (a,b). So the
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crucial step to prove the global existence of strong solutions is to obtain the estimates
of L*-norm on (4, 13) One may try to use the standard energy approach to get such
estimates. However, due to the lack of the vertical components estimates ||us||4 and [|bs||4
on the left-hand side of the energy inequality, one will encounter two nonlinear terms

/ b- Vbli|*@dedydz and / b- Vii|b|*b dzdydz
Q Q
on the right-hand side of the energy inequality which can not be controlled by the L*-norm
t

sup [[al3(s) + sup !Iblli(8)+2/ lalvall3 + (116l V|3 ds

0<s<t 0<s<t 0
on the left-hand side. To avoid estimating these two nonlinear terms, we employ the
governing equation for Elsasser variables. All nonlinear terms in the new equations can
be handled via the divergence free conditions. As we will see in Proposition B.3, we can
successfully achieve the expected estimates of L*-norm on (%, ). As a consequence, based

on these estimates, we can obtain other relevant estimates which are sufficient to prove
the global existence of strong solution.

1.3. The structure of this paper. The remainder of this paper is organized as follows.
The Section 2 is dedicated to the basic notations and some Ladyzhenskaya-type inequal-
ities, which will be used in the following sections. In Section 3, the global existence of
strong solutions to the three-dimensional incompressible PEM is proved. In Section 4,
we show the continuous dependence on the initial data and the uniqueness of the strong
solution.

2. PRELIMINARIES

In this section, we introduce the notations used in this paper, and state some La-
dyzhenskaya type inequalities for some kinds of three dimensional integrals, which will be
frequently used in the rest of this paper.

Notation 2.1. For q € [1, 00|, we will denote the Lebesgque spaces on the domain £ by
LY = L9(QY). For simplicity of notation we will use || - ||, and || - |40 instead of LI(Q)
and LY(M). For s € N the space H*(Q) consists of f € L*(Q) such that V*f € L*(Q) for
la|] < s endowed with the norm

I f |l ezs ) = ( Z IIVaf||2Lz(Q)>§.
o] <s

Lemma 2.2. For convenience, we recall the following Sobolev and Ladyzhenskaya inequal-
ities in R?, for every ¢ € H'(M), (see, e.g., [1,[12,122)]),

101l aary < Colldll 22 an) 191 sy (2.1)
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the following Sobolev and Ladyzhenskaya inequalities in R®, for every ¢ € H*(Q),

1 1
16llz5) < Colldl2aqey 16120 (2.2)

and

&l s () < Coll9l ), (2.3)

we recall the integral version of Minkowsky inequality for the LP spaces, p > 1. Let
Q1 C R™ and Qs C R™ be two measurable sets, where ny and ny are positive integers.
Suppose that f(&,n) is measurable over 0y x Qy. Then,

1

[ ([ iscmnan)a)”< [ ([ 1stcnrie) an 2.0

Next, we state some Ladyzhenskaya-type inequalities for some kinds of three dimen-
sional integrals.

Lemma 2.3. (see [0, Lemma 2.1] ). The following inequalities hold true

/M (/_11 f(z,y, 2) dz)(/_llg(iv,y,z)h(a:,y,z) dz)d:zdy
<ClIF1 (1713 + 195713 ) g lalloll3 (1015 + 1V ull3),

and

1 1
J ([ t@w2ds) ([ gteohiey.z) =) dody
M -1 —-1
<ClIflligls (llgls + 115 sgl3 ) 1A13 (113 + 19 mhll3).

for any f, g, h such that the right-hand sides make sense and are finite, where C' is a
positive constant depending only on Ly and Ls.

Lemma 2.4. (see [24, Lemma 2.2]). Let ¢ = (1,92, ¢3), ¢ and ¢ be periodic functions
with basic domain Q. Suppose that ¢ € H'(Q), with V - ¢ = 0 in Q, / pdrdydz = 0,
Q

and p3].—o = 0, Vo € H'(Q) and ¢ € L*(Q). Denote by o5 = (p1,02) the horizontal
components of the function p. Then, we have the following estimate

| [0 Voysduyaz| < CIVeulf10ul IV 186 101

where C' is a positive constant depending only on Ly, Lo.
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3. A PRIORI ESTIMATES ON THE PRIMITIVE EQUATIONS WITH MAGNETIC

In this section, we prove a priori estimates on the global strong solutions (u,ug) and
(I;, b3) to the PEM, we use anisotropic treatments for the PEM to get a priori esti-
mates. In Proposition B.I] the basic energy estimates are shown. In Proposition 3.3, we
give the L=(0, 00; LY(€2)) estimates on (@, b). Proposition B4lis devoted to the study of
the L*(0, 00; L*(2)) estimates on (d,@, d.b). Finally, the L=(0, o0; L*(2)) estimates on
(Va, V(~)) and (A, AI;) are established in Proposition and Proposition B.6] respec-
tively.

Proposition 3.1. (Basic energy estimates). Suppose that (iig,by) € H'(Q). Then, we
have the following estimates

t t
la@)I3 + [B@)3 + 2 / IVal2ds + 2 / IVBI2ds = ol + Bl (3.1)
and
la) 3+ 153 < 22 litoll2 + IBol): (3.2)

Proof. Taking the L*(Q) inner product to the first and the third equation in (L7) with
and b, then it follows from integration by parts that
1d
2dt
from which, integrating in ¢ yields the energy identity. In the following estimates, we

e Ld - ) .
lall3 + 52161z + [IValls + VB3 = 0,

implicitly use the Poincaré inequality ||a||3 < C,||Vii|2, clearly
d, . d - _ -
Dl + B3 + 2013 + 203 < o,

from which, by the Gronwall inequality, the second conclusion (3.2]) follows. O

Since the high-order estimates depend on the uniform L*-norm estimates of (,b), we
first prove these estimates in the following proposition.

Remark 3.2. The L>(0, 00; L*(Q0)) estimates on (@, b) are the foundation of the required
H?-norm estimates of Theorem I 1. The proof of the L*-norm estimates on (i, b) is not
trivial. A natural starting point is to bound ||i|s + ||b||a, via multiplying the first and the
third equation of (1.74) by |i|*@ and 6|20, respectively, and integrating the resultant over Q.
However, due to the lack of the vertical components ||usl||s and ||bs||s on the left-hand side
of the energy inequality, it is very difficult to bound some of the nonlinear terms directly.
More precisely, two of the most troublesome ones are

/b-vém\?adxdydz and /b-vmz}\%dxdydz,
Q Q
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which can not be controlled in terms of ||ills + ||blls or the dissipative parts |||a| Vi3
and |||b|Vb||2, consequently, we are not able to obtain the uniform bound on the following
quantities

t
sup |al[3(s) + sup IIbHi(S)+2/ [la|Vall3 + [|[b|Vo]|3 ds.
0<s<t 0<s<t 0

This forces us to avoid estimating these two nonlinear terms. To solve this problem, a
crucial step is to introduce the Elsdsser variables (A =+ b A" =1— I~9) in the equations
(Z-7). We add the first equation to the third equation and subtract the third equation from
the first equation in order to obtain a governing equation for Elsdsser variables. Luckily,
the new equation ([33) serves our purpose perfectly. All nonlinear terms in the equation
(33) can be eliminated by the divergence free conditions V -u =0 and V -b = 0. Then,
we make use of the ||il|s + ||blls can be bounded by ||+ b||s and ||i — b|4.

Proposition 3.3. (L=(0, 00; L*()) estimates on @, b). Suppose that (tig, by) € H'(Q).
Then, we have the following estimates

t t
sup A]4(5) + sup [4°4G)+ [ 1AV AR ds+ [ I1AVA' ds < RO)

0<s<t
where

A=a+b,  A*=ua-0b,
and

R(0) = exp{C([|Aoll5 + [l oll2 + 1 AG[I2 + 1 A5 112) } (1A5][3 + | oll),

for any t € [0,00), where C' is a positive constant depending only on Ly and Lo.

Proof . Adding the first equation and the third equation of (L), we obtain
Q(u+b) +u-V(@a+b) —Au+b) —b-V(a+b) +Vyp=0,
subtracting the third equation from the first equation of (L), yields
O(a—Db)+u-V(a—0b)—A@—0b)+b-V(i—0b)+ Vup=0.
We introduce the Elsasser variables
A=da+b A =a-—b,
and we have the following new formulation for the system (L)

{8tA+u-VA—AA—b-VA+VHp:0, 33)

A +u-VA*— AA"+b- VA" +Vyup =0.
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Multiplying the first equation and the second equation of (3.3) by |A[*A and |A*[2A*,
respectively, integrating the result over €2, then it follows from integration by parts that

1d
1dt

1d

||A||ii+ZE|IA*I|i+/ IAPR(IVA]? + 2|V|A||?) dedydz
Q

+/ |A*2(|VA* | + 2|V |A*||?) dedydz

Q

:—/|A|2A-Vde:)3dydz—/|A*|2A*-Vdexdydz.
Q Q

Using Lemma and the Poincaré inequalities, we infer that

Q

1
< [ (] 114=) Vo, )] dedy
M -1
<OV uplbarllAPI (AP + IVl AR AN (1AL + [V A1)}

<C|IVaplla Al (AN + IV el AP[l2)2 | AIZ [V All3

1

Employing the operator / divy (+) dz on the first equation of ([33), one obtain

~1

1 1 1

Vg -0Adz + VH-(u-VA)dz—/ Vg (b-VA)dz
1

-1 _
1 1
—/ VH(AA)dZ+/ VH'vadZ:O,
-1 —1
we denote that

1
K, = / V- 0Adz,

1

1
ng/ Vu-(u-VA)dz,

1

1
-1

1
K, = —/ V- (AA)dz,
-1
and

1
K5:/ VH'vadZ.
-1

Recalling the fact that the periods of uz and b3 in z are 2, we obtain

1 1
K1 :/ VH~8tAdz:—8t/ 8ZU3+8Zb3dZ:O.
- -1

1

(3.5)

(3.6)
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To bound K, and K3, we decompose it into two pieces, respectively
1

1
K2+K3:/ VH(UVA)dZ—/ VH(bVA)dZ

1 -1

1 1
:/ VH'(UgazA)dZ—f‘/ VH(QVHA)dZ

1 -1

1 1
— / Vi - (b30,A) dz — / V- (b-VyA)dz

1 -1
=Ky + Koo + K31 + K3p.

To deal with Ks, integrating by parts and using the divergence free conditions yield that

1
Kgl :/ VH . (u382A) dz

1

1 1
:/ usVy - 0,Adz + / 0. AV gug dz
_ -1

1

1 1
:/ u3VH-8Z(ﬂ+b)dz+/ 0.(t+ b)Vyusdz
_ -1

1

1 1
:/ —u30,0,(us + bs) dz + / V- (u+ 5)8zu3 dz

1 -1

1 1
:/ azugaz(uzg + b3) dz + / V- (ﬂ + Z;)&Zu?, dz
1 _

1

1 1
:/ 8ZU382(U3 + bg) dz — / 8Z(u3 + bg)aZU3 dz
—1 —1
=0.
A similar argument to that for Ks;, one gets

1
K31 = — / VH . (bgazA) dz = 0.
-1

On the account of these estimates of K5 and K3, one has

K2 + K3 :K22 + K32

1 1

-1

:/1 VH-<a-vH<a+6>>dz—/l Vi - (b Vi +1b))dz

1

1 1
:/ vH-(a-vHa)dz+/ Vi - (i Vyb)dz

-1

1 1
—/ VH~(b~VH€L)dz—/ Vi (b-Vyb)dz

-1
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1 ~ ~

:/_1 vH-(vH-(am))dz—/ Vi (V- (bo0b)d=.

1 -1

A similar argument to that for K; yields that
1
K4:—/ Vg - (AA)dz=0.
-1

With the aid of the above estimates, the equation (B.6) becomes as following
1 1 1
/ Aup(a,y, ) dz = — | Vi (V- (@@ @) dz+ | Vi (Vu-(bob)ds.

1 -1 -1

(3.7)

Note that p can be uniquely determined by requiring / pdxdy = 0, and thus, by the

elliptic estimates, the pressure can be bounded as following

1
IV apllz,m SH /1 Vu- (V- (t®a))dz

<OV uills + CI|[oIV b2
<C[[[ AV A2

Thanks to the above estimate, it follows from (3.5) and Young inequality that

Q

<CIAIV t Al Al AL + [V sl APl ANV Al

<C(IARIAIV Al + 1ALl AIV £ AL A3 [V Al
<SIAIVAI + CUALIT Al + A1V A Al

We deal with the following term similar to the argument in (3.3,

Q

1
< [ (] 1P de) V(o v. 0] dedy
M -1
<OV mplloaell|A*PIZ QLA s + 91 A° P LA (147 + 94
<CIV aplarl A N1 A + 9] A°P ) A 319 4% 5.

1

Applying the operator / divy(+) dz to the second equation of (B3]), we obtain

-1

1 1 1
/VH@A*dH/ VH-(u-VA*)dz+/ Vi (b- VA dz

1 1 1

e TARRCUT

(3.9)
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1 1
—/ VH(AA*)dZ—l-/ Vy-Vupdz=0. (310)
1 1
We set that
1
Ly = / V- 0,A"dz,
1
1
Ly = / Vu-(u-VAY)dz,
1
1
Ly = / Vg (b-VA")dz,
—1
1
L,= —/ V- (AA")dz,
—1
and

1
L5 = / VH : vadZ
-1

A similar argument to that for K; and Kj, we obtain

1
L, = Vig-0A"dz =0,

—1

and

1
L4:—/ Vi - (AA*) dz = 0.

1
The next terms Ly and L3 are split into two parts, respectively

1 1

1 -1

1 1
:/ VH-(ugazA*)dz—l—/ Vi (i VgA) dz

1 -1

1 1

/ V- (b30,A%)dz + / V- (b-VyA*)dz
-1 -1

=Ly + Loy + L3; + Las.

Along the similar argument to Ky, yields that

1
L21 :/ VH . (U38ZA*> dz = 0,

1
and

1

L31 = VH : (bgaZA*) dz = 0.

—1
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With the aid of these equality, L, and L3 can be bounded as follows

Lo+ L3 =Loy + L3
1

1
1 —1
1 1 5
1 —1
1 5 1 5 N
1 —1

:/_llvH'(VH'(a®ﬂ))dz_/_llvH'(VH'(5®Z~)))dz, (3.11)

Thanks to the above estimates, the equation (BI0) becomes as following
1

/_1 AHp(x,y,t)dz:—/_tVH-(VH-(ﬂQ@ﬁ))dZ%— Vi (Vg (b®b)dz (3.12)

1 -1

Applying the elliptic estimates, the pressure can be bounded as following

1 1
y|va||2,M§H/1VH~(VH~(a®a))dz 2M+H/1VH~(VH~(b®b))dz

2,M
<C||a|V uillz + C|l[B]V ]l
<C[[AT[V A" |2 (3.13)
On the account of (313)), it follows from (B.9]) that
—/ |A*PA" - Vp(x, y, t) dedydz
Q
1 * * * * * * *
<SNAIVATS + CUAT AV AT + ATV A1) A2 (3.14)

Substituting (3.8)) and ([B.14)) into (3.4]), leads to
d * * *
AL+ A7) + 20l AIV ALl + 2[4V A"l
<C([|All2[IVAll2 + [AIZIVA[S + [ A |2V A™[|2 + [ ANV A ) (LANT + 1A7]17),

applying the Gronwall inequality to the above inequality, it follows from the Hoélder in-
equality and Proposition B.1] that

t t
sup JAI4(5)+ sup [A°14G)+2 [ WAV AR ds +2 [ 14194 s

0<s<t
t

t
<eap{C( / (ALY All2 + I AIZIV AJ) ds + / (A 17 A" [+ 1A 3V A° 1) ds) |

x (LGN + 11 All3)
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<ern{C(( [Ntz [ v aBas) + [ (LaigIvag) s
([ sy [ 1vaizast+ [ (A9 d5) < 145+ Al

1 _ 1 _ * * *
<exp{C(tze” || Aoll3 + [ Aol + t2e™ | AGII3 + [1A5112) } (1 A5l + [14o[13)
<R(0),
where
R(0) = exp{C([|Aollz + [l Aol + 1 A5II2 + I[AGN12) } (IAGN + 1 oll), (3.15)
and C'is a positive constant depending only on L; and L.

This completes the proof of Proposition . U

Next, we will give the uniform L*-estimates for (0., 8213), which plays a key role in
showing the first-order energy estimates on the strong solutions to the system (L1).

Proposition 3.4. (L=(0,00; L*()) estimates on 0.a, 0.b). Suppose that (i, by) €
H'(Q). Then, we have the following estimates

sup |- ll3(s )+ S H8 JHE / IVa.all3 + | Va.b|3 ds

0<s<t

<K(0),

where
K(0) = [[0-i0]13 + 10:bol3 + C (Il oI5 + [1bo]|3) (R*(0) + R(0)).

Proof . Taking the L*(Q) inner product to the first and the third equation of (7)) with
—0%@ and —025 respectively, then it follows from integration by parts that

: dt Lyo,all2 + | Vo.al2 _/(a Vail) - 0% + (usd.il) - Oiidwdyds

Q
— / (b- Vyb) - 0% + (b3d.b) - 0%t dxdydz
Q
:]1 -+ Ig, (316)
and

0,512+ IVO.B3 = / (6-Vb) - 0%+ (us.b) - 2B dudyd

2dt| 0

— / (b- Vi) - 0%+ (b3d.@t) - 9°b dudydz
Q
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For I, we obtain
I = /Q (- Vi) - 0% + (us0.a) - 0°1 dwdydz
S /Q(ﬁzﬂ -Vy)u-0,udrdydz — /Qﬂ - Vg0, u-0,udrdydz
— /Q 0,u30,1 - 0,u dvdydz — /Q u3021 - 0.0 dudydz
_ /Q (0.5 V)i 0.7 dedydz + /Q Vi - (0.1)? dedyds,
+ /Q Vi w00 0,0drdydz + % /Qazug(azﬂ)Q dxdydz

= / [(=0.@- V)i + Vi - 00,1 - 0,1 dvdydz,
Q

where the last equality follows from the fact that Vg - 4 + 0,u3 = 0.
The term I, can be split into four parts

I =— / (b-Vyb) - 0*udrdydz — / (b3d.b) - 0% dadydz
Q Q
= / (025 . VH)?) -0, udrdydz + / b-0.Vgb-0,i drdydz
Q Q
+ / 0,b30,00, 0 dxdydz + / b302b0, 1 dxdydz
Q Q

=15 + Iz + Iz + Ioy.

A similar argument to that for 1, applying integration by parts and the incompressible
conditions give that

I3 = /Q(ﬂ - Vb) - 9%b dedydz + /Q(u;)ﬁzl;) - 9% dxdydz
=— /Q (8.1 - V)b — Vi - 40.b) - 0.bdxdyd:z.
Similarly, I, can break it down, namely,
I =— /Q (b- Vi) - *bdzdydz — /Q (bsd.i) - 0%b dxdydz
= /9(025 . VH)ﬂﬁzl;dxdydz + /Q b- 0.V g - @Z)d:)sdydz

+ / 0,b30,10,b dxdydz + / b30%10.b dxdydz
Q Q

=1 + Lyp + Iz + Lya.



GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH MAGNETIC FIELD 17

For the sake of simplicity, we sum up the following four terms, then

Ioy + Lyy + Ioz + Iy3

=2 / 0.b30,b0, 0 drdydz + / b302b0, 0 dxdydz + / b30210.b dzdydz
Q Q Q

=2 / 0,b30,b0, 1 dudydz — / 0,b30,b0, 0 drdydz — / b30,b0% 0 dadysz + / b30210.b dxdydz
Q Q Q Q

=2 / 0.b30.b0. 1 dudydz — / 9.b30.b0. 1 drdyd=
Q Q

=— / Vi - 00,001 drdydz, (3.18)
Q
which implies that
L+1,= / [(8.b- V)b — V- bd,b] - 8.0 drdydz + / b-9.Vyb-0,idrdydz
Q Q
+ / d.b - Vit - 0.bdedydz + / b0,V i - 0.bdedydz.
Q Q

Substituting these estimates of I1-1; into (310 and (BI7) leads to

1d ~ 112 ~ 112 1d 7112 712
5 gl0=allz + Vo:allz + 5 — [10:0]lz + [[ Vbl
= / (0.1 - V)i — Vi - 0.1 - 0. tudxdydz — / (8.1 - V)b — Vi - 0d,b] - 0,0 dadydz
Q Q

+ / [(@5 . VH)?) — Vg E@Zl;] -0, udrdydz + / b 9. Vyb-0,adedydz
Q Q

+ / d.b - Vi - 8,bdedydz + / b-0,Vyi-0,bdrdydz
Q Q
<h+ o+ J3+ Jy+ Js + Js, (3.19)

and it follows from integration by parts that

|J1| = / [(0.0-Vy)u— V- ud.u|-0,udrdydz
Q
:/ 0.1;0;u;0,u; drdydz — / 0;1;0,1;0,u; drdydz
Q Q

Q

Q

Q
Q Q
—/1128@11]8282&] dxdydz—/alﬂﬁzﬂjazﬂ] dxdydz
Q Q

Q Q Q
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= /Q 1;0,1;0;0,u; dedydz — /Qﬁiazﬂiﬁjﬁzﬂj dxdydz
- A@Zﬂi@jﬁiﬁzﬂj dxdydz + /Qﬂiaz&ﬂj&zﬂj dxdydz
<t [ 0.0V ol drdyd,
employing the Hélder and Young inequalities, we infer that
3] <4 [ 10231V 0.l dadyds
<C|0zal|lla| 4|V -1l
<Cllalfla-il§ 1ol
Sl—tlllvazﬂlli+CH71||§H3Z@||§- (3.20)
It follows from integration by parts that
| Jo| = /Q[(@zﬂ . VH)E — Vg ﬂ@z?)] . 8zgdatdydz

<2 / |1)0.0]|V 1 0.b| dxdydz + / |V 10| |b||0.b| dxdydz + / 10.||0]|0.V gb| dadydz
Q Q Q
<Jo1 + Jog + Jos.

Firstly, the estimate for Jy; is given as follows. By the Holder and Young inequalities,
we deduce

Jo1 =2 /Q |1]|8.0||V 1 0.b| dadydz
<Ol |4V #0-b]| 5
<Clall 1951311V 0.5
< IVaLBI3 + ClalFlo-H3 (321)
Secondly, we can estimate .Joy as follows

Joy = / |V 0. 4| [b]|0.b] dxdydz
Q
<C||V 0.2 |bl|4]|9:b|
<OV il|a||bll4]|0-b]13 | V0.2

1 . 1 - o
SﬁHVé‘zuH% + 1—6||V5’zb||§ + C[b|3ll0-0l13, (3.22)
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and applying the Holder and Young inequalities once again
Jog = /Q 10,]|b]|0.V 1b| dxdydz
<C|[b]|]|0-@l|4[| ¥ £:0:5]|2
<CIDall0-i1l3 1V 10013V -]
<21 IV0.al} + VOBl + ClBI 0.l (323)

14
For the estimate of J3, we break it down

Jy = / (0.5 - V)b — Vg - 505 - 0.t dwdyd=
< /Q 0.b;0;b;0.11; drdydz — /Q 0;0;0.b;0.11; dxdydz
g—/ﬂéiazéjaiazaj dxdydz—/g@l-@i)ii)jazﬂj dxdydz
—/Qﬁzl;igjaﬁzﬂj d:zdydzjt/ggiaiﬁzgjﬁzﬂj dxdydz

<2 /Q |V 0. |b||0.b| dxdydz + 2 /Q 10||V 10.0] |0, 1| dzdyd=
<Jz1 + Jaa.
To bound J31, thanks to Holder and Young inequalities, one has
J31 :2/9 |V 50, 41||b||0.b| dzdydz
<2[B]|4[|0:D[1/| ¥ -]
<Cl 08013 1V w0313 |V 0.l
<Vl + T |Va.bl + ClEI0.b13, (321)

14
for Jso, we apply the Holder and Young inequalities once again

Jay =2 /Q 10|V 1;0.b||0.1| dadydz
<Obll1: 14|V 0B 2
<CIba0.213 17 0.3 7 0Bl
<21Vl + VOBl + ClBI0-al (325)
A similar argument to that for Js, yields

Ju :/ 16]10||V 5 0.b| dzdydz
0
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<Ofpll a2l V 1.5
<C[blla 0.3 11V 0.3 [V 0.5
<71 IVl + = IVa.bl3 + CIIo.al3, (3.26)

and

Js = / d.b -V ytd,b drdydz
Q

<2 /Q |V 1 0,b| || |0.b| dedydz
<Ofall410.5]14]1V 0.5
<C'lalls]|.5]1§ | o.0ll3
<35 IVa.BI3 + Cllal0:b13 (3.27)
For the last term Jg, we get that
Js = /Q 16[|0.V 1|0.b| dxdydz

<C[bll410-5]14/10-9 it

<C1Ipll4 0.5 1725112110,V it

<21 IV.al} + = IVo.bl + ClEI0.bl3 (3.25)

With the aid of the above estimates, substituting (3.20)-(328) into ([B.19), yields

1d i ]
5 103 + 1B1R) + SV .l + [ Vo.513)
< + Vil + I 050+ ., (329)

from which, by the Gronwall inequality, it follows from Propositions B.Iland Propositions
B3, we have

sup, [0.4(s) + sup 105145 / IVo.al2ds + / IV6.5(2 ds

0<s<t
<[10-@03 + 18:bol12 + C (Il + @t + 1102) /0 |04l + 1.blI3 ds
<K(0), (3.30)

where
K(0) = [[9:70l3 + 1920013 + C(llao]13 + [1o3) (R?(0) + R(0)).
This completes the proof of the L>(0, 0o; L?(2)) estimates on d,@ and 8.b. O
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In this subsection, we work on the first-order energy estimates to the strong solutions of
the system (L), subject to the boundary and initial conditions (L3)-(Ld). In particular,
we have shown that the growth of the H'-norms of (4,b) is not faster than a uniform
constant, which depend only on ||| z1, ||bol| 1, L1, Lo.

Proposition 3.5. (First-order energy estimates). Suppose that (tig, by) € H(Q), then,
we have the following estimates

B - 1 [t 1
Sup !|Vu!|§(s)+Os<ugt||Vb||§(s) 2/(||Au!|2+||8tu!| )ds + - /(HAbHﬁH@th )ds

0<s<t

<H(0), (3.31)

where
H(0) = (|[Vaoll3 + [[Vboll3)exp{ C(||to||5 + [|bol|3 + K(0))}.

Proof. Taking the L*(€Q) inner product to the first and the third equation of (7)) with
Oy — A and 9,b — Ab, respectively, then it follows from integration by parts that

d, . i o d s . .
IVl + Aall; + [dall; + —IIVolls + [|Ab]5 + 19013

— / (- Vi)t + usd.i] - (At — 0yt1) dadydz + / (@i - V)b + us0.b] - (Ab — 0;b) ddydz
Q

Q

+ / [(b- V)b + b3d.b] - (8t — A) dudydz + / [(b- V)i + bsd. @] - (9,0 — Ab) dadydz
Q Q

=M, + My + Ms + M,. (3.32)
To estimate M, we split it into two terms
My, = /Q(ﬂ -Vy)u- (Au — o) dedydz + /ngﬁzﬂ - (Aw — Oyu) dxdydz
=My + M.
Applying Lemma 2.3], it follows from the Poincaré and Young inequalities that
My, < /Q(ﬂ -Vy)u- (Au — du) dedydz

1 1
< / ( / (il + lo-)dz) ( / V(A + |0y dz) didy
M -1 —-1
<C|all3 (Nall2 + IV aill2)® + 10-al13 (|0-lls + |1V d-ill2)
< Va3 (|Vaals + [|V3al) 2 (|Adls + [|0clls)
<c(|lalz ||va||§ 1102121V O al|2) |V i) 2 | Adl|3 (| Adi] + || Byiil]2)

1 i P _ _ _
<gllAdls+ ||0tUI|§+C(IIUI|§|IVUII§+II8ZU||§IIVf?ZUHS)IIVUII%- (3.33)
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Since ug is odd in z, it has us|,—o = 0, and thus

u3(x7yazvt) = / 82“3(x7y7£7t>d£: _/ VH{L(ZC,y,g,t)dg
0 0
Thanks to this fact, it follows from Lemma 23] that

M12 S / u38212 . (Afb - 8t11) d:cdydz
M

1 1

g/ (/ |vH-a|dz)(/ |8Zﬁ|(|Aﬂ|+|0tﬂ|)dz> dedy

Q -1 —-1
<C|Vuul3(IVaila + [VHal2)? |6.4l3

x ([|0:all2 + IV aO.ull2)2 (|| Adll2 + [|0pall2)
<C[|Vgil3 | Agal;|0.all3 | Vo.all3 (| Adllz + |0:ll2)

1 ~ 1 - . N -
SEHAUIIE + §||8tUH§ + C|l8.all3IVo.al3]| Vall3. (3.34)

For Ms;, we decompose it into two pieces,
M, = / (@i - V)b + us0.b] - (Ab — 0,b)dxdydz
Q

= / (- V)b - (Ab — 8,b) dedydz + / usd,b - (Ab — 9,b) drdydz
Q Q
:M21 + MQQ.

By the Lemma and the Poincaré and Young inequalities, we deduce

My = / (- V)b (Ab— 0;b) dadydz
Q

< /M ( / 11<\a| +[0.al)dz) / [V 12b] (| A +[94b)d= ) ddy

<Cllalls (alls + 1V nille)? + 103 (10-l2 + |V osill)

X ||VHB||2%(||VHEH2 + 1 V3bl12) % (| ABl|2 + [[3:b]|2)
<C (a3 Va3 + 10l 190.al3 )11V abl3 12813 (1AB]2 + 5]
<IN+ 0Bl + ClaIval3 + lo.alvo.al) Vel (3.39)

Similar to the argument in ([3:34)), it follows from Lemma 23] the Poincaré and Young

inequalities that

Moo :/ u30,b - (AE — 8t5) drdydz
Q
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g/M (/_11|VH~a|dz)</_1l|8ZE|(|AE|+|8t5|)dz) ddy

<Vl 3 (Vi + |V2ls) 10513
< (10:ll2 + 1V 12:5112)* (I A5z + 18.3]1)
<IIVitl}3 1 Al}3 12513 V.33 (11 AB]2 + 1 2:Bl1)
<< IAHE + 0B + 5 IATl + ClOBLIVOBEIVal  (3.36)
To deal with Mj3, we break it down
My = /Q [(b- V)b + b3d.b] - (8t — Ai) dedydz
=Msz1 + Mss,

recalling the Lemma [2.3], the Poincaré and Young inequalities, one can easily check

Ms; = / (b- V)b (Al — 0i1) dudydz
Q

1 B 1 ~

s/ (/ (\b|+|8zb|)dz)</ |VHb|(|AiZ|—i—|3ﬂfL|)dz> dzdy
M -1 -1

<CIBU3 (Ibll2 + I Bll2)* + 1-Bl13 (10:bll2 + 17 10-bl1)

< Vb3 (Vb + 195523 (1 Aals + |9,)2)
<C(IBIZ VB3 + 1083 170:513 ) IV I3 A (1A 2 + 61i]2)

1. . 1, . . 1, . - - - - - .
<<l + S 1Aal3 + S IABE + C(Io-BZIVaBIE + IBIBIVEIDIVEE. (3.37

Thanks to the fact that b3 is odd in z and bs|,—o, one gets

bo(r, . 21 1) = / Dby (i, . €, 1)dE — — / Vi - By, €, 1)de. (3.38)
0 0
and then, using (3.3])), we have

Mgy = / b3.b(dyti — Al dedydz
Q

1 5 1 5
g/ (/ |VH-b|dz)(/ |6Zb|(|Aﬂ|+|8tﬂ|)dz> dzdy
M —1 —1
<C|Vubl3(IVubli3 + V3bI2)0:0]13
% ([10:0l> + IV £10:0]12)% (| At + || eiil]2)
<[V ablI31ALDI310:0]12 Vb3 (|AE| 2 + ||0r]|2)
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1., 1 N 1 ~ - - -
Sgllf?tUIIS + EIIAUIB + 5 1Ab]l2 + Cl1o:0l31V0:b]13 11V l[3. (3.39)
Next we turn to the next term M,
M, = / [(b- V)i + bsd. i) (Ab — 0,b)dadydz
Q
=My1 + My,

again using the Lemma 23] Poincaré and Young inequalities

My = / (b- V)i (At — dyi) dedydz
Q

1 1
< [ ([ @o+100az)( [ 1Val(88 + 03 dz) dody
M 1 -1
~ 1 ~ 1 ~ 1 ~ ~ 1
<C|UBIZ (Blls + 1V ublla)* + 10813 (10:5z + 1V 10:512)? |
1 ~ _ 1 ~ ~
< IVl (Vs + [V all2)2 (120]2 + [[9:b]]2)
SO A <1 <1 1 A ~
<C(IBIZ VB3 + 122131V -503 ) I 13 | Arall3 (14> + 18.D]2)
1. - 1 1 - - - N N
<19l + Tl Auls + 1465 + C(10:blI2I Vb5 + I VI IVal, (3.40)
the second term My, can also be bounded via Lemma 23] Poincaré and Young inequalities

My, = / b30.1(0,b — Ab) dadydz
Q

1 B 1 B B
g/ (/ \VH-b\dz></ \8Z€L\(\Ab\+\8tb\)dz> dzdy
M NS -1
~1 Z1 L1 1
<C|IVdll3 (IVabl3 + [V3bl13)]0-al3
x ([[0:all2 + [V ad.all2)2 (| Abll2 + [|9:D]])
~1 I T -
<[IVubll3 [[Awbll3 [|0-all3 [[VO:all3 (| Abll2 + [[0:b]]2)
Z1 o L -
<[IVol|3 |Ambl3[|0:all3 |V O-all3 (| Abll2 + [|9:b]]2)
1, .+ 1.5 = N .
<3 19bllz + 518015 + CIVbI10:allz [ V. all3. (3.41)
Substituting these inequalities (3.33)-([3.41]) into (3.32)), we finally obtain
d _ - 1 . . ~ ~
S IValz +1VBlIz) + Sl Aall; + [[9.all3 + [|AblZ + [|9:]13)
<C(llal3lIvall3 + [0.all3 Va.al3 + 1061511V a:bl5 + IBI3I VOIS (Va3 + [[VBII3),
recalling Proposition B and Proposition B.4] the standard Gronwall inequality leads to

. = 1 . . = =
sup IIVUIB(S)+Oiu1<)t||Vb||§(S)+§/ (1Aall + 0wz + [ Ab; + [|0:b]I2) ds

t
0<s<t 0
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t
<eap{C [ (aIBIVIR + 10-al3170.a13 + |0.HEIVo.5I3 + B3I VbI3) ds
x (|| Va3 + [ Vbl3)
<H(0),
where

H(0) = ([Vaol3 + [ Vool[3)exp{ C(|[o]l5 + Ilboll5 + K£3(0))

which implies the conclusion. 0

In this subsection, we deal with the second-order energy estimates, which are described
by the following proposition.

Proposition 3.6. (Second-order energy estimates). Suppose that (iiy, by) € H*(Q). Then,
we have the following estimates

_ - 1 [ _ _
sup IIAUH§(8)+Os<ugt||AbH§(8)+—/0 (IVA@]; + [[Vo,al3)ds

0<s<t 2
1 [t ~ ~ B ~
+ 5/0 (IVAD|3 + [VO,b|3) ds < exp{CH?(0)}(|| Adoll3 + || Abo|13)- (3.42)

Proof . Taking the L*(Q) inner product to the first equation and the third equation of
([7) with A(A@ — 9,a) and A(Ab — 9;b), respectively, and integration by parts,

d. .. d. .- X N . -
%IIAUI@ + %IIAbH% + VAl + Vo3 + VA3 + [[Vasbl3
:/ Vi(u-V)u] : V(Au — o) dedydz — / V[(b- V)b : V(Al — 0,11) dedydz
Q Q
+ / V[(u- V)b : V(Ab — 8,b) dedydz — / V[(b-V)a] : V(Ab — 9,b) dedydz
Q Q

:Nl —|—N2 —|—N3+N4, (343)

where (:) denotes multiplication of two matrices.

To estimate N7, we use the Lemma [2.4] the Poincaré and Young inequalities to get
N g‘ / Vi(u- V)i : V(A — 8,a) drdydz
Q
< / [(Ou - V)u + (u-0;V)a] - 0;(At — Oytr) dedydz
Q
<C(llo:Vall3lloAall3 [Val3[|Aall; + (Va3 ]| Aall3
10,V all 3|0 Aa]3) ([ 0:ATl2 + [|9;0;t =)

| IR 2 A
<glIvaal;+ ZlIIVaal; + ClIvalz| Adll, (3.44)
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similar to the argument in (3.44]), we have
Ny g) / VI(b- V)b : V(Ad — ;@) dedydz
Q
S/[(@ib-V)l;—l— (b- V)] - 0;(Ati — dy11) ddydz
Q
<C(|l0; V|3 1|0 AbI5 VD13 (| Ab]IF + V013 | AbJI3
10 Vb3 110:20(13) (|0: Al |2 + [|0: 0y ]|2)
Lo o Lo 0 1 .
SEIIVMIIS + gIIVAuIIS + 7 IVaill; + CIVBI[ Abllz, (3.45)
and
Ny g‘ / V[(u-V)b] : V(Ab — 8,b) dudydz
Q
< / [(Du - V)b + (u - 8;V)D] - 9;(Ab — 8,b) daxdydz
Q
<C(lo;val3 |o:aa]3 Vo3 1 Ab]13 + | Vall3]|Aalz
10: V013 110:20(13) (|0:20]|2 + [|0:0:b]| )
<C(|aal|3]|VAa|3 Vo3 1Ab]13 + |Vall3]|Aalz
1ABI3 [V AD]I3) (I Ab]l + [VO,b]l-)
/R IR B
< IVObIE + g IVA; + £V AL
+ C|| AT VI ABIS + CVall3]| Adall3]| Ab|13. (3.46)
The last term Ny, we get
N, g‘ / V[(b- V)a] : V(AD — 8,0) dxdydz
Q
< / (Db - V)i + (b- 0;V)a] - 9;(Ab — 8,b) dadyd=
Q
<C(|l0:; Vb3 10:A013 Va3 | A3 + V0|13 1| Ab]I3
10: a3 10: 2013 ) (||0:Ab]|2 + [|0:0:b]])
1, sy 1,0 1 -
SEIIVMH% + gIIVAuH% + 7 IVaibll3
+ CllAbl3lIAT|3Valls + ClIVb]5 1 AblI3 ] Adlls. (3.47)

Collecting ([B.44)-(34D) into (B.43)), yields
d _ ~ 1 - . ~ ~
T (1Aallz + [|A0]13) + S (IVAU; + IVl + [VAbIL + [IVab]3)
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<C(IvalzlAalls + Vol Al3)([[Aalf3 + || Ab]f3). (3.48)

Applying the Gronwall inequality to the above inequalities, and recalling the Proposi-
tion 3.5 one has

1

t
sup IIAﬂH%(S)+0iu12t||Ab||§(S)+§/0 (VA3 + |Vl + [IVABIS + [ VObII2) ds

0<s<t
t
<eap{C [ (IVaIBIATE + [VBIZ1 D) ds (1Al + | b
<exp{CH?(0)}([|Adoll3 + | Abol13),

where
H(0) = ([[Vaoll3 + [[Vboll3)exp{ C(||ao||3 + [|bol|3 + K>(0))},

which implies the conclusion. O

The global existence of strong solutions to the systems (1) is direct corollary of
Proposition

4. UNIQUENESS AND CONTINUOUS DEPENDENCE OF THE STRONG SOLUTION

In this section we will show the continuous dependence on the initial data and the
uniqueness of the strong solution.

Let (iiy,b) and (i, by) be two strong solutions of the system (I77) with corresponding
pressures p; and p, and the initial data (g 1, 50,1) and (o2, 5072), respectively. Then the
difference X =y — g, ¢ = p1 — p2 and Y = by — by satisfy

OX = AX + Vg + (i V)X + (X Vs = ([ V-l ,6,0)d€)0.X
0
. (/ Vi X(z,y,6,1) dg)@zag (b - V)Y — (Y - V)b
0

+ (/0 Vit bi(w,y,€,1)d€)0.Y + (/0 Vi Y (w,y,€,1) d€) 0.0 = 0, (4.1)
and

BY + (@ - Vi)Y + (X - Vi)by — (/ Vi (2, y, €, 1) dg)azy
0
- (/ Vi X(z,y,6,1) dg)aj)g CAY — (b - V)X — (Y - Vi)
0

0 0
We equip the equations (4.1 and (4.2]) with the following initial conditions,
X(z,y,2,0) =101 — Toy2, (4.3)
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and

Y(ZIZ’, Y, z, O) = 60,1 - Z~)072- (44)

Taking the inner product of the equation (@I]) with X in L*(2), and the equation (2]
with Y in L*(Q), we get

2dtHXHz +VX|; = /Q [(ﬂl V)X + (X - V)i, — (/OZ Vi (2, y,§,1) d§>5zX
_ (/OZ V- X(z,y,&t) d§>8zﬂ2 — (b - V)Y — (Y - V)b
Vg + (/OZVH-le(g;,y,g,t) d{)@zY
v (/0 Vi Y(2,y,61) d§>82132] - X dzdydz,

and

SalVIB+ 19V I8 == [ [ Vay + 0ok = ([ V- inlo v de)ouy
- (/0 Vi X(x,y,6,0)d€)oubs — (b - V)X — (V- V)i
+ (/OZVH~51(x,y,§,t) dg)azx

+ (/OZ Vi -Y(zy &) df)@zﬁg} Y dxdydz.

Applying integration by parts, and the boundary conditions (L4)-(L.6]), we get

_/Q <(@1 V)X — (/0 Vi (7, y, 1) dg)azx) Xdrdydz =0,  (4.5)

N /Q <(@1 Vi)Y — (/0 Vi -z, y, €,1) d§>82Y> Y drdydz =0,  (4.6)
and

/Q <<51 V)Y - (/ Vi - bi(z,y,€,1) d&)azY) - X dxdydz

/ ((bl V)X / V- bl(z y, &, t) d§>8 X) Y dxdydz = 0. (4.7)

Combining ([@3)- 1), we have
1d
2 dt 2 dt

= —/Q [(X Vy)iiy — (Y - Vi )by — (/0 Vi X(z,y,§1) d§>azﬂ2

LIX3+ VX NE + 22 VI3 + VY3
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+ (/0 Vi Y(x,y,§1) dg)azéz} .dedydz—/Q [(X~VH)52 (Y - V)it
- (/0 Vi X(2.9,6,1) dS)0.b + (/0 Vi Y (,y,€,1) d€)0.in | - Y dudydz.

It follows from Lemma that

| [ Vi X dodyds] <[V el X X o
Q

1 3
<C[[Vae[lo[[ X [VX3,

<[V sba 1Y I3l X s

‘ / (Y - Vi)bs - X dadydz
Q

~ 1 1

<C[[Vb|lo[ VX[l YIZ VY3,

<[V bz o[ [ls]| X s

) / (X - V)b - Y dadydz
Q
<C|Vha|lo|[VX |2/ Y VY113,

and
| [ V)i ¥ dodyde] <V aualll]Y 1Yo
Q

1 3
<ClIVas Y VY3

Moreover

)// VH-X(x,y,&,t)d&&zﬂg-dedydz‘
QJ0O

1 1
§/ (/ |VHX\dz/ |8Zil2||X\dz) dxdy
M -1 -1
1 1 1 1 1
S/M(/_1|VHX\dz</_l|8za2|2dz>2</_l |X\2dz)2>dxdy
g(&(/_?\VX\dz)dedy)é
X (/M(/_ll\azagﬁdz)dedy)‘l‘(/M (/_11 |X\2dz)2dxdy>‘1‘.

Using Cauchy-Schwarz inequality, one gets

(/M (/_11 |VX|dz)2al9:aly)é < C|VX|,.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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Applying Sobolev inequality (2.I]) and Minkowsky inequality (2.4]), one have

</Z\4</_11|X|d2)2dg;dy>% SC/_ll(Ale‘*dxdy)%dz

1
gc/ 1X||VX| dz
-1

<CIX|2IVX]l,

(/M< _11|8zﬂ2|dz>2dxdy>% SC/_ll (/M|azﬁ2|4d$dy>%dz

1
-1

and

<C|0: 2|2V O: 2] -
Therefore, by estimates ([LI3)-([ZIH), we get
| / / Vi X0, 61) d0.is - X ddyz|
aJo
3 1o .
<CVX|Z I XI5 10: 23 [V O:tz|3 -
It follows from the similar argument in (ZI6]) that
‘ / / Vi -Y(x,y, & t)ded.b, - Xdzdydz’
aJo
1 1o T
<IVY Il X3 IV X3 1]0:52(13 [[V 02023
and

‘ / / Vi X(x,y,€,1) ded.by - Y dadydz
QJOo

~ 1 ~ 1 1 1
<[IVXa[[0:bo]|3 VO Y2 VY I3,

moreover,

‘ / / Vi Y (x,y,6, ) ded iy - Y dedyds
Q

~01 1 1 3
<||0a213 VO a3 IV 113 IVY]13.

Therefore, substituting estimates (Z8))- @I and (I6)-([ZI9), we reach
1d
2dt

1 1 1 3
<C(IVitallz + 1013 V0-a23) X113 'V X113

(XNZ + IV + VXIS + IVY)3

+ OV o[ VXY VY13

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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1 1.1 L1
+ CIVY [ XNZ IV X3 []0:0213 V023
%
2

1 1 ~ 1 ~

+ CIVX LY 11V Y 13 10:b2113 [ V-]
1 1 1 3

+ C(IVaall2 + 110-32113 1 90-2013 ) 1Y 1319V 3.

It follows from Young inequality that

1d
(X0 + IYI12) + VXIS + VY3

2dt
<C IV |3 + Vball} + V|3 + 1055 |31 V.03 + 1105, 31 90,5 3)

< (1X115 + [1Y]]3)-
Thanks to Gronwall inequality,

IXI3+ 1Y <(IX( = 03+ ¥t = 0)[3)
t
con{C [ IV + VRl + V(o)

+ [10:2(5) 12l V- t2(5) 13 + 110:02() (131 VD.ba(5)3) dS}-

Since (s, by) is a strong solution,

X2 + Y13 <(1X (& = 01 + 1Y (¢ = 0)[I2) exp{C(H*(0) + H(0) + K(0)H(0))}.

The above inequality proves the continuous dependence of the solutions on the initial
data. In particular, X(t = 0) = Y (t = 0) = 0, we have X(¢) = Y (¢) = 0, for all ¢ > 0.

Therefore, the strong solution is unique.
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