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Abstract: Let Γ be a finite group and V a finite-dimensional Γ-graded space
over an algebraically closed field of characteristic not equal to 2. In the sense
of conjugation, we classify all the so-called pre-nil or nil maximal abelian
subalgebras for the general linear Lie color algebra gl(V,Γ). In the situation of
Γ being a cyclic group, we determine the minimal dimensions of pre-nil or nil
faithful representations for any finite-dimensional abelian Lie color algebra.
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1. Introduction

Lie color algebras, which were introduced by Ree in 1960 (see [14]), play an im-
portant role in mathematics and theoretical physics, especially in the conformal
field theory and supersymmetries (see [1, 26]). For example, Scheunert and Zhang
studied cohomology of Lie color algebras (see [18]); Su, Zhao and Zhu constructed
simple Lie color algebras of generalized Witt type and Weyl type (see [20] and [21]).
Let L be a finite-dimensional Lie (color) algebra and write

µ(L) = min{dimV | (ρ, V ) is a faithful representation of L}.

Ado’s theorem of Lie (color) version guarantees the existence of µ(L) (see [17,
p.719]). In 1905, I. Schur determined the maximal dimension of abelian subalgebras
for the general linear Lie algebra over C in [19] and then µ(L) can be determined for
any finite-dimensional abelian Lie algebra L (see also [9, 13]). A super-version of
Schur’s work was given for Lie superalgebras over C (see [23, 24]). In this paper, we
shall offer a color-version of Schur’s work for Lie color algebras over an algebraically
closed field of characteristic not equal to 2. We also determine the minimal pre-nil
or nil faithful representations for any finite-dimensional abelian Lie color algebra
with respect to a finite cyclic group.
As is well-known, the function µ plays an important role on affine crystallographic

groups and finitely generated torsion-free nilpotent groups. Benoist, Burde and
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Grunewald (see [2, 5]) gave an example of a nilpotent Lie algebra L such that
µ(L) > dimL + 1, which is a counterexample of Milnor’s conjecture (see [12]).
However, it is not easy to compute µ(L), even the bounds of µ(L) for a given finite-
dimensional Lie (color) algebra. A lot of work on the function µ revolves around
nilpotent or (semi)simple Lie (super)algebras as well as their various extensions
(see [2–4, 6–11, 13, 15, 16, 19, 22–25] for example).
Throughout F is an algebraically closed field of characteristic not equal to 2 and

all vector spaces and algebras are over F and of finite dimensions.

1.1. Generalized matrix units. Denote by M(m) the set consisting of all m×m
matrices over F. We define a total order on the set {(i, j) | 1 ≤ i, j ≤ m} by

(i, j) < (k, l) ⇐⇒ i < k, or i = k but j < l.

Denote by ht(X) = min{(i, j) | xij 6= 0} for X = (xij) ∈ M(m) and ht(0) =
(∞,∞). Hereafter amn is (m,n)-entry of the matrix A = (aij). An element X is
called a generalized matrix unit of (i, j)-form, usually written as ui,j , if ht(X) =
(i, j) and its ith row is (0, ..., 0, 1, 0..., 0), where 1 is at the j-th position. In general,
for given (i, j), there are many generalized matrix units ui,j. For a subspace S of
M(m), write

ht(S) := min{ht(X) | X ∈ S}.
Denote by Im = Σm

i=1eii the m × m identity matrix. Hereafter eij is the matrix
unit having 1 at (i, j)-position and 0 elsewhere. Fix a nonzero element a ∈ F and
let Tij(a) or Di(a) be Im + aeij or Im + (a − 1)eii, respectively. As in [24], we
introduce the following similar operations of M(m):

(1) t-type operators

sTij(a) := lTij(a)−1rTij(a) for 1 ≤ i < j ≤ m and a ∈ F.

(2) d-type operators

sDi(a) := lDi(a)−1rDi(a) for 1 ≤ i ≤ m and a ∈ F\{0},

where, lA or rA is the operator of left or right associative multiplication by the
matrix A for A ∈ M(m), respectively. If A = (aij) and ht(A) = (i, j), we write

hA =
∑

l>j

sTjl(−ail)sDi(aij).

1.2. Lie color algebras. Let Γ be an abelian group and V = ⊕α∈ΓVα a Γ-graded
space. The elements in ∪α∈ΓVα are said to be homogenous. For a homogeneous
element v ∈ Vα, α ∈ Γ, we set |v| = α, the degree of v. In addition, the symbol |x|
implies that x is homogeneous. By definition, a Γ-graded algebra g is a Γ-graded
space g = ⊕α∈Γgα with a bilinear multiplication consistent with the Γ-gradation.
Let g be a Γ-graded algebra. If the multiplication of g is trivial, we say g to be
abelian; if the multiplication of g satisfies the associativity law, we say g to be
associative.
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Let Γ be an abelian group. A bi-character on Γ is a map ε : Γ × Γ −→ F\{0}
such that

ε(α, β)ε(β, α) = 1, ε(αβ, γ) = ε(α, γ)ε(β, γ),

where α, β, γ ∈ Γ. Let Γ be an abelian group of a bi-character ε and g a Γ-graded
algebra, whose multiplication is denoted by [ , ]. If

[x, y] + ε(|x|, |y|)[y, x] = 0,

ε(|z|, |x|)[x, [y, z]] + ε(|x|, |y|)[y, [z, x]] + ε(|y|, |z|)[z, [x, y]] = 0,

where x, y, z ∈ g, then g is called a Lie color algebra. Lie (super)algebras are Lie
color algebras (see [21, p.525]). If A = ⊕α∈ΓAα is a Γ-graded associative algebra,
by introducing a new multiplication

[x, y] = xy − ε(|x|, |y|)yx, x, y ∈ A,

A becomes a Lie color algebra, which is denoted by A−.

1.3. The general linear Lie color algebras. Let Γ be an abelian group of a
bi-character ε and V = ⊕α∈ΓVα a Γ-graded space. Then EndF(V ) is a Γ-graded
associative algebra and EndF(V )− is a Lie color algebra in the usual fashion, which
is called the general linear Lie color algebra and denoted by gl(V,Γ) (see [28, p.447]).
Let a be a subalgebra of gl(V,Γ). If each element in a is nilpotent, we say a to be
nil; if each element in ∪α∈Γ∗aα is nilpotent, we say a to be pre-nil. Hereafter Γ∗

denotes the set Γ\{0}, where 0 is the identity of Γ. If a is a (pre-nil or nil) abelian
subalgebra of the maximal dimension for gl(V,Γ), we say a to be (pre-nil or nil)
maximal abelian. Let L = ⊕α∈ΓLα be a Lie color algebra and ρ : L −→ gl(V,Γ) a
linear map of degree 0. If ρ([x, y]) = [ρ(x), ρ(y)] for x, y ∈ L, we call (ρ, V ) to be a
representation of L. Let (ρ, V ) be a representation of L. If ker ρ = 0, we say (ρ, V )
to be faithful; if each element in ρ(V ) is nilpotent, we say (ρ, V ) to be nil; if each
element in ∪α∈Γ∗ρ(V )α is nilpotent, we say (ρ, V ) to be pre-nil. Write

µnil(L) = min{dimV | (ρ, V ) is a nil faithful representation of L},
µpre-nil(L) = min{dimV | (ρ, V ) is a pre-nil faithful representation of L}.

1.4. The matrix-version of gl(V,Γ). Hereafter, we make a convention that
the symbol Γ always denotes a finite abelian group of a bi-character ε, whose all
elements are α1, . . . , αk. For the fixed order of α1, . . . , αk, if V = ⊕k

i=1Vαi
is a

Γ-graded space and dimVαi
= mi, we say that (m1, . . . ,mk) is Γ-dimension of V .

Let V be of Γ-dimension (m1, . . . ,mk) and m =
∑k

i=1 mi. A rearrangement of

(

m1

︷ ︸︸ ︷
α1, . . . , α1,

m2

︷ ︸︸ ︷
α2, . . . , α2, . . . ,

mk
︷ ︸︸ ︷
αk, . . . , αk)

is called an (m1, . . . ,mk)-tuple. Denote by B = (v1, . . . , vm) an ordered homo-
geneous basis of V and equip it with an (m1, . . . ,mk)-tuple Φ = (|v1|, . . . , |vm|)
induced by B. Then the general linear Lie color algebra gl(V,Γ) is isomorphic to
its matrix-version glΦ(m1, . . . ,mk) induced by tuple Φ, which has the underlying
matrices space M(m) and a Γ-grading structure

glΦ(m1, . . . ,mk) = ⊕k
l=1gl

Φ
αl
(m1, . . . ,mk),



The maximal abelian subalgebras 4

where
glΦαl

(m1, . . . ,mk) = Span{eij | Φi − Φj = αl}.
Hereafter, Φn denotes the n-th entry of the tuple Φ. In particular, if

Φ = (

m1

︷ ︸︸ ︷
α1, . . . , α1,

m2

︷ ︸︸ ︷
α2, . . . , α2, . . . ,

mk
︷ ︸︸ ︷
αk, . . . , αk),

glΦ(m1, . . . ,mk) is denoted by gl(m1, . . . ,mk) for short. For any (m1, . . . ,mk)-
tuple Φ, write tΦ(m1, . . . ,mk) or s

Φ(m1, . . . ,mk) for the subalgebras of gl
Φ(m1, . . . ,mk)

consisting of upper triangular or strictly upper triangular matrices, respectively.

2. Maximal pre-nil or nil abelian subalgebras of

gl(V,Γ)

In this section, we shall give a lower bound of the maximal dimensions for abelian
subalgebras of the general linear Lie color algebra gl(V,Γ). In the case Γ = Zk,
the cyclic group of order k, we shall classify the pre-nil or nil maximal abelian
subalgebras of gl(V,Γ) in the sense of conjugation. In addition, we shall give a
method to determine µpre-nil(L) and µnil(L) for any abelian Lie color algebra L.

2.1. Main lemmas. The following lemma realizes the triangulation of matrices
for any pre-nil abelian subalgebra of gl(m1, . . . ,mk), which is a color-version of [27,
Lemma 3.3].

Lemma 2.1. Let a be a pre-nil abelian subalgebra of gl(m1, . . . ,mk). Then there
exists an (m1, . . . ,mk)-tuple Φ such that a is contained in tΦ(m1, . . . ,mk). Fur-
thermore, if a is nil abelian, then there exists an (m1, . . . ,mk)-tuple Φ such that a
is contained in sΦ(m1, . . . ,mk).

Proof. From Jacobson’s Theorem on weakly closed sets, it is sufficient to prove
that a has common homogeneous eigenvectors in V . Since a is pre-nil , for A ∈
glγl

(m1, . . . ,mk) with γl ∈ Γ∗, zero is the only eigenvalue of A, and hence

V1 :=
{
x ∈ V | glγl

(m1, . . . ,mk)x = 0, γl ∈ Γ∗
}

is nonzero. It is clear that V1 is gl0(m1, . . . ,mk)-module. Then

V2 := {x ∈ V1 | gl0(m1, . . . ,mk)x ∈ Fx}

is also nonzero. Any nonzero homogeneous element in V2 is a common eigenvector
for a.

The following lemma gives an HGMU decomposition (see below for a defini-
tion) of any abelian subalgebra for sΦ(m1, . . . ,mk), which is a color-version of [24,
Lemma 2.3 ].

Lemma 2.2. Let Φ be an (m1, . . . ,mk)-tuple and m =
∑k

i=1 mi.
(1) If A is a homogeneous element in sΦ(m1, . . . ,mk) with ht(A) = (i, j), then A

is conjugate to a homogeneous generalized matrix unit ui,j in sΦ(m1, . . . ,mk) and
|ui,j | = |A|.
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(2) If a is an abelian subalgebra of sΦ(m1, . . . ,mk) with ht(a) = (i, j), then
there exist some homogeneous generalized matrix units ui,k1

, ui,k2
, . . . , ui,kr

in

sΦ(m1, . . . ,mk), a homogeneous invertible matrix T ∈ glΦ(m1, . . . ,mk) and an
abelian subalgebra a′ of sΦ(m1, . . . ,mk) with ht(a′) > (i,m), such that a is conju-
gate to

T−1aT = Fui,k1
⊕ Fui,k2

⊕ · · · ⊕ Fui,kr
⊕ a′ (2.1)

where i < j = k1 < k2 < · · · < kr ≤ m and for each matrix X in a′:

• the kjth row of X is zero for each 1 ≤ j ≤ r.

• if the sth row (resp. column) of TXT−1 is zero, so is the sth row (resp.
column) of X .

Proof. (1) On one hand, hA(A) a generalized matrix unit ui,j since ht(A) = (i, j).
On the other hand, since A is homogeneous and ht(A) = (i, j), |A| = |eij | = Φi−Φj.

Then Φl = Φj if ail is nonzero. It follows that hA is in End0(gl
Φ(m1, . . . ,mk)),

which implies |ui,j | = |A|.
(2) Let the homogeneous matrix Aij ∈ a satisfy ht (Aij) = ht(a) = (i, j). Then

hAij
(Aij) is a generalized matrix unit ui,j by (1), and hAij

(a) is a new abelian
subalgebra contained in sΦ(m1, . . . ,mk). Let a(1) be the subspace of hAij

(a) such
that ht(a(1)) > (i, k1) and any matrix in hAij

(a) is of the form aui,k1
+ P , where

a ∈ F, k1 = j and P ∈ a(1). Similarly, if ht(a(1)) = (i, k2), let the homogeneous
matrix Aik2

∈ a(1) satisfy ht (Aik2
) = (i, k2). Consequently, hAik2

(Aik2
) is also

a homogenous generalized matrix unit, denoted by ui,k2
, and hAik2

hAik1
(a) ⊃

hAik2

(
a(1)
)
are also abelian subalgebras of sΦ(m1, . . . ,mk). In particular, since

k2 > k1 > i, hAik2
(ui,k1

) is also a generalized matrix unit of (i, k1)-form, denoted

still by ui,k1
. Let a(2) be the subspace of hAik2

(
a(1)
)
such that ht(a(2)) > (i, k2)

and any a matrix in a is of the form: a1ui,k1
+ a2ui,k2

+ P , where a1, a2 ∈ F and
P ∈ a(2). By induction, there exists a positive integer r such that

ht(a(r)) > (i,m), 1 ≤ r ≤ m− i

and
hAikr

hAikr−1
· · ·hAikt+1

(
a(t)
)
⊂ hAikr

hAikr−1
· · · hAikt

(
a(t−1)

)
,

where 1 ≤ t ≤ r−1 and a0 = a. In addition, we also get r homogeneous generalized
matrix units: ui,k1

, ui,k2
, . . . , ui,kr

, where i < k1 < k2 < · · · < kr ≤ m. Write

a′ = a(r), T−1aT = hAikr
hAikr−1

· · · hAik1
(a) .

Then
T−1aT = Fui,k1

⊕ · · · ⊕ Fui,kr
⊕ a′.

For every 1 ≤ l ≤ r and any homogeneous matrix X ∈ a′, the ith row of ui,kl
X

is the klth row of X and the ith row of Xui,kl
is 0 by hta′ > (i,m). Then since

T−1aT is abelian and every ui,kj
is homogeneous, the klth row of any homogeneous

matrix in a′ is 0. Furthermore, the operators hAikt
leave 0 rows but the klth rows

of any a matrix invariant, where 1 ≤ t ≤ r. Then (2) is true.

(2.1) is called the homogeneous generalized matrix unit decomposition of a (HGMU
decomposition in short).
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2.2. Main results. Write

E = Span{eij ∈ glΦ(m1, . . . ,mk) | 1 ≤ i ≤ ⌈m/2⌉, ⌈m/2⌉+ 1 ≤ j ≤ m},
F = Span{eij ∈ glΦ(m1, . . . ,mk) | 1 ≤ i ≤ ⌊m/2⌋, ⌊m/2⌋+ 1 ≤ j ≤ m},

E′ = E⊕ FIm, F′ = F⊕ FIm,

(2.2)

where m =
∑k

i=1 mi.
Write Zk = {0̄, 1̄, . . . , k − 1} and fix the order 0̄, 1̄, . . . , k − 1 in the following.

Now we are in the position to determine the pre-nil maximal abelian subalgebras
of gl(m1, . . . ,mk), the idea of which mainly comes from Jacobson’s paper [9].

Theorem 2.3. Let a be a pre-nil maximal abelian subalgebra of gl(m1, . . . ,mk)

and m =
∑k

i=1 mi. Suppose m > 3. Then
(1) a is conjugate to E′ or F′ for some (m1, . . . ,mk)-tuple Φ.
(2) In case Γ = Zk, a is of Zk-dimension

(
k∑

i=1

ṁi+1m̈i,

k∑

i=1

ṁi+2m̈i, . . . ,

k∑

i=1

ṁi+k−1m̈i,

(
k∑

i=1

ṁi+km̈i

)

+ 1

)

,

where ṁi, m̈i are nonnegative integers such that ṁi+ m̈i = mi and ṁk+i = ṁi for
1 ≤ i ≤ k. In particular, dim a = ⌊m2/4⌋+ 1.

Proof. (1) Let V be the natural a-module. Similar to the case of Lie algebra, we
get V =

⊕

α∈∆ Vα, where

Vα = {v ∈ V | for every x ∈ a, there exists l ∈ N such that (x− α(x)idV )
lv = 0}.

We use induction on |∆|.
(a) |∆| = 1 : From Lemma 2.1, there exists an (m1, . . . ,mk)-tuple Φ such that a

is contained in tΦ(m1, . . . ,mk). Let b be the abelian subalgebra in sΦ(m1, . . . ,mk)
such that a = FIm ⊕ b. From Lemma 2.2, we get the following HGMU decomposi-
tions:

T−1
1 bT1 = Fui1,j11 ⊕ · · · ⊕ Fui1,j1r1

⊕ b1
T−1
2 b1T2 = Fui2,j21 ⊕ · · · ⊕ Fui2,j2r2

⊕ b2
· · · · · ·

T−1
t bt−1Tt = Fuit,jt1 ⊕ · · · ⊕ Fuit,jtrt

⊕ bt

(2.3)

where

• (il+1, jl+1,1) = ht(bl) > (il,m) for 0 ≤ l ≤ t− 1 with b0 = b, bt = 0, and then
dim b = r1 + r2 + · · ·+ rt;

• generalized matrix units in (2.3) are homogeneous, whose index-pairs satisfy

no indexes in the first position appear in the second position. (2.4)

For 1 ≤ l ≤ t, the fact il > il−1 > · · · > i1 and (2.4) imply rl ≤ m − il − (t − l),
and then

dim b = r1 + · · ·+ rt

≤ tm− (i1 + · · ·+ it)− (1 + · · ·+ t− 1)

≤ tm− (1 + · · ·+ t)− (1 + · · ·+ t− 1)

= t(m− t)

≤ ⌊m2/4⌋.

(2.5)
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Since dim a ≥ dimE′ = ⌊m2/4⌋+1, dim b ≥ ⌊m2/4⌋. This forces (2.5) is a equation,
that is,

il = l, rl = m− t, t = ⌈m/2⌉ or ⌊m/2⌋, (2.6)

for 1 ≤ l ≤ t.
If m = 2n is even, then

il = l, t = n, rl = m− t = n for 1 ≤ l ≤ n

by (2.6). Then by (2.4), generalized matrix units in (2.3) are ui,j for 1 ≤ i ≤ n, n+
1 ≤ j ≤ 2n. It follows that the last n rows of any matrix in b1∪b2 · · ·∪bn−1 is zero
rows from Lemma 2.2(2). In particular, un,j in (2.3) is enj, where n+ 1 ≤ j ≤ 2n.
Furthermore, un−1,j in (2.3) may be viewed as en−1j , n+1 ≤ j ≤ 2n. By induction,
ul,j in (2.3) may be viewed as elj , where n+ 1 ≤ j ≤ 2n and 2 ≤ l ≤ n. Then b1
is spanned by {eij | 2 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n}. Since

0 = [ul,h, eij ] = ul,heij − ε(|ul,h|, |eij |)eijul,h = −ε(|ul,h|, |eij |)eijul,h

for 1 ≤ i ≤ n, n + 1 ≤ j, h ≤ 2n, the last n rows of each ul,h are zero rows.
Consequently, b is conjugate to E or F, and a = FIm ⊕ b is conjugate to E′ or F′.
The remaining case s = 2n+ 1 can be analogously treated.
(b) |∆| > 1 : Let ∆ = {β1, β2, . . . , βl} where l > 1.Wemay suppose that a = a1⊕

a2, where ai is an abelian subalgebra of gl(Vi) with V1 = Vβ1
and V2 =

⊕l
i=2 Vβi

.
For i = 1, 2, denote by ∆i the weight set of Vi with respect to ai. Note that
∆1 = {β1} and ∆2 = {βj | 2 ≤ j ≤ l} by abuse of language. Since |∆i| < |∆|
for i = 1, 2, by inductive hypothesis we may assume that the theorem holds for
gl(V1) and gl(V2). Let (ṁ1, . . . , ṁk) or (m̈1, . . . , m̈k) be Γ-dimension of V1 or V2,

respectively. Write ṁ =
∑k

i=1 ṁi and m̈ =
∑k

i=1 m̈i. Then m = ṁ + m̈ and
mi = ṁi + m̈i, 1 ≤ i ≤ k.
(I) m = 2t− 1, ṁ = 2t1 − 1, m̈ = 2t2: Here t = t1 + t2 and

dim a ≤ t1(t1 − 1) + 1 + t22 + 1 ≤ t(t− 1) + 1.

Equality holds between the last terms only when m = 3.
(II) m = 2t, ṁ = 2t1 − 1, m̈ = 2t2 − 1: Here t = t1 + t2 − 1 and

dim a ≤ t1(t1 − 1) + 1 + t2(t2 − 1) + 1 ≤ t2 + 1.

Equality holds between the last terms only when m = 2.
(III) m = 2t, ṁ = 2t1, m̈ = 2t2: Here t = t1 + t2 and

dim a ≤ t21 + 1 + t22 + 1 < t2 + 1.

Hence (1) holds.
(2) From (1), it is sufficient to consider the cases a = E′ and F′. Let ṁi be the

cardinality of the set

{
j | Φj = ī, 1 ≤ j ≤ ⌊m

2 ⌋
}

if a = F′

or
{
j | Φj = ī, 1 ≤ j ≤ ⌈m

2 ⌉
}

if a = E′,
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and write m̈i = mi − ṁi, where 1 ≤ i ≤ k. For 1 ≤ l ≤ k, denote by al̄ the
homogeneous subspace of degree l̄ for a. Since the matrix unit est is of the degree
Φs − Φt, we get

al̄ = Span
{
est | Φs = i+ l,Φt = ī, 1 ≤ i ≤ k

}
+ δl̄,0Im.

Hereafter δi,j is 1 if i = j and 0 otherwise. It follows that

dim al̄ =

k∑

i=1

ṁi+lm̈i + δl̄,01.

By a direct computation, we get the following theorem, which complements the
Theorem 2.3.

Theorem 2.4. Let a be a pre-nil maximal abelian subalgebra of gl(m1, . . . ,mk)

and m =
∑k

i=1 mi.

(1) If m = 3, a is conjugate to one of the following

Span {I3, e12, e13} , Span {I3, e23, e13} ,

Span {e11 + e22, e12, e33} , Span {e11, e22, e33} .

(2) If m = 2, a is conjugate to Span {I2, e12} or Span {e11, e22} .

Since any abelian subalgebra of the general linear Lie superalgebra is a pre-nil
one, Theorems 2.3 and 2.4 cover Schur’s work and its super-version. As a by-
product, we may determine all nil maximal abelian subalgebras of gl(m1, . . . ,mk)
as follows.

Corollary 2.5. Let b be a nil maximal abelian subalgebra of gl(m1, . . . ,mk) and

m =
∑k

i=1 mi.
(1) Suppose m > 3. Then

• b is conjugate to E or F for some (m1, . . . ,mk)-tuple Φ.

• If Γ = Zk, then b is of Γ-dimension

(
k∑

i=1

ṁi+1m̈i,

k∑

i=1

ṁi+2m̈i, . . . ,

k∑

i=1

ṁi+k−1m̈i,

k∑

i=1

ṁi+km̈i

)

,

where ṁi, m̈i are nonnegative numbers such that ṁi+ m̈i = mi, and ṁk+i =
ṁi for 1 ≤ i ≤ k. In particular, dim b = ⌊m2/4⌋.

(2) If m = 3, then b is conjugate to one of the following

Span {e12, e13} , Span {e23, e13} , Span {e12, e33} .

(3) If m = 2, then b is conjugate to Span {e12}.
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From Theorems 2.4 and 2.5, we have the following remark. If we focus only on
the maximal dimension of pre-nil or nil abelian subalgebras for gl(m1, . . . ,mk), we
may give a direct proof of the following remark by virtue of Mirzakhani’s idea in
[13], for which readers may see the Appendix.

Remark 2.6. (1) Any nil maximal abelian subalgebra of gl(m1, . . . ,mk) is of

dimension ⌊ (
∑

k
i=1

mi)
2

4 ⌋.
(2) Any pre-nil maximal abelian subalgebra of gl(m1, . . . ,mk) is of dimension

⌊ (
∑k

i=1
mi)

2

4 ⌋+ 1.

2.3. Applications. For any Zk-graded abelian Lie color algebra L, the following
theorem gives a method of determining µpre-nil(L) and µnil(L).

Theorem 2.7. Let L be an abelian Lie color algebra.

(1) µpre-nil(L) ≥ ⌈2
√
dimL− 1⌉, µnil(L) ≥ ⌈2

√
dimL⌉.

(2) In case Γ = Zk, L possesses a pre-nil faithful representation of dimension
m if and only if m admits a 2k-partition (ṁ1, m̈1, . . . , ṁk, m̈k) such that
∑k

i=1 ṁi+lm̈i + δl̄,01 ≥ dimLl̄, where ṁk+i = ṁi and 1 ≤ l ≤ k − 1.

(3) In case Γ = Zk, L possesses a nil faithful representation of dimension m if and

only ifm admits a 2k-partition (ṁ1, m̈1, . . . , ṁk, m̈k) such that
∑k

i=1 ṁi+lm̈i ≥
dimLl̄, where ṁk+i = ṁi and 1 ≤ l ≤ k − 1.

Proof. (1) Let ι : L −→ gl(m1, . . . ,mk) be a pre-nil faithful representation of L.
Then ι(L) is a pre-nil abelian subalgebra of gl(m1, . . . ,mk). From Theorem 2.3(1),

dimL = dim ι(L) ≤ ⌊(
k∑

i=1

mi)
2/4⌋+ 1.

Consequently,
∑k

i=1 mi ≥ ⌈2
√
dimL− 1⌉.

Furthermore, if ι is nil, then each element in ι(L) is nilpotent. From Corollary
2.5,

dimL = dim ι(L) ≤ ⌊(
k∑

i=1

mi)
2/4⌋.

Consequently,
∑k

i=1 mi ≥ ⌈2
√
dimL⌉.

(2) and (3) are true by virtue of Theorem 2.5(2) and Corollary 2.5(2), respec-
tively.

3. Appendix: The maximal dimension of pre-nil

or nil abelian subalgebras for gl(m1, . . . , mk)

In this section, we give a direct proof of Remark 2.6. The main idea comes from
Mirzakhani’s work [13].
Let a be any maximal pre-nil abelian subalgebra of gl(m1, . . . ,mk). We may

assume that a is contained in tΦ(m1, . . . ,mk) from Lemma 2.1. Let us use induction
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on m to show that dim a ≤ ⌊m2/4⌋+ 1. When m = 1, the conclusion holds since
glΦ(m1, . . . ,mk) is of dimension 1. Assume that the conclusion holds for m − 1.
Let us consider the case m. Suppose the contrary, that is, dim a > ⌊m2/4⌋ + 1.
Then a contains an abelian subalgebra, say n, of dimension

ν(m) := ⌊m2/4⌋+ 2. (3.1)

Fix a homogeneous basis of n: {Ai | 1 ≤ i ≤ ν(m)}. For 1 ≤ i ≤ ν(m), let Āi and
Ãi be (m− 1)× (m− 1) matrices such that

Ai =







a11 · · · a1m

... Āi

am1






=







a1m

Ãi

...

am1 · · · amm






.

Write
Φ̄ = (Φ̂1,Φ2, . . . ,Φm) and Φ̃ = (Φ1,Φ2, . . . , Φ̂m),

where the sign ˆ means that the element under it is omitted. It is obvious that Φ̄
is an (m1, . . . ,mg − 1, . . . ,mk)-tuple if Φ1 = αg, Φ̃ is an (m1, . . . ,mh − 1, . . . ,mk)-

tuple if Φm = αh. Then Āi and Ãi are in glΦ̄(m1, . . . ,mg − 1, . . . ,mk) and

glΦ̃(m1, . . . ,mh − 1, . . . ,mk) respectively, and |Āi| = |Ai| = |Ãi|. By [Ai, Aj ] = 0,
we have AiAj = ε (|Ai|, |Aj |)AjAi. Then







∗ · · · ∗

0
... ĀjĀj

0






= ε (|Ai|, |Aj |)







∗ · · · ∗

0
... ĀjĀi

0






,








∗
ÃiÃj

...

0 · · · 0 ∗







= ε (|Ai|, |Aj |)








∗
ÃjÃi

...

0 · · · 0 ∗







.

That is, [Āi, Āj ] = 0 = [Ãi, Ãj ]. Let W̄ and W̃ be the Γ-graded vector spaces

spanned by {Āi | 1 ≤ i ≤ ν(m)} and {Ãi | 1 ≤ i ≤ ν(m)}, respectively.
Then W̄ and W̃ are also abelian subalgebras of tΦ̄(m1, . . . ,mg − 1, . . . ,mk) and

tΦ̃(m1, . . . ,mh − 1, . . . ,mk) for some g and h, respectively. Write r = dim W̄ and
t = dim W̃ . By inductive hypothesis, we have

r ≤ ⌊(m− 1)2/4⌋+ 1,

t ≤ ⌊(m− 1)2/4⌋+ 1.
(3.2)

Without loss of generality, we may assume that {Āi | 1 ≤ i ≤ r} are linearly
independent, so are {Ãi | 1 ≤ i ≤ t}. Let

Āi =
∑r

k=1 m̄ikĀk, where m̄ik ∈ F and r + 1 ≤ i ≤ ν(m),

Ãj =
∑t

k=1 m̃jkÃk, where m̃jk ∈ F and t+ 1 ≤ j ≤ ν(m).
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Note that |Āi| = |Āj | if m̄ij 6= 0, and |Ãi| = |Ãj | if m̃ij 6= 0. Then

|Ai| = |Aj | if m̄ij 6= 0 or m̃ij 6= 0.

For r + 1 ≤ i ≤ ν(m) and t+ 1 ≤ j ≤ ν(m), write

B̄i = Ai −
r∑

k=1

m̄ikAk, B̃j = Aj −
t∑

k=1

m̃jkAk.

Thus each B̄i (resp. B̃j) is homogeneous and of the form [b̄i, O]t (resp.
[

O, b̃j

]

),

where b̄ti = āi −
∑r

k=1 m̄ikāk is a 1 × m matrix and āq is the first row of Aq for

1 ≤ q ≤ ν(m) (resp. b̃j = ãj −
∑l

k=1 m̃jk ãk is an m × 1 matrix and ãq is the last
column of Aq, 1 ≤ q ≤ ν(m)). Hereafter Xt denotes the transpose of a matrix X .
Clearly,

{
B̄i | r + 1 ≤ i ≤ ν(m)

}
(resp.

{

B̃i | t+ 1 ≤ i ≤ ν(m)
}

)

are linearly independent, and so are

{
b̄ti | r + 1 ≤ i ≤ ν(m)

}
(resp.

{

b̃i | t+ 1 ≤ i ≤ ν(m)
}

).

Let M =
[
b̄r+1, b̄r+2, . . . , b̄ν(m)

]t
. Clearly,

rankM = ν(m)− r. (3.3)

Denote by W the set {X ∈ Fm | MX = 0}. Then

dimW = m− rankM. (3.4)

For r + 1 ≤ i ≤ ν(m) and t+ 1 ≤ j ≤ ν(m), B̄i, B̃j are homogenous matrices in n.

Note that B̃jB̄i = 0, then B̄iB̃j = 0 by [B̄i, B̃j ] = 0. Consequently,

b̄ti b̃j = 0 for r + 1 ≤ i ≤ ν(m) and t+ 1 ≤ j ≤ ν(m),

that is, the set
{

b̃j | t+ 1 ≤ j ≤ ν(m)
}

is contained in W , which are linearly inde-

pendent. Consequently,
dimW ≥ ν(m)− t. (3.5)

Therefore

m
(3.4)
= rankM + dimW

(3.3)(3.5)
≥ ν(m)− r + ν(m)− t

(3.1)
= 2(⌊m2/4⌋+ 2)− r − t

(3.2)
≥ 2(⌊m2/4⌋ − ⌊(m− 1)2/4⌋+ 1).

Thus, if m = 2q is even, then 2q ≥ 2(q + 1), a contradiction; if m = 2q + 1 is odd,
then 2q + 1 ≥ 2(q + 1), also a contradiction. Hence dim a ≤ ⌊m2/4⌋+ 1. By (2.2),
we have dim a ≥= dimE′ = ⌊m2/4⌋+ 1.
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Furthermore, if each element in a is nilpotemt, we may assume that a is contained
in sΦ(m1, . . . ,mk) from Lemma 2.1. Thus

⌊m2/4⌋ = dimE ≤ dim a < ⌊m2/4⌋+ 1.
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