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1. Introduction

Lie color algebras, which were introduced by Ree in 1960 (see ﬂﬂ]), play an im-

portant role in mathematics and theoretical physics, especially in the conformal

field theory and supersymmetries (see ﬁl, @]) For example, Scheunert and Zhang

studied cohomology of Lie color algebras (see [18]); Su, Zhao and Zhu constructed

simple Lie color algebras of generalized Witt type and Weyl type (see @ and |2 _
Let L be a finite-dimensional Lie (color) algebra and write

(L) = min{dimV | (p, V) is a faithful representation of L}.

Ado’s theorem of Lie (color) version guarantees the existence of u(L) (see [17,
p.719]). In 1905, I. Schur determined the maximal dimension of abelian subalgebras
for the general linear Lie algebra over C in ﬂE and then L can be determined for
any finite-dimensional abelian Lie algebra L (see also A super-version of
Schur’s work was given for Lie superalgebras over C (see 2 . In this paper, we
shall offer a color-version of Schur’s work for Lie color algebras over an algebraically
closed field of characteristic not equal to 2. We also determine the minimal pre-nil
or nil faithful representations for any finite-dimensional abelian Lie color algebra
with respect to a finite cyclic group.

As is well-known, the function p plays an important role on affine crystallographic
groups and finitely generated torsion-free nilpotent groups. Benoist, Burde and
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Grunewald (see [2, 5]) gave an example of a nilpotent Lie algebra L such that
u(L) > dim L + 1, which is a counterexample of Milnor’s conjecture (see |12]).
However, it is not easy to compute u(L), even the bounds of p(L) for a given finite-
dimensional Lie (color) algebra. A lot of work on the function p revolves around
nilpotent or (semi)simple Lie (super)algebras as well as their various extensions
(see [2-4, 16-11, 13, 115, [16, 19, [22-25] for example).

Throughout F is an algebraically closed field of characteristic not equal to 2 and
all vector spaces and algebras are over F and of finite dimensions.

1.1. Generalized matrix units. Denote by M(m) the set consisting of all mxm
matrices over F. We define a total order on the set {(z,75) | 1 <i,5 < m} by

(1,j) < (k))<= i<k, or i=Fk but j<lI.

Denote by ht(X) = min{(¢,j) | ;; # 0} for X = (z;;) € M(m) and ht(0) =
(00, 00). Hereafter am, is (m,n)-entry of the matrix A = (a;;). An element X is
called a generalized matrix unit of (i, j)-form, usually written as w; ;, if ht(X) =
(i,7) and its ith row is (0, ...,0,1,0...,0), where 1 is at the j-th position. In general,
for given (¢, j), there are many generalized matrix units u; ;. For a subspace S of
M(m), write

ht(S) := min{ht(X) | X € S}.

Denote by I, = X% e;; the m x m identity matrix. Hereafter e;; is the matrix
unit having 1 at (¢, j)-position and 0 elsewhere. Fix a nonzero element a € F and
let T;;(a) or D;(a) be I, + ae;; or L, + (a — 1)e;;, respectively. As in [24], we
introduce the following similar operations of M(m):

(1) t-type operators

5T,5(a) = lTij(a)*erij(a) forl1<i<j<mandackF.

(2) d-type operators

SD;(a) = lDi(a)*eri(a) forl1<i<mandac€ ]F\{O},

where, 14 or r4 is the operator of left or right associative multiplication by the
matrix A for A € M(m), respectively. If A = (a,;) and ht(A4) = (4, j), we write

hy = Z ST (—ay)SDi(as;)-

>3

1.2. Lie color algebras. Let I' be an abelian group and V = ®,¢rV, a I'-graded
space. The elements in U,erV, are said to be homogenous. For a homogeneous
element v € V,,,a € T', we set |v| = «, the degree of v. In addition, the symbol ||
implies that x is homogeneous. By definition, a I'-graded algebra g is a I'-graded
space g = Paerfda with a bilinear multiplication consistent with the I'-gradation.
Let g be a I'-graded algebra. If the multiplication of g is trivial, we say g to be
abelian; if the multiplication of g satisfies the associativity law, we say g to be
associative.
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Let T be an abelian group. A bi-character on I" is a map € : I' x I' — F\{0}
such that

ela, Ple(B,a) =1, e(af,v) = e(a,7)e(8,7),

where a, 3,7 € I'. Let I" be an abelian group of a bi-character € and g a I'-graded
algebra, whose multiplication is denoted by [, |. If

[yl + el [y [y, 2] = 0,

e(lz], =)l [y, 2]] + e(l=], [yDly, [z, 2] + e(lyl, 2Dz, [z, y]] = O,

where x,y, z € g, then g is called a Lie color algebra. Lie (super)algebras are Lie
color algebras (see |21, p.525]). If A = @,er, is a T-graded associative algebra,
by introducing a new multiplication

[z, y] = 2y —e(|2], [yDyz, @,y €A,

2 becomes a Lie color algebra, which is denoted by 2(~.

1.3. The general linear Lie color algebras. Let I' be an abelian group of a
bi-character € and V = @4erV, a I-graded space. Then Endp(V) is a I-graded
associative algebra and Endg(V)~ is a Lie color algebra in the usual fashion, which
is called the general linear Lie color algebra and denoted by gl(V,T') (see |28, p.447]).
Let a be a subalgebra of gl(V,T'). If each element in a is nilpotent, we say a to be
nil; if each element in Uu,er=a, is nilpotent, we say a to be pre-nil. Hereafter I'*
denotes the set T'\{0}, where 0 is the identity of I". If a is a (pre-nil or nil) abelian
subalgebra of the maximal dimension for gl(V,T"), we say a to be (pre-nil or nil)
maximal abelian. Let L = ®,erL, be a Lie color algebra and p: L — gl(V,T') a
linear map of degree 0. If p([z, y]) = [p(x), p(y)] for z,y € L, we call (p, V) to be a
representation of L. Let (p, V') be a representation of L. If ker p = 0, we say (p, V)
to be faithful; if each element in p(V) is nilpotent, we say (p, V) to be nil; if each
element in Uyersp(V)q is nilpotent, we say (p, V) to be pre-nil. Write

tnit(L) = min{dim V' | (p, V') is a nil faithful representation of L},
tpre-nil (L) = min{dim V' | (p, V') is a pre-nil faithful representation of L}.

1.4. The matrix-version of gl(V,T'). Hereafter, we make a convention that
the symbol I' always denotes a finite abelian group of a bi-character ¢, whose all

elements are «q,...,ax. For the fixed order of aq,...,a, if V = EszlVai is a
I-graded space and dim V,,, = m;, we say that (my,...,mg) is I-dimension of V.
Let V be of I-dimension (my,...,my) and m = Zle m;. A rearrangement of
miy ma2 mg

—— —

(1, 00, Q0o Q2 e Qg e Q)
is called an (mq,..., mg)-tuple. Denote by B = (v1,...,v,) an ordered homo-
geneous basis of V' and equip it with an (my,...,mg)-tuple ® = (Ju1],...,|vm]|)
induced by B. Then the general linear Lie color algebra gl(V,T") is isomorphic to
its matrix-version gI® (mq,...,my) induced by tuple ®, which has the underlying

matrices space M(m) and a I'-grading structure

g[‘b(ml, ceymy) = @leg[gl (m1,...,myg),
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where
g[il (ma,...,my) = Span{e;; | ®; — ®; = oy}

Hereafter, ®,, denotes the n-th entry of the tuple ®. In particular, if

mi ma mpg
—N— —— ———
D= (01, .., 00, Q2 c .y A2y, Uy oy AR,
al®(my,...,my) is denoted by gl(my,...,my) for short. For any (my,...,my)-
tuple ®, write t®(m1, ..., mg) or s®(my, ..., my) for the subalgebras of gI* (my, ..., mz)

consisting of upper triangular or strictly upper triangular matrices, respectively.

2. Maximal pre-nil or nil abelian subalgebras of
gl(V.T)

In this section, we shall give a lower bound of the maximal dimensions for abelian
subalgebras of the general linear Lie color algebra gl(V,T'). In the case I' = Zj,
the cyclic group of order k, we shall classify the pre-nil or nil maximal abelian
subalgebras of gl(V,T") in the sense of conjugation. In addition, we shall give a
method to determine pipre-nit(L) and pni (L) for any abelian Lie color algebra L.

2.1. Main lemmas. The following lemma realizes the triangulation of matrices
for any pre-nil abelian subalgebra of gl(my, ..., my), which is a color-version of |27,
Lemma 3.3].

Lemma 2.1. Let a be a pre-nil abelian subalgebra of gl(m;, ..., my). Then there
exists an (myq, ..., my)-tuple ® such that a is contained in t®(mq,...,my). Fur-
thermore, if a is nil abelian, then there exists an (myq, ..., mg)-tuple ® such that a
is contained in 5% (my, ..., mg).

Proof. From Jacobson’s Theorem on weakly closed sets, it is sufficient to prove
that a has common homogeneous eigenvectors in V. Since a is pre-nil , for A €
gl (ma,...,my) with 4, € I'*, zero is the only eigenvalue of A, and hence

Vii= {:L' ev| g[,n(ml,...,mk)z =0,v € F*}
is nonzero. It is clear that V; is gly(ma, ..., my)-module. Then
Vo :={xeVi|gly(m,...,mp)z € Fz}

is also nonzero. Any nonzero homogeneous element in V5 is a common eigenvector

for a. O
The following lemma gives an HGMU decomposition (see below for a defini-
tion) of any abelian subalgebra for s®(my, ..., my), which is a color-version of [24,
Lemma 2.3 ].
Lemma 2.2. Let ® be an (myq, ..., my)-tuple and m = Zle m;.
(1) If A is a homogeneous element in §®(my, ..., my) with ht(A) = (4,5), then A
is conjugate to a homogeneous generalized matrix unit u; ; in §*(mq,...,my) and

|ui j| = |Al.
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(2) If a is an abelian subalgebra of 5%(my,...,m;) with ht(a) = (4,5), then
there exist some homogeneous generalized matrix units w; g, , Ui ks, - - -, Wik, N
s®(m1,...,my), a homogeneous invertible matrix T' € gl®(my,...,ms) and an
abelian subalgebra a’ of §®(my, ..., my) with ht(a’) > (i,m), such that a is conju-
gate to

T7'aT = Fu; g, ©Fujp, @ ©Fuyyp, @ a (2.1)

where i < j = k1 < ko < --- < k, < m and for each matrix X in a’:
e the k;th row of X is zero for each 1 < j <.

e if the sth row (resp. column) of TXT ™! is zero, so is the sth row (resp.
column) of X.

Proof. (1) On one hand, ha(A) a generalized matrix unit u, ; since ht(A) = (4, j).
On the other hand, since A is homogeneous and ht(A) = (¢, j), |A| = |e;;| = &;— ;.
Then ®; = ®; if a;; is nonzero. It follows that hy is in Endo(g[ (ma,...,mg)),
which implies |u; ;| = |A].

(2) Let the homogeneous matrix A;; € a satisfy ht (4;;) = ht(a) = (4,5). Then
ha,; (Aij) is a generalized matrix unit u; ; by (1), and ha,; (a) is a new abelian
subalgebra contained in s®(myq,...,mg). Let agq) be the subspace of hya,; (a) such
that ht(a(y)) > (i, k1) and any matrix in ha,; (a) is of the form au;y, + P, where
a € F,ky = j and P € agy. Similarly, if ht(ag)) = (4, k2), let the homogeneous
matrix A, € a(y) satisfy ht (Ai,) = (i,k2). Consequently, ha,, (Aix,) is also
a homogenous generalized matrix unit, denoted by w;,, and ha,, ha,, (@) D
ha,., (a(l)) are also abelian subalgebras of §®(my,...,my). In particular, since
ko > k1 > i, hAik2 (umﬁ) is also a generalized matrix unit of (i, k1 )-form, denoted
still by w;k,. Let ai) be the subspace of ha,, (1)) such that ht(ag)) > (i, k2)
and any a matrix in a is of the form: aju; x, + asui i, + P, where aq,a2 € F and
P € a(y). By induction, there exists a positive integer 7 such that

ht(agy) > (i,m), 1<r<m-—i

and
hAikr hAilcr, e 'hAikHl (a(t)) C hAikr hAikT,l T hAilct (a(t—l)) )

1
where 1 <t <r—1and ap = a. In addition, we also get » homogeneous generalized
matrix units: w; g, , Ui ks, - - -, Wi k,, Where ¢ < ky < kg <--- <k, < m. Write
a = a(r), T laT = 11,41.%}1,41,,%71 hAm1 ( )

Then
T7'aT =Fujp, @ ©Fuip, ©d.

For every 1 <! < r and any homogeneous matrix X € o, the ith row of w; 5, X
is the kjth row of X and the ith row of Xu;y, is 0 by hta’ > (i,m). Then since
T~ 'aT is abelian and every u;,k, is homogeneous, the kjth row of any homogeneous
matrix in a’ is 0. Furthermore, the operators ha,, leave 0 rows but the kjth rows
of any a matrix invariant, where 1 < ¢ <r. Then (2) is true. O

(21 is called the homogeneous generalized matriz unit decomposition of a (HGMU
decomposition in short).
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2.2. Main results. Write
§ = Span{ey; € g1 (ma,...,myp) [ 1 <i < [m/2), [m/2] +1<j<m}, (2.2)
G/ZG@FIm; 3’/:3’@F1ma
where m = Zle m;.

Write Zx, = {0,1,...,k — 1} and fix the order 0,1,...,k — 1 in the following.
Now we are in the position to determine the pre-nil maximal abelian subalgebras
of gl(mq,...,my), the idea of which mainly comes from Jacobson’s paper [9].
Theorem 2.3. Let a be a pre-nil maximal abelian subalgebra of gl(mq, ..., my)
and m = Zle m;. Suppose m > 3. Then

(1) a is conjugate to & or §’ for some (my, ..., mg)-tuple ®.
(2) In case I = Z, a is of Zj-dimension

k k k k
g M 1M, E Mip2Myg, ..., E M fp—1M5, E mippm; | +17,
i=1 i=1 i=1 i=1

where 7h;, M; are nonnegative integers such that r; + m; = m; and myy; = m; for
1 <i < k. In particular, dima = [m?/4] + 1.

Proof. (1) Let V be the natural a-module. Similar to the case of Lie algebra, we
get V =P, ca Vo, where
V, = {v € V | for every = € a, there exists [ € N such that (z — a(x)idy)'v = 0}.

We use induction on |A|.

(a) |A] =1 : From Lemma[21] there exists an (myq, ..., mg)-tuple ® such that a
is contained in t®(my, ..., ms). Let b be the abelian subalgebra in §®(my, ..., my)
such that a = FIL,,, ® b. From Lemma 22 we get the following HGMU decomposi-
tions:

Tlilel =Fug, j, - @ Fuilalel ® by

TgilblTQ = Fui, jo, ©--- @ Fuiz,]ém @ by (2 3)

Ty '0e 1Ty = Fus, j,, © - ©Fuy, j,,, ® by
where
o (ir41,J1+1,1) = ht(b;) > (i, m) for 0 <1 <¢—1 with by = b, by = 0, and then
dimb=7r; +ro+---+ 1y
e generalized matrix units in ([2.3]) are homogeneous, whose index-pairs satisfy

no indexes in the first position appear in the second position. (2.4)
For 1 <1 < t, the fact i; > ij—1 > --- > i1 and 24) imply < m — i — (¢t —1),
and then
dimb=r1+---4+m;

<tm—(ir+---40) -1+ +t-1)

<tm— (L4 +t) =1+ +t—1) (2.5)

=t(m —t)

< |m?/4).
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Since dima > dim ¢’ = |m?/4]+1, dim b > |m?/4|. This forces (2] is a equation,
that is,
w=1Il rm=m-—t, t=[m/2]or|m/2], (2.6)

for1 <1<t.
If m = 2n is even, then

=1, t=n, rmm=m-—-t=nforl<lI<n

by (Z.6)). Then by (24)), generalized matrix units in (Z3)) are u; ; for 1 <i <n,n+
1 < j < 2n. It follows that the last n rows of any matrix in by Ubs ---Ub,_1 is zero
rows from Lemma [22(2). In particular, u, ; in (23] is e,;, where n+1 < j < 2n.
Furthermore, 4,1, ; in (Z3) may be viewed as e,,—15, n+1 < j < 2n. By induction,
uy,; in 23) may be viewed as e;;, where n+1 < j <2n and 2 <[ < n. Then b;
is spanned by {e;; | 2 <i<n,n+1<j <2n}. Since

0 = [ug,n, €55] = wineis — e(|unl, |eijl)eijurn = —e(|uinl, leijl)eijun

for 1 <7 <mn,n+1 < j,h < 2n, the last n rows of each u;) are zero rows.
Consequently, b is conjugate to € or §, and a = FI,,, & b is conjugate to & or §'.

The remaining case s = 2n + 1 can be analogously treated.

(b) |A] >1:Let A ={51,52,...,0:} wherel > 1. We may suppose that a = a;®
az, where a; is an abelian subalgebra of gl(V;) with Vi = V3, and Vs = @122 Vs, -
For i = 1,2, denote by A; the weight set of V; with respect to a;. Note that
Ay = {p1} and Ay = {B; | 2 < j < I} by abuse of language. Since |A;| < |A]
for ¢ = 1,2, by inductive hypothesis we may assume that the theorem holds for
gl(V1) and gl(Vz). Let (rq,...,my) or (Mq,...,My) be T-dimension of V4 or V3,
respectively. Write 7 = Y2 7n; and 7 = O, 7, Then m = r + 7 and

(I) m =2t — l,m: 2t1 — l,m: 2t2: Heret:t1 +t2 and

dima<ti(t;p —1)+1+t3+1<tEt—1)+1.

Equality holds between the last terms only when m = 3.
(IT) m = 2t, 1 = 2t; — 1,7 = 2t5 — 1: Here t = t; +t2 — 1 and

dima <ty(t; — 1)+ 1 +ta(ta — 1) +1 <2 + 1.

Equality holds between the last terms only when m = 2.
(IIT) m = 2t, 1 = 2t1,m = 2ty: Here t = t1 4 t2 and

dima <t} +1+t3+1<t*+1.

Hence (1) holds.
(2) From (1), it is sufficient to consider the cases a = & and §'. Let r; be the
cardinality of the set

{jle;=i1<j<|Z|} if a=F

or
{12 =i1<j<[%]} if a=¢,
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and write m; = m; — my, Whereil <4<k Forl <!l <k, denote by aj the
homogeneous subspace of degree [ for a. Since the matrix unit ey is of the degree
b, — Py, we get
a; = Span{est | @y =i +1,®=4,1<i< k:} + 07 0L m-
Hereafter 0; ; is 1 if i = j and 0 otherwise. It follows that
k
dima; = Z M1 + 5{701.
i=1

O

By a direct computation, we get the following theorem, which complements the
Theorem

Theorem 2.4. Let a be a pre-nil maximal abelian subalgebra of gl(mq, ..., my)
and m = Zle m;.

(1) If m = 3, a is conjugate to one of the following
Span {I3, e12,e13}, Span{ls,eas, ei1s},
Span{e11 + €22, €12,e33}, Span{eir,ean,es3}.
(2) If m = 2, a is conjugate to Span {Is, e12} or Span {e11,e22}.

Since any abelian subalgebra of the general linear Lie superalgebra is a pre-nil
one, Theorems and 2.4 cover Schur’s work and its super-version. As a by-

product, we may determine all nil maximal abelian subalgebras of gl(mq,...,myg)
as follows.
Corollary 2.5. Let b be a nil maximal abelian subalgebra of gl(mq,...,my) and

k
me=3 i, mi.
(1) Suppose m > 3. Then

e b is conjugate to € or § for some (myq,..., my)-tuple ®.

o If I' = Zj, then b is of I'-dimension

k k k k
E 41, E My 2My .. E Miq k1M, E M kMg |,
=1 =1 i—1 i—1

where m;, m; are nonnegative numbers such that m; +m; = m;, and rmg4; =
m; for 1 <i < k. In particular, dim b = [m?/4].
(2) If m = 3, then b is conjugate to one of the following

Span{ei2,e13}, Span{ess, ez}, Span{eis, ess}.

(3) If m = 2, then b is conjugate to Span {ej2}.



The maximal abelian subalgebras 9

From Theorems 2.4] and 2.5 we have the following remark. If we focus only on
the maximal dimension of pre-nil or nil abelian subalgebras for gl(mq,...,my), we
may give a direct proof of the following remark by virtue of Mirzakhani’s idea in
[13], for which readers may see the Appendix.

Remark 2.6. (1) Any nil maximal abelian subalgebra of gl(mg,...,my) is of
k )2
dimension L(ZIZ%JJ
(2) Any pre-nil maximal abelian subalgebra of gl(mq,...,mg) is of dimension

[y

2.3. Applications. For any Zj-graded abelian Lie color algebra L, the following
theorem gives a method of determining fipre-nit(L) and pnii(L).

Theorem 2.7. Let L be an abelian Lie color algebra.
(1) Mpre-nil(L) Z [2\/ dim L — 1], Mnil(L) Z ’72\/ dim L-|

(2) In case I' = Zj, L possesses a pre-nil faithful representation of dimension
m if and only if m admits a 2k-partition (1hy, M4, ..., 7, My) such that
S gt + 0791 > dim Ly, where iy = m; and 1 <1 < k — 1.

(3) Incase I’ = Zj, L possesses a nil faithful representation of dimension m if and
only if m admits a 2k-partition (1, 71, . . . , 7y, k) such that 35 1y gri; >
dim Lj, where myp4; =m; and 1 <1 <k —1.

Proof. (1) Let ¢ : L — gl(my,...,my) be a pre-nil faithful representation of L.
Then +(L) is a pre-nil abelian subalgebra of gl(mq,...,my). From Theorem [Z3](1),

k
dim L = dim «(L) < L(Z m;)?/4] + 1.

Consequently, Zle m; > [2¢/dim L — 1].

Furthermore, if ¢ is nil, then each element in ¢(L) is nilpotent. From Corollary

m k
dim L = dim (L) < L(Z mi)?/4).

Consequently, Zle m; > [2v/dim L].
(2) and (3) are true by virtue of Theorem 2.5](2) and Corollary 2.5(2), respec-
tively. ([l

3. Appendix: The maximal dimension of pre-nil
or nil abelian subalgebras for gl(m4,...,my)

In this section, we give a direct proof of Remark The main idea comes from
Mirzakhani’s work [13].

Let a be any maximal pre-nil abelian subalgebra of gl(mq,...,my). We may
assume that a is contained in t®(my, ..., my) from Lemma[ZIl Let us use induction
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on m to show that dima < |m?/4] + 1. When m = 1, the conclusion holds since
al®(my,...,ms) is of dimension 1. Assume that the conclusion holds for m — 1.
Let us consider the case m. Suppose the contrary, that is, dima > [m?/4] + 1.
Then a contains an abelian subalgebra, say n, of dimension

v(m) := |m?/4] + 2. (3.1)

Fix a homogeneous basis of n: {4; | 1 <i < wv(m)}. For 1 <i < v(m), let A; and
A; be (m — 1) x (m — 1) matrices such that

ail T A1m A1m
Ai = . = Ai

am1 am1 Amm

Write

(i) = (qA)laq)Qa"'aq)’m) and i) = ((1)17(1)25"'7(1)771)7
where the sign ~ means that the element under it is omitted. It is obvious that P
is an (m1,...,my —1,...,my)-tuple if &1 = ay, is an (my,...,mp —1,...,mg)-
tuple if ®,, = a,. Then A; and A; are in g[‘b(ml,...,mg —1,...,mg) and

g[q>(m1, ooymp —1,...,my,) respectively, and |4;| = |A;| = |14~11| By [4i, A;] =0,
we have AZAJ =£ (|Az|; |AJ|) AJAZ Then

* ES * *
" (144, 14,
=& AP ] _ 3
A A, ! A4,
L O 0
i ES ES
Ai4; = (|4, 145)) AjAi

| 0 0 = 0 0 =*

That is, [4;,A;] = 0 = [A;, A;]. Let W and W be the I'-graded vector spaces
spanned by {4; | 1 < i < v(m)} and {A; | 1 < i < v(m)}, respectively.
Then W and W are also abelian subalgebras of t®(my,...,m, — 1,...,my) and
t‘i’(ml, ooymp —1,...,my) for some g and h, respectively. Write r = dim W and
t = dim W. By inductive hypothesis, we have

(m —1)%/4] +1,

r=l , (3.2)
t<[(m—1)%/4] +1.

Without loss of generality, we may assume that {4; | 1 < i < r} are linearly
independent, so are {A; | 1 <i <t}. Let

A; =3, M Ay, where m, € Fand r + 1 <i < v(m),

A; = LAy, where my, € Fand t+ 1 < j < v(m).
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Note that |A4;] = |A;| if mi; # 0, and |A;| = |A;] if 1745 # 0. Then
|A;| = |A;] if my; # 0 or 1y, # 0.
Forr+1<i<wp(m)and t+1<j<wv(m), write
r t
By =A; =Y mixAr, Bj=A;—> mud.
k=1 k=1

Thus each B; (resp. Bj) is homogeneous and of the form [b;, O]t (resp. [O, l;j} ),
where l_7§ =a; — 22:1 Mikar is a 1 X m matrix and a, is the first row of A, for
1< q<wv(m) (resp. bj = a; — 22:1 Mjkar is an m x 1 matrix and @, is the last
column of 4,, 1 < ¢ < wv(m)). Hereafter X* denotes the transpose of a matrix X.
Clearly,

(B |r+1<i<u(m)} (resp. {Bi [t+1<i< ”(m)})

are linearly independent, and so are
{6 | r+1<i<wv(m)} (resp. {l;l [t+1<:< u(m)})

Let M = [BTH, bria,. .. ,Eu(m)]t. Clearly,
rankM = v(m) — r. (3.3)
Denote by W the set {X € F™ | MX = 0}. Then
dim W = m — rankM. (3.4)

Forr+1<i<w(m)andt+1<j<v(m), B, Bj are homogenous matrices in n.
Note that B;B; = 0, then B;B; = 0 by [B;, B;] = 0. Consequently,

B;l;j:0forr+1§i§1/(m) and t+1 < j <w(m),

that is, the set {l;j [t+1<j< V(m)} is contained in W, which are linearly inde-
pendent. Consequently,

dim W > v(m) —t. (3.5)
Therefore
m @ rankM + dim W
3.3)3.5)

> v(im) —r+4wv(m)—t

@ 2(|m?/4) +2) —r —t

3.2
> 2(lm?/4] — [(m —1)%/4] +1).

Thus, if m = 2q is even, then 2¢ > 2(q + 1), a contradiction; if m = 2¢ + 1 is odd,
then 2¢ + 1 > 2(g + 1), also a contradiction. Hence dima < |[m?/4] + 1. By ([22),
we have dima >= dim ¢’ = |m?/4] + 1.
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Furthermore, if each element in a is nilpotemt, we may assume that a is contained
in 5%(my,...,my) from Lemma 2Tl Thus

|m?/4] = dim & < dima < |m?/4] + 1.
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