On the maximal abelian subalgebras of the general linear Lie color algebras

SHUJUAN WANG¹ AND WENDE LIU^{2,*}

 1 Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China

 2 School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China

Abstract: Let Γ be a finite group and V a finite-dimensional Γ -graded space over an algebraically closed field of characteristic not equal to 2. In the sense of conjugation, we classify all the so-called pre-nil or nil maximal abelian subalgebras for the general linear Lie color algebra $\mathfrak{gl}(V, \Gamma)$. In the situation of Γ being a cyclic group, we determine the minimal dimensions of pre-nil or nil faithful representations for any finite-dimensional abelian Lie color algebra.

Keywords: faithful representations; abelian subalgebras; Lie color algebras

Mathematics Subject Classification 2010: 17B10, 17B30, 17B50, 17B75

1. Introduction

Lie color algebras, which were introduced by Ree in 1960 (see [\[14\]](#page-11-0)), play an important role in mathematics and theoretical physics, especially in the conformal field theory and supersymmetries (see [\[1,](#page-11-1) [26\]](#page-12-0)). For example, Scheunert and Zhang studied cohomology of Lie color algebras (see [\[18\]](#page-12-1)); Su, Zhao and Zhu constructed simple Lie color algebras of generalized Witt type and Weyl type (see [\[20](#page-12-2)] and [\[21\]](#page-12-3)).

Let L be a finite-dimensional Lie (color) algebra and write

 $\mu(L) = \min{\dim V \mid (\rho, V)}$ is a faithful representation of L .

Ado's theorem of Lie (color) version guarantees the existence of $\mu(L)$ (see [\[17,](#page-12-4) p.719]). In 1905, I. Schur determined the maximal dimension of abelian subalgebras for the general linear Lie algebra over $\mathbb C$ in [\[19](#page-12-5)] and then $\mu(L)$ can be determined for any finite-dimensional abelian Lie algebra L (see also [\[9,](#page-11-2) [13](#page-11-3)]). A super-version of Schur's work was given for Lie superalgebras over $\mathbb C$ (see [\[23](#page-12-6), [24\]](#page-12-7)). In this paper, we shall offer a color-version of Schur's work for Lie color algebras over an algebraically closed field of characteristic not equal to 2. We also determine the minimal pre-nil or nil faithful representations for any finite-dimensional abelian Lie color algebra with respect to a finite cyclic group.

As is well-known, the function μ plays an important role on affine crystallographic groups and finitely generated torsion-free nilpotent groups. Benoist, Burde and

[∗]Correspondence: wendeliu@ustc.edu.cn (W. Liu)

Grunewald (see $[2, 5]$ $[2, 5]$ $[2, 5]$) gave an example of a nilpotent Lie algebra L such that $\mu(L) > \dim L + 1$, which is a counterexample of Milnor's conjecture (see [\[12\]](#page-11-6)). However, it is not easy to compute $\mu(L)$, even the bounds of $\mu(L)$ for a given finitedimensional Lie (color) algebra. A lot of work on the function μ revolves around nilpotent or (semi)simple Lie (super)algebras as well as their various extensions (see [\[2](#page-11-4)[–4,](#page-11-7) [6](#page-11-8)[–11,](#page-11-9) [13,](#page-11-3) [15,](#page-12-8) [16,](#page-12-9) [19,](#page-12-5) [22](#page-12-10)[–25\]](#page-12-11) for example).

Throughout $\mathbb F$ is an algebraically closed field of characteristic not equal to 2 and all vector spaces and algebras are over $\mathbb F$ and of finite dimensions.

1.1. Generalized matrix units. Denote by $M(m)$ the set consisting of all $m \times m$ matrices over F. We define a total order on the set $\{(i, j) | 1 \le i, j \le m\}$ by

$$
(i,j) < (k,l) \Longleftrightarrow i < k, \quad \text{or} \quad i = k \quad \text{but} \quad j < l.
$$

Denote by $\text{ht}(X) = \min\{(i, j) \mid x_{ij} \neq 0\}$ for $X = (x_{ij}) \in M(m)$ and $\text{ht}(0) =$ (∞, ∞) . Hereafter a_{mn} is (m, n) -entry of the matrix $A = (a_{ij})$. An element X is called a generalized matrix unit of (i, j) -form, usually written as $u_{i,j}$, if $ht(X) =$ (i, j) and its ith row is $(0, ..., 0, 1, 0..., 0)$, where 1 is at the j-th position. In general, for given (i, j) , there are many generalized matrix units $u_{i,j}$. For a subspace S of $M(m)$, write

$$
\mathrm{ht}(S) := \min\{\mathrm{ht}(X) \mid X \in S\}.
$$

Denote by $I_m = \sum_{i=1}^m e_{ii}$ the $m \times m$ identity matrix. Hereafter e_{ij} is the matrix unit having 1 at (i, j) -position and 0 elsewhere. Fix a nonzero element $a \in \mathbb{F}$ and let $T_{ij}(a)$ or $D_i(a)$ be $I_m + ae_{ij}$ or $I_m + (a-1)e_{ii}$, respectively. As in [\[24\]](#page-12-7), we introduce the following similar operations of $M(m)$:

(1) t-type operators

$$
s_{\mathrm{T}_{ij}(a)} := l_{\mathrm{T}_{ij}(a)^{-1}} \mathrm{r}_{\mathrm{T}_{ij}(a)} \text{ for } 1 \leq i < j \leq m \text{ and } a \in \mathbb{F}.
$$

(2) d-type operators

$$
s_{\mathcal{D}_i(a)} := l_{\mathcal{D}_i(a)^{-1}} r_{\mathcal{D}_i(a)} \text{ for } 1 \leq i \leq m \text{ and } a \in \mathbb{F} \backslash \{0\},\
$$

where, I_A or r_A is the operator of left or right associative multiplication by the matrix A for $A \in M(m)$, respectively. If $A = (a_{ij})$ and $ht(A) = (i, j)$, we write

$$
h_A = \sum_{l > j} s_{T_{jl}(-a_{il})} s_{D_i(a_{ij})}.
$$

1.2. Lie color algebras. Let Γ be an abelian group and $V = \bigoplus_{\alpha \in \Gamma} V_{\alpha}$ a Γ -graded space. The elements in $\cup_{\alpha \in \Gamma} V_{\alpha}$ are said to be homogenous. For a homogeneous element $v \in V_\alpha, \alpha \in \Gamma$, we set $|v| = \alpha$, the degree of v. In addition, the symbol $|x|$ implies that x is homogeneous. By definition, a Γ -graded algebra g is a Γ -graded space $\mathfrak{g} = \bigoplus_{\alpha \in \Gamma} \mathfrak{g}_{\alpha}$ with a bilinear multiplication consistent with the Γ-gradation. Let $\mathfrak g$ be a Γ-graded algebra. If the multiplication of $\mathfrak g$ is trivial, we say $\mathfrak g$ to be abelian; if the multiplication of $\mathfrak g$ satisfies the associativity law, we say $\mathfrak g$ to be associative.

Let Γ be an abelian group. A bi-character on Γ is a map $\varepsilon : \Gamma \times \Gamma \longrightarrow \mathbb{F}\backslash \{0\}$ such that

$$
\varepsilon(\alpha,\beta)\varepsilon(\beta,\alpha) = 1, \quad \varepsilon(\alpha\beta,\gamma) = \varepsilon(\alpha,\gamma)\varepsilon(\beta,\gamma),
$$

where $\alpha, \beta, \gamma \in \Gamma$. Let Γ be an abelian group of a bi-character ε and \mathfrak{g} a Γ -graded algebra, whose multiplication is denoted by \vert , \vert . If

$$
[x, y] + \varepsilon(|x|, |y|)[y, x] = 0,
$$

$$
\varepsilon(|z|, |x|)[x, [y, z]] + \varepsilon(|x|, |y|)[y, [z, x]] + \varepsilon(|y|, |z|)[z, [x, y]] = 0,
$$

where $x, y, z \in \mathfrak{g}$, then \mathfrak{g} is called a Lie color algebra. Lie (super)algebras are Lie color algebras (see [\[21,](#page-12-3) p.525]). If $\mathfrak{A} = \bigoplus_{\alpha \in \Gamma} \mathfrak{A}_{\alpha}$ is a Γ -graded associative algebra, by introducing a new multiplication

$$
[x,y]=xy-\varepsilon(|x|,|y|)yx,\quad x,y\in \mathfrak{A},
$$

 $\mathfrak A$ becomes a Lie color algebra, which is denoted by $\mathfrak A^-$.

1.3. The general linear Lie color algebras. Let Γ be an abelian group of a bi-character ε and $V = \bigoplus_{\alpha \in \Gamma} V_{\alpha}$ a Γ-graded space. Then $\text{End}_{\mathbb{F}}(V)$ is a Γ-graded associative algebra and $\text{End}_{\mathbb{F}}(V)^-$ is a Lie color algebra in the usual fashion, which is called the general linear Lie color algebra and denoted by $\mathfrak{gl}(V, \Gamma)$ (see [\[28](#page-12-12), p.447]). Let $\mathfrak a$ be a subalgebra of $\mathfrak{gl}(V,\Gamma)$. If each element in $\mathfrak a$ is nilpotent, we say $\mathfrak a$ to be nil; if each element in ∪_{α∈Γ}∗α_α is nilpotent, we say **α** to be pre-nil. Hereafter Γ[∗] denotes the set $\Gamma \setminus \{0\}$, where 0 is the identity of Γ . If **a** is a (pre-nil or nil) abelian subalgebra of the maximal dimension for $\mathfrak{gl}(V,\Gamma)$, we say $\mathfrak a$ to be (pre-nil or nil) maximal abelian. Let $L = \bigoplus_{\alpha \in \Gamma} L_{\alpha}$ be a Lie color algebra and $\rho: L \longrightarrow \mathfrak{gl}(V, \Gamma)$ a linear map of degree 0. If $\rho([x, y]) = [\rho(x), \rho(y)]$ for $x, y \in L$, we call (ρ, V) to be a representation of L. Let (ρ, V) be a representation of L. If ker $\rho = 0$, we say (ρ, V) to be faithful; if each element in $\rho(V)$ is nilpotent, we say (ρ, V) to be nil; if each element in $\bigcup_{\alpha \in \Gamma^*} \rho(V)_{\alpha}$ is nilpotent, we say (ρ, V) to be pre-nil. Write

 $\mu_{\text{nil}}(L) = \min\{\dim V \mid (\rho, V) \text{ is a nil faithful representation of } L\},\$ $\mu_{\text{pre-nil}}(L) = \min\{\dim V \mid (\rho, V) \text{ is a pre-nil faithful representation of } L\}.$

1.4. The matrix-version of $\mathfrak{gl}(V, \Gamma)$ **.** Hereafter, we make a convention that the symbol Γ always denotes a finite abelian group of a bi-character ε , whose all elements are $\alpha_1, \ldots, \alpha_k$. For the fixed order of $\alpha_1, \ldots, \alpha_k$, if $V = \bigoplus_{i=1}^k V_{\alpha_i}$ is a Γ-graded space and dim $V_{\alpha_i} = m_i$, we say that (m_1, \ldots, m_k) is Γ-dimension of V. Let V be of Γ -dimension (m_1, \ldots, m_k) and $m = \sum_{i=1}^k m_i$. A rearrangement of

$$
(\overbrace{\alpha_1,\ldots,\alpha_1}^{m_1},\overbrace{\alpha_2,\ldots,\alpha_2}^{m_2},\ldots,\overbrace{\alpha_k,\ldots,\alpha_k}^{m_k})
$$

is called an (m_1, \ldots, m_k) -tuple. Denote by $B = (v_1, \ldots, v_m)$ an ordered homogeneous basis of V and equip it with an (m_1, \ldots, m_k) -tuple $\Phi = (|v_1|, \ldots, |v_m|)$ induced by B. Then the general linear Lie color algebra $\mathfrak{gl}(V,\Gamma)$ is isomorphic to its matrix-version $\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)$ induced by tuple Φ , which has the underlying matrices space $M(m)$ and a Γ-grading structure

$$
\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)=\oplus_{l=1}^k \mathfrak{gl}_{\alpha_l}^{\Phi}(m_1,\ldots,m_k),
$$

where

$$
\mathfrak{gl}_{\alpha_l}^{\Psi}(m_1,\ldots,m_k)=\mathrm{Span}\{e_{ij}\mid \Phi_i-\Phi_j=\alpha_l\}.
$$

Hereafter, Φ_n denotes the *n*-th entry of the tuple Φ . In particular, if

$$
\Phi=(\overbrace{\alpha_1,\ldots,\alpha_1}^{m_1},\overbrace{\alpha_2,\ldots,\alpha_2}^{m_2},\ldots,\overbrace{\alpha_k,\ldots,\alpha_k}^{m_k}),
$$

 $\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)$ is denoted by $\mathfrak{gl}(m_1,\ldots,m_k)$ for short. For any (m_1,\ldots,m_k) tuple Φ , write $\mathfrak{t}^{\Phi}(m_1,\ldots,m_k)$ or $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ for the subalgebras of $\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)$ consisting of upper triangular or strictly upper triangular matrices, respectively.

2. Maximal pre-nil or nil abelian subalgebras of $\mathfrak{gl}(V,\Gamma)$

In this section, we shall give a lower bound of the maximal dimensions for abelian subalgebras of the general linear Lie color algebra $\mathfrak{gl}(V, \Gamma)$. In the case $\Gamma = \mathbb{Z}_k$, the cyclic group of order k , we shall classify the pre-nil or nil maximal abelian subalgebras of $\mathfrak{gl}(V,\Gamma)$ in the sense of conjugation. In addition, we shall give a method to determine $\mu_{\text{pre-nil}}(L)$ and $\mu_{\text{nil}}(L)$ for any abelian Lie color algebra L.

2.1. Main lemmas. The following lemma realizes the triangulation of matrices for any pre-nil abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$, which is a color-version of [\[27,](#page-12-13) Lemma 3.3].

Lemma 2.1. Let **a** be a pre-nil abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$. Then there exists an (m_1, \ldots, m_k) -tuple Φ such that \mathfrak{a} is contained in $\mathfrak{t}^{\Phi}(m_1, \ldots, m_k)$. Furthermore, if **a** is nil abelian, then there exists an (m_1, \ldots, m_k) -tuple Φ such that **a** is contained in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$.

Proof. From Jacobson's Theorem on weakly closed sets, it is sufficient to prove that $\mathfrak a$ has common homogeneous eigenvectors in V. Since $\mathfrak a$ is pre-nil , for $A \in$ $\mathfrak{gl}_{\gamma_l}(m_1,\ldots,m_k)$ with $\gamma_l \in \Gamma^*$, zero is the only eigenvalue of A, and hence

$$
V_1:=\left\{x\in V\mid \mathfrak{gl}_{\gamma_l}(m_1,\ldots,m_k)x=0, \gamma_l\in \Gamma^*\right\}
$$

is nonzero. It is clear that V_1 is $\mathfrak{gl}_0(m_1,\ldots,m_k)$ -module. Then

$$
V_2 := \{x \in V_1 \mid \mathfrak{gl}_0(m_1, \dots, m_k)x \in \mathbb{F}x\}
$$

is also nonzero. Any nonzero homogeneous element in V_2 is a common eigenvector for a. \Box

The following lemma gives an HGMU decomposition (see below for a definition) of any abelian subalgebra for $\mathfrak{s}^{\Phi}(m_1, \ldots, m_k)$, which is a color-version of [\[24,](#page-12-7) Lemma 2.3].

Lemma 2.2. Let Φ be an (m_1, \ldots, m_k) -tuple and $m = \sum_{i=1}^k m_i$.

(1) If A is a homogeneous element in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ with $\mathrm{ht}(A)=(i,j)$, then A is conjugate to a homogeneous generalized matrix unit $u_{i,j}$ in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ and $\label{eq:u} |u_{i,j}| = |A|.$

(2) If **a** is an abelian subalgebra of $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ with $\text{ht}(\mathfrak{a}) = (i,j)$, then there exist some homogeneous generalized matrix units $u_{i,k_1}, u_{i,k_2}, \ldots, u_{i,k_r}$ in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$, a homogeneous invertible matrix $T \in \mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)$ and an abelian subalgebra \mathfrak{a}' of $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ with $\mathrm{ht}(\mathfrak{a}')>(i,m)$, such that \mathfrak{a} is conjugate to

$$
T^{-1}\mathfrak{a}T = \mathbb{F}u_{i,k_1} \oplus \mathbb{F}u_{i,k_2} \oplus \cdots \oplus \mathbb{F}u_{i,k_r} \oplus \mathfrak{a}' \qquad (2.1)
$$

where $i < j = k_1 < k_2 < \cdots < k_r \le m$ and for each matrix X in \mathfrak{a}' :

- the k_j th row of X is zero for each $1 \leq j \leq r$.
- if the sth row (resp. column) of TXT^{-1} is zero, so is the sth row (resp. column) of X .

Proof. (1) On one hand, $h_A(A)$ a generalized matrix unit $u_{i,j}$ since $ht(A) = (i,j)$. On the other hand, since A is homogeneous and $\text{ht}(A) = (i, j), |A| = |e_{ij}| = \Phi_i - \Phi_j$. Then $\Phi_l = \Phi_j$ if a_{il} is nonzero. It follows that h_A is in $\text{End}_0(\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)),$ which implies $|u_{i,j}| = |A|$.

(2) Let the homogeneous matrix $A_{ij} \in \mathfrak{a}$ satisfy ht $(A_{ij}) = \text{ht}(\mathfrak{a}) = (i, j)$. Then $h_{A_{ij}}(A_{ij})$ is a generalized matrix unit $u_{i,j}$ by (1), and $h_{A_{ij}}(\mathfrak{a})$ is a new abelian subalgebra contained in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$. Let $\mathfrak{a}_{(1)}$ be the subspace of $h_{A_{ij}}(\mathfrak{a})$ such that $\text{ht}(\mathfrak{a}_{(1)}) > (i, k_1)$ and any matrix in $h_{A_{ij}}(\mathfrak{a})$ is of the form $au_{i,k_1} + P$, where $a \in \mathbb{F}, k_1 = j$ and $P \in \mathfrak{a}_{(1)}$. Similarly, if $\text{ht}(\mathfrak{a}_{(1)}) = (i, k_2)$, let the homogeneous matrix $A_{ik_2} \in \mathfrak{a}_{(1)}$ satisfy ht $(A_{ik_2}) = (i, k_2)$. Consequently, $h_{A_{ik_2}}(A_{ik_2})$ is also a homogenous generalized matrix unit, denoted by u_{i,k_2} , and $h_{A_{ik_2}}h_{A_{ik_1}}(\mathfrak{a})$ $h_{A_{ik_2}}(\mathfrak{a}_{(1)})$ are also abelian subalgebras of $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$. In particular, since $k_2 > k_1 > i$, $h_{A_{ik_2}}(u_{i,k_1})$ is also a generalized matrix unit of (i, k_1) -form, denoted still by u_{i,k_1} . Let $\mathfrak{a}_{(2)}$ be the subspace of $h_{A_{ik_2}}(\mathfrak{a}_{(1)})$ such that $ht(\mathfrak{a}_{(2)}) > (i,k_2)$ and any a matrix in $\mathfrak a$ is of the form: $a_1u_{i,k_1} + a_2u_{i,k_2} + P$, where $a_1, a_2 \in \mathbb F$ and $P \in \mathfrak{a}_{(2)}$. By induction, there exists a positive integer r such that

$$
\operatorname{ht}(\mathfrak{a}_{(r)}) > (i,m), \quad 1 \le r \le m-i
$$

and

$$
\mathbf{h}_{A_{ik_r}}\mathbf{h}_{A_{ik_{r-1}}}\cdots\mathbf{h}_{A_{ik_{t+1}}}\left(\mathfrak{a}_{(t)}\right)\subset\mathbf{h}_{A_{ik_r}}\mathbf{h}_{A_{ik_{r-1}}}\cdots\mathbf{h}_{A_{ik_t}}\left(\mathfrak{a}_{(t-1)}\right),
$$

where $1 \le t \le r-1$ and $\mathfrak{a}_0 = \mathfrak{a}$. In addition, we also get r homogeneous generalized matrix units: $u_{i,k_1}, u_{i,k_2}, \ldots, u_{i,k_r}$, where $i < k_1 < k_2 < \cdots < k_r \le m$. Write

$$
\mathfrak{a}'=\mathfrak{a}_{(r)},\quad T^{-1}\mathfrak{a}T=\mathrm{h}_{A_{ik_r}}\mathrm{h}_{A_{ik_{r-1}}}\cdots\mathrm{h}_{A_{ik_1}}\left(\mathfrak{a}\right).
$$

Then

$$
T^{-1}{\mathfrak a} T = {\mathbb F} u_{i,k_1} \oplus \cdots \oplus {\mathbb F} u_{i,k_r} \oplus {\mathfrak a}'.
$$

For every $1 \leq l \leq r$ and any homogeneous matrix $X \in \mathfrak{a}'$, the *i*th row of $u_{i,k}X$ is the k_lth row of X and the *i*th row of Xu_{i,k_l} is 0 by hta' > (i, m) . Then since T^{-1} aT is abelian and every u_{i,k_j} is homogeneous, the k_l th row of any homogeneous matrix in \mathfrak{a}' is 0. Furthermore, the operators $h_{A_{ik_t}}$ leave 0 rows but the k_l th rows of any a matrix invariant, where $1 \le t \le r$. Then (2) is true. П

 (2.1) is called the homogeneous generalized matrix unit decomposition of \mathfrak{a} (HGMU) decomposition in short).

2.2. Main results. Write

$$
\mathfrak{E} = \text{Span}\{e_{ij} \in \mathfrak{gl}^{\Phi}(m_1, \dots, m_k) \mid 1 \le i \le [m/2], [m/2] + 1 \le j \le m\},\
$$

$$
\mathfrak{F} = \text{Span}\{e_{ij} \in \mathfrak{gl}^{\Phi}(m_1, \dots, m_k) \mid 1 \le i \le [m/2], [m/2] + 1 \le j \le m\},\
$$

$$
\mathfrak{E}' = \mathfrak{E} \oplus \mathbb{F}I_m, \quad \mathfrak{F}' = \mathfrak{F} \oplus \mathbb{F}I_m,
$$
 (2.2)

where $m = \sum_{i=1}^{k} m_i$.

Write $\mathbb{Z}_k = \{0, 1, \ldots, k-1\}$ and fix the order $\overline{0}, 1, \ldots, \overline{k-1}$ in the following. Now we are in the position to determine the pre-nil maximal abelian subalgebras of $\mathfrak{gl}(m_1,\ldots,m_k)$, the idea of which mainly comes from Jacobson's paper [\[9](#page-11-2)].

Theorem 2.3. Let **a** be a pre-nil maximal abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$ and $m = \sum_{i=1}^{k} m_i$. Suppose $m > 3$. Then

(1) a is conjugate to \mathfrak{E}' or \mathfrak{F}' for some (m_1, \ldots, m_k) -tuple Φ .

(2) In case $\Gamma = \mathbb{Z}_k$, **a** is of \mathbb{Z}_k -dimension

$$
\left(\sum_{i=1}^k \dot{m}_{i+1} \ddot{m}_i, \sum_{i=1}^k \dot{m}_{i+2} \ddot{m}_i, \ldots, \sum_{i=1}^k \dot{m}_{i+k-1} \ddot{m}_i, \left(\sum_{i=1}^k \dot{m}_{i+k} \ddot{m}_i\right) + 1\right),
$$

where \dot{m}_i, \ddot{m}_i are nonnegative integers such that $\dot{m}_i + \ddot{m}_i = m_i$ and $\dot{m}_{k+i} = \dot{m}_i$ for $1 \leq i \leq k$. In particular, dim $\mathfrak{a} = \lfloor m^2/4 \rfloor + 1$.

Proof. (1) Let V be the natural a -module. Similar to the case of Lie algebra, we get $V = \bigoplus_{\alpha \in \Delta} V_{\alpha}$, where

 $V_{\alpha} = \{v \in V \mid \text{for every } x \in \mathfrak{a}, \text{ there exists } l \in \mathbb{N} \text{ such that } (x - \alpha(x) \mathrm{id}_V)^l v = 0\}.$ We use induction on $|\Delta|$.

(a) $|\Delta| = 1$: From Lemma [2.1,](#page-3-0) there exists an (m_1, \ldots, m_k) -tuple Φ such that a is contained in $\mathfrak{t}^{\Phi}(m_1,\ldots,m_k)$. Let b be the abelian subalgebra in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ such that $\mathfrak{a} = \mathbb{F}I_m \oplus \mathfrak{b}$. From Lemma [2.2,](#page-3-1) we get the following HGMU decompositions:

$$
T_1^{-1} \mathfrak{b} T_1 = \mathbb{F} u_{i_1, j_{11}} \oplus \cdots \oplus \mathbb{F} u_{i_1, j_{1r_1}} \oplus \mathfrak{b}_1
$$

\n
$$
T_2^{-1} \mathfrak{b}_1 T_2 = \mathbb{F} u_{i_2, j_{21}} \oplus \cdots \oplus \mathbb{F} u_{i_2, j_{2r_2}} \oplus \mathfrak{b}_2
$$

\n
$$
\cdots \cdots
$$

\n
$$
T_t^{-1} \mathfrak{b}_{t-1} T_t = \mathbb{F} u_{i_t, j_{t1}} \oplus \cdots \oplus \mathbb{F} u_{i_t, j_{tr_t}} \oplus \mathfrak{b}_t
$$

\n(2.3)

where

- $(i_{l+1}, j_{l+1,1}) = \text{ht}(\mathfrak{b}_l) > (i_l, m) \text{ for } 0 \le l \le t-1 \text{ with } \mathfrak{b}_0 = \mathfrak{b}, \mathfrak{b}_t = 0, \text{ and then}$ dim $\mathfrak{b} = r_1 + r_2 + \cdots + r_t;$
- • generalized matrix units in (2.3) are homogeneous, whose index-pairs satisfy no indexes in the first position appear in the second position. (2.4)

For $1 \leq l \leq t$, the fact $i_l > i_{l-1} > \cdots > i_1$ and [\(2.4\)](#page-5-1) imply $r_l \leq m - i_l - (t - l)$, and then

$$
\dim \mathfrak{b} = r_1 + \dots + r_t
$$

\n
$$
\leq tm - (i_1 + \dots + i_t) - (1 + \dots + t - 1)
$$

\n
$$
\leq tm - (1 + \dots + t) - (1 + \dots + t - 1)
$$

\n
$$
= t(m - t)
$$

\n
$$
\leq \lfloor m^2/4 \rfloor.
$$
\n(2.5)

Since dim $\mathfrak{a} \ge \dim \mathfrak{E}' = \lfloor m^2/4 \rfloor + 1$, dim $\mathfrak{b} \ge \lfloor m^2/4 \rfloor$. This forces [\(2.5\)](#page-5-2) is a equation, that is,

$$
i_l = l, \quad r_l = m - t, \quad t = \lceil m/2 \rceil \text{ or } \lfloor m/2 \rfloor,
$$
 (2.6)

for $1 \leq l \leq t$.

If $m = 2n$ is even, then

$$
i_l = l, \quad t = n, \quad r_l = m - t = n \text{ for } 1 \le l \le n
$$

by [\(2.6\)](#page-6-0). Then by [\(2.4\)](#page-5-1), generalized matrix units in [\(2.3\)](#page-5-0) are $u_{i,j}$ for $1 \le i \le n, n+1$ $1 \leq j \leq 2n$. It follows that the last n rows of any matrix in $\mathfrak{b}_1 \cup \mathfrak{b}_2 \cdots \cup \mathfrak{b}_{n-1}$ is zero rows from Lemma [2.2\(](#page-3-1)2). In particular, $u_{n,j}$ in [\(2.3\)](#page-5-0) is e_{nj} , where $n+1 \leq j \leq 2n$. Furthermore, $u_{n-1,j}$ in [\(2.3\)](#page-5-0) may be viewed as $e_{n-1,j}$, $n+1 \leq j \leq 2n$. By induction, $u_{l,j}$ in [\(2.3\)](#page-5-0) may be viewed as e_{lj} , where $n + 1 \le j \le 2n$ and $2 \le l \le n$. Then \mathfrak{b}_1 is spanned by $\{e_{ij} | 2 \le i \le n, n+1 \le j \le 2n\}$. Since

$$
0 = [u_{l,h}, e_{ij}] = u_{l,h}e_{ij} - \varepsilon(|u_{l,h}|, |e_{ij}|)e_{ij}u_{l,h} = -\varepsilon(|u_{l,h}|, |e_{ij}|)e_{ij}u_{l,h}
$$

for $1 \leq i \leq n, n+1 \leq j, h \leq 2n$, the last n rows of each $u_{l,h}$ are zero rows. Consequently, $\mathfrak b$ is conjugate to $\mathfrak C$ or $\mathfrak F$, and $\mathfrak a = \mathbb{F}\mathrm I_m \oplus \mathfrak b$ is conjugate to $\mathfrak C'$ or $\mathfrak F'.$

The remaining case $s = 2n + 1$ can be analogously treated.

(b) $|\Delta| > 1$: Let $\Delta = {\beta_1, \beta_2, ..., \beta_l}$ where $l > 1$. We may suppose that $\mathfrak{a} = \mathfrak{a}_1 \oplus$ \mathfrak{a}_2 , where \mathfrak{a}_i is an abelian subalgebra of $\mathfrak{gl}(V_i)$ with $V_1 = V_{\beta_1}$ and $V_2 = \bigoplus_{i=2}^l V_{\beta_i}$. For $i = 1, 2$, denote by Δ_i the weight set of V_i with respect to \mathfrak{a}_i . Note that $\Delta_1 = {\beta_1}$ and $\Delta_2 = {\beta_j \mid 2 \leq j \leq l}$ by abuse of language. Since $|\Delta_i| < |\Delta|$ for $i = 1, 2$, by inductive hypothesis we may assume that the theorem holds for $\mathfrak{gl}(V_1)$ and $\mathfrak{gl}(V_2)$. Let (m_1, \ldots, m_k) or $(\ddot{m}_1, \ldots, \ddot{m}_k)$ be Γ -dimension of V_1 or V_2 , respectively. Write $\dot{m} = \sum_{i=1}^{k} \dot{m}_i$ and $\ddot{m} = \sum_{i=1}^{k} \ddot{m}_i$. Then $m = \dot{m} + \ddot{m}$ and $m_i = \dot{m}_i + \ddot{m}_i, 1 \leq i \leq k.$

(I) $m = 2t - 1$, $\dot{m} = 2t_1 - 1$, $\ddot{m} = 2t_2$: Here $t = t_1 + t_2$ and

$$
\dim \mathfrak{a} \le t_1(t_1 - 1) + 1 + t_2^2 + 1 \le t(t - 1) + 1.
$$

Equality holds between the last terms only when $m = 3$.

(II) $m = 2t, \dot{m} = 2t_1 - 1, \ddot{m} = 2t_2 - 1$: Here $t = t_1 + t_2 - 1$ and

$$
\dim \mathfrak{a} \leq t_1(t_1 - 1) + 1 + t_2(t_2 - 1) + 1 \leq t^2 + 1.
$$

Equality holds between the last terms only when $m = 2$. (III) $m = 2t, \dot{m} = 2t_1, \ddot{m} = 2t_2$: Here $t = t_1 + t_2$ and

$$
\dim \mathfrak{a} \le t_1^2 + 1 + t_2^2 + 1 < t^2 + 1.
$$

Hence (1) holds.

(2) From (1), it is sufficient to consider the cases $\mathfrak{a} = \mathfrak{E}'$ and \mathfrak{F}' . Let \dot{m}_i be the cardinality of the set

$$
\left\{j \mid \Phi_j = \overline{i}, 1 \leq j \leq \lfloor \tfrac{m}{2} \rfloor \right\} \quad \text{ if } \quad \mathfrak{a} = \mathfrak{F}'
$$

or

$$
\left\{j \mid \Phi_j = \overline{i}, 1 \leq j \leq \lceil \frac{m}{2} \rceil \right\} \quad \text{if} \quad \mathfrak{a} = \mathfrak{E}',
$$

and write $\ddot{m}_i = m_i - \dot{m}_i$, where $1 \leq i \leq k$. For $1 \leq l \leq k$, denote by $a_{\bar{l}}$ the homogeneous subspace of degree \overline{l} for \mathfrak{a} . Since the matrix unit e_{st} is of the degree $\Phi_s - \Phi_t$, we get

$$
\mathfrak{a}_{\bar{l}} = \text{Span}\left\{e_{st} \mid \Phi_s = \overline{i+l}, \Phi_t = \overline{i}, 1 \le i \le k\right\} + \delta_{\bar{l},0} I_m.
$$

Hereafter $\delta_{i,j}$ is 1 if $i = j$ and 0 otherwise. It follows that

$$
\dim \mathfrak{a}_{\bar{l}} = \sum_{i=1}^k \dot{m}_{i+l} \ddot{m}_i + \delta_{\bar{l},0} 1.
$$

By a direct computation, we get the following theorem, which complements the Theorem [2.3.](#page-5-3)

Theorem 2.4. Let **a** be a pre-nil maximal abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$ and $m = \sum_{i=1}^{k} m_i$.

(1) If $m = 3$, **a** is conjugate to one of the following

$$
\text{Span}\{I_3, e_{12}, e_{13}\}, \quad \text{Span}\{I_3, e_{23}, e_{13}\},
$$
\n
$$
\text{Span}\{e_{11} + e_{22}, e_{12}, e_{33}\}, \quad \text{Span}\{e_{11}, e_{22}, e_{33}\}.
$$

(2) If $m = 2$, **a** is conjugate to Span $\{I_2, e_{12}\}$ or Span $\{e_{11}, e_{22}\}$.

Since any abelian subalgebra of the general linear Lie superalgebra is a pre-nil one, Theorems [2.3](#page-5-3) and [2.4](#page-7-0) cover Schur's work and its super-version. As a byproduct, we may determine all nil maximal abelian subalgebras of $\mathfrak{gl}(m_1, \ldots, m_k)$ as follows.

Corollary 2.5. Let \mathfrak{b} be a nil maximal abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$ and $m = \sum_{i=1}^k m_i$.

(1) Suppose $m > 3$. Then

- b is conjugate to \mathfrak{E} or \mathfrak{F} for some (m_1, \ldots, m_k) -tuple Φ .
- If $\Gamma = \mathbb{Z}_k$, then b is of Γ -dimension

$$
\left(\sum_{i=1}^k \dot{m}_{i+1} \ddot{m}_i, \sum_{i=1}^k \dot{m}_{i+2} \ddot{m}_i, \ldots, \sum_{i=1}^k \dot{m}_{i+k-1} \ddot{m}_i, \sum_{i=1}^k \dot{m}_{i+k} \ddot{m}_i\right),
$$

where \dot{m}_i, \ddot{m}_i are nonnegative numbers such that $\dot{m}_i + \ddot{m}_i = m_i$, and $\dot{m}_{k+i} =$ m_i for $1 \leq i \leq k$. In particular, dim $\mathfrak{b} = \lfloor m^2/4 \rfloor$.

(2) If $m = 3$, then b is conjugate to one of the following

Span $\{e_{12}, e_{13}\}, \quad$ Span $\{e_{23}, e_{13}\}, \quad$ Span $\{e_{12}, e_{33}\}.$

(3) If $m = 2$, then **b** is conjugate to Span $\{e_{12}\}.$

 \Box

From Theorems [2.4](#page-7-0) and [2.5,](#page-5-2) we have the following remark. If we focus only on the maximal dimension of pre-nil or nil abelian subalgebras for $\mathfrak{gl}(m_1, \ldots, m_k)$, we may give a direct proof of the following remark by virtue of Mirzakhani's idea in [\[13\]](#page-11-3), for which readers may see the Appendix.

Remark 2.6. (1) Any nil maximal abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$ is of dimension $\lfloor \frac{\left(\sum_{i=1}^k m_i\right)^2}{4} \rfloor$ $\frac{1}{4}$.

(2) Any pre-nil maximal abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$ is of dimension ⌊ $\left(\sum_{i=1}^k m_i\right)^2$ $\frac{1}{4}$ $\frac{m_i}{4}$ + 1.

2.3. Applications. For any \mathbb{Z}_k -graded abelian Lie color algebra L, the following theorem gives a method of determining $\mu_{\text{pre-nil}}(L)$ and $\mu_{\text{nil}}(L)$.

Theorem 2.7. Let L be an abelian Lie color algebra.

- (1) $\mu_{\text{pre-nil}}(L) \geq \lceil 2\sqrt{\dim L 1} \rceil$, $\mu_{\text{nil}}(L) \geq \lceil 2\sqrt{\dim L} \rceil$.
- (2) In case $\Gamma = \mathbb{Z}_k$, L possesses a pre-nil faithful representation of dimension m if and only if m admits a $2k$ -partition $(m_1, m_1, \ldots, m_k, m_k)$ such that $\sum_{i=1}^k \dot{m}_{i+l} \ddot{m}_i + \delta_{\bar{l},0} 1 \ge \dim L_{\bar{l}},$ where $\dot{m}_{k+i} = \dot{m}_i$ and $1 \le l \le k-1$.
- (3) In case $\Gamma = \mathbb{Z}_k$, L possesses a nil faithful representation of dimension m if and only if m admits a 2k-partition $(m_1, \tilde{m}_1, \ldots, \tilde{m}_k, \tilde{m}_k)$ such that $\sum_{i=1}^k \tilde{m}_{i+i} \tilde{m}_i \ge$ dim $L_{\bar{l}}$, where $\dot{m}_{k+i} = \dot{m}_i$ and $1 \leq l \leq k-1$.

Proof. (1) Let $\iota: L \longrightarrow \mathfrak{gl}(m_1, \ldots, m_k)$ be a pre-nil faithful representation of L. Then $\iota(L)$ is a pre-nil abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$. From Theorem [2.3\(](#page-5-3)1),

$$
\dim L = \dim \iota(L) \le \lfloor (\sum_{i=1}^{k} m_i)^2/4 \rfloor + 1.
$$

Consequently, $\sum_{i=1}^{k} m_i \geq \lceil 2\sqrt{\dim L - 1} \rceil$.

Furthermore, if ι is nil, then each element in $\iota(L)$ is nilpotent. From Corollary [2.5,](#page-7-1)

$$
\dim L = \dim \iota(L) \leq \lfloor (\sum_{i=1}^k m_i)^2/4 \rfloor.
$$

Consequently, $\sum_{i=1}^{k} m_i \geq \lceil 2\sqrt{\dim L} \rceil$.

 (2) and (3) are true by virtue of Theorem [2.5\(](#page-7-1)2) and Corollary 2.5(2), respectively. \Box

3. Appendix: The maximal dimension of pre-nil or nil abelian subalgebras for $\mathfrak{gl}(m_1, \ldots, m_k)$

In this section, we give a direct proof of Remark [2.6.](#page-8-0) The main idea comes from Mirzakhani's work [\[13\]](#page-11-3).

Let $\mathfrak a$ be any maximal pre-nil abelian subalgebra of $\mathfrak{gl}(m_1, \ldots, m_k)$. We may assume that $\mathfrak a$ is contained in $\mathfrak t^{\Phi}(m_1,\ldots,m_k)$ from Lemma [2.1.](#page-3-0) Let us use induction on m to show that dim $\mathfrak{a} \leq \lfloor m^2/4 \rfloor + 1$. When $m = 1$, the conclusion holds since $\mathfrak{gl}^{\Phi}(m_1,\ldots,m_k)$ is of dimension 1. Assume that the conclusion holds for $m-1$. Let us consider the case m. Suppose the contrary, that is, dim $a > \lfloor m^2/4 \rfloor + 1$. Then a contains an abelian subalgebra, say n, of dimension

$$
\nu(m) := \lfloor m^2/4 \rfloor + 2. \tag{3.1}
$$

.

Fix a homogeneous basis of n: $\{A_i \mid 1 \leq i \leq \nu(m)\}$. For $1 \leq i \leq \nu(m)$, let \bar{A}_i and \tilde{A}_i be $(m-1) \times (m-1)$ matrices such that

$$
A_i = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & & \end{bmatrix} = \begin{bmatrix} a_{1m} \\ \vdots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{bmatrix}
$$

Write

$$
\bar{\Phi} = (\hat{\Phi}_1, \Phi_2, \dots, \Phi_m)
$$
 and $\tilde{\Phi} = (\Phi_1, \Phi_2, \dots, \hat{\Phi}_m)$,

where the sign $\hat{\ }$ means that the element under it is omitted. It is obvious that $\bar{\Phi}$ is an $(m_1, \ldots, m_g - 1, \ldots, m_k)$ -tuple if $\Phi_1 = \alpha_g$, $\tilde{\Phi}$ is an $(m_1, \ldots, m_h - 1, \ldots, m_k)$ tuple if $\Phi_m = \alpha_h$. Then \bar{A}_i and \tilde{A}_i are in $\mathfrak{gl}^{\bar{\Phi}}(m_1, \ldots, m_g - 1, \ldots, m_k)$ and $\mathfrak{gl}^{\tilde{\Phi}}(m_1,\ldots,m_h-1,\ldots,m_k)$ respectively, and $|\bar{A}_i|=|A_i|=|\tilde{A}_i|$. By $[A_i, A_j]=0$, we have $A_i A_j = \varepsilon(|A_i|, |A_j|) A_j A_i$. Then

$$
\begin{bmatrix}\n* & \cdots & * \\
0 & & & \\
\vdots & & \bar{A}_j \bar{A}_j & \\
0 & & & & \\
\end{bmatrix} = \varepsilon (|A_i|, |A_j|) \begin{bmatrix}\n* & \cdots & * \\
0 & & & \\
\vdots & & \bar{A}_j \bar{A}_i & \\
0 & \cdots & 0 & * \end{bmatrix},
$$
\n
$$
\begin{bmatrix}\n* & & \\
\vdots & & \\
\bar{A}_i \bar{A}_j & \vdots \\
0 & \cdots & 0 & * \end{bmatrix} = \varepsilon (|A_i|, |A_j|) \begin{bmatrix}\n* & & \\
\vdots & & \bar{A}_j \bar{A}_i & \vdots \\
0 & \cdots & 0 & * \end{bmatrix}.
$$

That is, $[\bar{A}_i, \bar{A}_j] = 0 = [\tilde{A}_i, \tilde{A}_j]$. Let \bar{W} and \tilde{W} be the *Γ*-graded vector spaces spanned by $\{\overline{A}_i \mid 1 \leq i \leq \nu(m)\}\$ and $\{\overline{A}_i \mid \frac{1}{n} \leq i \leq \nu(m)\}\$, respectively. Then \bar{W} and \tilde{W} are also abelian subalgebras of $\mathfrak{t}^{\bar{\Phi}}(\overline{m}_1, \ldots, \overline{m}_g-1, \ldots, \overline{m}_k)$ and $\mathfrak{t}^{\tilde{\Phi}}(m_1, \ldots, m_h-1, \ldots, m_k)$ for some g and h, respectively. Write $r = \dim \bar{W}$ and $t = \dim \tilde{W}$. By inductive hypothesis, we have

$$
r \le \lfloor (m-1)^2/4 \rfloor + 1,
$$

\n
$$
t \le \lfloor (m-1)^2/4 \rfloor + 1.
$$
\n(3.2)

Without loss of generality, we may assume that $\{\overline{A}_i \mid 1 \leq i \leq r\}$ are linearly independent, so are $\{\tilde{A}_i \mid 1 \leq i \leq t\}$. Let

$$
\bar{A}_i = \sum_{k=1}^r \bar{m}_{ik} \bar{A}_k, \text{ where } \bar{m}_{ik} \in \mathbb{F} \text{ and } r+1 \leq i \leq \nu(m),
$$

$$
\tilde{A}_j = \sum_{k=1}^t \tilde{m}_{jk} \tilde{A}_k, \text{ where } \tilde{m}_{jk} \in \mathbb{F} \text{ and } t+1 \leq j \leq \nu(m).
$$

The maximal abelian subalgebras 11

Note that $|\bar{A}_i| = |\bar{A}_j|$ if $\bar{m}_{ij} \neq 0$, and $|\tilde{A}_i| = |\tilde{A}_j|$ if $\tilde{m}_{ij} \neq 0$. Then

$$
|A_i| = |A_j| \text{ if } \bar{m}_{ij} \neq 0 \text{ or } \tilde{m}_{ij} \neq 0.
$$

For $r + 1 \leq i \leq \nu(m)$ and $t + 1 \leq j \leq \nu(m)$, write

$$
\bar{B}_i = A_i - \sum_{k=1}^r \bar{m}_{ik} A_k, \quad \tilde{B}_j = A_j - \sum_{k=1}^t \tilde{m}_{jk} A_k.
$$

Thus each \bar{B}_i (resp. \tilde{B}_j) is homogeneous and of the form $[\bar{b}_i, O]^t$ (resp. $\left[O, \tilde{b}_j\right]$), where $\bar{b}_i^t = \bar{a}_i - \sum_{k=1}^r \bar{m}_{ik}\bar{a}_k$ is a $1 \times m$ matrix and \bar{a}_q is the first row of A_q for $1 \le q \le \nu(m)$ (resp. $\tilde{b}_j = \tilde{a}_j - \sum_{k=1}^l \tilde{m}_{jk}\tilde{a}_k$ is an $m \times 1$ matrix and \tilde{a}_q is the last column of A_q , $1 \le q \le \nu(m)$). Hereafter X^t denotes the transpose of a matrix X. Clearly,

$$
\left\{ \bar{B}_i \mid r+1 \leq i \leq \nu(m) \right\} \text{ (resp. } \left\{ \tilde{B}_i \mid t+1 \leq i \leq \nu(m) \right\})
$$

are linearly independent, and so are

$$
\left\{\overline{b}_i^t \mid r+1 \leq i \leq \nu(m)\right\} \text{ (resp. } \left\{\widetilde{b}_i \mid t+1 \leq i \leq \nu(m)\right\}).
$$

Let $M = \left[\bar{b}_{r+1}, \bar{b}_{r+2}, \ldots, \bar{b}_{\nu(m)}\right]^{\text{t}}$. Clearly,

$$
rank M = \nu(m) - r.
$$
\n(3.3)

Denote by W the set $\{X \in \mathbb{F}^m \mid MX = 0\}$. Then

$$
\dim W = m - \text{rank} M. \tag{3.4}
$$

For $r+1 \leq i \leq \nu(m)$ and $t+1 \leq j \leq \nu(m)$, \overline{B}_i , \overline{B}_j are homogenous matrices in n. Note that $\tilde{B}_j \bar{B}_i = 0$, then $\bar{B}_i \tilde{B}_j = 0$ by $[\bar{B}_i, \tilde{B}_j] = 0$. Consequently,

$$
\bar{b}_i^t \tilde{b}_j = 0 \text{ for } r+1 \le i \le \nu(m) \text{ and } t+1 \le j \le \nu(m),
$$

that is, the set $\left\{ \tilde{b}_j \mid t + 1 \leq j \leq \nu(m) \right\}$ is contained in W, which are linearly independent. Consequently,

$$
\dim W \ge \nu(m) - t. \tag{3.5}
$$

Therefore

$$
m \quad \stackrel{(3.4)}{=} \quad \text{rank}M + \dim W
$$

\n
$$
\stackrel{(3.3)}{\geq} \quad \nu(m) - r + \nu(m) - t
$$

\n
$$
\stackrel{(3.1)}{=} \quad 2(\lfloor m^2/4 \rfloor + 2) - r - t
$$

\n
$$
\stackrel{(3.2)}{\geq} \quad 2(\lfloor m^2/4 \rfloor - \lfloor (m-1)^2/4 \rfloor + 1).
$$

Thus, if $m = 2q$ is even, then $2q \ge 2(q + 1)$, a contradiction; if $m = 2q + 1$ is odd, then $2q + 1 \ge 2(q + 1)$, also a contradiction. Hence dim $\mathfrak{a} \le \lfloor m^2/4 \rfloor + 1$. By (2.2) , we have dim $\mathfrak{a} \geq$ = dim $\mathfrak{E}' = \lfloor m^2/4 \rfloor + 1$.

Furthermore, if each element in $\mathfrak a$ is nilpotemt, we may assume that $\mathfrak a$ is contained in $\mathfrak{s}^{\Phi}(m_1,\ldots,m_k)$ from Lemma [2.1.](#page-3-0) Thus

$$
\lfloor m^2/4 \rfloor = \dim \mathfrak{E} \le \dim \mathfrak{a} < \lfloor m^2/4 \rfloor + 1.
$$

ACKNOWLEDGMENTS

This study was supported by the NSF of Heilongjiang Province (YQ2020A005) and the NSF of China (12061029). There are no relevant financial or non-financial competing interests in this paper. No potential competing interest was reported by the authors.

References

- [1] A. Martín and J. Delgado, On the structure of split Lie color algebras, Linear Algebra Appl., 436 (2012): 307–315.
- [2] Y. Benoist, Une Nilvariete Non Affine, J. Diff. Geom., 41 (1995): 21–52.
- [3] G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. Math., 38(2) (1937): 526–532.
- [4] D. Burde, Affine structures on nilmanifolds, Internat. J. Math., 7(5) (1996): 599–616.
- [5] D. Burde and F. Grunewald, Modules for certain Lie algebras of maximal class, J. Pure and Appl. Algebra, 99 (1995): 239–254.
- [6] D. Burde and W. Moens, Minimal Faithful Representations of Reductive Lie Algebras, Archiv der Mathematik, 89 (2007): 513–523.
- [7] D. Burde, On a refinement of Ado's Theorem, Arch. Math., 70 (1998): 118– 127.
- [8] L. Cagliero and N. Rojas, Faithful representations of minimal dimension of current Heisenberg Lie algebras, Internat. J. Math., 20(11) (2009): 1347–1362.
- [9] N. Jacobson, Schur's theorems on commutative matrices, Bull. Amer. Math. Soc., 50 (1944): 431–436.
- [10] W. Liu and M. Chen, The minimal dimensions of faithful representations for Heisenberg Lie superalgebras, J. Geom. Phys., 89 (2015): 17–24.
- [11] W. Liu and S. Wang, Minimal faithful representations of abelian Jordan algebras and Lie superalgebras, Linear Algebra Appl., 437 (2012): 1293–1299.
- [12] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. Math., 25 (1977): 178–187.
- [13] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly, 105 (1998): 260–262.
- [14] R. Ree, Generalized Lie elements, Canad. J. Math., 12 (1960): 439–502.
- [15] B. Reed, Representations of solvable Lie algebras, Michigan Math. J., 16 (1969): 227–233.
- [16] N. Rojas, Minimal faithful representation of the Heisenberg Lie algebra with abelian factor, J. Lie Theory, 23 (2013): 1105–1114.
- [17] M. Scheunert, Generalized Lie algebras, J. Math. Phys., 20 (1979): 712–720.
- [18] M. Scheunert and R. Zhang, Cohomology of Lie superalgebras and their generalizations, J. Math. Phys., 39(9) (1998), 5024–5061.
- [19] I. Schur, Zur Theorie vertauschbaren Matrizen, J. Reine Angew. Math., 130 $(1905): 66-76.$
- [20] Y. Su, K. Zhao and L. Zhu, Simple Lie color algebras of Weyl type, Israel J. Math., 137 (2003): 109–123.
- [21] Y. Su, K. Zhao and L. Zhu, Classification of derivation-simple color algebras related to locally finite derivations, J. Math. Phys., 45(1) (2004): 525–536.
- [22] Q. Wang, H.J. Chen and W.D. Liu, On representations of the filiform Lie superalgebra $L_{m,n}$, J. Geom. Phys., 97 (2015): 93-104.
- [23] S. Wang and W. Liu, Minimal dimensions of faithful representations for abelian Lie superalgebras, Linear Multilinear Algebra, 64(7) (2016): 1354–1361.
- [24] S. Wang and W. Liu, The abelian subalgebras of maximal dimensions for general linear Lie superalgebras, Linear Multilinear Algebra, 64(10) (2016): 2081–2089.
- [25] S. Wang and W. Liu, On the minimal dimension of faithful representations for current Heisenberg Lie superalgebras, Colloq. Math., 165(1) (2021): 45–52
- [26] Y. Wei and T. Wettig, Bosonic color-flavor transformation for the special unitary group, J. Math. Phys., 46(7) (2005): 072306(25pp).
- [27] Y. Yao, Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type, Sci. China Math., 56 (2013): 239–252.
- [28] C. Zhang, Representations of the restricted Lie color algebras, Algebr. Represent. Theory, 16 (2013): 445–470.