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Abstract
We provide the first example of continuous families of Poincaré-Einstein metrics developing cusps on the

trivial topology R4. We also exhibit families of metrics with unexpected degenerations in their conformal
infinity only. These are obtained from the Riemannian version of an ansatz of Debever and Plebański-
Demiański. We additionally indicate how to construct similar examples on more complicated topologies.

Introduction
An Einstein metric satisfies for some real number Λ:

Ric(g) = Λg. (1)

This is a central equation in Geometry and in several instances of Physics, especially in dimension 4. A Poincaré-
Einstein metric is a noncompact Einstein metric with a specific asymptotic behavior giving rise to a conformal
boundary metric at infinity, the simplest example being the Poincaré model for hyperbolic space whose conformal
infinity is the round sphere. Poincaré-Einstein metrics were first notably used to construct a number of conformal
invariants of the boundary geometry; see [FG85, FG12]. More recently, they have also played an important role
in the physics literature in relationship with AdS/CFT correspondence; see [Wit98, Biq05].

From several perspectives, dimension 4 is a threshold dimension in topology and geometry. In this dimension,
there are three ways for compact Einstein or Poincaré-Einstein metrics on a given manifold to degenerate: orbifold
singularity formation, collapsing and cusp formation.

Orbifold formation has been widely studied and is now reasonably understood. Numerous examples of curves
of such degenerations have been produced in the Kähler and Poincaré-Einstein settings, see [LS94, Biq13, Biq16].
All such degenerations have moreover been reconstructed by gluing-perturbation [Ozu19a, Ozu19b].

Despite deep general results such as [CT06], the collapsing and cusp formation remain comparatively myste-
rious. The collapsing situation has received a lot of attention and many examples of curves of Einstein metrics
collapsing have been produced on K3 surfaces, see for instance [HSVZ21, Fos19]. The third situation of cusp
formation has however never been observed except from “trivial” examples of (warped) products of degenerating
surfaces and from sequences of metrics requiring infinitely many different topologies [And06, Bam12]. More
concretely, the following question was left open:
Question 0.1 ([And05]). “Another interesting open question is whether cusps can actually form within a given
or fixed component of [the moduli space of Poincaré-Einstein metrics], on a fixed manifold M .”

A simple but not so appealing example showing that this exists is the so-called topological black hole metric.
The metric is V (r)−1dr2 +V (r)dθ2 + r2gN for V (r) := −1 + r2− 2m/r2 with m large enough and gN the metric
of a hyperbolic surface. Letting gN degenerate creates a cusp that extends to the conformal infinity. This naive
example answers Anderson’s question but, to the authors’ knowledge, does not seem to have been mentioned
before. This is still a 2-dimensional behavior and we provide many more interesting examples here.

Another intriguing question is whether cusp formation requires some topology – like orbifold degeneration
requires nontrivial 2-homology. Anderson conjectured that it was the case:
Question 0.2 ([And05]). “It would also be very interesting to know if the possible formation of cusps is restricted
by the topology of the ambient manifold M . [...] One might conjecture for instance that on the 4-ball cusp
formation is not possible.”

We instead provide explicit examples of continuous families of smooth Poincaré-Einstein metrics on R4 de-
veloping different kinds of cusps. We moreover find curves of metrics without any degeneration in the bulk but
forming various conical, cusp or naked singularities in their conformal infinity.
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Debever and Plebański-Demiański’s local family of metrics
In this article, we study families of Poincaré-Einstein metrics exhibiting the above three types of degenerations

focusing on the least understood case of cusp formation. These examples are surprisingly explicitly given in
coordinates and are found in the families of Einstein metrics whose Lorentzian counterparts were discovered by
Debever [Deb71] and which were given in more convenient coordinates by Plebański-Demiański [PD76]. These
metrics are known in the physics literature as Plebański-Demiański metrics (PD metrics). PD metrics are
algebraically special of Petrov type D meaning (in the Riemannian setting) that at every point the selfdual and
anti-selfdual parts of the Weyl curvature have repeated eigenvalues. This also equivalent to the ambiKähler
condition of [ACG16]: the metric is conformally Kähler or Hermitian in both orientations. This curvature
condition forces toric symmetry by [Gol94].

The metrics of the PD family have a remarkably compact form (2) and depend solely on two related quartic
polynomials P and Q of one variable. Still, despite their simplicity and their discovery in the early 70’s, these
explicit metrics, once extended to the Riemannian setting contain in some limits most known examples of Einstein
metrics (S4, S2 × S2, Fubini-Study, Page’s metric, Taub-NUT, Taub-Bolt, Eguchi-Hanson, Schwarzschild, Kerr
and their AdS counterparts...) that were often discovered much later with complicated ansatz, see [LP81] where
smooth Ricci-flat and compact Einstein PD metrics are classified. Extensions of these families more generally
solve the Einstein-Maxwell equations and include known metrics such as Lebrun’s scalar-flat metrics [LeB88].

This family also contains families developing orbifold singularities in the so-called AdS-Taub-Bolt family. It
moreover contains continuous families of metrics exhibiting global collapsing bubbling out (Ricci-flat) Taub-NUT
or Schwarzschild metrics in the so-called AdS-Taub-NUT (or Pedersen’s) metrics or AdS-Schwarzschild families.
We will focus on cusp formation here.

Families of Poincaré-Einstein metrics forming cusps
Degeneration in the family of AdS C-metrics

It is now classical in the physics literature that a limit “without rotation or twisting” of the PD metrics leads
to the well-known AdS C-metrics whose Ricci-flat versions were found by Levi-Civita [LC18] and Weyl [Wey17]
in the 1910’s(!). In this family, we first find a 2-dimensional moduli space of smooth Poincaré-Einstein metrics
on R4 containing the hyperbolic 4-metric and whose limiting behaviors include metrics forming one or two cusps.
A significant asymptotic quantity of Poincaré-Einstein metrics is the renormalized volume defined in [Gra00].
Despite the drastic degenerations presented in this article, the renormalized volume stays bounded.

Theorem 0.3 (Section 2). There exists a smooth family of smooth Poincaré-Einstein metrics on R4 parametrized
by an open region Ω in R2. Approaching some points at the boundary ∂Ω, the metrics converge smoothly to the
hyperbolic space or degenerate forming one or two codimension 2 cusps. These cusps have asymptotic behaviors :

dr2
1 + ae−r1dθ2

1 + dr2
2 + bdθ2

2 for r1 ∈ [0,+∞), r2 ∈ [0, 1], θ1, θ2 ∈ [0, 2π],

for a, b > 0 in the bulk of the manifold, and dr2 + ae−rdθ2
1 + bdθ2

2 at conformal infinity with r ∈ [0,+∞). These
examples have uniformly bounded renormalized volume.

An important question left open is the following one.

Question 0.4. Does there exist a continuous family of Poincaré-Einstein metrics forming cusps separating the
manifold into a complete finite volume piece and another complete Poincaré-Einstein metric?

Remark 0.5. Unfortunately, this is impossible in our family of metrics and there is little hope to find such a
family of metrics explicitly given in coordinates. Indeed, in our case, one limit of such a degeneration has to
be an Einstein metric with negative Ricci curvature and with at least one Killing vector field with finite length,
which is impossible by Bochner’s formula; see [Yor84] for instance.

Degeneration in the Carter-Plebański family of metrics

The limits “without acceleration” of the PD metrics consitute the Carter-Plebański family of metrics. In
Section 3, we exhibit a subfamily of smooth Poincaré-Einstein metrics with topology CP2\D4 forming cusp in
some limits, and discuss how other topologies may be reached.
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Degeneration in the full Plebański-Demiański family of metrics

In the full family of PD metrics, we also obtain cusps as in Theorem 0.3 which are this time “twisted” as in
(16). We additionally find families of smooth Poincaré-Einstein metrics on R4 where only the conformal infinity
degenerates in some limit.

Theorem 0.6 (Section 4). There exists a smooth family of Poincaré-Einstein metrics on R4 whose conformal
infinity approaches one of the following behaviors in some limit: for a, b > 0

• A conical (edge) singularity: dr2 + a2r2dθ2
1 + b2dθ2

2 on (r, θ1, θ2) ∈ [0, 1]× [0, 2π]× [0, 2π],

• A naked singularity: dr2 + a2r6dθ2
1 + b2dθ2

2 on (r, θ1, θ2) ∈ [0, 1]× [0, 2π]× [0, 2π], or

• A cusp end: dr2 + a2e−4rdθ2
1 + b2dθ2

2 on (r, θ1, θ2) ∈ [0,+∞]× [0, 2π]× [0, 2π].

While approaching these behaviors at conformal infinity, the metrics converge smoothly in the bulk metric in the
pointed Cheeger-Gromov sense. These examples have uniformly bounded renormalized volume.

These degenerations can occur in various limits that we describe in Section 4 and Section B.
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1 The families of metrics considered

1.1 Plebański-Demiański family of metrics
A “Euclideanized” Plebański-Demiański (PD) metric has the following form

gP D = 1
(x− y)2

[
− Q(y)

1− a2x2y2 (dψ − ax2dϕ)2 − 1− a2x2y2

Q(y) dy2 + P (x)
1− a2x2y2 (dϕ− ay2dψ)2 + 1− a2x2y2

P (x) dx2
]

(2)

where Q(y) and P (x) are polynomials of degree 4 which can be chosen depending on the value of a ∈ R, physi-
cally understood as a rotation parameter, so that gPD is an Einstein metric with RicgP D

= −3gPD following the
(Riemannian version of the) computations in [PD76]. Up to rescaling, we can assume a ∈ {0, 1}.

Let us first consider the larger family with a = 1 from which the other ones can be obtained from various
limiting procedures. The Einstein condition (1) with Λ = −3 is equivalent to P and Q having the form

P (x) = bx4 + cx3 + dx2 + ex+ b+ 1 and
Q(y) = (b+ 1)y4 + cy3 + dy2 + ey + b,

(3)

for b, c, d, e ∈ R where we note the identity Q(y) = P (y) + y4 − 1. The local metric (2) is then Einstein and
Riemannian on ranges depending on roots of P and Q. When “closing-up” at roots of P and Q it may have
codimension 2 cone-edge singularities (which we will avoid) or cusp ends which are discussed in Appendix A.
These metrics are moreover Poincaré-Einstein since they are conformal to a metric with boundary: the boundary
is given by {x = y} and the conformal factor is 1

(x−y)2 . The conformal infinity of these metrics is the conformal
class of the metric induced on {x = y} by (x− y)2gPD. We will see in different instances, especially in Section 4
that these conformal infinities may degenerate. The possible degenerations of the conformal infinity are collected
in the Appendix B.

Without loss of generality, we can write c = k+ + k−, e = k+ − k− in (3), in which the set of eigenvalues of
the ±-selfdual part of Weyl curvature WgP D

is proportional to k±
(1±xy)3 (2,−1,−1). The pointwise norm of the

Riemannian tensor of gPD is given by
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||RmgP D
||2= 24 + 24(x− y)6

(
k2

+
(1 + xy)6 +

k2
−

(1− xy)6

)
.

The volume element in these coordinates is −1+x2y2

(x−y)4 dxdydϕdψ and one checks that ‖WgP D
‖L2(gP D) is finite

for the domains we consider, hence, by [And01], the renormalized volume is controlled for our examples.

1.2 Non rotating limit: AdS C-metrics
For this section, we will follow [CLT15a] and will adopt their notation. Our study and goals are purely

geometric and differ from theirs. The AdS C-metrics are obtained from the general Plebański-Demiański family
(2) by taking the non-rotating limit a→ 0. These metrics are the Riemannian analogues of the metrics considered
in [CLT15b], and have the form

gC = 1
(x− y)2

[
−Q(y)dψ2 − dy2

Q(y) + dx2

P (x) + P (x)dϕ2
]

(4)

where we will assume that Q and P are parametrized by two variables µ, ν as

P (x) = (1 + x)
(
1 + νx+ µx2) , and

Q(y) = y
[
1 + ν + (µ+ ν)y + µy2] , (5)

This ensures Einstein condition (1) is satisfied. The pointwise norm of the Riemannian tensor of gC is given by

‖RmgC
‖2gC

= 24 + 12(x− y)6µ2,

and more precisely, one has Ric(gC) = −3gC and the eigenvalues of both the selfdual and anti-selfdual parts
of WgC

are equal to µ
4 (y − x)3(2,−1,−1) which as expected go to zero as x → y. Moreover, when µ = 0, the

metric is locally hyperbolic. A direct computation ensures again that ‖WgC
‖2L2(gC) is bounded. In particular,

from [And01], these examples have bounded renormalized volume.

1.3 Non accelerating limit: Carter-Plebański metrics
The Carter-Plebański family of metrics is a special limit of the Plebański-Demiański family of metrics (2)

after a change of coordinates. To do this, start from (2) in the coordinates of [LP81] and perform a rescaling by
b > 0 (acceleration parameter) of coordinates as in [GP06, Section 2.2], which yields the following metric:

gPD = 1
(1− bpq)2

[
p2 − q2

Pb(p)
dp2 + q2 − p2

Qb(q)
dq2 + Pb(p)

p2 − q2

(
dτ + q2dσ

)2 + Qb(q)
q2 − p2

(
dτ + p2dσ

)2] (6)

for polynomials Pb and Qb depending on b > 0 chosen to satisfy (1) with Λ = −3. Taking the “no acceleration
limit” b→ 0 as in [GP06, Section 5], we obtain from (6) the metric

gCP := p2 − q2

P(p) dp2 + q2 − p2

Q(q) dq2 + P(p)
p2 − q2

(
dτ + q2dσ

)2 + Q(q)
q2 − p2

(
dτ + p2dσ

)2
, (7)

where the limiting polynomials P and Q are of the form:

P(p) = p4 + E2p2 − 2Np+ α and
Q(q) = q4 + E2q2 − 2Mq + α

(8)

following the notations of [MP13] for some real numbers E, M , N and α.
We will consider intervals where P(p) 6 0 and Q(q) > 0. This time, the range in p will be compact of the

form [p−, p+] for p± roots of P and the range in q will be of the form [q+,+∞) for q+ root of Q.
This metric is Poincaré-Einstein and as q → +∞ (the infinity in these coordinates), the metric looks like

gCP ≈
dq2

q2 + q2
(
− dp2

P(p) − P(p)dσ2 + (dτ + p2dσ)2
)

(9)

so the metric at conformal infinity is − dp2

P(p) − P(p)dσ2 + (dτ + p2dσ)2.
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2 Degenerations of AdS C-metrics
In this section, we study a specific 2-dimensional family of AdS C-metrics on R4 forming one or two cusps

in different limits. The cusps forming here effectively separate the manifold into two or three Poincaré-Einstein
metrics with cusps ends in their bulk and their conformal infinities. We prove Theorem 0.3.

As in Section 1.2 we consider the metric (4) where Q(y) = y
[
1 + ν + (µ+ ν)y + µy2] and P (x) = (1 +

x)
(
1 + νx+ µx2). The roots of P and Q respectively are as follows

x0 = −1, x± = −ν ±
√
ν2 − 4µ

2µ , and

y0 = 0, y± = −(µ+ ν)±
√

(µ+ ν)2 − 4µ(1 + ν)
2µ .

(10)

In order to approach metrics with cusp ends in this family by smooth metrics, we consider the case when x±, y±
are complex conjugate roots which we will let approach a real double root – leading to a cusp degeneration
by Section A.4. In the (µ, ν) plane, this condition means that (µ, ν) lies in the region bounded by the curves
ν = 2√µ and ν = µ− 2√µ.

We then consider −1 < x < y < 0 where the conformal infinity is at {x = y}, see Figure 1b. For the metric
to be smooth, we require that 1−ν+µ

2 ϕ and 1+ν
2 ψ be 2π-periodic, see Proposition A.3. We further impose that

µ > max(ν/2,−ν). This corresponds to forcing the real part of x± and y± to be in (−1, 0), this way the double
root degeneration (when the imaginary part of the roots tends to zero) happens where the metric is defined and
is geometrically meaningful. We end up with the region D4 in [CLT15a] shaded in Figure 1a in the µ, ν plane
bounded by the curves ν = 2√µ, ν = µ− 2√µ, ν = 2µ and ν = −µ.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

µ

ν

ν = 2√µ
ν = µ− 2√µ

ν = 2µ
ν = −µ

(a) Admissible (µ, ν) parameters (shaded).

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

x

y

x = y

(b) Range of coordinates (x, y) (shaded), the range for
ϕ, ψ is a torus determined by Proposition A.3

Figure 1: Parameter ranges considered. The dashed {x = y} is the conformal infinity.

Remark 2.1. In the limit (µ, ν)→ 0 from our region shaded in Figure 1a, our metrics converge smoothly to the
hyperbolic 4-space. Indeed, the metric is already locally hyperbolic by our curvature computations and the change
of variables x = − sin2 ((u− π)/2) , at the conformal infinity {x = y}, the restriction of the metric (x− y)2gCLT
with µ = ν = 0 takes the form

du2 + cos
(
u− π

2

)2
dϕ2 + sin

(
u− π

2

)2
dψ2.

Thus we recover the metric of the round 3-sphere in Hopf’s coordinates since ϕ and ψ are 4π-periodic. This
in particular ensures that the topology we consider is R4.

From (10) we see that, for (µ, ν) in the shaded region in Figure 1a, if one of P,Q has a double root, then (µ, ν)
lies on at least one of the boundary curves ν = 2√µ or ν = µ− 2√µ respectively in blue and red in Figure 1, see
the first two columns of Figure 2 for the associated polynomials and geometric representation. The intersection
of these curves, (µ, ν) = (16, 8), is the unique case when P and Q have double roots at x = −1

4 and y = −3
4 ) as

described in Figures 2c and 2f respectively leading to two cusps dividing the manifold in three regions, while the
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point (µ, ν) = (0, 0) corresponds to hyperbolic 4-space from Remark 2.1. The possible double roots of P and Q
respectively lie in the intervals (−1, −1

4 ] and [−3
4 , 0).

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

x

y

x = y

(a) Double root (red) in P separating
the manifold.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

x

y

x = y

(b) Double root (blue) in Q separating
the manifold.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

x

y

x = y

(c) Double root in P (red) and Q
(blue) separating in three.

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1
P
Q

(d) Double root only in P,
ν = 2√µ.

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1
P
Q

(e) Double root only in Q,
ν = µ− 2√µ.

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1
P
Q

(f) Double root in both P and Q,
(µ, ν) = (16, 8).

Figure 2: Different configurations of double roots.

3 Degenerations in Carter-Plebański family of metrics
In this section, we indicate how to find families of metrics forming cusps with different topologies. We take

the simplest example here on CP2\D4 with conformal infinity S3. We follow [MP13, Sections 2.1, 2.2 and 2.3]
for our regularity conditions: we impose τ and σ to be as [MP13, Sections 2.13 and 2.17]. This also requires
N = M , which is equivalent to the metric being self-dual, and forcing P = Q.

We will moreover parametrize our polynomial by the roots and looking for a metric with a cusp, we will
consider a polynomial with a double root: for p3, p4, p0 ∈ R (following notations of [MP13]):

P(p) = (p− p3)(p− p4)(p− p0)2. (11)

We will then consider the range (p, q) ∈ [p3, p4]× [p4,+∞], where the associated metric is indeed Riemannian.

Remark 3.1. Recall that from Remark 0.5 we cannot have a double root in Q on (p4,+∞). All we will find
instead is a double root of P on (p3, p4) corresponding to a cusp in the manifold extending to infinity.

We need our double root p0, to lie in (p3, p4) so that it is reflected in our metric. Since the sum of the roots
is 0 (the cubic coefficient of the polynomial is zero), p0 = −p3+p4

2 and so p0 ∈ (p3, p4) imposes

p3 < 0 < p4, and 1
3 |p3|< |p4|< 3|p3|. (12)

We can find this polynomial (11) as a limit of polynomials with two complex conjugate roots: for ε > 0

Pε(p) = (p− p3)(p− p4)
((
p+ 1

2(p3 + p4)
)2

+ ε2
)

(13)
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−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

p or q

P = Q
(p3, p4)
(p4,∞)

(a) Example of double root in P with N = M . Intervals
where P and Q are defined are highlighted.

0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

q

p

(b) Double root in P (in blue) extending infinity
q → +∞. Range in (p, q) shaded.

Figure 3: Polynomial and range of coordinates.

where we get the double root mentioned above when ε→ 0 and we also let Qε = Pε to satisfy the above regularity
condition of [MP13]. Since the roots of the polynomials are the same, the intervals in which these are defined
stay the same. Geometrically, in the limit ε → 0, the metrics (7) associated to Qε = Pε develop a cusp along
{p = −(p3 + p4)/2} separating the manifold in two parts by an argument similar to Section A.3.

The topology of the manifold is that of CP2 minus a ball and the conformal infinity is S3. The “bolt” of
the metric is reached at [p3, p4] × {q = 1} which is a codimension 2 submanifold (a 2-sphere) because of the
degeneration of the metric there, see [MP13] or the discussion in Section A.

Remark 3.2. It is likely possible to obtain infinitely many different topologies from the Carter-Plebański family
of metrics by having a larger and larger “self-intersection” for the 2-sphere while obtaining a conformal infinity
S3/Zk for Zk a cyclic subgroup of SU(2) acting freely on S3. See [CT10, Section 5.1] for a discussion of the
regularity conditions and possible topologies. In the larger Plebański-Demiański family of metrics, we believe
that there is also a large class of additional possible topologies, with two “bolts” (and a “NUT”). The conformal
infinity, could this time be an arbitrary lens space. See [CT10, Section 5.2] for a discussion of the regularity
conditions and possible topologies.

4 Degenerations in the Plebański-Demiański family of metrics
We will now turn to the general PD family of metrics. The above degenerations of Sections 2 and 3 can be

found in the full family of Plebański-Demiański, but we focus on exhibiting new behaviors of complete metrics
whose conformal infinities develop unexpected types of singularities. We prove Theorem 0.6.

In this section we consider a subfamily of metrics in (2) with a = 1, parametrizing our polynomials as

P∞(x) = C∞(x− α1)((x− 1 + α2)2 + α3)(x− α4) (14)
with C∞ = (−1 + α1α

2
2α4 + α1α4 − 2α1α2α4 + α1α3α4)−1 and Q∞(y) = P∞(y) + y4 − 1. These metrics satisfy

the Einstein Condition (1) with Λ = −3 for all α1, α2, α3, α4 ∈ R.

4.1 A naked singularity in conformal infinity only
Setting α2 = α3 = 0 and choosing distinct α1, α4 ∈ R in (14), the polynomial P∞ has a double root only at
x = 1 while Q∞ has a simple root at 1. This will correspond to a Naked Singularity in the metric, which we
describe in Section B.2 once we ensure that our metric is smooth and Riemannian. We first need to verify that
we have the correct signs P∞ > 0 and Q∞ < 0 on the region α1 6 x < y 6 1. Assume that α1 < 1 6 α4, then
the inequality P ′∞(α1) = (α1−1)2(α1−α4)

α1α4−1 > 0, which is satisfied whenever α1 < α−1
4 , guarantees that P∞ > 0 on

(α1, 1). To guarantee that Q∞ has the right sign, it is enough to impose −1 < α1 < 0.
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Remark 4.1. This is true on a larger range of values of α1 which we do not attempt to describe. For instance,
the graphs below show examples where the sign conditions for 2 to be Riemannian are satisfied for α1 > 0, but
the example α1 = 0.01, α2 = α3 = 0 and α4 = 7 does not yield the right sign.

Lastly, we assume that ϕ and ψ satisfy the periodicity conditions imposed in Proposition A.3 to ensure that
we find smooth metrics.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1
P∞
Q∞

(a) α2 = α3 = 0, α1 = 0.2 and α4 = 3

0.4 0.6 0.8 1 1.2

0.4

0.6

0.8

1

1.2

x

y

x = y

(b) Double Root (red) only at infinity

Figure 4: Example polynomials and region for metric with naked singularity at infinity.

The metrics obtained in this way can be approached by perturbing the parameters α2 and α3 in various ways
around (0, 0). This gives the following different types of degenerations degenerations, which we describe below.

Degeneration 1: from a smooth metric to a naked singularity. By taking α3 > 0 and keeping α2 = 0,
the double root of P∞ at 1 is replaced with two complex roots, see Figure 5a. Taking the limit α3 → 0 yields
the above naked singularity. Similarly, by taking α2 < 0 and α3 = 0, the double root of P∞ is moved past the
conformal infinity y = x, see Figure 5b. Taking the limit α2 → 0 yields the above naked singularity.

Both of these situations yield a smooth metric at conformal infinity by Proposition B.1. Indeed, P∞ does not
have any root close to the root of Q∞.
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(a) α3 > 0 and α2 = 0.
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1
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Q∞

(b) α2 < 0 and α3 = 0.

Figure 5: Smooth Metric to Naked Singularity

Degeneration 2: from a conical singularity to a naked singularity. By taking α3 < 0 and α2 = 0, see
Figure 6a, the double root of P∞ at 1 is split in two real roots x− < 1 < x+. This changes the topology and
creates a codimension 2 cone-edge singularity along {x = x−} by Lemma A.1, extending to the conformal infinity
{x = y}. As α3 → 0, the angle tends to zero and a naked singularity appears while the singularities in the bulk
are “sent to infinity”.

By setting α3 < 0 and α2 = −
√
−α3 as in Figure 6b the double root of P∞ at 1 is split into a single root at

1 and a root larger than 1. This gives a conical singularity in the metric at the conformal infinity only this time.
As α3 → 0, the angle tends to zero and a naked singularity appears in the limit.
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(a) α3 < 0 and α2 = 0.
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(b) α3 < 0 and α2 = −
√
−α3.

Figure 6: Conical Singularity to Naked Singularity

Degeneration 3: from cusp to naked singularity. By taking
α2 > 0 and α3 = 0, the double root 1 − α2 of P∞ is moved to the left
of the root in Q∞. This creates a cusp in the bulk metric as well as in
its infinity by Sections A and B in the appendix.

As in Section 1.2, this cusp at {x = 1− α2} separates the manifold in
two regions infinitely far apart, and the conformal infinity in two finite
volume manifolds with cusp ends.

When α2 → 0, the volume of {1 − α2 < x = y < 1} tends to zero and
the region disappears, the metric on {α1 < x = y < 1−α2} has infinite
diameter for α2 > 0 but finite diameter in the limit α2 → 0 (these
remarks do not depend on the representative of the conformal class).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.5
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Figure 7: Cusp to Naked Singularity

This is a manifestation of cusp degenerations in the bulk manifold comparable to those of Section 1.2. Indeed,
in the family of metrics obtained from (14), there is a 4-dimensional family of smooth Poincaré-Einstein metrics
with a (3-dimensional) boundary constituted of metrics with one cusp separating the manifold in two set, and a
2-dimensional family with two cusps separating the manifold in three.

Remark 4.2. There are important differences with Section 1.2. The cusps from (2) for a = 1 are “twisted” (see
(16)) and do not look like mere products of surfaces in the limit. Moreover, as described above, as α2 → 0 the
cusps “escapes” to infinity creating the above unexpected naked singularity at infinity. This was impossible in the
family (4) because the double root in P could not approach 0 and the double root in Q could not approach −1.

4.2 Two cusps at conformal infinity only
This time, we exhibit a metric with codimension 2 cusps ends
at the conformal infinity only – in particular, the conformal
infinity is not compact. Unlike the example of Section 2 these
cusps do not cut the manifold in different pieces. Consider

P2,∞(x) = −1
2(x− 1)3(x+ 1) and

Q2,∞(y) = 1
2(y − 1)(y + 1)3

which are limit of the polynomials in (14) for α1 = −1, α2 = 0,
α3 = 0 and α4 = 1. These polynomials have the desired signs
on the region −1 6 x 6 1,−1 6 y 6 1 making the metric
(2) with a = 1 Riemannian. Its infinity has two cusp ends at
the points (−1,−1) and (1, 1) thanks to (21). This is a limiting
case for all the previous degenerations as well as a limit of naked
singularities at either 1 or −1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
P2,∞
Q2,∞

Figure 8: Two cusps at conformal infinity only.
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Remark 4.3. From Section 1.1, one moreover notices that this metric is anti-selfdual since the linear and cubic
coefficients of P∞,2 are opposite.

A Possible asymptotics of the bulk metrics and regularity
Let us describe here the possible asymptotics of our metrics and give the regularity conditions. The regularity

conditions obtained for toric metrics are classical and we focus on ruling our conical singularities.

A.1 At a simple root x1 of P and a generic point y

As defined for instance in [AL13], a metric with cone-edge singularity of angle 2πβ > 0 along a codimension
2 submanifold Σ has the following asymptotic at Σ: for a 2π-periodic θ and a 1-form ω on Σ

dr2 + β2r2(dθ + ω)2 + gΣ +O(r1+ε), for ε > 0. (15)

Lemma A.1. At a simple root x1 of P and a generic point y /∈ {−1/x1, 1/x1}, our metric (2) with a ∈ {0, 1}
has a cone-edge singularity whose angle is the period of |P ′(x1)|

2(1+a2x4
1)θ1, where θ1 := ϕ+ ax2

1ψ.

Proof. To do this, we first note that close to its root x1, we have P (x) = P ′(x1)(x− x1) +O((x− x1)2) at first
order. Close to the root x = x1 and at y 6= ±x−1

1 which is not a root of Q, the metric therefore reads:

gPD = 1
(x1 − y)2

[
− Q(y)

1− a2x2
1y

2 (dψ − ax2
1dϕ)2 − 1− a2x2

1y
2

Q(y) dy2

+P ′(x1)(x− x1)
1− a2x2

1y
2 (dϕ− ay2dψ)2 + 1− a2x2

1y
2

P ′(x1)(x− x1)dx
2
]

+O((x− x1)2).

Our codimension 2 submanifold Σ is given by {x = x1}, hence dx = 0 and θ1 := ϕ + ax2
1ψ = cst, that is

dθ1 = dϕ+ ax2
1dψ = 0 (this is chosen as the orthogonal of the 1-form dψ − ax2

1dϕ). The local coframe on Σ we
will use is therefore dy and ω1 := dψ − ax2

1dϕ. With these notations, the metric becomes:

gPD = 1
(x1 − y)2

[
− Q(y)

1− a2x2
1y

2ω
2
1 −

1− a2x2
1y

2

Q(y) dy2

+(1− a2x2
1y

2)
(
P ′(x1)(x− x1)

(1 + a2x4
1)2 (dθ1 + f(y, x1)ω1)2 + dx2

P ′(x1)(x− x1)

)]
+O((x− x1)2).

where f(y, x1) = x2
1+y2

1−x2
1y

2 if a = 1 and f(y, x1) = 0 if a = 0. The regularity of the metric close to x = x1 therefore
reduces to the regularity of P

′(x1)(x−x1)
(1+x4

1)2 (dθ1 + f(y, x1)ω1)2 + 1
P ′(x1)(x−x1)dx

2.
Considering a change of variables x = x1 + P ′(x1)

4 r2, we find the conical singularity metric:

|P ′(x1)|2
4(1 + a2x4

1)2 r
2 (dθ1 + f(y, x1)ω1)2 + dr2,

of angle the period of |P ′(x1)|
2(1+a2x4

1)θ1 by comparison with (15). It will be smooth if and only if this period is 2π.

The case of a simple root y2 of Q is treated similarly and yields a cone-edge singularity whose angle is given
by the period of |Q′(y2)|

2(1+a2y4
2)θ2, where θ2 is ψ + y2

2ϕ.

A.2 At x1 simple root of P and y2 simple root of Q

Let us now consider y = y2, a simple root of Q, and still assume that x2
1 6= y−2

2 if a = 1.

Lemma A.2. Assume that x1 is a simple root of P , and y2 is a simple root of Q, and 1 − a2x2
1y

2
2 6= 0.

Then the metric (2) is smooth at (x1, y2) if and only if both |P ′(x1)|
2(1+a2x4

1)θ1 and |Q′(y2)|
2(1+a2y4

2)θ2 are 2π-periodic, where
ω1 = dψ − ax2

1dϕ and ω2 = dϕ− ay2
2dψ.
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Proof. Expanding the metric near p = x1 and q = y2, a first order development of the metric gives:

gPD = 1
(x1 − y2)2

[
−Q

′(y2)(y − y2)
1− a2x2

1y
2
2

(dθ2 + ω̃2)2 − 1− a2x2
1y

2
2

Q′(y2)(y − y2)dy
2

+(1− a2x2
1y

2
2)
(
P ′(x1)(x− x1)

(1 + a2x4
1)2 (dθ1 + ω̃1)2 + 1

P ′(x1)(x− x1)dx
2
)]

+O((x− x1)2 + (y − y2)2).

for some 1-forms ω̃1 = f1(y, x1)ω1 and ω̃2 = f2(x, y2)ω2 for some smooth functions f1 and f2 whose explicit value
does not affect the regularity (f1 = f2 = 0 if a = 0), and where ω1 = dψ − ax2

1dϕ and ω2 = dϕ− ay2
2dψ.

The same change of variables as in Section A.1 in both x and y ensures that the metric is smooth at (x1, y2)
if and only if |P ′(x1)|

2(1+a2x4
1)θ1 and |Q′(y2)|

2(1+a2y4
2)θ2 are 2π-periodic.

We conclude with the following regularity proposition.

Proposition A.3. Let P and Q be polynomials such that P > 0 and Q < 0 on (x1, y2) ⊂ R and assume that:
x1 is a simple root of P , y2 is a simple root of Q, and 1− a2x2y2 6= 0 for x, y ∈ [x1, y2].

Then, the metric (2) is smooth if and only if the variables |P ′(x1)|
2(1+a2x4

1)θ1 and |Q′(y2)|
2(1+a2y4

2)θ2 are 2π-periodic where
θ1 := ϕ+ ax2

1ψ and θ2 := ψ + ay2
2ϕ.

A.3 At a double root x1 of P and a generic y: separating cusp
Similarly, close to x1 a double root of the polynomial, one has P (x) ≈ P ′′(x1)(x− x1)2/2. As in Section A.1,

we find that close to the same codimension 2 submanifold Σ, the metric is asymptotic to:

(1− a2x2
1y

2)
(
P ′′(x1)(x− x1)2

2(1 + a2x4
1)2 (dθ1 + f(y, x1)ω1)2 + 2dx2

P ′′(x1)(x− x1)2

)
+ gΣ (16)

for some smooth y 7→ f(y, x1) vanishing when a = 0 which is an asymptotically cuspidal metric. This is a smooth
complete metric but it adds an end to the manifold.

A.4 Approaching a cuspidal end
Let us now explain how one can approach a codimension 2 cuspidal end by smooth metrics. Assume that

x1 ± iε are two complex conjugate roots of Pε for ε > 0 that we will send to 0. This time, we have the following
second order approximation for Pε(x) for x close to x1: Pε(x) ≈ P ′′ε (x1)

(
(x− x1)2 + ε2

)
/2 +O((x− x1)3).

This implies that the metric is approximately

(1− a2x2
1y

2)
(
P ′′ε (x1)

(
(x− x1)2 + ε2

)
2(1 + a2x4

1)2 (dθ1 + f(y, x1)ω1)2 + 2dx2

P ′′ε (x1) ((x− x1)2 + ε2)

)
+ gΣ. (17)

This is a smooth metric, but along {x = x1} it is close to a thin cylinder, see the left picture of Figure 9. As
ε → 0, close to any x 6= x1, the metric Cheeger-Gromov converges to the cuspidal metric (16) on compact sets,
see the right image in Figure 9.

Figure 9: Stages of cusp formation. The cusp on the right is infinitely long.
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B Possible behaviors of the conformal boundary metrics
As for the bulk metric, the conformal infinity {x = y} has different possible asymptotic behaviors close to

roots of P or Q. We consider (2), whose conformal metric at infinity is:

gbdry = (1− a2x4)
(

1
P (x) −

1
Q(x)

)
dx2 − Q(x)

1− a2x4 (dψ − ax2dϕ)2 + P (x)
1− a2x4 (dϕ− ax2dψ)2. (18)

We will moreover assume that the regularity conditions for the bulk of Proposition (A.3) are satisfied whenever
applicable. Simpler arguments than Sections A.1 and A.3 imply the following result.
Proposition B.1. Under the assumptions of Proposition A.3, the conformal metric is smooth. Moreover, if P
(or Q) has a double root at x0, then the conformal boundary metric of (18) has a codimension 2 separating cusp
as described in (16).

We will now focus on the case a = 1 of (2) and we will see that allowing the roots to be at ±1 leads to
different degenerate behavior for the conformal infinity alone.

B.1 At ±1 a simple root of both P and Q: conical singularity
Let us assume that 1 is a simple root of both P and Q for the metric (18). The case of −1 is treated similarly.

As x→ 1, we obtain that the metric (18) is asymptotic to

C1dx
2 + C2θ1(x)2 + C3(x− 1)2θ2(x)2

where θ1(x) → dϕ − dψ, θ2(x) → dϕ + dψ as x → 1, and C1 = 4
(

1
P ′(1) −

1
Q′(1)

)
, C2 = P ′(1)−Q′(1)

4 and

C3 = − P ′(1)Q′(1)
P ′(1)−Q′(1) =

(
1

P ′(1) −
1

Q′(1)

)−1
.

This yields a codimension 2 cone-edge singularity of angle P ′(1)Q′(1)
2(P ′(1)−Q′(1)) times the period of ϕ+ ψ.

B.2 At ±1 double root of P and simple root of Q: naked singularity
Similarly, assuming that 1 is a double root of P and a simple root
of Q, the metric (18) approaches

C1

(1− x)dx
2 + C2θ1(x)2 + C3(x− 1)3θ2(x)2 (19)

for θ1(x) → dϕ − dψ, θ2(x) → dϕ + dψ as x → 1 and where C1 =
8

P ′′(1) , C2 = −Q
′(1)
4 and 4C2C3 = −P

′′(1)
2 Q′(1) so C3 = P ′′(1)

2 . A
change of variables r = 2

√
1− x in (19) yields the naked singularity

metric: close to r = 0,

C1dr
2 + C2θ1(x)2 + C3

4 r6θ2(x)2. (20) Figure 10: Naked Singularity, not
infinitely long.

B.3 At ±1 triple root of P and simple root of Q: cusp end
We finally assume that 1 is a triple root of P and a simple root of Q. The metric (18) is asymptotic to

C1

(1− x)2 dx
2 + C2θ1(x)2 + C3(x− 1)4θ2(x)2 (21)

where again, θ1(x)→ dϕ−dψ, θ2(x)→ dϕ+dψ as x→ 1 and where C1 = 24
P (3)(1) , C2 = −Q

′(1)
4 and C3 = P (3)(1)

6 .
A change of variables r = − log(1− x) in (21) yields the cusp end metric: for r close to +∞,

C1dr
2 + C2θ1(x)2 + C3e

−4rθ2(x)2. (22)
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