
ar
X

iv
:2

20
6.

08
14

2v
1 

 [
m

at
h.

C
A

] 
 1

4 
Ju

n 
20

22

ADMISSIBLE AND SECTORIAL CONVERGENCE OF

GENERALIZED POISSON INTEGRALS ON HARMONIC NA
GROUPS

UTSAV DEWAN

Abstract. We prove a converse of Fatou type result for certain eigenfunctions of the
Lalplace-Beltrami operator on Harmonic NA groups relating sectorial convergence and
admissible convergence of Poisson type integrals of complex (signed) measures. This
result extends several results of this kind proved eariler in the context of the classical
upper half space R

n+1

+ . Similar results are also obtained in the degenerate case of the
real hyperbolic spaces.

1. Introduction

In the celebrated article [11], Fatou posed and solved the classical problem which
relates the differentiability of a suitable Borel measure (possibly complex valued) µ on
R with the boundary behaviour of the harmonic function u = P [µ] on the upper half-
plane R2

+ obtained as the Poisson integral of µ. More precisely, it was proved that the
harmonic function u will have non-tangential limit at some x0 ∈ R if µ is differentiable
at x0. Loomis [16] proved that the converse is true when µ is assumed to be positive. It
was also shown by an example that the converse is false in the absence of positivity of
µ.

Ramey and Ullrich [17, Theorem 2.2] obtained higher dimensional generalizations
of the result of Loomis by introducing the notion of strong derivative of a measure.
Precisely, it was proved in [17] that the non-tangential convergence of the Poisson integral
P [µ] : Rn+1

+ → [0,∞), to a boundary point x0 ∈ Rn is equivalent to the existence of
the strong derivative of the measure µ at x0. Among other things, their proof crucially
uses the positivity of µ. We refer the reader to [5] for a remarkable generalization of
this result which deals with a more general class of measures. [17, Theorem 2.2] has
recently been extended to the class of Harmonic NA groups in [18], for certain positive
eigenfunctions of the Laplace-Beltrami operator L.
Theorem 1.1 ([18], Theorem 4.2). Suppose that u is a positive eigenfunction of L
in S with eigenvalue β2 − ρ2, where β > 0, with boundary measure µ, and that n0 ∈
N,L ∈ [0,∞). Then µ has strong derivative at n0, equal to L if and only if the function
(n, a) 7→ aβ−ρu(n, a) has admissible limit L at n0 .
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Motivated by a result of Gehring [13], Ramey and Ullrich also related the sectorial
convergence and non-tangential convergence of Poisson integral of positive measure. We
will need to introduce some notation to explain this result. In R

3
+ the non-tangential

cone with vertex at x0 ∈ R2 and aperture α > 0 is defined by

Γα(x0) = {(x, y) ∈ R
3
+ : ‖x− x0‖ < αy}.

The topological boundary ∂Γα(x0) of Γα(x0) with respect to R3
+ is denoted by

∂Γα(x0) = {(x, y) ∈ R
3
+ : ‖x− x0‖ = αy}.

Then a sector S of ∂Γα(x0) is defined to be the portion of ∂Γα(x0) bounded by two
rays in ∂Γα(x0) emanating from x0 ∈ R2, that is

S =
⋃

θ∈(θ1,θ2)

γx0,α,θ(0,∞), for some θ1, θ2 ∈ [0, 2π),

where γx0,α,θ : (0,∞) → R3
+ is defined by,

γx0,α,θ(y) = (x0 + (αy cos θ, αy sin θ), y).

A function u : R3
+ → C is said to have a sectorial limit L ∈ C at x0 if for some

S ⊂ ∂Γα(x0)

lim
z→0
z∈S

u(z) = L.

In [17, Theorem 3.3] it was proved that if a positive harmonic function u on R3
+ has

a sectorial limit L ∈ [0,∞) at x0 then u has non-tangential limit L at x0. Although
the result was proved for R3

+, it can be easily generalized to R
n+1
+ for n ≥ 3. A variant

of this result was proved by Saeki in [19, Corollary 3.4]. For a class of measures (not
necessarily nonnegative), Saeki proved that if the Poisson integral P [µ] converges to L
along rays (emanating from a boundary point x0 ∈ Rn) which form a dense subset of the
topological boundary of some non-tangential cone in R

n+1
+ then P [µ] has non-tangential

limit L at x0.
A comparison between the result of Ramey and Ullrich regarding sectorial conver-

gence of the Poisson integral and that of Saeki is as follows. Ramey and Ullrich dealt
with nonnegative measures µ and assumed convergence of P [µ] on some sector of the
topological boundary of a non-tangential cone which is not a dense subset of this topo-
logical boundary. However, the result of Saeki accommodates a larger class of measures
µ but assumes convergence of P [µ] along rays on some dense subset of the topological
boundary of a non-tangential cone.

In this paper we wish to prove a result which generalizes both the results stated
above in the context of Damek-Ricci spaces or the so called Harmonic NA groups.
Instead of Poisson integral of nonnegative measures we deal with certain generalized
Poisson integral (related to positive eigenfunctions of the Laplace-Beltrami operator) of
measures on the boundary N which satisfies a condition similar to that of Saeki. We
will also introduce a notion analogous to that of a sector (see Definition 2.3) suitable for
our context and prove that the boundary behaviour of the corresponding convolution
integral along a sector is sufficient to conclude the existence of its admissible limit (as
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introduced in [14]). We refer the reader to Section 2 for unexplained notations and
terminologies. The following is our main result.

Theorem 1.2. For β > 0, suppose µ ∈ Mβ is such that

(1.1) sup
0<r<t0

|µ|(B(n0, r))

m(B(n0, r))
<∞ ,

for some t0 > 0, for n0 ∈ N . If u = Qiβ [µ] has a sectorial limit L ∈ C at n0, then u has
admissible limit L at n0.

We refer the reader to Remark 4.1 regarding the condition imposed on the boundary
measure in the theorem above which shows that this condition accommodates all the
cases dealt with in [17, 5] for Euclidean spaces. This paper is organised as follows.
In section 2, we will discuss the preliminaries about Harmonic NA groups, generalized
Poisson kernel, Poisson integral on these groups and introduce the notion of sector and
the sectorial limit. In section 3 we prove some auxiliary results which play a crucial role
in the proof of our main result. The proof of the main result is given in Section 4. In
Section 5 we discuss some related results for the Real hyperbolic spaces.
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2. Preliminaries of Harmonic NA groups

In this section we will discuss the necessary preliminaries and fix our notations. Most
of this material can be found in [1, 2, 12, 18].

Let n be an H-type Lie algebra. z and v will denote the center of n and its orthogonal
complement (with respect to the underlying inner product) respectively. The connected
and simply connected Lie group N corresponding to n is called an H-type group. Since
n is nilpotent, the exponential map defines an analytic diffeomorphism and hence one
gets the parametrization N = exp n by (X,Z) for X ∈ v, Z ∈ z. The group law of N in
the exponential coordinates is given by

(X,Z)(X ′, Z ′) = (X +X ′, Z + Z ′ +
1

2
[X,X ′]).

The Haar measure of N is given by dXdZ and will be denoted by m. Let S = NA be
the semi-direct product of N and the multiplicative group A = (0,∞) with respect to
the nonisotropic dilation:

(2.1) δa(n) = δa(X,Z) = (
√
aX, aZ), a ∈ A, n = (X,Z) ∈ N.

Hence the multiplication on S is given by

(X,Z, a)(X ′, Z ′, a′) = (X +
√
aX ′, Z + aZ ′ +

1

2

√
a[X,X ′], aa′).
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Then S turns out to be a solvable Lie group having Lie algebra s = v⊕ z⊕ R with Lie
bracket

[(X,Z, u), (X ′, Z ′, u′)] = (
1

2
uX ′ − 1

2
u′X, uZ ′ − u′Z + [X,X ′], 0).

We shall write (n, a) = (X,Z, a) for the element (exp(X + Z), a) , a ∈ A, X ∈ v, Z ∈ z

and thus identify S with the upper-half space R
2p+k+1
+ topologically, where dim v =

2p, dim z = k. Setting Q = p+ k, one can see that

(2.2) m (δa(E)) = aQm(E),

is true for all measurable sets E ⊆ N and a ∈ A. This Q is called the homogeneous
dimension of N . The group S is equipped with the left-invariant Riemannian metric
induced by

〈(X,Z, u), (X ′, Z ′, u′)〉S = 〈X,X ′〉+ 〈Z,Z ′〉+ uu′

on s. Then the associated left-invariant Haar measure dx on S is given by

dx = a−Q−1dXdZda,

where dX, dZ, da are the Lebesgue measures on v, z, A respectively. Let ρ = Q/2
and we note that ρ corresponds to the half-sum of positive roots when S = G/K, is
a rank one symmetric space of noncompact type. It is noteworthy however that rank
one symmetric spaces of noncompact type form a very small subclass of the class of
Harmonic NA groups. We will use e to denote the identity element (0, 1) of S, where 0
and 1 are the identity elements of N and A respectively. N being a stratified Lie group,
admits homogeneous norms with respect to the family of dilations {δa | a ∈ A} [12, P.8-
10]. We recall that a continuous function d : N → [0,∞) is said to be a homogeneous
norm on N with respect to the family of dilations {δa | a ∈ A} if d satisfies the following
[12, P.8]:

(i) d is smooth on N \ {0};
(ii) d(δa(n)) = ad(n), for all a > 0, n ∈ N ;
(iii) d(n−1) = d(n), for all n ∈ N ;
(iv) d(n) = 0 if and only if n = 0.

From [12, Proposition 1.6], we know that for a homogeneous norm d on N , there exists
a positive constant τd ≥ 1, such that

(2.3) d(nn1) ≤ τd [d(n) + d(n1)] , n ∈ N, n1 ∈ N.

A homogeneous norm d defines a left invariant quasi-metric on N , denoted by d, as
follows:

d(n1, n2) = d(n−1
1 n2), n1 ∈ N, n2 ∈ N.

From the definition of d and from (2.3), the following properties of the associated quasi-
metric easily follow:

i) d(n1, n2) = d(n2, n1), for all n1, n2 ∈ N .
ii) d(nn1, nn2) = d(n1, n2), for all n1, n2, n ∈ N.
iii) For all n1, n2, n ∈ N

(2.4) d(n1, n2) ≤ τd [d(n1, n) + d(n, n2)] .
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Any two homogeneous norms d1 and d2 on N are equivalent [4, P.230]. The homogeneous
we will be working with is the following [7, P.1918]:

(2.5) d(n) = d(X,Z) = (‖X‖4 + 16‖Z‖2) 1

2 , n = (X,Z) ∈ N,

where ‖X‖, ‖Z‖ are the usual Euclidean norms of X ∈ v ∼= R2p and Z ∈ z ∼= Rk

respectively. For n ∈ N and r > 0, the d-ball centered at n with radius r is defined as

B(n, r) = {n1 ∈ N | d(n, n1) < r} = {n1 ∈ N | d(n−1
1 n) < r}.

Then B(n, r) = {n1 ∈ N | d(n, n1) ≤ r}, is a compact subset of N [12, Lemma 1.4].
So B(n, r) is the left translate by n of the ball B(0, r), which is the image under the
dilation δr of the unit ball B(0, 1). It is also easy to observe that if B = B(n, t) for some
n ∈ N , t > 0, then

δr(B) = B(δr(n), rt), for all r > 0.

For a function ψ defined on N , we define for a > 0,

(2.6) ψa(n) = a−Qψ
(

δ 1

a
(n)
)

, n ∈ N.

If g is a measurable function on N and µ is a measure on N , their convolution µ ∗ g is
defined by

µ ∗ g(n) =
∫

N

g(n−1
1 n) dµ(n1),

provided the integral converges.
We now describe the Laplace-Beltrami operator L on S. Let {ei | 1 ≤ i ≤ 2p},

{er | 2p + 1 ≤ r ≤ 2p + k}, {e0} be an orthonormal basis of s corresponding to
the decomposition s = n ⊕ z ⊕ R. El will denote the left-invariant vector field on S
determined by el, 0 ≤ l ≤ 2p + k. From ([6, Theorem 2.1],[8, P. 234]) it is known that
the Laplace-Beltrami operator L associated to the left-invariant metric 〈, 〉S is the form

L =

2p+k
∑

l=0

E2
l −QE0.

Let ∂i, ∂r, ∂a be the partial derivatives for the system of coordinates (Xi, Zr, a) corre-
sponding to (ei, er, e0). From the definition of left-invariant vector fields it can be shown
that

E0 = a∂a,

Ei = a∂i +
a

2

2p+k
∑

r=2p+1

〈[X, ei], er〉∂r,

Er = a2∂r, for 1 ≤ i ≤ 2p, 2p+ 1 ≤ r ≤ 2p+ k.

Then L can be written as [8, P.234]

(2.7) L = a2∂2a + La + (1−Q)a∂a,
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where

La = a(a+
1

4
‖X‖2)

2p+k
∑

r=2p+1

∂2r + a

2p
∑

i=1

∂2i + a2
2p+k
∑

2p+1

2p
∑

i=1

〈[X, ei], er〉∂r∂i .

The Poisson kernel P : S ×N → C, corresponding to L is given by [2, P.409]

P(x, n) = Pa(n
−1
1 n), x = (n1, a) ∈ S, n ∈ N,

where P is the function on N defined by

P (n) = P (X,Z) =
cp,k

(

(

1 + ‖X‖2

4

)2

+ ‖Z‖2
)Q

, n = (X,Z) ∈ N,

and cp,k is a positive constant so that ‖P‖L1(N) = 1. Then dilation of P (see (2.6)) is
given by,

(2.8) Pa(n) = Pa(X,Z) =
cp,k a

Q

(

(

a+ ‖X‖2

4

)2

+ ‖Z‖2
)Q

, n = (X,Z) ∈ N, a > 0.

Simplifying the expression (2.8), we get that

(2.9) Pa(n) = Pa(X,Z) =
16Qcp,k a

Q

(16a2 + 8a‖X‖2 + d(X,Z)2)Q
, n = (X,Z) ∈ N, a > 0.

The more general eigenfunctions of L can be obtained in the following manner: for
λ ∈ C, the λ-Poisson kernel is defined as

(2.10) Pλ(x, n) =

[P(x, n)

P (0)

]
1

2
− iλ

Q

=

[

Pa(n
−1
1 n)

P (0)

]

1

2
− iλ

Q

, x = (n1, a) ∈ S, n ∈ N.

For λ ∈ C, the function Pλ(., n) is an eigenfunction of L with eigenvalue −(λ2 + ρ2), for
each fixed n ∈ N , [1, P.654]. One can normalize Pλ, for Im(λ) > 0, to define

(2.11) P̃λ(x, n) = CλPλ(x, n), x ∈ S, n ∈ N,

where Cλ = cp,kc(−λ)−1 and c is the generalization of the Harish-Chandra c-function.
For Im(λ) > 0, the λ-Poisson transform of a measure µ on N is defined by

(2.12) Pλ[µ](n, a) =

∫

N

P̃λ((n, a), n
′) dµ(n′),

whenever the integral converges absolutely for every (n, a) ∈ S. In this case, we say

that the λ-Poisson transform Pλ[µ] of µ is well-defined. Since for each n ∈ N , P̃λ(., n)
is an eigenfunction of L with eigenvalue −(λ2 + ρ2), it follows that Pλ[µ] is also an
eigenfunction of L with the same eigenvalue provided Pλ[µ] is well-defined. Using the
definition of Pλ given in (2.10) and the relation (2.11), it can be easily shown that for
Im(λ) > 0, x = (n1, a) ∈ S and n ∈ N ,

(2.13) P̃λ(x, n) = a
Q
2
+iλqλa (n

−1
1 n)
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where

qλ(n) := Cλ

[

P (0)−1P (n)
]

1

2
− iλ

Q , qλa (n) = a−Qqλ (δa−1(n)) ,

Im(λ) > 0, n ∈ N and a ∈ A. An explicit expression of the function qλa , Im(λ) > 0,
obtained from (2.9) is given by,

qλa (n) = cλ
a−2iλ

(16a2 + 8a‖X‖2 + d(n)2)
Q
2
−iλ

, n = (X,Z) ∈ N, a ∈ A,

where cλ = 16ρ−iλcp,kc(−λ)−1. If Im(λ) > 0, then it is easily follows that
∫

N

qλ(n) dm(n) = 1.

For a measure µ on N and Im(λ) > 0, we define the convolution integral

Qλ[µ](n, a) := µ ∗ qλa (n) = a−Q

∫

N

qλ
(

δa−1(n−1
1 n)

)

dµ(n1),

whenever the integral converges absolutely for every (n, a) ∈ S and say that Qλ[µ] is
well-defined. From the definition of the λ-Poisson integral (2.12) and (2.13), it follows
that for a measure µ with well-defined Pλ[µ] with Im(λ) > 0,

(2.14) Pλ[µ](n, a) = a
Q
2
+iλQλ[µ](n, a), for all (n, a) ∈ S.

In this paper we will be interested only in the case λ = iβ, for β > 0.

Definition 2.1. For β > 0, Mβ is defined to be the set of all radon measures µ on N
such that Piβ [|µ|] (equivalently Qiβ[|µ|]) is well-defined.

If µ ∈ Mβ then for all n = (X,Z) ∈ N , a ∈ A, we have the explicit expression
(2.15)

Qiβ [µ](n, a) = cβ a
2β

∫

N

1
(

16a2 + 8a‖X −X1‖2 + d ((X1, Z1)−1(X,Z))2
)ρ+β

dµ(X1Z1),

where

cβ = 16ρ+βCiβ = 16ρ+βcp,kc(−iβ)−1 > 0.

We now state some important definitions.

Definition 2.2. i) A function u defined on S is said to have admissible limit L ∈ C,
at n0 ∈ N , if for each α > 0

lim
a→0

(n,a)∈Γα(n0)

u(n, a) = L,

where

(2.16) Γα(n0) := {(n, a) ∈ S | d(n0, n) < αa} = {(n, a) ∈ S | d(n−1
0 n) < αa}

is called the admissible domain with vertex at n0 and aperture α.
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ii) Given a measure µ on N , we say that µ has strong derivative L ∈ [0,∞) at
n0 ∈ N if

lim
r→0

µ(n0δr(B))

m(n0δr(B))
= L,

holds for every d-ball B ⊂ N . The strong derivative of µ at n0, if it exists, is
denoted by Dµ(n0).

iii) A sequence of complex valued functions {uj}j∈N defined on S is said to converge
normally to a function u if {uj} converges to u uniformly on all compact subsets
of S.

iv) A sequence of complex valued functions {uj}j∈N defined on S is said to be locally
bounded if given any compact set K ⊂ S, there exists a positive constant CK

(depending only on K) such that for all j ∈ N and all x ∈ K,

|uj(x)| ≤ CK .

v) For a differential operator D on S, a smooth function u on S satisfying Du = 0
is said to be a D-harmonic function.

For the notion of admissible convergence in the context of Riemannian symmetric
spaces of noncompact type with real rank one we refer the reader to [15, Page 158]. Our
main aim would be to conclude existence of admissible limit from the weaker assumption
of existence of limits along some curves lying on

∂Γα(n0) := {(n, a) ∈ S | d(n0, n) = αa} = {(n, a) ∈ S | d(n−1
0 n) = αa} .

Then using the explicit expression (2.5), for n0 = 0, we can rewrite ∂Γα(0) as,

∂Γα(0) = {(
√

αa| cos θ|ω, 1
4
αa| sin θ|ζ, a) : ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π), a > 0}

where Sm−1 denotes the unit sphere of Rm, with respect to the Euclidean norm. Now
we define the curves we are interested in.

Definition 2.3. i) For a fixed 4-tuple (α, ω, ζ, θ) where α ∈ (0,+∞), ω ∈ S2p−1, ζ ∈
Sk−1, θ ∈ [0, 2π), the ray emanating from 0 is defined by the curve,

γ0,α,ω,ζ,θ : (0,∞) → S,

γ0,α,ω,ζ,θ(a) := (
√

αa| cos θ|ω, 1
4
αa| sin θ|ζ, a) .

Note that for α > 0,

(2.17) ∂Γα(0) =
⋃

ω∈S2p−1

⋃

ζ∈Sk−1

⋃

0≤θ<2π

γ0,α,ω,ζ,θ(0,∞) .

For a general n0 ∈ N , we translate our rays by n0. More precisely, for a fixed
4-tuple (α, ω, ζ, θ) where α ∈ (0,+∞), ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π), the ray
emanating from n0 is defined by,

γn0,α,ω,ζ,θ : (0,+∞) → S,

γn0,α,ω,ζ,θ(a) := (n0(
√

αa| cos θ|ω, 1
4
αa| sin θ|ζ), a) .
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By the left invariance of the quasi-metric it follows that, each γn0,α,ω,ζ,θ ∈ ∂Γα(n0)
and in fact,

∂Γα(n0) =
⋃

ω∈S2p−1

⋃

ζ∈Sk−1

⋃

0≤θ<2π

γn0,α,ω,ζ,θ(0,∞) .

ii) A function u defined on S is said to have a radial limit L ∈ C at n0 ∈ N if

lim
a→0

u(γn0,α,ω,ζ,θ(a)) = L ,

for some ray γn0,α,ω,ζ,θ.
iii) A sector of ∂Γα(n0) is defined to be

S =
⋃

ω∈O1

⋃

ζ∈O2

⋃

θ∈O3

γn0,α,ω,ζ,θ(0,∞) ,

where O1,O2,O3 are relatively open subsets of S2p−1, Sk−1, [0, 2π) respectively.
Note that such a sector becomes a relatively open subset of ∂Γα(n0).

iv) A function u defined on S is said to have a sectorial limit L ∈ C at n0 ∈ N , if u
has radial limit L along all rays in a sector of ∂Γα(n0), for some α > 0 .

3. some auxiliary results

Definition 3.1. Given β > 0, we define a second order differential operator Lβ on S
having the same second order term as the Laplace-Beltrami operator L by the formula

Lβ = a2∂2a + La + (1− 2β)a∂a,

where L is given by (2.7).

When β = ρ = Q/2, we recover L (see [7, Theorem 3.2]). We note that

(3.1) Lβ −L = 2(ρ− β)a∂a = 2(ρ− β)E0.

We recall that E0 = a∂a is the left-invariant vector field on S corresponding to the
basis element e0 = (0, 0, 1) of s and hence Lβ is left S-invariant. The following lemma
shows that there is a one to one correspondence between the eigenfunctions of L with
eigenvalue β2 − ρ2 and Lβ-harmonic functions (as defined in Definition 2.2, v)).

Lemma 3.2 ([18], Lemma 3.4). Let β > 0 and let u be a smooth function on S. Then
u is an eigenfunction of L with eigenvalue β2 − ρ2, if and only if the function (n, a) 7→
aβ−ρu(n, a), is Lβ-harmonic.

From (3.1) we see that Lβ and L differ by a first order term and hence Lβ is an ellliptic
operator. Application of a vast generalization of Montel’s theorem, valid for solutions
of hypoelliptic operators (and hence for Lβ-harmonic functions) proved in [3, Theorem
4], yields the following result.

Lemma 3.3. Let β > 0, and let {Fj} be a sequence of Lβ-harmonic functions on S.
If {Fj} is locally bounded then it has a subsequence which converges normally to a Lβ-
harmonic function F .
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We recall that if β > 0, and µ ∈Mβ is positive then Piβ [µ] is a positive eigenfunction
of the Laplace-Beltrami operator L with eigenvalue β2 − ρ2. Characterization of such
positive eigenfunctions was proved by Damek and Ricci in [8, Theorem 7.11].

Lemma 3.4. Suppose u is a positive eigenfunction of the Laplace-Beltrami operator L
on the Harmonic NA group S with eigenvalue β2−ρ2 for some β > 0. Then there exists
a unique positive measure µ on N and a unique nonnegative constant C such that

(3.2) u(n, a) = Caβ+ρ + Piβ [µ](n, a), for all (n, a) ∈ S.

In this case, the measure µ is called the boundary measure of u.

Remark 3.5. Next, we consider the natural action of the subgroup A on S (see (2.1)):

(3.3) r · (n, a) = (δr(n), ra), r ∈ A, (n, a) ∈ S.

We note that each ray (see definition 2.3) emanating from 0 is invariant under this
action. Indeed for every r > 0,

r · γ0,α,ω,ζ,θ(a)

= (δr(
√

αa| cos θ|ω, 1
4
αa| sin θ|ζ), ra)

= (
√

rαa| cos θ|ω, 1
4
rαa| sin θ|ζ, ra)

= γ0,α,ω,ζ,θ(ra) ,

for all α > 0, for all ω ∈ S2p−1, for all ζ ∈ Sk−1 and for all θ ∈ [0, 2π). Then by (2.17),
each ∂Γα(0) being a union of such rays, is invariant under this action. Then since for
any α > 0,

Γα(0) = {(0, a) : a ∈ (0,+∞)}
⋃ ⋃

0<α′<α

∂Γα′(0) ,

we get that each admissible domain Γα(0),with vertex at 0, is also invariant under this
action.

Given a function F on S and r > 0, we define the dilation Fr of F by

Fr(n, a) := F (δr(n), ra) , (n, a) ∈ S.

The class of Lβ-harmonic functions are preserved under this dilation.

Lemma 3.6 ([18], Lemma 3.9). Let β > 0. If F is an Lβ-harmonic functions on S then
so is Fr, for every r > 0.

Following [18] we define the Hardy-Littlewood maximal function MHL(µ) of µ by,

MHL(µ)(n) = sup
r>0

|µ|(B(n, r))

m(B(n, r))
, n ∈ N.
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Lemma 3.7. For β > 0, if µ ∈Mβ then for all α > 0, for all η > 0, there exist positive
constants Cα,β and C ′

η,β such that for all n0 ∈ N , the following inequalities are true.

(a)Cα,β
|µ|(B(n0, a))

m(B(n0, a))
≤ Qiβ [|µ|](γn0,α,ω,ζ,θ(a)) , for all a > 0 , ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π) .

(b) sup
(n,a)∈Γη(n0)

|Qiβ [µ](n, a)| ≤ C ′
η,βMHL(µ)(n0) .

Proof. (b) follows from [18, Lemma 3.3] and the trivial fact |Qiβ[µ]| ≤ Qiβ[|µ|]. So we
will just prove (a). First it will be done for n0 = 0.

Choose and fix α > 0, ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π), and consider,

Qiβ [|µ|](γ0,α,ω,ζ,θ(a)) = Qiβ [|µ|](
√

αa| cos θ|ω, 1
4
αa| sin θ|ζ, a)

= cβa
−Q

∫

N

1

I1
d|µ|(X,Z)

≥ cβa
−Q

∫

B(0,a)

1

I1
d|µ|(X,Z) ,(3.4)

where

I1 =

(

16 +
8

a
‖
√

αa| cos θ|ω −X‖2 + 1

a2
d

(

(X,Z)−1

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

))2
)β+ρ

.

Now,

d

(

(X,Z)−1

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

))2

≤
[

τd

{

d
(

(X,Z)−1
)

+ d

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

)}]2

=

[

τd

{

d(X,Z) + d

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

)}]2

,(3.5)

and by (2.5)

(3.6) d

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

)

=
√
2αa .

Now plugging (3.6) in (3.5) and using d(X,Z) < a, we obtain,

(3.7) d

(

(X,Z)−1

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

))2

≤
[

τd(a +
√
2αa)

]2

= C2
ατ

2
da

2 ,

where Cα = (1 +
√
2α). Then (3.7) yields,

‖
√

αa| cos θ|ω −X‖4 ≤ d

(

(X,Z)−1

(

√

αa| cos θ|ω, 1
4
αa| sin θ|ζ

))2

≤ C2
ατ

2
da

2
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that is,

(3.8) ‖
√

αa| cos θ|ω −X‖2 ≤ Cατda .

Thus plugging (3.7) and (3.8) in (3.4), we get,

Qiβ [|µ|](γ0,α,ω,ζ,θ(a))

≥ cβa
−Q

∫

B(0,a)

1

(16 + 8Cατd + C2
ατ

2
d )

ρ+β

=
cβm(B(0, 1))

(16 + 8Cατd + C2
ατ

2
d )

ρ+β

|µ|(B(0, a))

m(B(0, a))
.

This completes the proof when n0 = 0. Now for a general n0 ∈ N , we consider for a > 0,

Qiβ [|µ|](γn0,α,ω,ζ,θ(a)) .

For simplicity, in the rest of the proof we write an element s ∈ S as

s = (N(s), a) with N(s) = (X(s), Z(s)) .

Then we get,
(3.9)

Qiβ[|µ|](γn0,α,ω,ζ,θ(a)) = Qiβ [|µ|](n0(N(γ0,α,ω,ζ,θ(a))), a) ≥ cβa
−Q

∫

B(n0,a)

1

I2
d|µ|(X1, Z1) ,

where

I2 =

(

16 +
8

a
‖X(n0(N(γ0,α,ω,ζ,θ(a))))−X1‖2 +

1

a2
d
(

(X1, Z1)
−1n0(N(γ0,α,ω,ζ,θ(a)))

)2
)ρ+β

.

Using the fact (X1, Z1) ∈ B(n0, a) means n−1
0 (X1, Z1) ∈ B(0, a) and also using the

relations (X1, Z1)
−1n0 =

(

n−1
0 (X1, Z1)

)−1
,

d
(

(X1, Z1)
−1n0(N(γ0,α,ω,ζ,θ(a)))

)

= d
(

(n−1
0 (X1, Z1))

−1N(γ0,α,ω,ζ,θ(a))
)

,

from (3.7), we get,

(3.10) d
(

(X1, Z1)
−1n0(N(γ0,α,ω,ζ,θ(a)))

)2 ≤ C2
ατ

2
da

2 ,

which then in turn implies that

(3.11) ‖X(n0(N(γ0,α,ω,ζ,θ(a))))−X1‖2 ≤ Cατda .

Hence plugging (3.10) and (3.11) in (3.9), and noting that

a−Q =
m(B(0, 1))

m(B(n0, a))
,

we get,

Qiβ[|µ|](γn0,α,ω,ζ,θ(a)) ≥
cβm(B(0, 1))

(16 + 8Cατd + C2
ατ

2
d )

ρ+β

|µ|(B(n0, a))

m(B(n0, a))
.

This completes the proof. �

The proof of Lemma 2.5 of [18], yields the following stronger result.
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Lemma 3.8. Let β > 0 and µ be a radon measure on N such that |µ| ∗ qiβa (0) is finite
for some a ∈ A. Then

∫

N

(

16a2 +
d(n)2

4τ 2d

)−β−ρ

d|µ|(n) <∞ .

Next we see an asymptotic result.

Lemma 3.9. For β > 0, µ ∈ Mβ and δ ∈ (0, 1), we have,

lim
a→0

∫

B(0,δ)c
qiβa (n−1

1 n)dµ(n1) = 0 ,

uniformly for n ∈ B
(

0, δ2

2τd

)

.

Proof. We note that for n ∈ B
(

0, δ2

2τd

)

and n1 ∈ B(0, δ)c,

d(n) <
δ2

2τd
≤ δ

2τd
d(n1) .

Hence,

(3.12) d(n−1
1 n) = d(n−1n1) ≥

1

τd
d(n1)− d(n) ≥ (1− δ/2)

τd
d(n1)

Now as 0 < δ < 1, it follows that,

1

4
<

(

1− δ

2

)2

< 1 .

Now plugging the above in (3.12), we get,

(3.13) d(n−1
1 n)2 ≥ d(n1)

2

4τ 2d
.

Now using (3.13), we get,
∣

∣

∣

∣

∣

∫

B(0,δ)c
qiβa (n−1

1 n)dµ(n1)

∣

∣

∣

∣

∣

≤
∫

B(0,δ)c
qiβa (n−1

1 n)d|µ|(n1)

= cβa
2β

∫

B(0,δ)c

1
(

16a2 + 8a‖X −X1‖2 + d
(

(X1, Z1)
−1 (X,Z)

)2
)ρ+β

d|µ|(X1, Z1)

≤ cβa
2β

∫

B(0,δ)c

1
(

16a2 + d
(

n−1
1 n
)2
)ρ+β

d|µ|(n1)
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≤ cβa
2β

∫

B(0,δ)c

1
(

16a2 + d(n1)2

4τ2
d

)ρ+β
d|µ|(n1)

≤ cβa
2β

∫

N

1
(

16a2 + d(n1)2

4τ2
d

)ρ+β
d|µ|(n1) .

Now as µ ∈ Mβ, by Lemma 3.8, the integral on the right hand side above is finite, and
thus letting a→ 0, we get the result. �

We now need a result about zero sets of real-analytic functions, [Theorem 1.2, [9]].
Although the result was proved for harmonic functions, the proof works for real-analytic
functions as well.

Lemma 3.10. Let u be a real-analytic function in a domain D ⊂ Rk. If M is a real-
analytic submanifold of D and the zero set Z of u contains a non-empty, relatively open
subset of M , then M ⊂ Z .

Now as Lβ is an elliptic operator with no zero order term, we get that Lβ has a global
expression of the form (with N viewed as R2p+k),

Lβ =

2p+k
∑

i,j=0

cij(n, a)
∂2

∂yi∂yj
+

2p+k
∑

i=0

bi(n, a)
∂

∂yi
,

on S, in some coordinates {yi}, with the above coefficients being sufficiently regular and
the matrices {cij(n, a)}1≤i,j≤2p+k positive definite, symmetric. Then proceeding as in the
proof of Theorem 1 in [[10],P. 344-346], we get the following maximum principle.

Lemma 3.11. Let Ω be an open, connected, bounded subset of S. Assume u ∈ C2(Ω) ∩
C(Ω) (real-valued) and Lβu ≥ 0 in Ω, then

max
Ω

u = max
∂Ω

u .

4. Main results

Remark 4.1. Now we discuss and compare the conditions on the boundary measure.
Our main results in this section will be concerned with measures µ ∈ Mβ, such that the
concerned convolution satisfy finite radial limit along some ray, that is,

(4.1) lim
a→0

Qiβ [µ](γn0,α,ω,ζ,θ(a)) is finite ,

for some n0 ∈ N , α > 0, ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π). Now consider the following
three additional conditions.

(H1) There exists ε > 0 such that

sup
0<r<ε

|µ|(B(n0, r))

m(B(n0, r))
<∞ .

(H2) µ is positive.
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(H3) In some neighbourhood V of n0 in S,

sup
(n,a)∈V

Qiβ[|µ|](n, a)− |Qiβ [µ](n, a)| <∞ .

We note that (H1) is the hypothesis assumed in Theorem 1.2 and is similar to what
Saeki had considered in [19], whereas (H3) is an obvious analogue of the condition
introduced in [5]. Under the assumption (4.1), we will show that (H1) is the weakest
assumption on the (complex) measure µ. Proof of corollary 4.2, will show that (H2)
implies (H1). It is clear from the definitions that (H2) implies (H3), as the concerned
difference in the definition of (H3) is identically zero, because in this case µ = |µ|. It is
also not at all hard to see that (H3) implies (H1). This is seen as follows, there exists
δ1 > 0 such that

{γn0,α,ω,ζ,θ(a)|0 < a < δ1} ⊂ V ,

where V is as given in (H3). Thus by (H3), there exists M1 > 0 such that

(4.2) sup
0<a<δ1

{Qiβ[|µ|](γn0,α,ω,ζ,θ)(a))− |Qiβ [µ](γn0,α,ω,ζ,θ)(a))|} ≤ M1 .

Then by (4.1), there exists δ2 > 0 and M2 > 0 such that

(4.3) sup
0<a<δ2

|Qiβ [µ](γn0,α,ω,ζ,θ(a))| ≤M2 .

Thus for δ = min{δ1, δ2}, combining (4.2) and (4.3), we get

(4.4) sup
0<a<δ

Qiβ[|µ|](γn0,α,ω,ζ,θ(a)) ≤M1 +M2 .

Then (4.4) combined with part (a) of Lemma 3.7, completes the proof.

Now we come to the proof of Theorem 1.2.

Proof of Theorem 1.2. We break the proof into two steps.
Step 1: Assume µ to be finite and n0 = 0.
We argue by contradiction. Let α > 0 and suppose there exists a sequence {(nj, aj)}∞j=1 ⊂

Γα(0) such that the sequence aj converges 0, (this implies that (nj, aj) converges to
(0, 0)), but {u(nj, aj)}∞j=1 does not converge to L.

As µ is finite, we have for all r ≥ t0,

(4.5)
|µ|(B(0, r))

m(B(0, r))
≤ |µ|(N)

m(B(0, t0))
<∞ .

Then combining (1.1) and (4.5), we get

MHL(µ)(0) <∞ .

Then by part (b) of Lemma 3.7, it follows that u is bounded on each admissible region
with vertex at 0. Thus in particular, {u(nj, aj)}∞j=1 is a bounded sequence of complex
numbers. So we consider any convergent subsequence with limit say L′, and then by
showing that L′ = L, we get the desired contradiction. For notation convenience, let us
call this convergent subsequence {u(nj, aj)}∞j=1 again. For all j ∈ N, we define

(4.6) uj(n, a) := u(δaj(n), aja) , for all (n, a) ∈ S .
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Then by Lemma 3.6, we get that each uj is again an Lβ-harmonic function. Now as
each admissible region with vertex at 0, is invariant under the natural action of A (see
remark 3.5), we have for all η > 0,

(4.7) sup
j∈N

sup
(n,a)∈Γη(0)

|uj(n, a)| ≤ sup
(n,a)∈Γη(0)

|u(n, a)| <∞ .

As any compact subset of S is contained in an admissible region [see Theorem 4.1,[18]], it
follows from (4.7), that {uj}∞j=1 is a locally bounded sequence of Lβ-harmonic functions.
Then by Lemma 3.3, {uj}∞j=1 has a subsequence, say, {ujk}∞k=1, that converges normally

to an Lβ-harmonic function, say v. It follows from (4.7) that v is also bounded on each
admissible region with vertex at 0.

Now let S be the sector on ∂Γκ(0), for some κ > 0, on which the function u satisfies
the sectorial limit hypothesis. Given any point (n, a) ∈ S , there exists a ray γ0,κ,ω,ζ,θ ,
for some ω ∈ S2p−1, ζ ∈ Sk−1, θ ∈ [0, 2π), such that

γ0,κ,ω,ζ,θ(a) = (n, a) .

Then by the computation done in remark 3.5 and using the sectorial limit hypothesis,
it follows that

v(n, a) = lim
k→∞

ujk(n, a) = lim
k→∞

ujk(γ0,κ,ω,ζ,θ(a))

= lim
k→∞

u(ajk · γ0,κ,ω,ζ,θ(a))
= lim

k→∞
u(γ0,κ,ω,ζ,θ(ajka))

= L .(4.8)

As (n, a) ∈ S was arbitrary, from (4.8), it follows that v identically equals to L on S .
Next set

(4.9) ṽ(n, a) := v(n, a)− L , for (n, a) ∈ S .

We write ṽ = Re(ṽ) + iIm(ṽ). Note that both Re(ṽ) and Im(ṽ) are real-valued Lβ-
harmonic functions and hence are real-analytic functions on S. Thus by definition (4.9),
we get that ṽ vanishes identically on S . So Re(ṽ) and Im(ṽ) are also identically zero on
S . As S is diffeomorphic to Euclidean upper half-space via an analytic diffeomorphism,
∂Γκ(0) is a real-analytic submanifold, with sector being a relatively open subset of
∂Γκ(0), Lemma 3.10 now implies that Re(ṽ) identically equals to zero on ∂Γκ(0). The
same is also true for Im(ṽ). Now as v (being limit of ujk) is bounded on each admissible
region with vertex at 0, and hence so is ṽ and thus so are Re(ṽ) and Im(ṽ). So in
particular for Γκ(0), there exists M > 0 such that

(4.10) sup
(n,a)∈Γκ(0)

|Re(ṽ)| ≤M .

Now we choose and fix ε ∈ (0, 1) and δ ∈ (0, 1), and define for each (n, a) ∈ S

(4.11) w(n, a) := Re(ṽ)(n, a)−Mεa2β − 2M

∫

B(0,δ)

qiβa (n−1
1 n)dm(n1) .
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Here

(n, a) 7→
∫

B(0,δ)

qiβa (n−1
1 n)dm(n1) ,

is just the convolution of the kernel qiβa with the indicator function of the ball B(0, δ)
on N , and hence defines a positive Lβ-harmonic function. Clearly,

(n, a) 7→ a2β , for (n, a) ∈ S ,

is also a positive Lβ-harmonic function. So in particular, w (defined in (4.11)) is a
real-valued Lβ-harmonic function.

It follows from Lemma 3.9 that there exists aδ > 0 such that for all a ≤ aδ,

(4.12)

∫

B(0,δ)

qiβa (n−1
1 n)dµ(n1) ≥

1

2
,

uniformly for n ∈ B
(

0, δ2

2τd

)

. Since we are going to work in Γκ(0), we have to make sure

that n ∈ B
(

0, δ2

2τd

)

(in order to apply Lemma 3.9). But this is easily done by noting,

(4.13) Γκ(0) ∩
{

(n, a) ∈ S|a ≤ δ2

2τdκ

}

⊂
{

(n, a) ∈ S|n ∈ B

(

0,
δ2

2τd

)

, a ≤ δ2

2τdκ

}

.

So we set,

(4.14) aε,δ = min

{

aδ ,
δ2

2τdκ
, ε1/2β

}

.

We now define Ωε,δ to be the solid region enclosed by

Γκ(0) ∩
{

a =

(

1

ε

)1/2β
}

,

∂Γκ(0) ∩
{

aε,δ ≤ a ≤
(

1

ε

)1/2β
}

,

Γκ(0) ∩ {a = aε,δ} .

Also define, Ωε to be the solid region enclosed by

Γκ(0) ∩
{

a =

(

1

ε

)1/2β
}

,

∂Γκ(0) ∩
{

ε1/2β ≤ a ≤
(

1

ε

)1/2β
}

,

Γκ(0) ∩
{

a = ε1/2β
}

.
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Clearly Ωε ⊂ Ωε,δ. Now for (n, a) ∈ Γκ(0) ∩
{

a =
(

1
ε

)1/2β
}

, by (4.10), (4.11), we have,

(4.15) w(n, a) ≤ Re(ṽ)(n, a)−Mεa2β ≤M −Mε

(

(

1

ε

)1/2β
)2β

= 0 .

Next for (n, a) ∈ ∂Γκ(0) ∩
{

aε,δ ≤ a ≤
(

1
ε

)1/2β
}

, we have,

(4.16) w(n, a) ≤ Re(ṽ)(n, a) = 0 .

Finally for (n, a) ∈ Γκ(0)∩ {a = aε,δ}, by (4.10), (4.12), (4.13) and definition of aε,δ, we
get,

(4.17) w(n, a) ≤ Re(ṽ)(n, a)− 2M

∫

B(0,δ)

qiβa (n−1
1 n)dm(n1) ≤ M −

(

2M × 1

2

)

= 0 .

Thus combining (4.15)-(4.17) and applying Lemma 3.11 on w, we get that w(n, a) is
smaller than zero for all (n, a) ∈ Ωε,δ. Then by definition of aε,δ (see (4.14)), as Ωε is
a subset of Ωε,δ, we get that w(n, a) is smaller than zero for all (n, a) ∈ Ωε. Then by
(4.11), we get that for all (n, a) ∈ Ωε

(4.18) Re(ṽ)(n, a) ≤Mεa2β + 2M

∫

B(0,δ)

qiβa (n−1
1 n)dm(n1) .

In (4.18), 0 < δ < 1 is arbitrary and hence letting δ → 0, we get that for all (n, a) ∈ Ωε

(4.19) Re(ṽ)(n, a) ≤Mεa2β .

We note that for any fixed (n1, a1) ∈ Γκ(0), there exists ε1 ∈ (0, 1) such that (n1, a1) ∈
Ωε , for all ε ∈ (0, ε1) . Then (4.19) implies that

Re(ṽ)(n1, a1) ≤ εMa2β1 , for all 0 < ε < ε1 .

It follows by letting ε → 0, that

Re(ṽ)(n1, a1) ≤ 0 .

Since, (n1, a1) ∈ Γκ(0) was arbitrary, it follows that Re(ṽ) is smaller than zero on Γκ(0).
Now starting off with −Re(ṽ), in place of Re(ṽ), and repeating the argument above
we get that −Re(ṽ) is smaller than zero on Γκ(0). Hence Re(ṽ) vanishes identically on
Γκ(0). Real-analyticity of Re(ṽ) then implies that it vanishes identically on S. Similarly,
Im(ṽ) vanishes identically on S. Thus ṽ vanishes identically on S. Then by (4.9), it
follows that v identically equals to L on S. Hence {ujk}∞k=1 converges to the constant
function L normally on S. Also note that

u(nj, aj) = u
(

δaj
(

δaj−1(nj)
)

, aj
)

= uj
((

δaj−1(nj)
)

, 1
)

.

Now since, {(nj , aj)}∞j=1 ⊂ Γα(0), it follows that

d
(

δaj−1(nj)
)

=
1

aj
d(nj) <

1

aj
αaj = α .



ADMISSIBLE AND SECTORIAL CONVERGENCE ON HARMONIC NA GROUPS 19

Hence,
{((

δaj−1(nj)
)

, 1
)}∞

j=1
⊂ B(0, α)× {1} .

Thus in particular, we also have,
{((

δajk−1(njk)
)

, 1
)}∞

k=1
⊂ B(0, α)× {1} .

So we have,

L′ = lim
j→∞

u(nj, aj) = lim
k→∞

u(njk , ajk) = lim
k→∞

ujk

((

δajk−1(njk)
)

, 1
)

= L .

This is a contradiction. This completes the proof for step 1.
Step 2:The general case.
We can always reduce matters to step 1. A standard argument using the fact that

convolution commutes with translation, along with the left-invariance of the quasi-metric
implies that it suffices to prove the result for n0 = 0. We then look at the restriction of
µ in a ball on N and argue exactly as in Theorem 4.2, [18]. This completes the proof of
Theorem 1.2. �

Now we apply the last theorem to obtain the following result for certain positive
eigenfunctions of the Laplace-Beltrami operator L, on S.
Corollary 4.2. Suppose that u is a positive eigenfunction of L on S with eigenvalue
β2 − ρ2, where β > 0, and that n0 ∈ N . If the function

(n, a) 7→ aβ−ρu(n, a) , (n, a) ∈ S ,

has sectorial limit L ∈ [0,∞) at n0, then it has admissible limit L at n0.

Proof. By defining,
F (n, a) := aβ−ρu(n, a) , (n, a) ∈ S ,

we see from Lemmas 3.2, 3.4 and (2.14) that there exists a unique positive µ ∈ Mβ and
a unique non-negative constant C such that

(4.20) F (n, a) = Ca2β +Qiβ[µ](n, a) , (n, a) ∈ S .

As we are interested in the limit, when a tends to 0, we may and do assume that C = 0 in
(4.20). Then by the hypothesis regarding sectorial limit, there exists α > 0, ω ∈ S2p−1,
ζ ∈ Sk−1, θ ∈ [0, 2π) such that

lim
a→0

Qiβ[µ] (γn0,α,ω,ζ,θ(a)) = L .

Thus in particular, there exists t0 > 0 such that

sup
0<a<t0

Qiβ[µ] (γn0,α,ω,ζ,θ(a)) <∞ .

Then by (a) of Lemma 3.7, we get

sup
0<a<t0

µ(B(n0, a))

m(B(n0, a))
<∞ .

The result now follows from Theorem 1.2. �
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Corollary 4.2 gives a stronger chracterization (compared to Theorem 1.1) of existence
of strong derivative of the boundary measure in terms of the boundary behaviour of the
corresponding eigenfunction. The next result illustrates it.

Corollary 4.3. Suppose that u is a positive eigenfunction of L in S with eigenvalue
β2 − ρ2, where β > 0, with boundary measure µ, and that n0 ∈ N,L ∈ [0,∞). Then the
strong derivative of µ at n0 equals L if and only if the function (n, a) 7→ aβ−ρu(n, a) has
sectorial limit L at n0 .

Proof. The result follows from the equivalence of the following statements.

i) The function (n, a) 7→ aβ−ρu(n, a) has sectorial limit L at n0 .
ii) The function (n, a) 7→ aβ−ρu(n, a) has admissible limit L at n0 .
iii) The boundary measure µ has strong derivative L at n0 .

ii) implies i) is the trivial direction, since any sector on some ∂Γα(n0) is contained in
any admissible region of the form Γα′(n0), where α

′ > α. i) implies ii) is true due to
Corollary 4.2. Hence, i) is equivalent to ii). Finally, ii) is equivalent to iii) follows from
Theorem 1.1. �

5. The real hyperbolic space

As N has been assumed to be noncommutative, the class of harmonic NA groups
does not include the degenerate case of the real hyperbolic space. We view the real
hyperbolic space in the upper half-space model

H
l = {(x, y)|x ∈ R

l−1, y ∈ (0,∞)} , l ≥ 2 ,

equipped with the standard hyperbolic metric

ds2 =
1

y2
(

dx2 + dy2
)

,

with the boundary being identified with Rl−1. Note that the notion of admissible con-
vergence here reduces to the usual non-tangential convergence and the rays defined as in
definition 2.3 become usual rays in the setting of euclidean spaces. Also note that in this
case the homogeneous dimension is Q = 2ρ = l − 1 , and the corresponding differential
operators are given by,

L = y2
(

∆Rl−1 +
∂2

∂y2

)

− (l − 2)y
∂

∂y
,

Lβ = y2
(

∆Rl−1 +
∂2

∂y2

)

− (2β − 1)y
∂

∂y
, for β > 0 .

Proceeding as in section 4, we can obtain the obvious analogues of all the results. Now,
when l = 2, corollary 4.2 can be proved in the following form,

Theorem 5.1. Suppose that u is a positive eigenfunction of the Laplace-Beltrami oper-
ator on H2 with eigenvalue β2− 1

4
, for β > 0, and boundary measure µ, and let x0 ∈ R.

If the function

(x, y) 7→ yβ−
1

2u(x, y) ,
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admits a radial limit L along two rays at x0, then it has non-tangential limit L at x0.

Some similar results were obtained in the context of R2
+ regarding the Poisson integral

and the Gauss-Weierstrass integral of measures on R, in [19]. Now the most natural
question is in the setting of Theorem 5.1, what can be said if two different values are
assumed along two rays. Of course there does not exist any non-tangential limit, but as
it turns out, we can conclude about radial limits along any such ray for H2. Analogous
result holds for Poisson integral of positive measures on R2

+ (see [17]).

Theorem 5.2. Suppose that u is a positive eigenfunction of the Laplace-Beltrami oper-
ator on H2 with eigenvalue β2− 1

4
, for β > 0, and boundary measure µ, and let x0 ∈ R.

Let α1, α2 be two distinct real numbers and L1, L2 ∈ [0,∞) such that

lim
y→0

yβ−
1

2u(x0 + α1y, y) = L1 , and lim
y→0

yβ−
1

2u(x0 + α2y, y) = L2 ,

then for all α ∈ R,

lim
y→0

yβ−
1

2u(x0 + αy, y) =
L2 − L1

α2 − α1

(α− α1) + L1 .

Proof. We set

L(α) =
L2 − L1

α2 − α1
(α− α1) + L1 , α ∈ R.

Just as in the proof of Theorem 1.2, we only work out the case when x0 = 0 and µ
is finite. As in the proof of corollary 4.2, we transfer the problem in terms of Lβ-
harmonic functions. Again we argue by contradiction. So suppose there exists α ∈ R

such that there exists a sequence {(αyj, yj)}∞j=1, converging to (0, 0), but the sequence
Qiβ [µ](αyj, yj) does not converge to L(α). Then proceeding as in the proof of Theorem
1.2, we get hold of an Lβ-harmonic function v, obtained as a normal limit of some
subsequence of dilates of Qiβ[µ]. Now we consider the change of coordinates

(5.1) (x, y) 7→ (ηy, y) (for η varying over R) .

In the above transformed coordinates, the differential operator Lβ takes the form

Lβ =
∂2

∂η2
+ y2

∂2

∂y2
− (2β − 1)y

∂

∂y
.

Then we note that in the transformed coordinates (5.1), the function

F (ηy, y) :=
L2 − L1

α2 − α1
(η − α1) + L1 ,

is an Lβ-harmonic function in H2. Thus

ṽ(x, y) := v(x, y)− F (x, y) , (x, y) ∈ H
2 ,

is an Lβ-harmonic function in H
2, which is by construction, non-tangentially bounded

and vanishes on the two rays given in the hypothesis. Then an argument exactly anal-
ogous to that of the proof of Theorem 1.2 yields a contradiction. �
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