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Abstract

Let A be a closed affine subspace and let B be a hyperplane in a Hilbert space. Suppose we
are given their associated nearest point mappings PA and PB, respectively. We present a formula
for the projection onto their intersection A ∩ B. As a special case, we derive a formula for the
projection onto the intersection of two hyperplanes. These formulas provides useful information
even if A ∩ B is empty. Examples and numerical experiments are also provided.
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1 Introduction

Throughout, we assume that

X is a real Hilbert space with inner product 〈·, ·〉 : X× X → R, (1)

and induced norm ‖ · ‖. We also assume that

A is a closed affine subspace of X with parallel space U := A− A. (2)

Denote the nearest point mapping associated with A by PA, and set a0 := PA(0). Then a0 ∈ U⊥ and
PA(x) = a0 + PU(x). This formula allows us to move back and forth between PA and PU as needed.
Furthermore, we assume that B is a hyperplane given by

B :=
{

x ∈ X
∣∣ 〈x, v〉 = β

}
, where v ∈ X and ‖v‖ = 1, (3)

which in turn yields B = βv + {v}⊥ and PB : x 7→ x− (〈x, v〉 − β)v.
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The aim of this note is to present and prove a formula for PA∩B that relies on PA and PB.

Indeed, we have:

Theorem 1.1 (main result). Suppose that A ∩ B 6= ∅, and let x ∈ X. Then exactly one of the following
holds:

(i) If PU(v) = 0, then PA∩B(x) = PA(x).

(ii) If PU(v) 6= 0, then PA∩B(x) = PA(x) +
β− 〈PA(x), v〉
‖PU(v)‖2 PU(v).

The analysis we carry out will reveal useful information even if A ∩ B = ∅.

Organization of the paper. In Section 2, we analyze the case when PU(v) = 0. In Section 3, we turn
to the situation when PU(v) 6= 0. A utility version of our main result as well as the special case of
two hyperplanes is discussed in Section 4. In Section 5, we outline a numerical application.

2 The case when PU(v) = 0

Throughout this section, we assume that

PU(v) = 0. (4)

Note that this assumption allows the following additional characterizatons:

v ∈ U⊥ ⇔ Rv ⊆ U⊥ ⇔ U ⊆ {v}⊥. (5)

We shall not impose that A ∩ B 6= ∅. In order to handle this case, we well define

g := PB−A(0) and E := A ∩ (B− g) 6= ∅. (6)

Note that B − A = (U + {v}⊥) + (βv − a0). Because {v}⊥ is codimension 1, the Minkowski sum
U + {v}⊥ is closed by combining [3, Theorem 9.35 and Corollary 9.37]. Hence B − A is a closed
affine subspace which makes the vector g not only well-defined but it also yields E 6= ∅. Moreover,
[2, Example 2.2] yields

g = PU⊥∩Rv(b− a) ∈ U⊥ ∩Rv (7)

no matter how (a, b) ∈ A× B is chosen. Note that

if A ∩ B 6= ∅, then g = 0 and so E = A ∩ B; (8)

consequently, E can be thought of as the generalized intersection of A and B. Finally, by [1,
Lemma 2.2.(i)], the generalized intersection E has also a description that does not involve the gap
vector g:

E = Fix(PAPB) :=
{

x ∈ X
∣∣ x = PA(PB(x))

}
. (9)

We now prove

Theorem 2.1. The assumption that PU(v) = 0 implies A ⊆ B− g and so E = A.
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Proof. Take e ∈ E = A ∩ (B − g). Then e = PA(e) = a0 + PU(e) and e = βv + v⊥ − g for some
v⊥ ∈ {v}⊥. Using the linearity of PU⊥ , the fact that a0 ∈ U⊥, (5), and (7), we obtain a0 = PU⊥(e) =
βPU⊥(v) + PU⊥(v

⊥)− PU⊥(g) = βv + v⊥ − PU(v⊥)− g. Therefore, using (5) again,

A = a0 + U = βv + v⊥ − PU(v⊥)− g + U (10a)
= βv + v⊥ + (U − PU(v⊥))− g (10b)
= βv + v⊥ + U − g (10c)

⊆ βv + {v}⊥ + {v}⊥ − g (10d)

= (βv + {v}⊥)− g (10e)
= B− g, (10f)

as claimed. Because E = A ∩ (B− g), it now follows that E = A. �

Corollary 2.2. The assumption that PU(v) = 0 yields PE = PA. Let x ∈ X. Then exactly one of the following
holds:

(i) PA(x) ∈ B, g = 0, E = A ∩ B 6= ∅, and PA∩B(x) = PA(x).

(ii) PA(x) /∈ B, g 6= 0, E 6= A ∩ B = ∅, and PE(x) = PA(x).

Proof. This is a direct consequence of Theorem 2.1. �

Remark 2.3. Note that Corollary 2.2(i) yields Theorem 1.1(i).

3 The case when PU(v) 6= 0

Throughout this section, we assume that

PU(v) 6= 0. (11)

Then
0 < ‖PU(v)‖2 = 〈PU(v), v〉 . (12)

Now set

Q : X → X : x 7→ PA(x) +
β− 〈PA(x), v〉
‖PU(v)‖2 PU(v) ∈ A + U = A. (13)

Proposition 3.1. The assumption that PU(v) 6= 0 implies ran Q ⊆ A ∩ B; hence, A ∩ B 6= ∅.

Proof. Let x ∈ X. Using (13) and (12), we have Q(x) ∈ A and

〈Q(x), v〉 = 〈PA(x), v〉+ β− 〈PA(x), v〉
‖PU(v)‖2 〈PU(v), v〉 (14a)

= 〈PA(x), v〉+ β− 〈PA(x), v〉
‖PU(v)‖2 ‖PU(v)‖2 (14b)

= β. (14c)

Hence Q(x) ∈ B and we are done. �
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Proposition 3.2. The assumption that PU(v) 6= 0 implies

(A ∩ B)− c = U ∩ {v}⊥, (15)(
(A ∩ B)− c

)⊥
= U⊥ + Rv. (16)

for every c ∈ A ∩ B.

Proof. By Proposition 3.1, A ∩ B 6= ∅. Let c ∈ A ∩ B. Then

(A ∩ B)− c = (A− c) ∩ (B− c) = U ∩ {v}⊥, (17)

which is (15). Hence, using also [3, Theorem 9.35 and Corollary 9.37], we see that(
(A ∩ B)− c

)⊥
=
(
U ∩ {v}⊥

)⊥
= U⊥ + Rv = U⊥ + Rv. (18)

Therefore, (16) is verified and we are done. �

Theorem 3.3. The assumption that PU(v) 6= 0 implies Q = PA∩B.

Proof. Let x ∈ X. By Proposition 3.1,
Q(x) ∈ A ∩ B. (19)

Using (13), we have

x−Q(x) = x− PA(x)− β− 〈PA(x), v〉
‖PU(v)‖2 PU(v) (20a)

=
(

PU(x) + PU⊥(x)
)
−
(
a0 + PU(x)

)
− β− 〈PA(x), v〉

‖PU(v)‖2 (v− PU⊥v) (20b)

=

(
PU⊥(x)− a0 +

β− 〈PA(x), v〉
‖PU(v)‖2 PU⊥(v)

)
− β− 〈PA(x), v〉

‖PU(v)‖2 v (20c)

∈ U⊥ + Rv. (20d)

Now (19), (16), and (20) yield
x−Q(x) ∈

(
(A ∩ B)−Q(x)

)⊥. (21)

Combining (19) and (21), we conclude that PA∩B(x) = Q(x). �

Remark 3.4. Note that Theorem 3.3 and (13) imply Theorem 1.1(ii).

4 A utility version of the main result and the case of two hyperplanes

The analysis in the previous section was simplified because of our assumption that ‖v‖ = 1. It is
worthwhile to record our results when we drop this normalization requirement.

Theorem 4.1 (trichotomy). Let A be as in (2) and let H be a hyperplane given by

H :=
{

x ∈ X
∣∣ 〈x, c〉 = γ

}
, (22)

where c ∈ X r {0} and γ ∈ R. Let x ∈ X. Then exactly one of the following holds:

(i) PU(c) = 0, 〈PA(x), c〉 = γ, A ∩ H 6= ∅, and PA∩H(x) = PA(x).
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(ii) PU(c) = 0, 〈PA(x), c〉 6= γ, A ∩ H = ∅, and PFix(PAPH)(x) = PA(x).

(iii) PU(c) 6= 0, A ∩ H 6= ∅, and PA∩H(x) = PA(x) +
γ− 〈PA(x), c〉
‖PU(c)‖2 PU(c).

Proof. Suppose that

v =
c
‖c‖ and β =

γ

‖c‖ . (23)

Then H = B (see (3)). Note that

PU(v) =
PU(c)
‖c‖ , (24)

which shows that PU(v) = 0⇔ PU(c) = 0.

(i): This is clear from Corollary 2.2(i). (ii): Combine Corollary 2.2(ii) with (9). (iii): Combining
Theorem 3.3, (13), and (23) yields

PA∩B(x) = PA(x) +
β− 〈PA(x), v〉
‖PU(v)‖2 PU(v) (25a)

= PA(x) +
γ/‖c‖ − 〈PA(x), c/‖c‖〉

‖PU(c/‖c‖)‖2 PU(c/‖c‖) (25b)

= PA(x) +
γ− 〈PA(x), c〉
‖PU(c)‖2 PU(c), (25c)

as claimed. �

Corollary 4.2 (two hyperplanes). Suppose that

H1 :=
{

x ∈ X
∣∣ 〈x, c1〉 = γ1

}
and H2 :=

{
x ∈ X

∣∣ 〈x, c2〉 = γ2
}

, (26)

where c1, c2 lie in X r {0}, and γ1, γ2 belong to R. Let x ∈ X. Then the following hold:

(i) If 〈c1, c2〉2 = ‖c1‖2‖c2‖2 and ‖c1‖2(〈x, c2〉 − γ) = 〈c1, c2〉 (〈x, c1〉 − γ1), then H1 = H2 and

PH1∩H2(x) = PH1(x) = x− 〈x, c1〉 − γ1

‖c1‖2 c1. (27)

(ii) If 〈c1, c2〉2 = ‖c1‖2‖c2‖2 and ‖c1‖2(〈x, c2〉−γ) 6= 〈c1, c2〉 (〈x, c1〉−γ1), then H1 and H2 are parallel
but distinct (H1 ∩ H2 = ∅), and

PFix(PH1 PH2 )
(x) = PH1(x) = x− 〈x, c1〉 − γ1

‖c1‖2 c1. (28)

(iii) If 〈c1, c2〉2 6= ‖c1‖2‖c2‖2, then H1 ∩ H2 6= ∅ and

PH1∩H2(x) = x +
‖c2‖2(γ1 − 〈x, c1〉

)
+ 〈c1, c2〉

(
〈x, c2〉 − γ2

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

c1 (29a)

+
‖c1‖2(γ2 − 〈x, c2〉

)
+ 〈c1, c2〉

(
〈x, c1〉 − γ1

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

c2. (29b)

Proof. We apply Theorem 4.1 with A = H1, H = H2, c = c2, and γ = γ2. We have

PA(x) = PH1(x) = x− 〈x, c1〉 − γ1

‖c1‖2 c1, (30)
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U = {c1}⊥, and so

PU(c) = P{c1}⊥(c2) = c2 − PRc1(c2) = c2 −
〈c2, c1〉
‖c1‖2 c1. (31)

Therefore, (31) implies

‖PU(c)‖2 =

∥∥∥∥c2 −
〈c1, c2〉
‖c1‖2 c1

∥∥∥∥2

(32a)

= ‖c2‖2 − 2 〈c1, c2〉2

‖c1‖2 +
〈c1, c2〉2

‖c1‖4 ‖c1‖2 (32b)

= ‖c2‖2 − 〈c1, c2〉2

‖c1‖2 . (32c)

Hence
PU(c) = 0 ⇔ ‖PU(c)‖2 = 0 ⇔ 〈c1, c2〉2 = ‖c1‖2‖c2‖2. (33)

Next, (30) implies

〈PA(x), c〉 = 〈PH1(x), c2〉 = 〈x, c2〉 −
〈x, c1〉 − γ1

‖c1‖2 〈c1, c2〉 . (34)

Thus
〈PA(x), c〉 = γ ⇔ ‖c1‖2( 〈x, c2〉 − γ2

)
= 〈c1, c2〉

(
〈x, c1〉 − γ1

)
. (35)

(i): The hypothesis in this case corresponds to PU(c) = 0 and 〈PA(x), c〉 = γ. By Theorem 4.1(i),
A∩H 6= ∅ which means the gap vector g = 0 by Corollary 2.2(i). By Theorem 2.1, H1 ⊆ H2. Because
both H1 and H2 are hyperplanes, we have H1 = H2 = H1 ∩ H2.

(ii): The hypothesis in this case corresponds to PU(c) = 0 and 〈PA(x), c〉 6= γ. The conclusion now
follows from Theorem 4.1(ii).

(iii): Using (33), Theorem 4.1(iii), (30), (34), (32), and (31), we have H1 ∩ H2 = A ∩ H 6= ∅ and

PH1∩H2(x) = x− 〈x, c1〉 − γ1

‖c1‖2 c1 +
γ2 −

(
〈x, c2〉 − 〈x,c1〉−γ1

‖c1‖2 〈c1, c2〉
)

‖c2‖2 − 〈c1,c2〉2
‖c1‖2

(
c2 −

〈c2, c1〉
‖c1‖2 c1

)
(36a)

= x− 〈x, c1〉 − γ1

‖c1‖2 c1 (36b)

+
‖c1‖2(γ2 − 〈x, c2〉

)
+ 〈c1, c2〉

(
〈x, c1〉 − γ1

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

(
c2 −

〈c2, c1〉
‖c1‖2 c1

)
(36c)

= x +
‖c1‖2(γ2 − 〈x, c2〉

)
+ 〈c1, c2〉

(
〈x, c1〉 − γ1

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

c2 (36d)

−
( 〈x, c1〉 − γ1

‖c1‖2 +
‖c1‖2(γ2 − 〈x, c2〉

)
+ 〈c1, c2〉

(
〈x, c1〉 − γ1

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

〈c2, c1〉
‖c1‖2

)
c1 (36e)

= x +
‖c1‖2(γ2 − 〈x, c2〉

)
+ 〈c1, c2〉

(
〈x, c1〉 − γ1

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

c2 (36f)

+
‖c2‖2(γ1 − 〈x, c1〉

)
+ 〈c1, c2〉

(
〈x, c2〉 − γ2

)
‖c1‖2‖c2‖2 − 〈c1, c2〉2

c1, (36g)

as announced. �
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Remark 4.3. Having just found a formula for the projection onto the intersection of two hyperplanes, it is in
principle possible to present a formula for the intersection of three (or more) hyperplanes; however, the result
would of course be significantly more complicated than the formulas presented in Corollary 4.2.

We conclude this section with the following limiting example which shows that there does not
appear to exist a straightforward extension of the main result in Theorem 1.1. Indeed, Example 4.4
below verifies that Theorem 1.1 does not generalize when we replace A by a cone K. Observe that in
this case a0 = 0, hence U is replaced by K as well.

Example 4.4. Suppose that X = R2, and that K = R2
+ :=

{
(ξ1, ξ2) ∈ R2

∣∣ ξ1 ≥ 0, ξ2 ≥ 0
}

. Let
v1 = 1√

2
(−1,−1), let v2 = 1√

2
(1, 1), let β1 = 0 and let β2 = 1√

2
. Set (∀i ∈ {1, 2}) Bi :={

x ∈ R2
∣∣ 〈x, vi〉 = βi

}
. Then the following hold:

(i) Let x ∈ K r {(0, 0)}. Then:

(a) K ∩ B1 = {(0, 0)}.
(b) PK(v1) = (0, 0).

(c) PK∩B1 ≡ (0, 0).

(d) (0, 0) = PK∩B1(x) 6= PK(x) = x.

(ii) Set S :=
{
(ξ, 0) ∈ R2

∣∣ ξ >
√

2
}

and set Q̃ := PK +
β2 − 〈PK(·), v2〉
‖PK(v2)‖2 PK(v2). Then:

(a) K ∩ B2 = conv {(1, 0), (0, 1)}.
(b) PK(v2) = v2 6= (0, 0).

(c) Q̃ = PK +
( 1√

2
− 〈PK(·), v2〉

)
v2.

(d) (∀(ξ, 0) ∈ S) PK∩B2(ξ, 0)) = (1, 0).

(e) (∀(ξ, 0) ∈ S) Q̃((ξ, 0)) = 1
2 (
√

2 + ξ,
√

2− ξ) 6∈ K.

5 A numerical experiment

In this section we provide a numerical experiment to evaluate the performance of the formula de-
veloped in Corollary 4.2 when employed to find the projection onto the intersection of finitely many
hyperplanes.

We randomly generate 100 matrices M each of size 10 × 50. For each matrix M, we randomly
generate x ∈ R50 and set b = Mx. This guarantees that the underdetermined system of equations
Mx = b is consistent, i.e., it has a solution. For each random instance of the matrix M we randomly
generate 100 starting points. Because the ith row in each of the randomly generated systems of
equation Mx = b defines a hyperplane, namely Hi :=

{
x ∈ R50

∣∣ 〈mi, x〉 = bi
}

, we set

P := PH10 PH9 · · · PH2 PH1 (37)

and
Q := PH10∩H9 PH8∩H7 · · · PH2∩H1 . (38)
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For each of the randomly generated problems with data (M, b), and for a randomly generated
starting point x0, let x∗ = PC(x0), where C = M−1(b). We generate then two sequences via

(∀n ∈N) pn := Pnx0 and qn := Qnx0. (39)

Both (pn)n∈N and (qn)n∈N are incarnations of the method of cyclic projections, and thus both se-
quences converge to x∗, by e.g., [3, Theorem 9.27] or [4, Chapter 3]. At each iteration index n, we
measure the decibel (dB) value of the proximity function which we choose to be the relative distance
of the iterate to the solution x∗:

20 log10
‖pn − x∗‖
‖p0 − x∗‖ and 20 log10

‖qn − x∗‖
‖q0 − x∗‖ . (40)

Figure 1 reports the progress of the proximity function of both sequences as a function of the iter-
ation index where the median is calculated over all 100 instances of the matrix M and then over 100
randomly generated starting points, resulting in 10, 000 numerical scenarios. We observe a notable
improvement in the speed of convergence using Corollary 4.2 — this suggests that experimenting
with this result may improve performance of projection algorithms involving hyperplanes.

Figure 1: Plot of the decibel (dB) value of the median of the proximity function for the sequences
(pn)n∈N (the dashed curve) and (qn)n∈N (the solid curve).
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