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FRAMED INSTANTON HOMOLOGY AND CONCORDANCE, II

JOHN A. BALDWIN AND STEVEN SIVEK

Abstract. We continue our study of the integer-valued knot invariants ν♯(K) and r0(K),
which together determine the dimensions of the framed instanton homologies of all nonzero
Dehn surgeries onK. We first establish a “conjugation” symmetry for the decomposition of
cobordism maps constructed in our earlier work, and use this to prove, among many other
things, that ν

♯(K) is always either zero or odd. We then apply these technical results to
study linear independence in the homology cobordism group, to define an instanton Floer
analogue ǫ

♯(K) of Hom’s ǫ-invariant in Heegaard Floer homology, and to the problem of
characterizing a given 3-manifold as Dehn surgery on a knot in S

3.

1. Introduction

In [BS21], we defined for any knot K ⊂ S3 a smooth concordance invariant

ν♯(K) ∈ Z

which defines a quasi-morphism on the smooth concordance group. This integer, together
with another invariant r0(K) ∈ Z which satisfies

r0(K) ≥ |ν♯(K)| and r0(K) ≡ ν♯(K) (mod 2),

governs the framed instanton homology [KM11] of surgeries on K as follows:

Theorem 1.1 ([BS21, Theorem 1.1]). For any knot K ⊂ S3, we have

dimQ I#(S3
p/q(K)) = q · r0(K) + |p− qν♯(K)|

where p and q are relatively prime integers with q > 0, and where if ν♯(K) = 0 then p 6= 0.

It may be difficult to compute ν♯(K) in general, but for example if K is an instanton L-space
knot then it follows from [BS23, LPCS22] that ν♯(K) = 2g(K) − 1; in particular, ν♯(K) is
an odd integer in this case.

In this paper, we give an alternative formulation of ν♯(K), in terms of the decomposition
of cobordism maps in framed instanton homology which we developed in earlier work [BS23].
After proving a new “conjugation” symmetry for this decomposition (Theorem 2.1), named
after analogous symmetries in Heegaard Floer homology and monopole Floer homology, we
then show that the “L-space oddity” observed above generalizes to nearly all knots:

Theorem 1.2 (Theorem 5.1). For any knot K ⊂ S3, ν♯(K) is either zero or odd.

We use these results to study the question of when the invariant r0(K) takes small values.
Note that if r0(K) ≤ 2 then by definition we must have

(ν♯(K), r0(K)) = (0, 0) or (±1, 1) or (0, 2).

JAB was supported by NSF CAREER Grant DMS-1454865 and NSF FRG Grant DMS-1952707.
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2 JOHN A. BALDWIN AND STEVEN SIVEK

The first two cases are addressed by [BS23, Proposition 7.12], and correspond to the unknot
and the trefoils, respectively. In Proposition 10.4, we understand the third case completely,
resulting in the following theorem:

Theorem 1.3. If r0(K) ≤ 2 then K is the unknot, a trefoil, or the figure eight knot.

We apply the technical results above to various questions related to homology cobordism,
Dehn surgery, and the framed instanton homology of surgeries, as described in the remainder
of this introduction. In preparation for stating these applications, recall that in [BS21] we
also defined a smooth concordance homomorphism τ ♯(K) via the homogenization of ν♯(K):

τ ♯(K) =
1

2
lim
n→∞

ν♯(#nK)

n
.

Ghosh, Li, and Wong recently proved [GLW19] that τ ♯(K) is always an integer, a fact which
we use in some of the applications discussed below.

1.1. Homology cobordism. Let Θ3
Z denote the homology cobordism group, whose ele-

ments are integer homology 3-spheres modulo smooth integer homology cobordism. Build-
ing on recent work of Nozaki, Sato, and Taniguchi [NST24], we prove the following:

Theorem 1.4 (Theorem 9.3). Let K ⊂ S3 be a knot satisfying τ ♯(K) > 0, or more generally
ν♯(K) > 0. Then the homology spheres

S3
1/n(K), n ≥ 1

are linearly independent in Θ3
Z.

Most of the real content of Theorem 1.4 is already in [NST24], where they prove the same
conclusion under the hypothesis that the Frøyshov invariant [Frø02] of S3

1(K) is negative.
Our contribution is to show that their hypothesis is implied by τ ♯(K) > 0, or by ν♯(K) > 0,
either of which is often much easier to verify. For example, we have the following:

Corollary 1.5. Let K ⊂ S3 be any of the following:

• A knot having a transverse representative with positive self-linking number;
• A quasi-positive knot which is not smoothly slice;
• An alternating knot with negative signature, under the convention that the right-
handed trefoil has signature −2.

Then the homology spheres S3
1/n(K) for n ≥ 1 are linearly independent in Θ3

Z.

This corollary generalizes several previous results in the literature. For instance, it applies
to the torus knots T (p, q) with p, q > 1, as these are quasi-positive and non-slice, recovering
the old result of Fintushel–Stern [FS90] and Furuta [Fur90] that the positive 1/n-surgeries
on any such knot are linearly independent in Θ3

Z. Moreover, Nozaki–Sato–Taniguchi used
their recent result in [NST24] to prove that if Kk is the 2-bridge knot corresponding to the
rational number 2/(4k − 1), with k a non-negative integer, then the positive 1/n-surgeries
on the mirror of Kk are linearly independent in Θ3

Z. We note that such knots are alternating
with negative signature, and therefore fall under the hypotheses of Corollary 1.5.

Proof of Corollary 1.5. In the first case, we apply the bound

ν♯(K) ≥ sl(K) ≥ 1
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of [BS21, Theorem 6.1]. For the second case, quasi-positive knots satisfy

τ ♯(K) = gs(K) > 0

by [BS21, Corollary 1.7]. And for the third case, alternating knots satisfy

τ ♯(K) = −σ(K)/2 > 0

by [BS21, Corollary 1.10]. �

Remark 1.6. As another corollary of the work needed to prove Theorem 1.4, we also show
in Proposition 9.6 that rationally slice knots K satisfy ν♯(K) = τ ♯(K) = 0.

1.2. Bounds on surgery slopes. Given a rational homology sphere Y , it is natural to ask
whether Y can be realized as Dehn surgery on a knot K in S3. If so, then one would like
to determine all such K as well as the corresponding surgery slopes. We use Theorems 1.1
and 1.3 to prove the following upper bound on the denominators of such slopes. Note that
this bound depends on Y but not on K:

Theorem 1.7. Suppose that the rational homology sphere Y is p/q-surgery on a nontrivial
knot K ⊂ S3, where gcd(p, q) = 1 and q > 0. If K is not a trefoil or the figure eight, then

q ≤
1

3
dimQ I#(Y ),

and if equality holds then dimQ I#(Y ) = 3 and p/q is either ±1 or ±3.

Proof. Theorem 1.3 says that r0(K) ≥ 3, so then

dim I#(Y ) = q · r0(K) + |p− qν♯(K)| ≥ 3q + |p − qν♯(K)| ≥ 3q.

If equality holds then we must have r0(K) = 3 and p/q = ν♯(K), which satisfies

|ν♯(K)| ≤ r0(K) = 3

and which is an odd integer since it has the same parity as r0(K). Thus, |p/q| ∈ {1, 3} and
dim I#(Y ) = 3q = 3. �

Remark 1.8. Theorem 1.7 could be improved by including the cases where r0(K) = 3.
These knots were also classified some time after the initial version of this paper appeared,
as [BS24, Theorem 3.13] in Heegaard Floer homology and [LY22b, §8] for the instanton
Floer analogue (both of which use the fact that T2,5 is the only genus-2 L-space knot
[FRW22]). In either setting, if r0(K) = 3, then K must be either T2,5 or 52 up to mirroring.
Thus r0(K) ≤ 3 if and only if K has crossing number at most 5; otherwise, the proof of
Theorem 1.7 gives us the stronger q ≤ 1

4 dimQ I#(Y ), with equality only if r0(K) = 4 (hence

ν♯(K) = 0, by Theorem 1.2 and the evenness of r0(K)− ν♯(K)) and p
q = ν♯(K) = 0.

Remark 1.9. Gainullin [Gai17, Theorem 7] gave a similar bound using Heegaard Floer
homology; namely, that if Y is p/q-surgery on a nontrivial knot in S3, then

q ≤ |H1(Y )|+ dimZ/2Z HF red(Y ).

One can show straightforwardly that the right side is greater than or equal to

1

2
(dimZ/2Z ĤF (Y ) + |H1(Y )|).

Given that ĤF (Y ) and I#(Y ) are expected to have the same dimension, at least over a
field of characteristic zero, Theorem 1.7 should provide a strictly smaller bound on q.
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Given a link L ⊂ S3, Scaduto [Sca15] constructed a spectral sequence

(1.1) Kh′(L) =⇒ I#(−Σ2(L))

from the reduced odd Khovanov homology of L to the branched double cover of L with
orientation reversed. Since dim I# does not depend on orientation, we can combine this
with Theorem 1.7 to get the following purely combinatorial bound on surgery slopes.

Corollary 1.10. Let Y = Σ2(L) be a rational homology sphere which can be realized as
p/q-surgery on a nontrivial knot K ⊂ S3 with gcd(p, q) = 1 and q > 0. If K is not a trefoil
or the figure eight, then

q ≤
1

3
dimQKh′(L).

If equality holds then p/q is either ±1 or ±3, and L is a knot with dimQKh′(L) = 3.

The last claim that L must be a knot follows because det(L) = |H1(Y )| = |p| is odd.

Remark 1.11. Corollary 1.10 is stronger than anything similar which might be proved
with Heegaard Floer homology. The reason for this is that the analogous spectral sequence

Kh(L) =⇒ ĤF (−Σ2(L)) [OS05] is only proved with Z/2Z coefficients, so it would yield a
bound of the form

q ≤
1

3
dimZ/2Z Kh(L) =

1

3
dimZ/2Z Kh′(L).

This upper bound is larger than the one in Corollary 1.10 whenever Kh′(L) has 2-torsion.

1.3. Framed instanton homology for different bundles. One can define the framed
instanton homology I#(Y, λ) for any embedded multicurve λ ⊂ Y , where λ represents the
Poincaré dual of the first Chern class of a U(2)-bundle E → Y . This generalizes the usual
I#(Y ), which refers to the case where λ is nullhomologous.

The isomorphism class of I#(Y, λ) depends only on that of the SO(3)-bundle ad(E),
which is in turn determined by the homology class

[λ] ∈ H1(Y ;Z/2Z).

However, as a corollary of Theorem 1.2, we can show that I#(Y, λ) often does not even
depend on this class, at least up to isomorphism of Z/2Z-graded vector spaces.

Theorem 1.12 (Theorem 7.1). Let Y be a rational homology sphere which can be con-
structed by Dehn surgery on a knot in S3. Then

dim I#(Y, λ)

is independent of λ.

This can not be improved to a Z/4-graded isomorphism, even in the case Y = RP3:
Scaduto and Stoffregen [SS18, §5] showed that I#(RP3, λ) is supported in grading 0 (mod 4)
when [λ] = 0, but has rank 1 in gradings 0, 2 (mod 4) when [λ] is nontrivial.

For zero-surgery, the dependence on the bundle is a bit more subtle:

Theorem 1.13 (Corollary 6.2). Let K ⊂ S3 be a knot with meridian µ. Then

dim I#(S3
0(K)) = dim I#(S3

0(K), µ)
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if and only if ν♯(K) 6= 0. If ν♯(K) = 0 then

dim I#(S3
0(K)) 6= dim I#(S3

0(K), µ),

in which case these dimensions are r0(K) and r0(K) + 2 in some order.

Remark 1.14. Theorem 1.13 (or, more precisely, Theorem 6.1 from which it follows), was
critical for our proof in [BS22] that the splice of two nontrivial knots in homology sphere
instanton L-spaces is never a homology sphere instanton L-space.

1.4. An instanton Floer analogue of Hom’s epsilon invariant. Studying the framed
instanton homology of zero-surgeries also allows us to better understand the knots K with
ν♯(K) = 0, as in the following:

Theorem 1.15 (Proposition 8.4). If K and L are knots in S3 such that ν♯(K) = 0, then
ν♯(K#L) = ν♯(L). In particular, ker(ν♯) is a subgroup of the smooth concordance group C.

Theorem 1.15 then enables us to define an analogue

ǫ♯(K) = 2τ ♯(K)− ν♯(K)

of Hom’s epsilon invariant ǫ in Heegaard Floer homology [Hom14a, Hom14b]. We show in
Proposition 8.5 that ǫ♯ shares many of the properties that ǫ enjoys, and in particular leads to
a total ordering on C/ ker(ν♯) which may be interesting. We see it as more immediately useful
for computing ν♯ of connected sums: for example, Proposition 8.5 implies that ǫ♯(K#K) =
ǫ♯(K) for all K, which quickly leads to the identity

τ ♯(K) = 1
2(ν

♯(K#K)− ν♯(K)).

We remark that this identity, and Proposition 8.5 more generally, rely on the recent result
of Ghosh, Li, and Wong [GLW19] that τ ♯(K) is always an integer.

Organization. In Section 2, we prove the promised conjugation symmetry, Theorem 2.1,
for the decomposition of cobordism maps in framed instanton homology. In Section 3, we
establish some notation and recall various results about these cobordism maps. In Section 4,
we reinterpret ν♯(K) in terms of the decomposition of the map associated to the trace of zero-
surgery onK (Proposition 4.3), and refine the slice genus bound for ν♯(K) (Proposition 4.5).
We then use these results in Section 5 to prove our main result, Theorem 1.2, regarding
the parity of ν♯(K). In Sections 6 and 7, we apply these results to technical questions
about the framed instanton homology of surgeries, proving Theorems 1.12 and 1.13. We
use this apparatus in Section 8 to prove Theorem 1.15 and to define our instanton analogue
of Hom’s epsilon invariant. The last two sections give broader topological applications of
all of this technical work. In Section 9, we prove that either τ ♯(K) > 0 or ν♯(K) > 0 implies
h(S3

−1(K)) < 0, and deduce Theorem 1.4. Finally, in Section 10, we study knots with r0(K)
small, proving Theorem 1.3; recall from the discussion above that this theorem then implies
our bound on denominators of surgery slopes in Theorem 1.7.

Acknowledgments. We thank Matt Hedden, Zhenkun Li, Tye Lidman, Chris Scaduto,
and Fan Ye for helpful conversations, and the referees for useful feedback on earlier versions
of this paper. We particularly thank Zhenkun and Fan for telling us about their independent
recent proof that if τ ♯(K) is nonzero then ν♯(K) is odd [LY22a].
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2. Conjugation symmetry

Since this paper is a continuation of [BS21], we will refer to [BS21, §2] for the necessary
background on framed instanton homology. See also [KM11, Sca15] for more details.

The invariant I#(Y, λ) is equipped with an absolute Z/2Z grading [Frø02, Don02, Sca15]
such that

(2.1) χ(I#(Y, λ)) =

{
|H1(Y ;Z)|, b1(Y ) = 0

0, b1(Y ) > 0

[Sca15, Corollary 1.4]. This can be lifted to a relative Z/4Z grading on I#(Y, λ), and if
[λ] = 0 in H1(Y ;Z/2Z) then this lift can be made absolute [Sca15, §7.3]. If [λ] is nonzero
we can still make it absolute by choosing a Spin structure on Y , as described in [Frø02,
§2.2] or [SS18, §4].

There is also a natural eigenspace decomposition

I#(Y, λ) =
⊕

s:H2(Y )→2Z

I#(Y, λ; s)

[KM10, BS21], in which each summand I#(Y, λ; s) is the simultaneous generalized s(h)-
eigenspace of a degree-(−2) operator µ(h) as h ranges over H2(Y ;Z). Since each µ(h) has
even degree, the Z/2Z grading on I#(Y, λ) descends to an absolute Z/2Z grading on each
eigenspace I#(Y, λ; s).

With this setup in mind, we can define “conjugation” symmetries

(2.2) c0, c1, c2, c3 : I
#(Y, λ)

∼
−→ I#(Y, λ)

such that ci changes the signs in gradings i+ 2 and i+ 3 modulo 4, i.e.,

c0(x0, x1, x2, x3) = (x0, x1,−x2,−x3)

c1(x0, x1, x2, x3) = (−x0, x1, x2,−x3)

c2(x0, x1, x2, x3) = (−x0,−x1, x2, x3)

c3(x0, x1, x2, x3) = (x0,−x1,−x2, x3).

(We note that ci+2 = −ci for all i ∈ Z/4Z.) The fact that deg(µ(h)) = −2 for all h implies
that each of these sends a generalized µ(h)-eigenspace with eigenvalue s(h) to one with
eigenvalue −s(h), giving an isomorphism

(2.3) ci : I
#(Y, λ; s)

∼
−→ I#(Y, λ;−s)

for all i ∈ Z/4Z and all s : H2(Y ;Z)→ 2Z, with c2i = id, as in [BS23, Theorem 2.25].

Given a cobordism (X, ν) : (Y0, λ0) → (Y1, λ1) with absolute Z/4Z gradings on each
I#(Yi, λi), the map I#(X, ν) has a well-defined degree d ∈ Z/4Z, such that for any homo-
geneous elements

x ∈ I#(Y0, λ0), y ∈ I#(Y1, λ1),

the matrix coefficient 〈I#(X, ν)(x), y〉 is zero unless

gr(y)− gr(x) ≡ d (mod 4).

An explicit formula for d is given in [Sca15, §7.3], assuming that [λj ] = 0 for each j = 0, 1,
though we will not need it here.
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Assuming that b1(X) = 0, in [BS23, Theorem 1.16] we defined a decomposition

I#(X, ν) =
∑

s:H2(X)→Z

I#(X, ν; s),

in which only finitely many summands are nonzero and each nonzero summand is a map

I#(X, ν; s) : I#(Y0, λ0; s|Y0
)→ I#(Y1, λ1; s|Y1

)

between specific eigenspaces on either side. Here s|Yi
denotes the composition

H2(Yi)→ H2(X)
s
−→ Z,

where the first map is induced by inclusion. The main result of this section is that these maps
have the following “conjugation symmetry” property, comparable to the Spinc conjugation
symmetry in other Floer homologies.

Theorem 2.1. Let (X, ν) : (Y0, λ0)→ (Y1, λ1) be a cobordism with b1(X) = 0, and suppose
that we have fixed an absolute Z/4Z grading on each I#(Yi, λi) which agrees with both the
absolute Z/2Z grading and relative Z/4Z grading. If I#(X, ν) has degree d ∈ Z/4Z, then
the diagram

I#(Y0, λ0; s|Y0
) I#(Y1, λ1; s|Y1

)

I#(Y0, λ0;−s|Y0
) I#(Y1, λ1;−s|Y1

)

I#(X,ν;s)

∼=ck ck+d∼=

I#(X,ν;−s)

commutes for any s : H2(X;Z)→ Z and any k ∈ Z/4Z.

Proof. We recall the construction of the decomposition

I#(X, ν) =
∑

s:H2(X;Z)→Z

I#(X, ν; s)

from [BS23]. In [BS23, Theorem 5.1] we proved an analogue of Kronheimer and Mrowka’s
structure theorem [KM95], asserting that the Donaldson series

D
ν
X(h) = DX,ν

(
−⊗

(
eh +

[pt]

2
eh
))

is equal to a finite sum of exponentials of the form

(2.4) D
ν
X(h) = eQ(h)/2

r∑

j=1

aν,sje
sj(h),

for some basic classes sj : H2(X;Z)→ Z and maps

aν,sj : I
#(Y0, λ0)→ I#(Y1, λ1)

with rational coefficients. We then defined

I#(X, ν; s) =
1

2
aν,s,

which is understood to be zero if s is not a basic class.
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With this in mind, we now consider the series

D
ν
X(−h) = DX,ν

(
−⊗

(
e−h +

[pt]

2
e−h

))

=

∞∑

n=0

DX,ν

(
−⊗

(
(−h)n

n!
+

[pt]

2

(−h)n

n!

))

=
∑

n even

DX,ν

(
−⊗

(
hn

n!
+

[pt]

2

hn

n!

))
−
∑

n odd

DX,ν

(
−⊗

(
hn

n!
+

[pt]

2

hn

n!

))
.

Since the classes h ∈ H2(X) and [pt] ∈ H0(X) correspond to classes in H2(B) and H4(B)
respectively, where B = A/G is the configuration space of connections mod gauge on X, the
terms with n even and n odd come from components of the ASD moduli space on X with
dimension 0 (mod 4) and 2 (mod 4), respectively.

Given a pair of flat connections α on Y0 and β on Y1, each component of the ASD moduli
spaceM(α, β) which defines the corresponding matrix coefficient of I#(X, ν) has dimension
gr(β)− gr(α) − d (mod 4). So for any pair of generators

x ∈ I#(Y0, λ0), y ∈ I#(Y1, λ1)

which are each homogeneous with respect to the Z/4Z grading, if we set δ = gr(y)− gr(x),
then we have

(2.5) 〈Dν
X(−h)

(
x
)
, y〉 =





〈Dν
X(h)

(
x
)
, y〉, δ ≡ d (mod 4)

−〈Dν
X(h)

(
x
)
, y〉, δ ≡ d+ 2 (mod 4)

0, otherwise.

Replacing h with −h in (2.4), and noting that Q(h) = Q(−h), now gives us

D
ν
X(−h) = eQ(h)/2

r∑

j=1

aν,sje
−sj(h)

and hence

〈Dν
X(−h)(x), y〉 = eQ(h)/2

r∑

j=1

〈aν,sj(x), y〉e
−sj (h)

as a function of h ∈ H2(X;Z). By (2.5) this is equal to some ǫδ−d ∈ {±1} times

〈Dν
X(h)(x), y〉 = eQ(h)/2

r∑

j=1

〈aν,sj(x), y〉e
sj (h),

where

ǫn =

{
1, n ≡ 0 (mod 4)

−1, n ≡ 2 (mod 4),

noting that both sides are identically zero if δ − d is odd. Thus by comparing coefficients
we have

〈aν,−s(x), y〉 = ǫδ−d〈aν,s(x), y〉.

Since this holds for any homogeneous x and y, where ǫδ−d is determined by δ = gr(y)−gr(x)
as above, we can now check that

aν,−s ◦ ck = ck+d ◦ aν,s
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for any k ∈ Z/4Z and so the theorem follows. �

3. Cobordism maps associated to surgeries

In this section we define some notation and recall some results which will be useful in
understanding the invariant ν♯(K) in the following sections.

We begin by introducing Floer’s exact triangle [Flo90], as developed for I# by Scaduto
[Sca15, §7.5]. Let K be a framed knot in Y , with meridian µ, and fix a multicurve λ ⊂ Y \K.
Then there is a surgery exact triangle of the form

(3.1) · · · → I#(Y, λ)
I#(X,ν)
−−−−−→ I#(Y0(K), λ ∪ µ)

I#(W,ω)
−−−−−→ I#(Y1(K), λ)→ . . . .

Here X is the result of attaching a 2-handle to [0, 1] × Y along {1} ×K, and the properly
embedded surface ν ⊂ X is the union of [0, 1]×λ and a meridional disk bounded by {1}×µ.
Similarly, W is the trace of (−1)-framed surgery on a meridian µK of K, or more precisely
on its image in Y0(K), and then ω is the union of [0, 1] × (λ ∪ µ) and a disk bounded by
a meridian µ′ of {1} × µK . (The target of I#(W,ω) is thus more accurately described as
I#(Y1, λ ∪ µ ∪ µ′), but µ ∪ µ′ is zero in H1(Y1;Z/2Z) and so this group is isomorphic to
I#(Y1, λ).)

Now given a knot K ⊂ S3, we define cobordisms

Xn : S3 → S3
n(K)

as the trace of n-surgery on K, for all n ∈ Z. Then the exact triangle (3.1) specializes to

(3.2) · · · → I#(S3)
I#(Xn,νn)
−−−−−−−→ I#(S3

n(K))
I#(Wn+1,ωn+1)
−−−−−−−−−−→ I#(S3

n+1(K))→ . . . ,

by taking λ = µ if n is even and λ = 0 if n is odd. In the case n = 0, we will also take
λ = 0 to get the triangle

(3.3) · · · → I#(S3)
I#(X0,ν̃0)
−−−−−−→ I#(S3

0(K), µ)
I#(W1,ω̃1)
−−−−−−−→ I#(S3

1(K))→ . . . ,

where µ is the image in S3
0(K) of a meridian of K and ν̃0 is a properly embedded disk with

boundary {1} × µ.

We will be especially interested in the decomposition of I#(X0, ν̃0), and of the maps
I#(Xn, νn) for n ≥ 1, into summands indexed by homomorphisms H2(Xn;Z) → Z, as in
[BS23]. For all i ∈ Z, we thus define a homomorphism

(3.4) si : H2(X0;Z)→ Z by si([Σ̂]) = 2i,

where Σ̂ ⊂ X0 is the surface formed by gluing a Seifert surface for Σ to the core of the
0-framed 2-handle; and we let

ti = si|S3
0 (K) : H2(S

3
0(K);Z)→ 2Z(3.5)

[Σ̂] 7→ 2i.

We can then define elements

yi = I#(X0, ν̃0; si)
(
1) ∈ I#odd(S

3
0(K), µ; ti),(3.6)

y′i = I#(X0, ν0; si)
(
1) ∈ I#odd(S

3
0(K); ti),(3.7)

where 1 is a generator of I#(S3); if K is nontrivial, then by [KM10, Corollary 7.6], these
can only be nonzero when |i| ≤ g(K)− 1.
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The following lemma will be our main application of Theorem 2.1.

Lemma 3.1. For any i ∈ Z, we have yi 6= 0 if and only if y−i 6= 0.

Proof. Fixing an absolute Z/4Z grading on I#(S3
0(K), µ) and letting d ∈ Z/4Z denote the

resulting degree of the cobordism map I#(X0, ν̃0), Theorem 2.1 says that

cd(yi) = cd(I
#(X0, ν̃0; si)(1)) = I#(X0, ν̃0; s−i)(c0(1)) = y−i,

since the generator 1 ∈ I#(S3) has grading 0 and is thus fixed by c0. Since cd is an
isomorphism, the lemma follows. �

Following [BS23, §7], we let
Σn ⊂ Xn

be the generator of H2(Xn;Z) ∼= Z, built by gluing a Seifert surface for K to a core of the
n-framed 2-handle. We observed in [BS23, §7.1] that H2(Wn+1;Z) ∼= Z is generated by a
surface Fn+1, and that the diffeomorphism

(3.8) Xn ∪S3
n(K) Wn+1

∼= Xn+1#CP2

identifies

[Σn]←→ [Σn+1]− [E], [Fn+1]←→ [Σn+1]− (n+ 1)[E](3.9)

where E ⊂ H2(CP
2;Z) is the exceptional sphere. We define homomorphisms

sn,i : H2(Xn;Z)→ Z un+1,j : H2(Wn+1;Z)→ Z(3.10)

[Σn] 7→ 2i− n [Fn+1] 7→ 2j,

noting that the homomorphisms labeled si and ti in (3.4) and (3.5) coincide with s0,i and
s0,i|S3

0(K), so that in this notation

yi = I#(X0, ν̃0; s0,i)(1);

and more generally, for n ≥ 1 we define

zn,i = I#(Xn, νn; sn,i)
(
1
)
∈ I#(S3

n(K)).

For n ≥ 1, the adjunction inequality says that

(3.11) zn,i 6= 0 =⇒ 1− g(K) + n ≤ i ≤ g(K)− 1,

as observed in [BS23, Equation (7.5)].

Lemma 3.2 ([BS23, Lemma 7.3]). There are universal constants ǫn ∈ {±1} such that

I#(W1, ω̃1;u1,j) ◦ I
#(X0, ν̃0; s0,i)

=
ǫ0
2
· (−1)i

{
I#(X1, ν1; s1,i) + I#(X1, ν1; s1,i+1), j = i

0 otherwise,

and

I#(Wn+1, ωn+1;un+1,j) ◦ I
#(Xn, νn; sn,i)

=
ǫn
2
·





I#(Xn+1, νn+1; sn+1,i), j = i

−I#(Xn+1, νn+1; sn+1,i+1), j = i− n

0 otherwise
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for all n ≥ 1 and all i, j.

The proof of Lemma 3.2 follows from careful application of (3.9) and the blow-up formula
for cobordism maps. Applying it to the generator 1 ∈ I#(S3) and summing over all j gives
the following.

Lemma 3.3. There are universal constants ǫn ∈ {±1} such that

I#(W1, ω̃1)(yi) =
ǫ0
2
· (−1)i(z1,i + z1,i+1)

for all i, and

I#(Wn+1, ωn+1)(zn,i) =
ǫn
2
(zn+1,i − zn+1,i+1)

for all n ≥ 1 and all i.

4. A characterization of the ν♯ invariant

In [BS21], we defined the invariant ν♯(K) in terms of a simpler invariant,

ν♯(K) = N(K)−N(K),

where N(K) is a nonnegative integer. We defined N(K) to be the least nonnegative integer
n such that I#(Xn, νn) = 0, when taken with coefficients in a field of characteristic zero.
In this section we will give a new characterization of N(K), and thus (in Proposition 4.3)
a useful description of ν♯(K) whenever ν♯(K) is positive.

Here and throughout this section we use the same notation as in Section 3. For conve-
nience we will use

Fn = I#(Xn, νn) F̃0 = I#(X0, ν̃0)(4.1)

Gn+1 = I#(Wn+1, ωn+1) G̃1 = I#(W1, ω̃1)(4.2)

to denote the maps in the exact triangles (3.2) and (3.3) respectively.

Proposition 4.1 ([BS21, Proposition 3.3]). Either N(K) = N(K) = 1, or at least one of
N(K) and N(K) is zero. Moreover, if ν♯(K) 6= 0 (so that N(K) 6= N(K)) then

dim I#(S3
0(K)) = dim I#(S3

0(K), µ).

Proposition 4.2 ([BS23, Lemma 7.5]). Let Gn+1 and G̃1 be the maps indicated in (4.2),
which have even degree with respect to the Z/2Z grading on I#. For all n > 0, the kernel
of the map

Gn ◦Gn−1 ◦ · · · ◦G2 ◦ G̃1 : I#(S3
0(K), µ)→ I#(S3

n(K))

is a subspace of the span of the elements yi, and likewise the kernel of

Gn ◦Gn−1 ◦ · · · ◦G2 ◦G1 : I
#(S3

0(K))→ I#(S3
n(K))

lies in the span of the elements y′i. In both cases, equality holds for all n ≥ 2g(K) − 1.

Proposition 4.2 is only stated explicitly for the elements yi in [BS23], but the proof in
either case is the same after deciding whether to use the triangle (3.3) (for the yi) or the
n = 0 case of (3.2) (for the y′i).
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Proposition 4.3. If ν♯(K) is positive, then it is equal to

#{i | yi 6= 0} = #{i | y′i 6= 0},

where the yi and y′i are the elements defined in (3.6) and (3.7) respectively.

Proof. Since ν♯(K) is positive, Proposition 4.1 says that N(K) = 0 and that

ν♯(K) = N(K) ≥ 1.

Let N = N(K) ≥ 1. Theorem 1.1 and Proposition 4.1 tell us that

dim I#(S3
N (K)) = dim I#(S3

0(K), µ)−N = dim I#(S3
0(K))−N,

so that the kernel of

(4.3) GN ◦GN−1 ◦ · · · ◦G2 ◦ G̃1 : I#(S3
0(K), µ)→ I#(S3

N (K))

has dimension at least N . On the other hand, we have

dimker(G̃1) = dim Im(F̃0) ≤ 1,

dimker(Gi) = dim Im(Fi−1) ≤ 1 for all i ≥ 2

by the exactness of (3.2) and (3.3), so the kernel of (4.3) has dimension at most N as well,
and hence this dimension must be exactly N . Likewise, we have

dimker
(
GN ◦GN−1 ◦ · · · ◦G2 ◦G1 : I

#(S3
0(K))→ I#(S3

N (K))
)
= N

by an identical argument.

Now all of the maps Fj in (4.1) are zero for j ≥ N by definition, and hence the maps

GN+1, GN+2, GN+3, . . .

are all injective. It follows for all j > 2g(K)− 1 ≥ N that

dimker(Gj ◦Gj−1 ◦ · · · ◦G2 ◦ G̃1) = dimker(GN ◦GN−1 ◦ · · · ◦G2 ◦ G̃1) = N

and likewise

dimker(Gj ◦Gj−1 ◦ · · · ◦G2 ◦G1) = dimker(GN ◦GN−1 ◦ · · · ◦G2 ◦G1) = N.

According to Proposition 4.2, the kernels on the left are precisely the spans of the elements
yi and y′i respectively, and the nonzero yi and y′i are linearly independent because they lie
in different eigenspaces

I#(S3
0(K), µ; ti) ⊂ I#(S3

0(K), µ) and I#(S3
0(K); ti) ⊂ I#(S3

0(K)).

We conclude that there must be exactly N = N(K) = ν♯(K) nonzero elements yi and
N = N(K) = ν♯(K) nonzero elements y′i. �

Remark 4.4. Suppose that ν♯(K) = 0 but F̃0 = I#(X0, ν̃0) is injective. Then G̃1 is
surjective with 1-dimensional kernel, by the exactness of (3.3); and Gj is injective for all

j ≥ 2, because the definition of ν♯ and Proposition 4.1 imply that N(K) ≤ 1 and hence
Fj−1 = 0 for all j ≥ 2. Moreover, some of the yi must be nonzero, since their sum is

F̃0(1) 6= 0. Repeating the argument of Proposition 4.3, we must have

dimker(Gn ◦ · · · ◦G2 ◦ G̃1) = dimker(G̃1) = 1

for all n ≥ 2. Proposition 4.2 then says that there is exactly one nonzero yi.
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As a first application of our new description of ν♯(K), we refine the slice genus bound
ν♯(K) ≤ max(2gs(K)− 1, 0) proved in [BS21].

Proposition 4.5. Suppose that ν♯(K) ≥ 1, and define

m = max{j | yj 6= 0}.

Then ν♯(K) ≤ 2m+ 1 ≤ 2gs(K)− 1, where gs(K) is the smooth slice genus of K.

Proof. Both ym and y−m are nonzero by Lemma 3.1, and gs(K) ≥ 1 because if K were slice
then we would have had ν♯(K) = 0. Thus if ν♯(K) = 1 then by Proposition 4.3 we must
have m = 0, and the desired inequalities become 1 ≤ 1 ≤ 2gs(K) − 1, which is certainly
true. From now on we can assume that ν♯(K) > 1.

Since ν♯(K) > 1, we know from Proposition 4.3 that some yj other than y0 is nonzero,
so now Lemma 3.1 guarantees that m ≥ 1. It also implies that any given yj can only be

nonzero if −m ≤ j ≤ m, so we invoke Proposition 4.3 again to show that ν♯(K) ≤ 2m+ 1.

We now repeat the argument of [BS23, Proposition 7.7] with some minor modifications:
both ym and y−m are nonzero, and the nonzero yi are linearly independent while their sum
is the generator I#(X0, ν̃0)(1) of

ker
(
G̃1 : I#(S3

0(K), µ)→ I#(S3
1(K))

)
,

by the exactness of (3.3). Thus neither ym nor y−m is in ker(G̃1). At the same time, since
yj = 0 for all j > m, Lemma 3.3 says that

z1,j + z1,j+1 = ±2 · G̃1(yj) = 0 for all j > m,

and (3.11) says that z1,j = 0 for all large enough j, so in fact we have z1,j = 0 for all j > m.
But then

z1,m = z1,m + z1,m+1 = ±2 · G̃1(ym) 6= 0,

so the map I#(X1, ν1; s1,m) which sends 1 ∈ I#(S3) to z1,m is also nonzero.

Now H2(X1) is generated by a surface F of self-intersection 1 and genus gs(K) > 0,
built by capping off a minimal-genus slicing surface with the core of the 2-handle, and by
definition we have

s1,m([F ]) = 2m− 1 > 0.

Thus the adjunction inequality applied to F and I#(X1, ν1; s1,m) says that

(2m− 1) + F · F ≤ 2g(F ) − 2,

which is equivalent to the desired 2m+ 1 ≤ 2gs(K)− 1. �

5. The parity of ν♯

Our goal in this section is to prove the following theorem, stated in the introduction as
Theorem 1.2, using the characterization of ν♯(K) provided by Proposition 4.3.

Theorem 5.1. For any knot K ⊂ S3, the invariant ν♯(K) ∈ Z is either zero or odd.

Lemma 3.1, which asserts that yi is nonzero if and only if y−i is nonzero, allows us to
reduce Theorem 5.1 to the following proposition. (Here and throughout this section we
continue to use the notation of Section 3.)
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Proposition 5.2. Let K ⊂ S3 be a knot with ν♯(K) > 0, or with ν♯(K) = 0 and I#(X0, ν̃0)
injective. Then y0 6= 0.

We explain here how Proposition 5.2 implies Theorem 5.1 and give a quick application
of Theorem 5.1 to the invariant τ ♯, and then we will devote the remainder of this section to
proving Proposition 5.2.

Proof of Theorem 5.1. Supposing that ν♯(K) is nonzero, we may assume without loss of
generality that ν♯(K) > 0, because otherwise we use the identity ν♯(K) = −ν♯(K) and
replace K with its mirror. Proposition 4.3 then says that ν♯(K) is equal to the number of
nonzero elements yi. But by Lemma 3.1, the nonzero yi come in pairs {yi, y−i}, with the
possible exception of y0. Since Proposition 5.2 guarantees that y0 is indeed nonzero, we
conclude that ν♯(K) is odd. �

The following easy application of Theorem 5.1 will be useful later. In order to state it, we
recall from [BS21] and the introduction that ν♯ can be turned into a smooth concordance
homomorphism C → R by taking its homogenization

τ ♯(K) =
1

2
lim
n→∞

ν♯(#nK)

n
.

Lemma 5.3. If τ ♯(K) > 0, then ν♯(K) > 0. Similarly, if τ ♯(K) < 0, then ν♯(K) < 0.

Proof. Taking τ ♯(K) > 0 without loss of generality, by the definition of τ ♯ we must have

lim
n→∞

ν♯(#nK) =∞.

Then there must be some integer m such that

ν♯(#m+1K) > ν♯(#mK) ≥ 1,

and by Theorem 1.2 both ν♯(#m+1K) and ν♯(#mK) are odd integers, so that

(5.1) ν♯(#m+1K)− ν♯(#mK) ≥ 2.

But ν♯(K) is a quasi-morphism [BS21, Theorem 5.1] which satisfies the inequality

(5.2)
∣∣∣ν♯(L1#L2)− ν♯(L1)− ν♯(L2)

∣∣∣ ≤ 1,

so letting L1 = #mK and L2 = K, we have

(5.3) ν♯(#m+1K)− ν♯(#mK) ≤ ν♯(K) + 1.

We combine (5.1) and (5.3) to get 2 ≤ ν♯(K) + 1, or ν♯(K) ≥ 1. �

Remark 5.4. Lemma 5.3 also follows from the integrality of τ ♯(K), proved by Ghosh, Li,
and Wong [GLW19, Corollary 1.3], together with the inequality |2τ ♯(K) − ν♯(K)| ≤ 1 of
[BS21, Proposition 5.4]. Our proof requires fewer prerequisites, however, as it does not need
to pass through any versions of instanton knot homology.

With this application out of the way, we now turn to the proof of Proposition 5.2.
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5.1. Reduction to linear algebra. We wish to show that if ν♯(K) is positive, then the
element

y0 ∈ I#(S3
0(K), µ; t0)

must be nonzero. The first step, carried out in this subsection, is to find a linear combination
xn of the various yi whose image under I#(Wn, ωn) ◦ · · · ◦ I

#(W1, ω̃1) is a nonzero multiple
of the generator

I#(Xn, νn)(1) ∈ I#(S3
n(K))

of ker I#(Wn+1, ωn+1). This elaborates on a key step in our proof that instanton L-space
knots are fibered [BS23, Lemma 7.5], where we showed that such linear combinations exist
but did not find them explicitly.

Having found the various xn, we will suppose that y0 = 0 and package the yi-coefficients
of the elements x0, x1, . . . , xν♯(K)−1 into a square matrix. We will argue that this matrix
must be invertible, because the xn will have to be linearly independent if their respective
images in the various I#(S3

n(K)) are to all be nonzero. Then in Subsection 5.2 we will
prove by a long, somewhat tedious computation that this matrix is not invertible after all,
giving the desired contradiction.

In what follows, we will continue to write

G̃1 = I#(W1, ω̃1),

Gn = I#(Wn, ωn) (n ≥ 2)

for simplicity, just as in §4.

Lemma 5.5. Fix a knot K ⊂ S3 with ν♯(K) > 0 and an integer h ≥ g(K) − 1. For
1 ≤ n ≤ 2h+ 1, we define

vn =

h∑

i=−h

(
h− i

n− 1

)
z1,i =

h−(n−1)∑

i=1−h

(
h− i

n− 1

)
z1,i

as an element of I#(S3
1(K)). Then

σnI
#(Xn, νn)(1) = Gn ◦ · · · ◦G2(vn)

where σn = ± 1
2n−1 .

Proof. We define σ1 = 1 and σn = (−1)n−1ǫ1ǫ2...ǫn−1

2n−1 for n ≥ 2, so that σn = − ǫn−1

2 σn−1 for
all n ≥ 2. We claim by induction that for all n ≥ 1 we have

(5.4) σn




zn,1−h

zn,2−h

zn,3−h
...

zn,h



=




0 0 0 . . . 0
1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 0




n−1 


Gn ◦Gn−1 ◦ · · · ◦G2(z1,1−h)
Gn ◦Gn−1 ◦ · · · ◦G2(z1,2−h)
Gn ◦Gn−1 ◦ · · · ◦G2(z1,3−h)

...
Gn ◦Gn−1 ◦ · · · ◦G2(z1,h)



,

in which the 2h×2h matrix is zero on and above the main diagonal and has all other entries
equal to 1. When n = 1 there is nothing to prove. When n ≥ 2, by inductive hypothesis
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the right side is equal to

σn−1




0 0 0 . . . 0
1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 0







Gn(zn−1,1−h)
Gn(zn−1,2−h)
Gn(zn−1,3−h)

...
Gn(zn−1,h)



,

and by Lemma 3.3, the row on the right side corresponding to σnzn,i−h on the left is then

σn−1Gn




i−1−h∑

j=1−h

zn−1,j


 = σn−1 ·

ǫn−1

2

i−1−h∑

j=1−h

(zn,j − zn,j+1)

= −σn(zn,1−h − zn,i−h)

since the sum on the right telescopes. But zn,1−h = 0 by (3.11), since n ≥ 2, so the right
side is equal to σnzn,i−h as desired and this completes the induction.

Having proved (5.4), we note that the 2h×2h matrix M on the right side is the adjacency
matrix of a directed graph Γ with vertices labeled 1, . . . , 2h and a single edge i→ j if and
only if i > j. Then the (i, j) entry of Mn−1 counts paths in Γ of the form

i→ an−2 → an−3 → · · · → a1 → j,

of total length n− 1, and these are in bijection with (n− 2)-element subsets of {j + 1, j +

2, . . . , i−1}, so there are
(i−j−1

n−2

)
of them. (This number is zero whenever i− j−1 < n−2.)

Applying this to (5.4), we conclude for 1 ≤ i ≤ 2h that

σnzn,i−h = Gn ◦ · · · ◦G2




2h∑

j=1

(
i− j − 1

n− 2

)
z1,j−h


 .

And if we sum over 1 ≤ i ≤ 2h then we see that

σnI
#(Xn, νn)(1) = σn

2h∑

i=1

zn,i−h

= Gn ◦ · · · ◦G2




2h∑

j=1

(
2h∑

i=1

(
i− j − 1

n− 2

))
z1,j−h




= Gn ◦ · · · ◦G2




2h∑

j=1

(
2h−j−1∑

ℓ=0

(
ℓ

n− 2

))
z1,j−h




= Gn ◦ · · · ◦G2




2h∑

j=1

(
2h− j

n− 1

)
z1,j−h


 .

Here we achieved the third equality by discarding the summands where i ≤ j, since then(i−j−1
n−2

)
= 0, and substituting ℓ = i−j−1. The last equality is an application of the identity

(5.5)

m∑

ℓ=0

(
ℓ

k

)
=

(
m+ 1

k + 1

)
,
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which is easily proved by induction on m via the identity
(m+1
k+1

)
+
(m+1

k

)
=
(m+2
k+1

)
. Noting

that 2h− j = h− (j − h), and hence each z1,i on the right has coefficient
(h−i
n−1

)
, completes

the proof. �

Proposition 5.6. Fix a knot K ⊂ S3 with ν♯(K) > 0, and pick an integer h ≥ g(K) − 1.
For 1 ≤ n ≤ 2h+ 1, we define elements

xn =

h−n∑

i=−h

cn,i · (−1)
iyi

of I#(S3
0(K), µ), where the coefficients cn,i ∈ Z satisfy

c1,i =

{
0, i ≡ h (mod 2)

1, i 6≡ h (mod 2),

and for all n ≥ 2 and −h ≤ i ≤ h,

cn,i =
∑

k≥1

(
(h− i)− 2k

n− 2

)
.

(In this sum we interpret the range of summation to mean all k ≥ 1 such that (h−i)−2k ≥ 0,
here and throughout the remainder of this section.) Then we have

(Gn ◦Gn−1 ◦ · · · ◦ G̃1)(xn) = ±
1

2n
I#(Xn, νn)(1)

for all n = 1, 2, . . . , 2h+ 1.

Proof. We begin by expressing z1,i in terms of the various yi. By Lemma 3.3 we have

G̃1

(
j−1∑

i=−h

yi

)
=

ǫ0
2

j−1∑

i=−h

(−1)i(z1,i + z1,i+1)

=
ǫ0
2

(
(−1)j−1z1,j + (−1)−hz1,−h +

j−1∑

i=1−h

((−1)i + (−1)i−1)z1,i

)

= (−1)j−1 ·
ǫ0
2
z1,j,

since z1,−h = 0 by (3.11). Combining this with Lemma 5.5, we have

ǫ0σn
2

I#(Xn, νn)(1) = Gn ◦ · · · ◦G2

(
h−n+1∑

i=1−h

(
h− i

n− 1

)
·
ǫ0
2
z1,i

)

= Gn ◦ · · · ◦ G̃1




h−n+1∑

i=1−h

(
h− i

n− 1

)
· (−1)i−1




i−1∑

j=−h

yj






= Gn ◦ · · · ◦ G̃1




h−n∑

j=−h




h−n+1∑

i=j+1

(−1)i−j−1

(
h− i

n− 1

)
 (−1)jyj


 .
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We can simplify the coefficient of (−1)jyj somewhat: it is equal to
(
h− j − 1

n− 1

)
−

(
h− j − 2

n− 1

)
+

(
h− j − 3

n− 1

)
− · · · − (−1)h−j−(n−1)

(
n− 1

n− 1

)
.

If n = 1 then this sum has the form 1−1+1−1+. . . , which is zero if h−j−(n−1) = h−j is

even and one if it is odd. If instead n ≥ 2 then we apply the identity
( ℓ
n−1

)
−
(ℓ−1
n−1

)
=
(ℓ−1
n−2

)

to pairs of consecutive terms, and the sum becomes
(
h− j − 2

n− 2

)
+

(
h− j − 4

n− 2

)
+

(
h− j − 6

n− 2

)
+ · · · +

(
n− 1

n− 2

)

if h− j − (n− 1) is even, while if h− j − (n − 1) is odd it becomes

[(
h− j − 2

n− 2

)
+

(
h− j − 4

n− 2

)
+

(
h− j − 6

n− 2

)
+ · · ·+

(
n

n− 2

)]
+

(
n− 1

n− 1

)

=

(
h− j − 2

n− 2

)
+

(
h− j − 4

n− 2

)
+

(
h− j − 6

n− 2

)
+ · · ·+

(
n

n− 2

)
+

(
n− 2

n− 2

)
.

Thus in either case the coefficient of (−1)jyj is

∑

k≥1

(
h− j − 2k

n− 2

)
,

completing the proof. �

We now recall from Proposition 4.3 that if ν♯(K) > 0, then ν♯(K) is equal to the number
of nonzero elements

yi = I#(X0, ν̃0; s0,i)(1) ∈ I#(S3
0(K), µ),

and that by Lemma 3.1, a fixed element yi is nonzero if and only if y−i is nonzero. Thus
if ν♯(K) is positive and y0 = 0, then we have ν♯(K) = 2k for some k > 0, and there are
integers

0 < i1 < i2 < · · · < ik ≤ g(K)− 1

such that

yi 6= 0 if and only if i = ±ij for some j.

Proposition 5.7. Suppose that ν♯(K) > 0 and y0 = 0. Fix h ≥ g(K)− 1, and let

0 < i1 < i2 < · · · < ik ≤ h

be the sequence of integers i such that yi = I#(X0, ν̃0; s0,i)(1) is nonzero if and only if
i = ±ij for some j. Then the 2k × 2k matrix

Mi1,...,ik;h =




c0,−ik . . . c0,−i2 c0,−i1 c0,i1 c0,i2 . . . c0,ik
c1,−ik . . . c1,−i2 c1,−i1 c1,i1 c1,i2 . . . c1,ik
c2,−ik . . . c2,−i2 c2,−i1 c2,i1 c2,i2 . . . c2,ik
c3,−ik . . . c3,−i2 c3,−i1 c3,i1 c3,i2 . . . c3,ik

...
. . .

...
...

...
...

. . .
...

c2k−1,−ik . . . c2k−1,−i2 c2k−1,−i1 c2k−1,i1 c2k−1,i2 . . . c2k−1,ik



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is invertible, where c0,j = (−1)j and

c1,j =

{
0, j ≡ h (mod 2)

1, j 6≡ h (mod 2),
cn,j =

∑

k≥1

(
(h− j)− 2k

n− 2

)
for all n ≥ 2

as in Proposition 5.6.

Proof. By the definition of ν♯(K) = 2k, each of the maps

I#(X0, ν̃0) and I#(Xn, νn), 1 ≤ n ≤ 2k − 1

is injective. Following Proposition 5.6, we let

(5.6) xn =

h−n∑

i=−h

cn,i · (−1)
iyi ∈ I#(S3

0(K), µ)

for 0 ≤ n ≤ 2k − 1, and it follows for n ≥ 1 that the corresponding elements

I#(Xn, νn)(1) =

{
x0, n = 0

±2n · (Gn ◦Gn−1 ◦ · · · ◦ G̃1)(xn), 1 ≤ n ≤ 2k − 1

are all nonzero. (For n = 0 we interpret the left side as I#(X0, ν̃0)(1).)

We claim that the elements x0, . . . , x2k−1 in (5.6) must all be linearly independent. As-
suming otherwise, there is some positive j ≤ 2k − 1 for which we can find a nontrivial
relation of the form

xj =

j−1∑

i=0

dixi.

But then we must have

I#(Xj , νj)(1) = ±2
j · (Gj ◦Gj−1 ◦ · · · ◦ G̃1)

(
j−1∑

i=0

dixi

)

= ±

j−1∑

i=0

2j−idi · (Gj ◦ · · · ◦Gi+1)
(
2i ·Gi ◦ · · · ◦ G̃1(xi)

)

= ±

j−1∑

i=0

2j−idi · (Gj ◦ · · · ◦Gi+1)
(
±I#(Xi, νi)(1)

)
.

(In the above equations, when i = 0 we should again interpret (Xi, νi) as (X0, ν̃0), and also

Gi+1 as G̃1.) We know for each i that Gi+1 ◦ I
#(Xi, νi) = 0 by the surgery exact triangle,

so we have I#(Xj , νj)(1) = 0, contradiction.

Now by assumption we have yj = 0 for j 6∈ {±i1, . . . ,±ik}, so from (5.6) we see that




x0
x1
...

x2k−1


 = Mi1,...,ik;h




(−1)−iky−ik
...

(−1)−i1y−i1

(−1)i1yi1
...

(−1)ikyik




.
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The linear independence of x0, . . . , x2k−1 then implies that Mi1,...,ik;h is invertible, exactly
as claimed. �

5.2. Some linear algebra. In Proposition 5.7 we associated to every k ≥ 1 and sequence
of integers

0 < i1 < i2 < · · · < ik ≤ h

a 2k × 2k matrix

Mi1,...,ik;h =




c0,−ik . . . c0,−i1 c0,i1 . . . c0,ik
c1,−ik . . . c0,−i1 c0,i1 . . . c0,ik

...
. . .

...
...

. . .
...

c2k−1,−ik . . . c2k−1,−i1 c2k−1,i1 . . . c2k−1,ik


 .

In this subsection we will prove by induction on k that Mi1,...,ik;h is never invertible. To do
so, we will define a related 2k × k integer matrix

Ni1,...,ik;h =




d0,i1 . . . d0,ik
d1,i1 . . . d1,ik
...

. . .
...

d2k−1,i1 . . . d2k−1,ik


 , dj,i = cj,−i − cj,i(5.7)

motivated by the idea that this should contain the same information as the matrix Mi1,...,ik;h

after we account for the conjugation symmetries of Section 2. Indeed, we observe that

(5.8) Ni1,...,ik;h



x1
...
xk


 = 0 =⇒ Mi1,...,ik;h




xk
...
x1
−x1
...
−xk



= 0,

so it will suffice to find a nonzero vector
[
x1 · · · xk

]T
in the kernel of Ni1,...,ik;h. This will

ultimately come from the fact that for fixed j, the various dj,i are linear combinations of
binomial coefficients of bounded degree, which turn out to be polynomials in i; by construc-
tion these polynomials are also odd, so then each row of Ni1,...,ik;h is a linear combination

of relatively few row vectors of the form
[
ie1 · · · iek

]
, with e an odd integer, and this leads

us to an upper bound on the rank of Ni1,...,ik;h and hence to an element of its kernel.

Combining the definition of cj,i from Proposition 5.7 with (5.7), we see that if −h ≤ i ≤ h
then we have

d0,i = (−1)−i − (−1)i = 0

d1,i = c1,−i − c1,i = 0

since ±i ≡ h (mod 2) if and only if i ≡ h (mod 2). It follows immediately that when k = 1
we have

Ni1;h =

[
d0,i1
d1,i1

]
=

[
0
0

]
,

and so Ni1;h

[
1
]
= 0. For larger values of j, we begin with the following observation about

the entries of Ni1,...,ik;h.
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Lemma 5.8. For all 0 ≤ j ≤ 2h + 1, there is an odd polynomial pj(t) ∈ Q[t] of degree at
most max(j − 1, 0), depending implicitly on h, such that

pj(i) = dj,i

for all integers i such that 1 ≤ i ≤ h. When j is even and at least 2, the degree of pj(t) is
exactly j − 1.

Proof. For j = 0, 1 we have just seen that we can take pj(t) = 0, so we assume from now
on that j ≥ 2. We extend dj,i to the range −h ≤ i ≤ 0 by setting dj,i = cj,−i − cj,i for all
such i, so that dj,−i = −dj,i for −h ≤ i ≤ h. By definition, when 1 ≤ i ≤ h we have

dj,i = cj,−i − cj,i

=


∑

k≥1

(
h+ i− 2k

j − 2

)
−


∑

k≥1

(
h− i− 2k

j − 2

)


=

(
h+ i− 2

j − 2

)
+

(
h+ i− 4

j − 2

)
+

(
h+ i− 6

j − 2

)
+ · · ·+

(
h− i

j − 2

)
.

If j = 2 then this means that d2,i = i for 1 ≤ i ≤ h and hence for −h ≤ i ≤ h as well, so we
can take p2(t) = t.

Now suppose for some j ≥ 3 that we have proved the lemma for all smaller values of j.
We will prove the lemma for j as well by first showing that

(5.9) dj,i+1 − dj,i = dj−1,i +

(
h− i− 1

j − 2

)

for all integers i in the range −h ≤ i < h. Indeed, when 0 ≤ i < h, we compute that

dj,i+1 − dj,i =

[(
h+ i− 1

j − 2

)
−

(
h+ i− 2

j − 2

)]
+

[(
h+ i− 3

j − 2

)
−

(
h+ i− 4

j − 2

)]

+ · · · +

[(
h− i+ 1

j − 2

)
−

(
h− i

j − 2

)]
+

(
h− i− 1

j − 2

)

=

[(
h+ i− 2

j − 3

)
+

(
h+ i− 4

j − 3

)
+ · · · +

(
h− i

j − 3

)]
+

(
h− i− 1

j − 2

)

= dj−1,i +

(
h− i− 1

j − 2

)
,

as desired.

Similarly, when −h ≤ i < 0 we use the |i| − 1 case of this computation to show that

(5.10) dj,i+1 − dj,i = dj,|i| − dj,|i|−1 = dj−1,|i|−1 +

(
h− |i|

j − 2

)
.
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The right side does not quite have the same form as before, but we can check that

dj−1,|i|−1 + dj−1,|i| =

[(
h+ |i| − 3

j − 3

)
+

(
h+ |i| − 5

j − 3

)
+ · · ·+

(
h− |i| + 1

j − 3

)]

+

[(
h+ |i| − 2

j − 3

)
+

(
h+ |i| − 4

j − 3

)
+ · · ·+

(
h− |i|

j − 3

)]

=

h+|i|−2∑

ℓ=0

(
ℓ

j − 3

)
−

h−|i|−1∑

ℓ=0

(
ℓ

j − 3

)

=

(
h+ |i| − 1

j − 2

)
−

(
h− |i|

j − 2

)
,

where we have again used the identity (5.5) in the last line. This allows us to rewrite the
right side of (5.10) for −h ≤ i < 0 as

dj,i+1 − dj,i =

(
h+ |i| − 1

j − 2

)
− dj−1,|i|,

and now since |i| = −i and dj−1,|i| = −dj−1,i, this establishes (5.9) for −h ≤ i < 0 as well.

Now by hypothesis, for −h ≤ i ≤ h we have

dj−1,i = pj−1(i),

where pj−1 is an odd polynomial of degree at most j−2, and if j is even then deg pj−1 ≤ j−3
because odd polynomials must have odd degree. Moreover,

(
h− i− 1

j − 2

)
=

((h− 1)− i)((h − 2)− i) · · · ((h− (j − 2))− i)

(j − 2)!

is a polynomial in i (depending implicitly on our choice of h) of degree exactly j − 2. Thus
we can define the polynomial pj(t) to be the unique one satisfying pj(0) = 0 and

(5.11) pj(t+ 1)− pj(t) = pj−1(t) +
1

(j − 2)!

j−2∏

ℓ=1

((h − ℓ)− t), t ∈ Z,

and by (5.9) we will have pj(i) = dj,i for −h ≤ i ≤ h. The successive differences pj(t+1)−

pj(t) are polynomials of degree at most j−2, with equality when j is even since the
(h−i−1

j−2

)

term on the right side of (5.11) is the unique term on that side with degree exactly j − 2.
We conclude that deg pj(t) ≤ j − 1, and that equality holds when j is even.

It remains to be seen that pj(t) is also odd. To do so, we note that the polynomial

pj(t) + pj(−t)

has degree at most j − 1, and that

pj(i) + pj(−i) = dj,i + dj,−i = 0 for i = −h,−h+ 1,−h+ 2, . . . , h.

Since this polynomial has degree at most j − 1 and 2h + 1 ≥ j distinct zeroes, it must
be identically zero, and therefore pj(−t) = pj(t) as desired. This completes the proof by
induction. �

Proposition 5.9. For any sequence of integers 0 < i1 < i2 < · · · < ik ≤ h, there is a
nonzero vector v ∈ Zk such that

(Ni1,...,ik;h)v = 0.
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Proof. By Lemma 5.8, the rows of Ni1,...,ik;h have the form
[
dj,i1 dj,i2 . . . dj,ik

]
=
[
pj(i1) pj(i2) . . . pj(ik)

]

for 0 ≤ j ≤ 2k − 1, where each pj(t) ∈ Q[t] is an odd polynomial of degree at most
max(j − 1, 0) ≤ 2k − 2. Since pj(t) is a Q-linear combination of the k − 1 monomials

t, t3, t5, . . . , t2k−3, it follows that each row of Ni1,...,ik;h is a Q-linear combination of the k−1
row vectors [

ie1 ie2 . . . iek
]
, e = 1, 3, 5, . . . , 2k − 3.

This means that the row space of Ni1,...,ik;h has dimension at most k − 1, so

rankNi1,...,ik;h ≤ k − 1

and since Ni1,...,ik;h is a 2k×k integer matrix, its kernel must have dimension at least 1 and
a basis of integer vectors. �

We can now use this computation to prove Proposition 5.2.

Proof of Proposition 5.2. If ν♯(K) = 0 but I#(X0, ν̃0) is injective, then Remark 4.4 says
that exactly one yi is nonzero, and by Lemma 3.1 it must be y0.

Now suppose that ν♯(K) is positive but that y0 = 0. We let

0 < i1 < i2 < · · · < ik ≤ g(K)− 1

be the sequence of integers such that yi 6= 0 if and only if i = ±ij for some j. Fixing
some integer h ≥ g(K)−1, Proposition 5.7 says that the matrix Mi1,...,ik;h is invertible, and

then the matrix Ni1,...,ik;h defined in (5.7) must define an injective map Zk → Z2k, by the
observation (5.8). Proposition 5.9 says that this map has nontrivial kernel, however, so we
have a contradiction. �

This completes the proof of Theorem 5.1. �

6. Framed instanton homology of zero-surgery

If K ⊂ S3 is a knot satisfying ν♯(K) 6= 0, then Theorem 1.1 applies to zero-framed
surgery on K with any choice of bundle: that is, we have

ν♯(K) 6= 0 =⇒ dim I#(S3
0(K)) = dim I#(S3

0(K), µ) = r0(K) + |ν♯(K)|.

(Here we recall that I#(S3
0(K)) is defined in terms of the trivial U(2)-bundle over S3

0(K),
while I#(S3

0(K)) uses a bundle E → S3
0(K) with c1(E) Poincaré dual to µ.) This indepen-

dence is explicitly stated in [BS21, Proposition 3.3]; it follows from the p/q = ±1 cases of
Theorem 1.1 and the surgery exact triangle. But when ν♯(K) = 0, the framed instanton
homology of S3

0(K) need not be equal to r0(K) + |ν♯(K)|. Here we use the conjugation
symmetry of Theorem 2.1 to investigate this remaining case.

Theorem 6.1. Let Y be an integer homology sphere with dim I#(Y ) = 1, and let K ⊂ Y
be a knot with meridian µ such that

dim I#(Y−1(K)) = dim I#(Y1(K)) = d.

Then dim I#(Y0(K)) and dim I#(Y0(K), µ) are equal to d− 1 and d+ 1 in some order.
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As noted in Remark 1.14, we have applied Theorem 6.1 elsewhere, as [BS22, Proposi-
tion 3.2], in order to prove that many integer homology spheres built by splicing nontrivial
knot complements cannot be instanton L-spaces.

Corollary 6.2. A knot K ⊂ S3 has ν♯(K) = 0 if and only if

dim I#(S3
0(K)) 6= dim I#(S3

0(K), µ),

in which case these dimensions are r0(K) and r0(K) + 2 in some order.

Proof. In the case ν♯(K) 6= 0 this is part of [BS21, Proposition 3.3]. When ν♯(K) = 0, we
let d = dim I#(S3

±1(K)), which is r0(K) + 1 by Theorem 1.1. Then Theorem 6.1 says that

dim I#(S3
0(K)) and dim I#(S3

0(K), µ) are equal to d− 1 = r0(K) and d+1 = r0(K) + 2 in
some order. �

Remark 6.3. Theorem 6.1 allows for ν♯(K) and r0(K) to be defined for knots not just in
S3 but in any integer homology sphere Y with dim I#(Y ) = 1. These will still satisfy the
formula

dim I#(Yp/q(K)) = q · r0(K) + |p− qν♯(K)|,

just as in Theorem 1.1, though we do not claim that ν♯(K) is a quasi-morphism for knots
in manifolds other than S3. The key is to show (following arguments of [BS21]) that the
sequence (

dim I#(Yn(K))
)
n∈Z

either has a unique local minimum at some n, or it has two at n = ±1; in the latter case we
replace I#(Y0(K)) with I#(Y0(K), µ), and by Theorem 6.1 it now has a unique minimum
at n = 0. We take ν♯(K) to be that value of n, and proceed as in [BS21]. This avoids
the definition for K ⊂ S3 in [BS21] by studying surgeries on both K and its mirror, since
K ⊂ Y does not make sense in a general Y .

We now prove Theorem 6.1 in several steps.

Lemma 6.4. Let (Y,K) be as in Theorem 6.1, with d = dim I#(Y1(K)). Then dim I#(Y0(K))
and dim I#(Y0(K), µ) cannot both be d+ 1.

Proof. This is essentially already contained in the proof of [BS21, Proposition 3.3]. We
consider two surgery exact triangles involving I#(Y0(K)), both special cases of (3.2):

. . .→ I#(Y )
I#(X0,ν0)
−−−−−−→ I#(Y0(K))→ I#(Y1(K))→ . . .(6.1)

. . .→ I#(Y )→ I#(Y−1(K))→ I#(Y0(K))
I#(Z0,ζ0)
−−−−−−→ . . .(6.2)

as well as two more involving I#(Y0(K), µ), the first of which is (3.3) and the second of
which is derived similarly from (3.1):

. . .→ I#(Y )
I#(X0,ν̃0)
−−−−−−→ I#(Y0(K), µ)→ I#(Y1(K))→ . . .(6.3)

. . .→ I#(Y )→ I#(Y−1(K))→ I#(Y0(K), µ)
I#(Z0,ζ̃0)
−−−−−−→ . . . .(6.4)

Exactly as in [BS21, Proposition 3.3], the composite cobordisms

I#(X0, ν̃0) ◦ I
#(Z0, ζ0) : I

#(Y0(K))→ I#(Y0(K), µ)
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and

I#(X0, ν0) ◦ I
#(Z0, ζ̃0) : I

#(Y0(K), µ)→ I#(Y0(K))

are both identically zero, because they represent cobordisms containing an embedded 2-
sphere equipped with a nontrivial bundle. But if dim I#(Y0(K)) = d + 1 then I#(X0, ν0)

is injective by the exactness of (6.1), so now I#(Z0, ζ̃0) must be zero, whence by (6.4) we
have dim I#(Y0(K), µ) = d − 1. Similarly, if dim I#(Y0(K), µ) = d + 1 then I#(X0, ν̃0) is
injective by (6.3), so I#(Z0, ζ0) = 0, and then (6.2) says that dim I#(Y0(K)) = d− 1. �

Lemma 6.5. Let (Y,K) be as in Theorem 6.1, with d = dim I#(Y1(K)), and fix a generator
1 ∈ I#(Y ). If dim I#(Y0(K)) = d− 1, then the elements

y′i := I#(X0, ν0; si)(1) ∈ I#(Y0(K))

defined in (3.7) are all zero. Similarly, if dim I#(Y0(K), µ) = d− 1, then the elements

yi := I#(X0, ν̃0; si)(1) ∈ I#(Y0(K), µ)

defined in (3.6) are all zero.

Proof. Suppose that dim I#(Y0(K)) = d−1. Then we examine (6.1) to see that I#(X0, ν0) =
0 for dimension reasons. In the decomposition

I#(X0, ν0) =
∑

i∈Z

I#(X0, ν0; si),

the si each satisfy si([Σ̂]) = 2i as defined in (3.4), and restrict to ti : H2(Y0(K);Z)→ Z as
in (3.5). Then each

I#(X0, ν0; si) : I
#(Y )→ I#(Y0(K); ti)

has its image in a different eigenspace of I#(Y0(K)), and since their sum is zero, they must
all individually be zero as well. (This fact is the reason we can only prove Theorem 6.1 for
zero-surgery: for other surgeries, the eigenspace decomposition is trivial.) The elements y′i
lie in the images of these maps, so they are all zero.

In the case where dim I#(Y0(K), µ) = d − 1, we apply the same argument using the
triangle (6.3) to see that I#(X0, ν̃0; si) = 0 for all i, hence yi = 0 for all i as well. �

For the next lemma, we examine the triangles (6.2) and (6.4) in more depth. The first
of these has the form

(6.5) · · · → I#(Y )
I#(X−1,ν−1)
−−−−−−−−→ I#(Y−1(K))

I#(W0,ω0)
−−−−−−−→ I#(Y0(K))→ . . . ,

where if [Σ−1] is a generator of H2(X−1;Z) built by capping off a Seifert surface for K with
the core of the 2-handle, then ν−1 · [Σ−1] is odd. Similarly, the second one has the form

(6.6) · · · → I#(Y )
I#(X−1,ν̃−1)
−−−−−−−−→ I#(Y−1(K))

I#(W0,ω̃0)
−−−−−−−→ I#(Y0(K), µ)→ . . . .

The surfaces decorating X−1 in these triangles are related by ν̃−1 = ν−1+Σ−1 in H2(X−1);
the intersection products ν−1 · Σ−1 and ν̃−1 · Σ−1 are odd and even respectively. We also
define homomorphisms

s−1,i : H2(X−1;Z)→ Z

by s−1,i([Σ−1]) = 2i+ 1, exactly as in (3.10).
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Lemma 6.6. Take (Y,K), d = dim I#(Y1(K)), and 1 ∈ I#(Y ) as in Lemma 6.5. If
dim I#(Y0(K)) = d− 1, then the elements

z−1,i := I#(X−1, ν−1; s−1,i)(1)

satisfy z−1,i = z−1,−1−i for all i. If dim I#(Y0(K), µ) = d− 1, then the elements

z̃−1,i := I#(X−1, ν̃−1; s−1,i)(1)

satisfy z̃−1,i = z̃−1,−1−i for all i.

Proof. Supposing first that dim I#(Y0(K)) = d−1, we look at the triangle (6.5). Repeating
the argument of [BS23, Proposition 7.1], we write

X−1 ∪Y−1(K) W0
∼= X0#CP2,

by a diffeomorphism identifying [Σ−1] with [Σ0]− [E] where E is the exceptional sphere on
the right. We now argue that I#(W0, ω0) sends z−1,i to a linear combination of various y′j,
all of which are zero. Indeed, by the composition law for cobordism maps, we have

I#(W0, ω0)
(
z−1,i

)
=
(
I#(W0, ω0) ◦ I

#(X−1, ν−1; s−1,i)
)
(1)

=
∑

u:H2(W0)→Z

(
I#(W0, ω0;u) ◦ I

#(X−1, ν−1; s−1,i)
)
(1)

=
∑

u

∑

h:H2(X−1∪W0)→Z

h|X
−1

=s−1,i

h|W0
=u

I#(X−1 ∪W0; ν−1 ∪ ω0;h)(1)

Then every summand on the right has the form I#(X0#CP2, ν;h)(1) for some ν, and the
blow-up formula and sign change formula of [BS23, Theorem 1.16] say that such a term is
in turn a scalar multiple (possibly zero) of some

I#(X0, ν0; sj)(1) = y′j,

which is zero by Lemma 6.5. Thus I#(W0, ω0)(z−1,i) = 0.

Now by the exactness of (6.5), the element z−1,i is in the kernel of I#(W0, ω0), so it is in

the image of I#(X−1, ν−1) and we can write

z−1,i = ai · I
#(X−1, ν−1)(1)

for some coefficients ai ∈ Q. By definition, the maps s−1,i : H2(X−1) → Z satisfy
s−1,i([Σ−1]) = 2i+1, where [Σ−1] generates H2(X−1) ∼= Z. It follows that −s−1,i = s−1,−1−i,
so by the conjugation symmetry of Theorem 2.1, we have

ck+d ◦ I
#(X−1, ν−1; s−1,i) = I#(X−1, ν−1; s−1,−1−i) ◦ ck

where d is the degree of I#(X−1, ν−1). If we apply both sides to the element 1 ∈ I#(Y )
and take k to be the grading of 1, then ck(1) = 1, so that

ck+d(z−1,i) = z−1,−1−i.

But z−1,i is a scalar multiple of I#(X−1, ν−1)(1), which is homogeneous of grading k + d
and hence fixed by ck+d, so in fact

z−1,i = z−1,−1−i
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for all i.

The proof that if dim I#(Y0(K), µ) = d − 1 then z̃−1,i = z̃−1,−1−i is nearly identical.

We use (6.6) instead of (6.5) to show that I#(W0, ω̃0)(z̃−1,i) = 0, because it is a linear
combination of the elements yj which are zero by Lemma 6.5. So then z̃−1,i is a scalar

multiple of I#(X−1, ν̃−1)(1), and we apply the same conjugation symmetry argument to
I#(X−1, ν̃−1) (instead of I#(X−1, ν−1)) to get the desired conclusion. �

Proof of Theorem 6.1. By assumption we have dim I#(Y−1(K)) = dim I#(Y1(K)) = d.
The triangles (6.1) and (6.3) show that dim I#(Y0(K)) and dim I#(Y0(K), µ) must each be
either d− 1 or d+1, and Lemma 6.4 says that they are not both d+1, so it remains to be
seen that they are not both d− 1 either.

Supposing that dim I#(Y0(K)) = d− 1, we showed in Lemma 6.6 that

I#(X−1, ν−1; si) = I#(X−1, ν−1; s−1−i)

for all i, since these maps I#(Y ) → I#(Y−1(K)) are determined by their images z−1,i

and z−1,−1−i. The sign change formula of [BS23, Theorem 1.16] says for any s and α ∈
H2(X−1;Z) that

I#(X−1, ν−1 + α; s) = (−1)
1
2
(s(α)+α·α)+ν−1·α · I#(X−1, ν−1; s).

Taking α = [Σ−1], we have s−1,j(α) = 2j +1, α · α = −1, ν−1 ·α = −1, and ν̃−1 = ν−1 +α,
so this simplifies to

(6.7) I#(X−1, ν̃−1; s−1,j) = (−1)j−1 · I#(X−1, ν−1; s−1,j)

for all j. Thus

I#(X−1, ν̃−1; s−1,i) = (−1)i−1 · I#(X−1, ν−1; s−1,i)

= (−1)i−1 · I#(X−1, ν−1; s−1,−1−i)

= (−1)i−1 ·
(
(−1)−i · I#(X−1, ν̃−1; s−1,−1−i)

)

= −I#(X−1, ν̃−1; s−1,−1−i).

Thus we can compute the map associated to (X−1, ν̃−1) by

I#(X−1, ν̃−1) =
∑

i∈Z

I#(X−1, ν̃−1; s−1,i)

=
∑

i≥0

(
I#(X−1, ν̃−1; s−1,i) + I#(X−1, ν̃−1; s−1,−1−i)

)

=
∑

i≥0

0 = 0.

But this map fits precisely into the exact triangle (6.6), so we conclude that

dim I#(Y0(K), µ) = dim I#(Y−1(K)) + dim I#(Y ) = d+ 1.

The case where dim I#(Y0(K), µ) = d− 1 is nearly identical. Here Lemma 6.6 says that

I#(X−1, ν̃−1; si) = I#(X−1, ν̃−1; s−1−i)

for all i, so we repeat the argument after (6.7), exchanging the roles of ν−1 and ν̃−1, to get

I#(X−1, ν−1; s−1,i) = −I
#(X−1, ν−1; s−1,−1−i).
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But then I#(X−1, ν−1) is equal to
∑

i≥0

(
I#(X−1, ν−1; s−1,i) + I#(X−1, ν−1; s−1,−1−i)

)
= 0,

so (6.5) leads to dim I#(Y0(K)) = dim I#(Y−1(K)) + dim I#(Y ) = d+ 1. �

7. Bundles over rational homology spheres

Given a fixed 3-manifold Y , the invariant I#(Y, λ) only depends on the homology class

[λ] ∈ H1(Y ;Z/2Z),

when viewed as a Z/2Z-graded module up to isomorphism. Theorem 6.1 says that this
dependence is unavoidable when Y is zero-surgery on a knot K with ν♯(K) = 0, but
otherwise we can ask how common such examples are. In this section we prove the following.

Theorem 7.1. Given a knot K ⊂ S3 and a nonzero rational number p/q, the dimension

dim I#(S3
p/q(K), λ)

is independent of λ.

Proof. We take p and q to be relatively prime, with q ≥ 1. If p is odd then

H1(S
3
p/q(K);Z/2Z) = 0,

so there is only one possible [λ] and hence there is nothing to prove. We can thus take p to
be even from now on, so that

H1(S
3
p/q(K);Z/2Z) ∼= Z/2Z,

generated by the image in S3
p/q(K) of a meridian of K.

In the case q > 1, we essentially repeat the proof of [BS21, Proposition 4.5] verbatim.
The argument comes down to the splitting of an exact triangle

· · · → I#(S3
a/b(K))→ I#(S3

p/q(K))→ I#(S3
c/d(K))

F
−→ . . . ,

where p = a+ c and q = b+ d and the slopes all have pairwise distance one. The last claim
means that

|aq − pb| = |pd− cq| = |cb− ad| = 1,

and since p is even it follows that a and c must be odd, so that I#(S3
a/b(K), λ) and

I#(S3
c/d(K), λ) do not depend on λ. We can thus choose λ carefully in (3.1) to replace

the above triangle with

· · · → I#(S3
a/b(K))→ I#(S3

p/q(K), µ)→ I#(S3
c/d(K))

F ′

−→ . . . ,

and the proof that F = 0 in [BS21] depends only on the smooth topology of the surgery
cobordisms rather than on their respective bundles, so it follows that F ′ = 0 as well. Thus
the splittings of these two triangles imply that

dim I#(S3
p/q(K), µ) = dim I#(S3

p/q(K))

whenever q > 1.
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In the remaining case, we have q = 1, so that p/q is a nonzero integer. Taking n = p− 1
in (3.1) gives us an exact triangle

· · · → I#(S3, λ)→ I#(S3
p−1(K), λ ∪ µ)→ I#(S3

p(K), λ)→ . . . ,

where µ is the image of a meridian of K. The first two terms are independent of λ because
H1(S

3;Z/2Z) = 0 and H1(S
3
p−1(K);Z/2Z) = 0, so that

(7.1) dim I#(S3
p(K), λ) = dim I#(S3

p−1(K))± 1.

By the same argument, taking n = p and replacing λ with λ ∪ µ in (3.1) gives us

(7.2) dim I#(S3
p(K), λ) = dim I#(S3

p+1(K))± 1.

Now since p is nonzero and even, Theorem 5.1 tells us that p 6= ν♯(K), so then

dim I#(S3
p+1(K)) = dim I#(S3

p−1(K)) +

{
2, p > ν♯(K)

−2, p < ν♯(K)

by Theorem 1.1. We combine this with (7.1) and (7.2) to conclude that

dim I#(S3
p(K), λ) = dim I#(S3

p−1(K)) +

{
1, p > ν♯(K)

−1, p < ν♯(K)

regardless of the choice of λ. �

8. The kernel of ν♯ and an instanton Floer epsilon invariant

According to Corollary 6.2, knots K ⊂ S3 with ν♯(K) = 0 fall into exactly one of two
classes:

• W-shaped knots, which satisfy

dim I#(S3
0(K)) = r0(K) + 2 and dim I#(S3

0(K), µ) = r0(K);

• V-shaped knots, which satisfy

dim I#(S3
0(K)) = r0(K) and dim I#(S3

0(K), µ) = r0(K) + 2.

The names come from the shape of the graph of dim I#(S3
n(K)) as n varies among the

integers. These can be distinguished by the maps

I#(X0, ν0) : I
#(S3)→ I#(S3

0(K))

I#(X0, ν̃0) : I
#(S3)→ I#(S3

0(K), µ),

whereX0 is the trace of 0-surgery on K; if Σ0 ⊂ X0 is a capped-off Seifert surface generating
H2(X0) then ν0 · Σ0 and ν̃0 · Σ0 are even and odd, respectively. (We will occasionally add
“K” to the notation for clarity, as in X0(K), ΣK,0, νK,0, and ν̃K,0.) According to the exact
triangles (6.1) and (6.3), these maps are respectively injective and zero if K is W-shaped,
while they are zero and injective if K is V-shaped.

Lemma 8.1. Let K and L be knots in S3. Fix νK ∈ {νK,0, ν̃K,0} and νL ∈ {νL,0, ν̃L,0}.

If I#(X0(K), νK) and I#(X0(L), νL) are both injective, then so is I#(X0(K#L), νK#L),
where νK#L ∈ {νK#L,0, ν̃K#L,0} satisfies

νK#L · ΣK#L,0 ≡ νK · ΣK,0 + νL · ΣL,0 (mod 2).



30 JOHN A. BALDWIN AND STEVEN SIVEK

Proof. This is a special case of [BS21, Lemma 5.2], which is proved by embeddingX0(K#L)
into X0(K)♮X0(L) so that the cobordism map

I#(X0(K), νK,0)⊗ I#(X0(L), νL,0)

is equal to a composition

I#(S3)
I#(X0(K#L),νK#L,0)
−−−−−−−−−−−−−−→ I#(S3

0(K#L)) −→ I#(S3
0(K)#S3

0(L))
∼=
−→ I#(S3

0(K))⊗ I#(S3
0(L)),

and likewise if we replace either of νK,0 and νL,0 with ν̃K,0 and ν̃L,0. �

Proposition 8.2. Let K and L be knots in S3 with ν♯(K) = ν♯(L) = 0. Then ν♯(K#L) =
0. Moreover, K#L is W-shaped if K and L are both W-shaped or both V-shaped, and it is
V -shaped otherwise.

Proof. Choose νK ∈ {νK,0, ν̃K,0} and νL ∈ {νL,0, ν̃L,0} so that the maps

I#(X0(K), νK) and I#(X0(L), νL)

are both injective rather than zero. Then Lemma 8.1 says that I#(X0(K#L), νK#L) is
injective as well, where

νK#L =

{
νK#L,0, K and L have the same shape

ν̃K#L,0, otherwise.

If νK#L = νK#L,0, then the exact triangle (6.1) now says that

dim I#(S3
0(K#L)) = dim I#(S3

1(K#L)) + 1.

This implies that either ν♯(K#L) = 0 and K#L is W-shaped, or ν♯(K#L) > 0. We apply
the same argument to the mirrors K and L, which have the same shapes as K and L, to
see that −ν♯(K#L) = ν♯(K#L) ≥ 0. So ν♯(K#L) = 0 and K#L is W-shaped after all.

Similarly, if νK#L = ν̃K#L,0, then the exact triangle (6.3) says that

dim I#(S3
0(K#L), µ) = dim I#(S3

1(K#L)) + 1,

hence by Corollary 6.2, we have

dim I#(S3
0(K#L)) = dim I#(S3

1(K#L))− 1.

Thus either ν♯(K#L) = 0 and K#L is V-shaped, or ν♯(K#L) < 0. Again we repeat this
argument with K and L to conclude that ν♯(K#L) = 0 and K#L is V-shaped. �

Proposition 8.2 shows that the subset

ker ν♯ = {[K] ∈ C | ν♯(K) = 0}

of the smooth concordance group is in fact a subgroup of C, and that the shape of a knot
in ker ν♯ defines a homomorphism

shape : ker ν♯ → Z/2Z

K 7→

{
0, K is W-shaped

1, K is V-shaped.
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Thus the subgroup CW := ker(shape) ⊂ ker ν♯, consisting of smooth concordance classes
of W-shaped knots, is either an index-2 subgroup of ker ν♯ or all of ker ν♯, depending on
whether or not V-shaped knots with ν♯ = 0 exist. Combining this with Lemma 5.3, which
implies that if τ ♯(K) 6= 0 then ν♯(K) 6= 0, we have an ascending chain of subgroups

CW ⊂ ker ν♯ ⊂ ker τ ♯ ⊂ C.

We do not know if either of the first two inclusions are proper.

Remark 8.3. It follows from work of Hom [Hom14a] that the analogous inclusion

ker ν̂ ⊂ ker τ

in Heegaard Floer homology is in fact proper. Let K be any knot of genus g ≥ 1 satisfying
τ(K) = g, such as a positive torus knot, and let K ′ denote its (1 − 4g, 2)-cable (where 2 is
the longitudinal winding). Then by [Hom14a, Proposition 3.6(4)] the epsilon invariant of
K satisfies ǫ(K) = 1, so we can apply [Hom14a, Theorems 1 and 2] to see that

τ(K ′) = 2τ(K) + 1
2 (2− 1)((1 − 4g)− 1) = 0

and ǫ(K ′) = 1. This guarantees that K ′ ∈ ker τ but K ′ 6∈ ker ν̂ as follows: according to
[Hom14a, Remark 3.5] we have

ǫ(K ′) =
(
τ(K ′)− ν(K ′)

)
−
(
τ(K ′)− ν(K ′)

)
,

where ν is the invariant of [OS11, Definition 9.1], so ν(K ′) − ν(K ′) = 1. But from [OS11,
Equation (34)] we have ν(K ′) = τ(K ′) or τ(K ′) + 1, and likewise for K ′, so since τ(K ′) =
τ(K ′) = 0 the only possibility is

ν(K ′) = 0, ν(K ′) = 1.

Thus [BS21, Lemma 10.4] says that ν̂(K ′) = −1, so K ′ 6∈ ker ν̂ as claimed.

Finally, we show that taking connected sums with knots in ker ν♯ does not change the
value of ν♯.

Proposition 8.4. Let K and L be knots in S3. If ν♯(K) = 0, then ν♯(K#L) = ν♯(L).

Proof. The case ν♯(L) = 0 is Proposition 8.2, so we may assume that ν♯(L) 6= 0, and in
particular that ν♯(L) is odd by Theorem 5.1.

The relation (5.2), asserting that ν♯ is a quasi-morphism, simplifies here to
∣∣∣ν♯(K#L)− ν♯(L)

∣∣∣ ≤ 1.

If ν♯(K#L) 6= ν♯(L) then it follows that ν♯(K#L) = ν♯(L)± 1 is even, so by Theorem 5.1
it must be zero. In this case we have

ν♯(K#L) = ν♯(K) = 0

and ν♯(L) = ∓1. Then ν♯(K) = −ν♯(K) = 0, so Proposition 8.2 says that

ν♯((K#L)#K) = 0.

But K#L#K is smoothly concordant to L, so ν♯(L) = 0 as well and this is a contradiction.
It must therefore be true that ν♯(K#L) = ν♯(L) after all. �
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Inspired by Hom’s epsilon invariant [Hom14a], we can now define another concordance
invariant by the formula

ǫ♯(K) = 2τ ♯(K)− ν♯(K).

It is clearly a concordance invariant, because τ ♯ and ν♯ are, and it satisfies many of the
same properties of ǫ which are listed after [Hom14a, Corollary 3].

Proposition 8.5. We have ǫ♯(K) ∈ {−1, 0, 1} for all K ⊂ S3. It satisfies the following
properties:

(1) ǫ♯(K) = 0 if and only if ν♯(K) = 0.
(2) If ǫ♯(K) = 0 then τ ♯(K) = 0.
(3) If K is slice, then ǫ♯(K) = 0.
(4) ǫ♯(K) = −ǫ♯(K).
(5) If |τ ♯(K)| = gs(K) > 0, then ǫ♯(K) = sgn(τ ♯(K)).
(6) If ǫ♯(K) = 0, then ǫ♯(K#K ′) = ǫ♯(K ′).
(7) If ǫ♯(K) = ǫ♯(K ′), then ǫ♯(K#K ′) = ǫ♯(K) = ǫ♯(K ′).

Proof. By [BS21, Proposition 5.4], we have an inequality
∣∣∣2τ ♯(K)− ν♯(K)

∣∣∣ ≤ 1

which implies that |ǫ♯(K)| ≤ 1, and Ghosh–Li–Wang [GLW19] proved that it is an integer, so
it must be −1, 0, or 1. Then ǫ♯(K) = 0 if and only if ν♯(K) is even, which by Theorem 5.1 is
equivalent to ν♯(K) = 0, establishing (1). This in turn implies (2) by Lemma 5.3. Properties
(3) and (4) follow from the same properties for τ ♯ and ν♯.

For (5), since gs(K) > 0 we have |ν♯(K)| ≤ 2gs(K) − 1 by [BS21, Theorem 3.7]. If
τ ♯(K) = gs(K) is positive then

ǫ♯(K) = 2τ ♯(K)− ν♯(K) ≥ 2gs(K)− (2gs(K)− 1) = 1,

so in fact ǫ♯(K) = 1, and the case τ ♯(K) = −gs(K) is similar.

For (6), if ǫ♯(K) = 0 then we know by (1) and (2) that ν♯(K) = τ ♯(K) = 0, so
ν♯(K#K ′) = ν♯(K ′) and τ ♯(K#K ′) = τ ♯(K ′) by Proposition 8.4 and the additivity of
τ ♯ respectively, hence

ǫ♯(K#K ′) = 2τ ♯(K#K ′)− ν♯(K#K ′) = 2τ ♯(K ′)− ν♯(K ′) = ǫ♯(K ′).

For (7), we may assume that ǫ♯(K) = ǫ♯(K ′) = ±1 since otherwise this is a special case
of (6). By taking mirrors throughout and applying (4) as needed, we may further assume
that ǫ♯(K) = ǫ♯(K) = 1, and we wish to show that ǫ♯(K#K ′) = 1 as well. We take

2τ ♯(K#K ′) = 2τ ♯(K) + 2τ ♯(K ′)

and rearrange this to get

ǫ♯(K#K ′)− ǫ♯(K)− ǫ♯(K ′) = −
(
ν♯(K#K ′)− ν♯(K)− ν♯(K ′)

)
,

where the right side is −1, 0, or 1 by (5.2), and thus ǫ♯(K#K ′)−2 ≥ −1, or ǫ♯(K#K ′) ≥ 1.
But this is only possible if ǫ♯(K#K ′) = 1, as desired. �
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Noting that ker(ǫ♯) = ker(ν♯) by Proposition 8.5, and the latter is a subgroup of C by
Proposition 8.2, we can define a total ordering on the quotient

C/ ker(ν♯) = C/ ker(ǫ♯)

by setting
JKK ≥ JK ′K ⇐⇒ ǫ♯(K#K ′) ≥ 0.

(We use JKK to denote the equivalence class in C/ ker(ǫ♯) of the smooth concordance class
[K] ∈ C of a knot K.) This is well-defined and satisfies the axioms of a total ordering
by the properties in Proposition 8.5; we omit the proof and refer instead to [Hom14b,
Proposition 4.1].

It is possible that ker(ν♯) = ker(τ ♯), and then τ ♯ : C → R has image Z by [GLW19], so
a total ordering on C/ ker(τ ♯) ∼= Z would not be very interesting. But we expect that this
is not the case, namely that there are knots K with τ ♯(K) = 0 but ν♯(K) = ±1, and then
C/ ker(ν♯) may be a much more complicated group.

9. Applications to homology cobordism

Let Θ3
Z denote the group of integral homology 3-spheres modulo integral homology cobor-

dism. In recent work, Nozaki, Sato, and Taniguchi proved the following.

Theorem 9.1 ([NST24, Theorem 1.8]). Let K be a knot in S3. If h(S3
1(K)) < 0, where h

denotes the Frøyshov invariant [Frø02, §8], then the homology spheres

S3
1/n(K), n ≥ 1

are linearly independent in Θ3
Z.

In this section we will relate h(S3
1 (K)) to the invariant ν♯(K) as follows.

Proposition 9.2. If ν♯(K) > 0, then h(S3
1(K)) < 0.

Postponing the proof of Proposition 9.2 for now, we recall once again that τ ♯ is the
homogenization

τ ♯(K) =
1

2
lim
n→∞

ν♯(#nK)

n
of ν♯(K), which defines a real-valued homomorphism on the smooth concordance group.
Then Proposition 9.2 has the following corollary.

Theorem 9.3. Let K ⊂ S3 be a knot satisfying τ ♯(K) > 0, or more generally ν♯(K) > 0.
Then the homology spheres

S3
1/n(K), n ≥ 1

are linearly independent in Θ3
Z.

Proof. Lemma 5.3 asserts that if τ ♯(K) > 0 then ν♯(K) > 0 as well. In the latter case
Proposition 9.2 says that h(S3

1(K)) < 0, so we apply Theorem 9.1. �

The reason for the emphasis on τ ♯(K) here is that as a concordance homomorphism, it
is somewhat better behaved than ν♯(K), and in particular it is often easier to compute.
Nothing in this section will require Theorem 1.2, except for the implication

τ ♯(K) > 0 =⇒ ν♯(K) > 0
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in Lemma 5.3.

We now prove Proposition 9.2. In order to do so, we introduce several other versions of
instanton homology:

• If Y is a homology sphere, then I(Y ) is Floer’s original instanton homology [Flo88],

and Î(Y ) is Frøyshov’s reduced instanton homology [Frø02]. Both of these are Z/8Z
graded, and they are mod 4 periodic with respect to this grading [Frø02, Corollary 3].
We will follow the grading conventions of [Sav02, Sca15], which differ from those of
[Flo88]; then Frøyshov’s h invariant is defined in [Frø02, §8] as

h(Y ) = −
1

2

(
χ(I(Y ))− χ(Î(Y ))

)
.

• If Y is a homology S1 × S2 and µ generates H1(Y ), then I(Y )µ is the instanton
homology associated to a principal SO(3) bundle P → Y with w2(P ) = PD(µ), as
in [Flo90, BD95]. It has a relative Z/8Z grading which reduces to an absolute Z/2Z
grading.

The following is a special case of Fukaya’s connected sum formula for instanton homology,
as described by Scaduto [Sca15, Theorem 1.3]. All coefficients are taken in Q.

Theorem 9.4 ([Sca15]). Let Y be an integer homology sphere. Then

I#(Y ) ∼= H∗(pt)⊕
(
H∗(S

3)⊗ ker(u2 − 64)
)

as absolutely Z/4Z-graded modules, where u2 − 64 acts on
⊕3

j=0 Îj(Y ).

If instead Y is a homology S1 × S2 and µ generates H1(Y ;Z), then

I#(Y, µ)⊗H∗(S
4) ∼= ker(u2 − 64) ⊗H∗(S

3)

as relatively Z/4Z-graded modules, where u2 − 64 acts on I(Y )µ.

Proof of Proposition 9.2. Floer’s exact triangle [Flo90, BD95] relates the instanton homolo-
gies of S3

0(K) and S3
1(K) as follows: there is an exact triangle between the unreduced

homologies

(9.1) · · · → I(S3)→ I(S3
0(K))µ → I(S3

1(K))→ . . . ,

which remains exact at the homology spheres after we pass to reduced instanton homology,
as explained in the proof of [Frø02, Theorem 10]. Since I(S3) = Î(S3) = 0, this means that
the resulting

F : I(S3
0(K))µ ։ Î(S3

1(K))

is surjective, and its kernel has dimension

dimQ(I(S
3
0 (K))µ)− dimQ Î(S3

1(K)) = dimQ I(S3
1(K))− dimQ Î(S3

1(K))

= 2|h(S3
1 (K))|

over Q. Here the first equality uses the fact that I(S3
0(K))µ ∼= I(S3

1(K)) by the exact
triangle (9.1), while the second equality follows from the discussion in [Frø02, §8].

Since −S3
1(K) ∼= S3

−1(K) bounds the trace of (−1)-surgery on K, which has negative

definite intersection form, it follows from [Frø02, Theorem 3] that h(−S3
1(K)) ≥ 0, so
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h(S3
1(K)) ≤ 0 and thus dimQ ker(F ) = −2h(S3

1 (K)). If h(S3
1(K)) = 0, then F is also

injective, so it’s an isomorphism of Q[u]-modules. It thus restricts to an isomorphism

ker
(
u2 − 64 : I(S3

0(K))µ → I(S3
0(K))µ

)
∼= ker

(
u2 − 64 : Î(S3

1(K))→ Î(S3
1(K))

)
,

so we conclude from Theorem 9.4 that

dim I#(S3
0(K), µ) + 1 = dim I#(S3

1(K)).

But if ν♯(K) > 0 then this contradicts Theorem 1.1, so ν♯(K) > 0 must imply that
h(S3

1(K)) < 0. �

Remark 9.5. If ν♯(K) = 0 and K is V-shaped then (appealing to Corollary 6.2) we get
the same contradiction as in the proof of Proposition 9.2, so that h(S3

1 (K)) < 0 for such
knots as well. But then the same argument applies to the mirror K, so −h(S3

−1(K)) =

h(S3
1(K)) < 0. This shows that if ν♯(K) = 0 and K is V-shaped, then both h(S3

−1(K)) > 0

and h(S3
1(K)) < 0 must hold.

We conclude this section with another application of Proposition 9.2. Recall that a knot
K ⊂ S3 is rationally slice if it bounds a smoothly embedded disk in some rational homology
ball.

Proposition 9.6. If K ⊂ S3 is rationally slice, then ν♯(K) = τ ♯(K) = 0 and K is W-
shaped.

Proof. If K is rationally slice then S3
1(K) bounds some smooth rational homology ball X,

and since X has negative definite (in fact, trivial) intersection form, the Frøyshov invariant
of its boundary satisfies h(S3

1(K)) ≥ 0 by [Frø02, Theorem 3]. Proposition 9.2 then says
that we must have ν♯(K) ≤ 0. But the mirror K is also rationally slice, so the same
argument says that −ν♯(K) = ν♯(K) ≥ 0 and we conclude that ν♯(K) = 0. Lemma 5.3
implies that τ ♯(K) = 0 as well.

The assertion that K is W-shaped now follows from Remark 9.5: if it were V-shaped
then we would have h(S3

1(K)) < 0, but we have just argued that h(S3
1(K)) ≥ 0 instead. �

10. Knots with small r0(K)

As mentioned in the introduction, the invariants ν♯(K) and r0(K) satisfy

r0(K) ≥ |ν♯(K)| and r0(K) ≡ ν♯(K) (mod 2),

essentially by definition [BS21, Definition 3.6]. For nontrivial knots, we have r0(K) = ν♯(K)
if and only if K is an instanton L-space knot, meaning some positive rational surgery on
K is an instanton L-space, in which case [BS23, Theorem 1.15] says that K is fibered and
strongly quasipositive and that

r0(K) = ν♯(K) = 2g(K) − 1.

In this section, we study knots K ⊂ S3 with r0(K) small that just barely fail to be instanton
L-space knots, by which we mean that

r0(K)− ν♯(K) = 2.

In doing so, we classify knots with r0(K) ≤ 2, proving Theorem 1.3, a key input in the
bound on surgery slopes in Theorem 1.7, as explained in the introduction.
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We continue to use the same notation as in Section 3, and in particular we define elements

yi ∈ I#odd(S
3
0(K), µ; ti)

exactly as in (3.6). Throughout this section we will repeatedly use the following fact.

Lemma 10.1 ([BS23, Theorem 1.17]). If K ⊂ S3 is a nontrivial knot of genus g ≥ 1, then

dim I#odd(S
3
0(K), µ; tg−1) ≥ 1

with equality if and only if K is fibered.

We begin with the following proposition:

Proposition 10.2. Let K ⊂ S3 be a knot with r0(K)−ν♯(K) = 2 and ν♯(K) ≤ 1. Then K
has Seifert genus 1. Moreover, ν♯(K) ≥ −1 with equality if and only if K is the left-handed
trefoil.

Proof. We note that since r0(K) > 0 for all nontrivial K, we must have

ν♯(K) = r0(K)− 2 ≥ −1.

Furthermore, we have that

(ν♯(K), r0(K)) = (−1, 1) or (0, 2) or (1, 3).

If (ν♯(K), r0(K)) = (−1, 1) then K is a genus-1 instanton L-space knot, so K must be
the left-handed trefoil [BS23, Corollary 7.13]. We may therefore assume from now on that
(ν♯(K), r0(K)) is either (0, 2) or (1, 3).

Let g be the genus of K, and suppose that g ≥ 2. Then the homomorphisms t1−g, t0, and

t1−g are distinct. Moreover, the tg−1- and t1−g-eigenspaces of I
#(S3

0(K), µ) are isomorphic
as Z/2Z-graded modules by any of the conjugation symmetries of (2.2), so by Lemma 10.1
we must have

dim I#odd(S
3
0(K), µ; t1−g) + dim I#odd(S

3
0(K), µ; tg−1) ≥ 2.

We use (2.1) to compute that

dim I#(S3
0(K), µ) = 2dim I#odd(S

3
0(K), µ) ≥ 4,

and if equality holds then I#odd(S
3
0(K), µ; t0) = 0, hence the element y0 is zero.

Now Theorem 1.1 tells us that dim I#(S3
1(K)) = 3, so by the exactness of (3.3), we must

have
dim I#(S3

0(K), µ) ≤ 4,

hence in fact equality holds and the map

I#(X0, ν̃0) : I
#(S3)→ I#(S3

0(K), µ)

must be injective. But since ν♯(K) ≥ 0 and I#(X0, ν̃0) is injective, Proposition 5.2 tells us
that y0 is nonzero after all, and we have a contradiction. �

We would like to understand knots with (ν♯(K), r0(K)) equal to (0, 2) or (1, 3). The
only known examples are the figure eight and 52, per [BS21, Table 1], and we expect that
there are no others. In order to find further restrictions on such knots, we will study their
instanton homology in more detail. In what follows we use the same notation as in Section 9
for other versions of instanton homology, notably I(Y ) and Î(Y ) for an integral homology
sphere and I(Y )µ for a homology S1 × S2.
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The connected sum formulas of Theorem 9.4 simplify further for certain surgeries on
knots, as described in [Sca15, Corollary 1.5] for ±1-surgeries and [Sca15, §9.8] for zero-
surgeries.

Theorem 10.3 ([Sca15]). Let K ⊂ S3 be a knot of Seifert genus at most 2. Then

I#(S3
±1(K)) ∼= H∗(pt)⊕


H∗(S

3)⊗
3⊕

j=0

Îj(S
3
±1(K))




as absolutely Z/4Z-graded modules, and

I#(S3
0(K), µ)⊗H∗(S

4) ∼= I(S3
0(K))µ ⊗H∗(S

3)

as relatively Z/4Z-graded modules.

Cobordism maps of the form I#(X, ν) : I#(Y1)→ I#(Y2) are homogeneous with respect
to the Z/4Z grading: according to [Sca15, Proposition 7.1], we have

(10.1) deg I#(X, ν) ≡ −
3

2
(χ(X) + σ(X)) +

1

2
(b1(Y2)− b1(Y1)) + 2[ν]2 (mod 4).

This will be useful in proving the following proposition.

Proposition 10.4. Suppose that (ν♯(K), r0(K)) = (0, 2). Then K is the figure eight, and
it satisfies

dim I#(S3
0(K), µ) = 2, dim I#(S3

0(K)) = 4.

Proof. We note from Proposition 10.2 that K has Seifert genus 1, and that

{dim I#(S3
0(K)),dim I#(S3

0(K), µ)} = {2, 4}

by Corollary 6.2. If dim I#(S3
0(K), µ) = 2 (which means that dim I#(S3

0(K)) = 4), then

by (2.1) we know that I#odd(S
3
0(K), µ) is 1-dimensional, which by Lemma 10.1 is equivalent

to K being fibered. If K were a trefoil then we would have (ν♯(K), r0(K)) = (±1, 1), so K
must be the figure eight instead.

Assuming from now on thatK is not the figure eight, we must have dim I#(S3
0(K), µ) = 4

and so
dim I#(S3

0(K)) = 2.

We will use this computation of I#(S3
0(K)) to completely determine the instanton homology

I(S3
−1(K)), and hence the Alexander polynomial ∆K(t). We will then use this to get a lower

bound on the dimension of I(S3
−1(C)), where C is the (−1, 2)-cable of K, and show that the

given values of (ν♯(K), r0(K)) prevent I(S3
−1(C)) from being as large as required, leading

to a contradiction.

To begin, Theorem 10.3 implies that I#(S3
±1(K)) always has a Q0 summand, where

we use subscripts to denote the Z/4Z grading. The total dimension is 3 and the Euler
characteristic is 1 by (2.1), so there are two more Q summands, one in an odd grading and
one in an even grading. Any odd element of Z/4Z is adjacent to any even element, so we
can write

I#(S3
−1(K)) ∼= Q0 ⊕Qk−1 ⊕Qk

I#(S3
1(K)) ∼= Q0 ⊕Qm−1 ⊕Qm

for some k,m ∈ Z/4Z.
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We now examine the surgery exact triangles coming from the n = −1 and n = 0 cases of
(3.2), namely

· · · → I#(S3)
F−1
−−→ I#(S3

−1(K))
G0−−→ I#(S3

0(K))
H0−−→ . . .

and

· · · → I#(S3)
F0−→ I#(S3

0(K))
G1−−→ I#(S3

1(K))
H1−−→ . . . .

Each of these maps is induced by a 2-handle cobordism, and hence has a degree mod 4
given by (10.1). These degrees are computed in [LPCS22, Corollary 5.2]: we have

deg(F−1) ≡ 2, deg(G0) ≡ 3, deg(H0) ≡ 2,

deg(F0) ≡ 3, deg(G1) ≡ 2, deg(H1) ≡ 2.

Since I#(S3) ∼= Q0 and dim I#(S3
0(K)) = 2 while dim I#(S3

±1(K)) = 3, the maps H0 and

F0 are both zero. In the first triangle, the image of F−1 is a Q2 summand of I#(S3
−1), so k

must be either 2 or 3 and then

I#(S3
−1(K)) ∼=

{
Q0 ⊕Q1 ⊕Q2, k = 2

Q0 ⊕Q2 ⊕Q3, k = 3
=⇒ I#(S3

0(K)) ∼=

{
Q0 ⊕Q3, k = 2

Q2 ⊕Q3, k = 3.

In the second triangle, the surjection H1 must send a Q2 summand of I#(S3
1(K)) onto

I#(S3) ∼= Q0, so m is either 2 or 3. Then

I#(S3
1(K)) ∼=

{
Q0 ⊕Q1 ⊕Q2, m = 2

Q0 ⊕Q2 ⊕Q3, m = 3
=⇒ I#(S3

0(K)) ∼=

{
Q2 ⊕Q3, m = 2

Q1 ⊕Q2, m = 3.

Since both computations must produce the same value of I#(S3
0(K)), we have k = 3 and

m = 2.

We have shown that I#(S3
−1(K)) ∼= Q0 ⊕Q2 ⊕Q3, so Theorem 10.3 now tells us that

Î(S3
−1(K)) ∼= Q3 ⊕Q7,

since Î is mod 4 periodic. Since K has genus 1, the Frøyshov h invariant satisfies

0 ≤ h(S3
−1(K)) ≤ 1

by [Frø02, Lemma 9]. If h(S3
−1(K)) were zero then we would have Î(S3

−1(K)) ∼= I(S3
−1(K)),

but by Floer’s exact triangle [Flo90, BD95] the latter is isomorphic to I(S3
0(K))µ, which

has the same dimension as I#(S3
0(K), µ) ∼= Q4 by Theorem 10.3. Thus h(S3

−1(K)) = 1, and
by the definition of the h invariant we conclude that

dim Îj(S
3
−1(K)) = dim Ij(S

3
−1(K))−

{
0, j 6= 1, 5

1, j = 1, 5;

this follows implicitly from [Frø02, §8]. (It is claimed explicitly in [Sca15, §9.3], but for
gradings 0, 4 instead of 1, 5 due to a typo; it is easy to check from the material immediately
preceding that claim that the version claimed here is correct.) Thus

I(S3
−1(K)) ∼= Q1 ⊕Q3 ⊕Q5 ⊕Q7.

In particular we have

−4 = χ(I(S3
−1(K))) = 2λ(S3

−1(K)) = −∆′′
K(1),
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where λ is the Casson invariant, so if ∆K(t) = at + (1 − 2a) + at−1 then a = 2. In other
words, ∆K(t) = 2t− 3 + 2t−1.

We now let C = C−1,2(K) be the (−1, 2)-cable of K, represented by a curve in ∂N(K)
in the homotopy class µ−1λ2. Then C has genus 2 and Alexander polynomial

∆C(t) = ∆K(t2) = 2t2 − 3 + 2t−2,

so that the instanton homology of S3
−1(C) has Euler characteristic

χ(I(S3
−1(C))) = −∆′′

C(1) = −16.

Applying Floer’s exact triangle again, we have

(10.2) dim I(S3
0(C))µ = dim I(S3

−1(C)) ≥ 16.

On the other hand, a result of Gordon [Gor83, Corollary 7.3] says that

S3
−1(C) ∼= S3

−1/4(K),

and so we apply Theorem 1.1 with (ν♯(K), r0(K)) = (0, 2) to get

dim I#(S3
−1(C)) = dim I#(S3

−1/4(K)) = 9,

hence by applying the exact triangle (3.3) to C and reversing orientation we conclude that

dim I#(S3
0(C), µ) = 8 or 10.

But now Theorem 10.3 says that dim I(S3
0(C))µ is 8 or 10, contradicting (10.2). �

Remark 10.5. As discussed in Remark 1.8, the knots K with r0(K) = 3 have also been
classified since the initial appearance of this paper: the only such knots are T2,5, 52, and

their mirrors. This was proved by Farber, Reinoso, and Wang [FRW22] in the case ν♯(K) =
±3, and by Li and Ye [LY22b, §8] in the case ν♯(K) = ±1 following our work [BS24,
Theorem 3.13] in the Heegaard Floer setting. These results require substantially different
techniques that are beyond the scope of this paper.

As mentioned in the introduction, Proposition 10.4 implies Theorem 1.3 as a corollary:

Proof of Theorem 1.3. Suppose r0(K) ≤ 2. Then we must have

(ν♯(K), r0(K)) = (0, 0) or (±1, 1) or (0, 2).

As mentioned in the introduction, the first two cases correspond to the unknot and trefoils,
respectively [BS23, Proposition 7.12]. Proposition 10.4 implies that K is the figure eight
knot in the third case. �

Proposition 10.4 also allows us to understand when the framed instanton homology of
zero-surgery is as small as possible. In particular, it resolves a question from [BS21] about
whether the figure eight knot is “V-shaped” or “W-shaped”, by proving it to be W-shaped.

Theorem 10.6. We have dim I#(S3
0(K)) = 2 if and only if K is the unknot or a trefoil.

Proof. If ν♯(K) 6= 0, then dim I#(S3
0(K)) = 2 if and only if r0(K) + |ν♯(K)| = 2, by

Theorem 1.1. Since r0(K) ≥ |ν♯(K)| ≥ 1, this happens precisely when r0(K) = |ν♯(K)| =
±1, so either K or its mirror is a genus-one instanton L-space knot, and the only such knot
is the right-handed trefoil [BS23, Corollary 7.13].
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Assuming now that ν♯(K) = 0, we know by Corollary 6.2 that

2 = dim I#(S3
0(K)) ∈ {r0(K), r0(K) + 2},

so r0(K) is either 0 or 2. If r0(K) = 0 then K is the unknot, and indeed we have

dim I#(S1 × S2) = 2

by [Sca15, §7.6]. But if r0(K) = 2 then Proposition 10.4 says that K would have to be the
figure eight, for which dim I#(S3

0(K)) = 4 anyway. �
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