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CAUSAL BUBBLES IN GLOBALLY HYPERBOLIC SPACETIMES

LEONARDO GARCÍA-HEVELING, ELEFTERIOS SOULTANIS

Abstract. We give an example of a spacetime with a continuous metric which is globally hyper-
bolic and exhibits causal bubbling. The metric moreover splits orthogonally into a timelike and
a spacelike part. We discuss our example in the context of energy conditions and the recently
introduced synthetic timelike curvature-dimension (TCD) condition. In particular we observe that
the TCD-condition does not, by itself, prevent causal bubbling.

1. Introduction

Spacetimes where the Lorentzian metric is merely continuous often appear in mathematical
General Relativity as weak solutions of Einstein’s Equations [4, 10, 19]. Chruściel and Grant [7]
were the first to study their causal structure, discovering a phenomenon called causal bubbling (see
below). Later, Sämann [18] studied globally hyperbolic spacetimes with continuous metrics in detail
and showed that, just as in the smooth case, global hyperbolicity can be equivalently characterized
by any of the following:

(i) Non-total imprisonment and compact causal diamonds,
(ii) Existence of a Cauchy hypersurface,
(iii) Existence of a Cauchy time function.

In the same paper (see Section 7) Sämann raises the question whether globally hyperbolic space-
times can be causally bubbling. In this short note we give an example of a globally hyperbolic

spacetime with continuous metric −dt2 + ρdx2 exhibiting causal bubbling.
We define causal bubbling on a spacetime (M,g) with continuous metric g as follows. Set

B±(p) = J±(p) \ I±(p)
The set B±(p) is called a (future/past) causal bubble if it is non-empty.1 Here I±(p) and J±(p)
are the timelike and causal future/past cones defined using Lipschitz (or equivalently absolutely
continuous) curves. We refer to [11] for a discussion on timelike and causal cones defined via smooth
curves and their relationship with the notion used here. See also [9, 14] and [13, Section 5.1] for
further analyses on causality with continuous metrics.

Our example stands out from previously known examples of causally bubbling spacetimes for
two reasons.

(a) It is manifestly globally hyperbolic,
(b) The metric splits orthogonally into a timelike and a spacelike part.

1This definition corresponds to external bubbling in [11] and is equivalent to the failure of the push up property,
see [11, Theorem 2.12].
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The second statement (b) would follow automatically from (a) if the metric were at least C2 [2], but
not if it is merely continuous. In particular, while examples 3.1 and 3.2 in [11] (which exhibit internal
bubbling) likely are globally hyperbolic, it is not clear whether the metric splits orthogonally as in
(b). Whether Example 1.11 in [7] is globally hyperbolic is less clear, but it is known to be strongly
causal (see [13, Section 5.1]).

2. The example

Consider the (1 + 1)-dimensional spacetime R
2 equipped with the continuous Lorentzian metric

g := −dt2 + ρ(t, x)dx2, ρ(t, x) := 1 +
√

(t− |x|)+.(2.1)

With the natural choice of time orientation, t is a time function. Since the lightcones of the metric
(2.1) are narrower than those of the Minkowski metric, t is a Cauchy time function, and hence the
spacetime is globally hyperbolic.

To see that the causal future of the origin contains a causal bubble, we begin by considering the
ODE for the null curves γ(s) = (α(s), β(s)):

0 = −α′(s)2 +
(

1 +
√

(α(s)− |β(s)|)+
)

β′(s)2.

A null curve γ starting at the origin, parametrized as (α(s), s) thus satisfies α′(s)2 = 1 +
√

(α(s)− s)+ or, by denoting y(s) = α(s)− s ≥ 0,

y′(s) + 1 =

√

1 +
√

y(s), y(0) = 0.(2.2)

In addition to the trivial solution y ≡ 0, the initial value problem (2.2) also admits another solution,
expressed in implicit form as

s =
4

3

[

(

1 +
√

y(s)
)3/2

− 1

]

+ 2
√

y(s).

Indeed, differentiating both sides yields

1 = 2
d

ds

√

y(s)(1 +
√

y(s))1/2 + 2
d

ds

√

y(s)

= y′(s)

√

1 +
√

y(s) + 1
√

y(s)
=

y′(s)
√

1 +
√

y(s)− 1
.

Denoting

f(y) :=
4

3

[

(1 +
√
y)3/2 − 1

]

+ 2
√
y,

we conclude that γ = (s + f−1(s), s) is a null curve as well as the straight line given by γ = (s, s).
In fact there is a 1-parameter family of null curves starting at 0, given by

γu(s) :=

{

(s, s) for 0 ≤ s < u,

(s + f−1(s− u), s) for s ≥ u,
(2.3)
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Figure 1. The causal bubble A as in Proposition 2.1.

where u ∈ [0,∞]. One can check that the curves γu are smooth for all parameter values except
s = u, where they are only C1,1 regular. Note also that on smooth, two-dimensional spacetimes,
every null curve is a null geodesic. Hence, for u < ∞, γu|(u,∞) is a null geodesic, as it is contained
in the region where the metric is smooth. At s = u, however, γu is not locally length maximizing.

Proposition 2.1. The non-empty open set A := {(t, x) : x > 0, 0 < t−x < f−1(x)} ⊂ R
2 consists

of points in J+(0) \ I+(0).
Consequently R

2 equipped with the globally hyperbolic metric (2.1) contains causal bubbles.

Proof. The inclusion A ⊂ J+(0) is clear. Let p ∈ A. We first show that p 6∈ I+(0). Since the set
A is foliated by the null curves (2.3), there is a unique u ∈ (0,∞) such that γu passes through p.
Because the metric is smooth outside of t = ±x, γu is a null geodesic generating the boundary of
I−(p), at least from (u, u) until p. This means that any past-directed timelike curve σ starting
at p must intersect the diagonal at some point (ū, ū) with ū ≥ u > 0 (see Figure 1). It follows
that σ cannot reach 0; indeed, following the diagonal would introduce a null piece, while leaving
the diagonal violates the causality of the curve (the metric (2.1) has narrower lightcones than
those of the Minkowski metric). We conclude that 0 6∈ I−(p), (equivalently, p 6∈ I+(0)) and hence
A ∩ I+(0) = ∅. But since A is open, it cannot contain any boundary points of I+(0) either, hence

also A ∩ I+(0) = ∅, concluding the proof. �

3. Discussion

3.1. Strong energy condition. As in previously known examples [7, 9, 11, 14] causal bubbling
arises from the branching of null geodesics. Chruściel and Grant noted [7, Rem. 1.19] that, in the
Riemannian case, branching is associated with curvature being unbounded from below. Indeed, in
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our example (in {t 6= |x|}) the Ricci scalar, given by

R =

{

− ρ+(ρ−1)2

4ρ2(ρ−1)3 if t > |x|
0 if t < |x|,

diverges to −∞ as t ց |x|. Note however that in dimension 1 + 1 the Ricci tensor is given by
Ric = 1

2Rg and thus

(3.1) Ric(v, v) ≥ 0 for all causal vectors v in {t 6= |x|}.
In other words the strong energy condition is satisfied. Physically speaking causal bubbling appears
to be a consequence of the presence of infinite (but positive) effective energy density (see [12] for
an in-depth discussion of energy conditions).

3.2. Synthetic curvature bounds. Recently, a synthetic notion of timelike curvature dimension
(TCD) bounds on (non-smooth) Lorentzian pre-length spaces has been put forth using optimal
transport [5, 17], in analogy with the very successful metric theory [1, 15, 21, 22]. The entropic
convexity condition defining TCD(K,N)-spaces asks that the Rényi entropy

Ent(f vol) :=

∫

f log fd vol

is (K,N)-convex along timelike geodesics in a space of probability measures. We refer to [13, Def-
inition 2.8] and [3, Definition 2.17] (see also [5, 6]) for the definitions and properties of Lorentzian
pre-length spaces and (K,N)-convexity, respectively. On smooth spacetimes, such convexity prop-
erties characterize the strong energy condition, cf. [17].

Despite satisfying (3.1) the Rényi entropy associated to the volume measure of the metric (2.1)
is not (K,N)-convex along Lorentz-Wasserstein geodesics, i.e. the metric (2.1) does not satisfy

the entropic convexity condition for any (K,N).2 This follows from the fact that t 7→
− log ρ(t, x) is not (K,N)-convex for any x ∈ R, cf. [20].

However, restricted to a suitable subset, our example demonstrates that the TCD-condition does
not prevent causal bubbling. Indeed, the closed set Y := {t ≥ |x|} ⊂ R

2 with the restriction of
the metric (2.1) satisfies the (weak) entropic (0, 2)-convexity condition but contains causal bubbles.
Notice that (Y, g) is obtained as the uniform pointwise limit of the sequence of smooth metrics

gj := −dt2 + ρj(t, x)dx
2, ρj(t, x) = ρ(t+ 1/j, x)(3.2)

on Y , which all satisfy the strong energy condition (3.1) everywhere on Y and are thus TCD(0, 2)-
spaces.3

In closing we point out that, in the metric setting, branching of geodesics is excluded by the
Riemannian curvature-dimension (RCD) condition but not by the (weak) CD-condition, see [8]
and [16], respectively.

Remark 3.1. Note that all the conclusions in this note, including those about curvature, are valid
in higher dimensions as seen by considering metrics g = −dt2 + ρ(t, |x|)dx2 in R

n+1.

2While Lorentzian pre-length spaces are required (by definition) to have the push up property the entropic con-
vexity condition makes sense regardless of the validity of push up.

3Note that, while the spaces (Y, gj) are Lorentzian pre-length spaces, every point on {t = |x|} ⊂ Y has empty
chronological past and thus they fail to be Lorentzian length spaces, cf. [13, Definition 3.22].
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