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A FURSTENBERG-TYPE PROBLEM FOR CIRCLES, AND A

KAUFMAN-TYPE RESTRICTED PROJECTION THEOREM IN R
3

MALABIKA PRAMANIK, TONGOU YANG AND JOSHUA ZAHL

Abstract. We resolve a conjecture of Fässler and Orponen on the dimension of exceptional pro-
jections to one-dimensional subspaces indexed by a space curve in R

3. We do this by obtaining
sharp Lp bounds for a variant of the Wolff circular maximal function over fractal sets for a class
of C2 curves related to Sogge’s cinematic curvature condition. A key new tool is the use of lens
cutting techniques from discrete geometry.

1. Introduction

In 1954, Marstrand [20] proved that if Z ⊂ R
2 is Borel, then dim (Z · v) = min(dimZ, 1) for

a.e. v ∈ S1. Here and throughout, “dim ” will mean Hausdorff dimension. This was sharpened by
Kaufman [16] in 1968, who bounded the size of the set of exceptional directions for which the above
inequality fails.

Theorem 1.1 (Kaufman). Let Z ⊂ R
2 be Borel, and let 0 ≤ s < min{dimZ, 1}. Then

dim {θ ∈ S1 : dim (Z · θ) < s} ≤ s. (1.1)

Marstrand and Kaufman’s results have been generalized to higher dimensions and other settings,
and they are the foundation of projection theory, which is an active area in geometric measure
theory. See [22] for an introduction to the topic, or [5] for a recent survey of the area.

In this paper, we will be interested in analogues of the above results for Borel sets Z ⊂ R
3. As

a starting point, one analogue of Marstrand’s theorem says that dim (Z · v) = min(dimZ, 1) for
a.e. v ∈ S2. There are also analogues of Kaufman’s theorem; for example, if 0 ≤ s < min{dimZ, 1}
then

dim {v ∈ S2 : dim (Z · v) < s} ≤ 1 + s. (1.2)

See [21] for details. In particular, (1.2) says that the set of v ∈ S2 for which dim (Z · v) = 0
has dimension at most 1, and this can be sharp—for example, if Z is a subset of the z-axis then
Z · v = {0} for each v in the great circle S2 ∩ {z = 0}. It is possible that stronger bounds hold if
we restrict the set of projection directions to a subset of S2 that does not concentrate near great
circles. In this direction, Fässler and Orponen [6] conjectured the following restricted Marstrand-
type estimate.

Conjecture 1.2. Let I ⊂ R be a compact interval and let γ : I → S2 be a C2 curve that satisfies
the “escaping great circle” condition

span
{

γ(θ), γ̇(θ), γ̈(θ)
}

= R
3 for all θ ∈ I. (1.3)

Let Z ⊂ R
3 be analytic. Then for almost every θ ∈ I, dim (γ(θ) · Z) = min(dimZ, 1).

In [6], Fässler and Orponen proved Conjecture 1.2 in the special case dim (Z) ≤ 1/2. In [12],
He considered the related problem of estimating the size of the set where dim (γ(θ) · Z) is close
to (dimZ)/3. In [13], Käenmäki, Orponen, and Venieri used ideas from incidence geometry, and
specifically a circle tangency bound due to Wolff [29] to prove Conjecture 1.2 (for all Z) in the
special case γ(θ) = 1√

2
(cos θ, sin θ, 1). Our contribution is the following Kaufman-type sharpening

of Conjecture 1.2.
1
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Theorem 1.3. Let I ⊂ R be a compact interval and let γ : I → S2 be a C2 curve that satisfies
the “escaping great circle” condition (1.3). Let Z ⊂ R

3 be analytic and let 0 ≤ s < min{dimZ, 1}.
Then

dim {θ ∈ I : dim (Z · γ(θ)) < s} ≤ s. (1.4)

In particular, Conjecture 1.2 is true.

Added November 14, 2022: There have been several exiting recent developments related to
Theorem 1.3. First, Gan, Guth and Maldague [9] have also recently and independently resolved
Conjecture 1.2, using a different method related to decoupling. Second, Gan, Guo, Guth, Harris,
Maldague and Wang [8] solved a closely related conjecture of Fässler and Orponen, where pro-
jections onto one-dimensional subspaces of R3 are replaced by projections onto two-dimensional
subspaces. Finally, Harris [11] proved that if dimZ > 1, then γ(θ) · Z has positive Lebesgue
measure for almost every θ.

1.1. A Furstenberg-type problem for circles. Theorem 1.3 follows from an Lp bound for a
variant of Wolff’s circular maximal function, where circles have been replaced by a class of C2 curves
that are the graphs of we call “cinematic functions,” and the domain of integration is restricted to
a special type of fractal set. To state this result, we will introduce several definitions. First, we
recall the definition of a (δ, α;C)1-set from [14].

Definition 1.4. Let 0 < α ≤ 1, δ > 0, C ≥ 1. A set E ⊂ [0, 1] is called a (δ, α;C)1-set if

(a) E is a union of intervals of length δ.
(b) For every interval I ⊂ [0, 1], we have the Frostman-type non-concentration condition

|E ∩ I| ≤ Cδ1−α|I|α. (1.5)

Since (1.5) always holds for intervals of length ≤ δ, every (δ, α;C)1-set is also a (δ, β;C)1-set if
β ≥ α. We will be concerned with certain subsets of the plane, which are fibered products of
(δ, α;C)1-sets.

Definition 1.5. Let 0 < α, β ≤ 1, δ > 0, and C ≥ 1. A set E ⊂ [0, 1]2 is called a (δ, α;C)1 ×
(δ, β;C)1 quasi-product if E is Borel and can be expressed in the form

E =
⋃

a∈A
{a} ×Ba,

where A is a (δ, α;C)1-set and Ba is a (δ, β;C)1-set for each a ∈ A.

Our main result is a maximal function estimate, where the domain of integration is a quasi-
product. Our next task is to introduce the class of objects that can be analyzed using our maximal
function estimate. The following definition was inspired by Sogge’s notion of cinematic curvature
[24], which was considered by Kolasa and Wolff [17] in the context of the Wolff circular maximal
function.

Definition 1.6. Let I ⊂ R be a compact interval and let F ⊂ C2(I). We say F is a family of cin-
ematic functions, with cinematic constant K and doubling constant D, if the following conditions
hold.

(1) F has diameter at most K (here and in what follows, we use the usual metric on C2(I)).
(2) F is a doubling metric space, with doubling constant at most D.
(3) For all f, g ∈ F , we have

inf
t

(

|f(t)− g(t)| + |f ′(t)− g′(t)|+ |f ′′(t)− g′′(t)|
)

≥ K−1‖f − g‖C2(I). (1.6)

With these definitions, we can now state the following variant of Wolff’s circular maximal function
theorem.
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Theorem 1.7. Let ε > 0, 0 < α ≤ ζ ≤ 1, and D,K ≥ 1. Then the following is true for all
δ > 0 sufficiently small (depending on D,K, ε only). Let F be a family of cinematic functions, with
cinematic constant K and doubling constant D. Let E be a (δ, α; δ−ε)1 × (δ, α; δ−ε)1 quasi-product.

Let F ⊂ F be a set of functions that satisfies the Frostman-type non-concentration condition

#(F ∩B) ≤ δ−ε(r/δ)ζ for all balls B ⊂ C2(I) of radius r ≥ δ. (1.7)

Then
∫

E

(

∑

f∈F
1fδ

)3/2
≤ δ2−α/2−ζ/2−Cε(#F ), (1.8)

where C = C(D) depends only on D, and f δ is the δ-neighborhood of the graph of f .

Remarks.

1. Since [0, 1]2 is a (δ, 1; 1)1 × (δ, 1; 1)1 quasi-product and I,F are bounded, as a special case of
Theorem 1.7 we obtain the estimate

∥

∥

∥

∑

f∈F
1fδ

∥

∥

∥

3/2
≤ δ−Cε(δ#F )2/3, (1.9)

where F satisfies (1.7) for ζ = 1, and the order of parameters are the same as in the statement
of Theorem 1.7.

2. As a special case of (1.9), Theorem 1.7 generalizes Wolff’s L3/2 circular maximal function bound
from [27]. The (upper) halves of circles with centers in a small neighborhood of the origin and
radii between 1 and 2 form a family of cinematic functions C over the interval [−1/2, 1/2]. If
we paramaterize a circle by it’s center-radius pair (x, y, r), then a set C ⊂ C obeys the non-
concentration condition (1.7) if the corresponding collection of centre-radius pairs PC ⊂ R

3

obeys a corresponding Frostman-type non-concentration condition; namely,

#(PC ∩B) ≤ δ−ε(r/δ) for all balls B ⊂ R
3 of radius r ≥ δ. (1.10)

Thus if C is a set of circles with centers in [0, 1]2 and radii between 1 and 2, whose center-radius
pairs obey (1.10), then Theorem 1.7 says that

∥

∥

∥

∑

c∈C
1cδ

∥

∥

∥

3/2
≤ δ−Cε(δ#C)2/3. (1.11)

In [27], Wolff proved (1.7) in the special case where the circles in C had δ-separated radii.

3. Theorem 1.7 generalizes the third author’s variable coefficient Wolff circular maximal function
bound [31] from curves given by a C∞ defining function to curves given by a C3 defining function
(the latter is the minimal amount of regularity required to state Sogge’s cinematic curvature
condition for the defining function). A precise statement is slightly technical, and is given in
Appendix A.

4. Theorem 1.7 has proved useful in other contexts beyond the proof of Theorem 1.3. For example,
Wang and the third author [26] used Theorem 1.7 to prove a special case of the Kakeya conjecture
for sticky Kakeya sets in R

3, and Katz, Wu, and the third author [15] used Theorem 1.7 to prove
a special case of the Kakeya conjecture for SL2 Kakeya sets. Chang, Dosidis, and Kim [3] used
a corollary of Theorem 1.7 to analyze a Nikodym-type maximal function associated to spheres
in R

n. Fässler and Orponen [7] used Theorem 1.7 to study vertical projections in the first
Heisenberg group. We remark that in [26], it is crucial that Theorem 1.3 holds for C2 curves;
previous maximal function bounds are insufficient.

Theorem 1.7 will be discussed further in Section 1.3, and the complete proof will be given in Section
5.
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1.2. From maximal functions to restricted projections. We will briefly sketch the proof of
Theorem 1.3 and describe the connection between Theorems 1.3 and 1.7. For the purpose of this
proof sketch, we will ignore many technical details. A complete proof is given in Section 2. Let
Z ⊂ R

3 be Borel with dimZ = ζ ≤ 1, and let 0 ≤ s < dimZ. Let Θ = {θ ∈ I : dim (Z · γ(θ)) < s},
and suppose for contradiction that dimΘ = α > s.

In [13], Käenmäki, Orponen, and Venieri observed that this problem could be transformed to a
question about curves in the plane. For each z ∈ R

3, define the plane curve

Γz = {(θ, z · γ(θ) : θ ∈ I}. (1.12)

Then for each θ ∈ Θ, the vertical line Lθ = R× {θ} satisfies dim
(

Lθ ∩
⋃

Γz

)

< s.
Next, we discretize the arrangement at a small scale δ > 0. The idea (ignoring some technical

details) is that we replace Z by a δ-separated subset Zδ of cardinality roughly δ−ζ that satisfies a
Frostman-type non-concentration condition, and we replace Θ by a (δ, α; δ−ε)1-set, which we denote
by Θδ. For each z ∈ Zδ, let Γδ

z be the δ-neighborhood of the curve Γz. Then for most θ ∈ Θδ,
Lθ∩

⋃

z∈Zδ
Γδ
z will have one-dimensional Lebesgue measure at most δ1−η−ε, and it will be contained

in a (δ, s, δ−ε)1-set. Thus by Hölder’s inequality we have that
∫

Θδ×R

(

∑

z∈Zδ

1Γδ
z

)3/2
≥ δ2+

1
2
s− 3

2
ζ−α+ε. (1.13)

Most of the integrand in (1.13) is supported on a (δ, α; δ−ε)1 × (δ, α; δ−ε)1 quasi-product. We can
use the “escaping great circle” condition (1.3) to show that the set of curves {Γδ

z : z ∈ Zδ} are the
graphs of functions from a family of cinematic functions, and the Frostman-type non-concentration
condition on Zδ implies the analogous bound (1.7). Thus we can apply Theorem 1.7 to upper-
bound (1.13). Comparing (1.8) and (1.13) (and recalling that Zδ has cardinality roughly δ−ζ), we
conclude that α ≤ s. This gives us our desired contradiction and completes the proof.

Remarks.

1. The main challenge when executing the proof strategy described above is that we must discretize
the set Z, the set Θ, and the sets Lθ ∩

⋃

Γz at a common scale δ. We refer the reader to Section
2 for details.

2. Our bound (1.8) in Theorem 1.7 becomes stronger as the dimension α of the quasi-product E
decreases. With this sensitivity to E, Theorem 1.7 is related to the Furstenberg set problem
for curves; see [18] for a related result on this topic. If we replace the domain of integration in
(1.8) by R

2 or [0, 1]2, then it is possible for the LHS of (1.8) to be as large as δ#F . On the
other hand, it is easy to verify that if the RHS of (1.8) were replaced by the weaker estimate
δ#F , then this would not be sufficient to prove the Kaufman-type estimate from Theorem 1.3
(though it would still be strong enough to prove Conjecture 1.2).

1.3. Proof sketch of Theorem 1.7. We conclude the introduction with a discussion of the main
ideas in Theorem 1.7 and a brief sketch the proof. In [28], Wolff proved that for each ε > 0 and all
δ > 0 sufficiently small, if C is a set of circles with δ-separated radii 1 ≤ r ≤ 2, then

∥

∥

∥

∑

c∈C
1cδ

∥

∥

∥

p
≤ δ−ε(δ#C)1/p, p = 3/2, (1.14)

where cδ denotes the δ-neighborhood of the circle c. Wolff’s proof was quite technical, but it has
been simplified in several follow-up works [29, 23]. The main ingredient in these later proofs was
a bound on the number of “tangency rectangles” determined by the arrangement C. Informally,
a tangency rectangle is a curvilinear rectangle R of dimensions δ1/2 × δ (other dimensions are
possible, but we will ignore this for now) that is contained in at least two annuli cδ1, c

δ
2, with

c1, c2 ∈ C. Heuristically, we may suppose that every pair of circles c1, c2 ∈ C either intersect
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transversely, in which case |cδ1∩cδ2| ∼ δ2, or they intersect tangentially, in which case |cδ1∩cδ2| ∼ δ3/2

and the intersection is localized to a tangency rectangle.
The contribution to the LHS of (1.14) from the first type of intersection is negligible. Indeed, if

every pair of circles intersected transversely, then (1.14) would hold for p = 2, which is a stronger
estimate. Thus the goal is to control the number of tangential intersections, or more precisely,
the number of tangency rectangles where these intersections occur. Let R be a set of tangency
rectangles that cover all the tangential intersections determined by C. For each R ∈ R, let m(R)
be the number circles c ∈ C with R ⊂ cδ. If the rectangles in R were disjoint and if the LHS of
(1.14) was concentrated on these rectangles, then we would have a ℓ3/2(R) → L3/2(R2) bound of
the form

∥

∥

∥

∑

c∈C
1cδ

∥

∥

∥

3/2
≤ δ

(

∑

R
m(R)3/2

)2/3
. (1.15)

We caution that reader that in general, (1.15) is not true as stated. However, the heuristic (1.15)
was made precise by Schlag [23], who used induction on scales and a bilinear =⇒ linear argument

to prove that (1.14) would follow from a bilinear version of the weak ℓ3/2 bound

#{R ∈ R : m(R) ≥ k} ≤ (#C/k)3/2. (1.16)

Previously in [29], Wolff had proved a suitable bilinear version of (1.16) using the “cuttings” method
developed by researchers in computational geometry in the late 1980s (see [4, 1]), and these two
results combined to give a new proof of (1.14).

The cuttings method makes crucial use of the property that circles are algebraic curves. In
[30], the third author extended Wolff’s arguments and the cuttings method to obtain an analogue
of (1.14) where circles are replaced by algebraic curves of bounded degree that satisfy Sogge’s
cinematic curvature condition (see also [17] for earlier work in this direction). In [31], the third
author used the newly developed polynomial partitioning technique of Guth and Katz [10] to extend
(1.14) to smooth curves with cinematic curvature. All of these techniques, however, require that
the curves are algebraic (or in the case of smooth curves, that they can be accurately approximated
by moderately low degree algebraic curves). These methods do not work, and new ideas are needed,
for curves that are merely Ck.

The main difficulty in proving Theorem 1.7 is establishing an analogue of (1.16) for C2 curves.
We do this by adapting a result due to Marcus and Tardos [19] from topological graph theory,
which concerns objects called lenses. In brief, if C is a set of Jordan curves in the plane, then a
lens is a pair of curve-segments λ1 ⊂ γ1; λ2 ⊂ γ2; γ1, γ2 ∈ C, so that λ1 and λ2 intersect at their
endpoints, and λ1∪λ2 is homeomorphic to S1. For example, if two circles c1, c2 with well-separated
centers share a common tangency rectangle, then after a small perturbation we expect to find arcs
of c1 and c2 of length roughly δ1/2 that create a lens.

Lemma 10 from [19] says that an arrangement of n closed Jordan curves that satisfy a certain

“pseudo-circle” property determines O(n3/2 log n) pairwise non-overlapping lenses. We use this
result to obtain an analogue of (1.16) by carefully perturbing our arrangement of curves, so that
the number of tangency rectangles in R is comparable to the number of lenses. See Proposition
4.1 for a precise statement, and Section 4 for the details of this argument.

With Proposition 4.1 in hand, it remains to prove Theorem 1.7. We encounter several difficulties.
First, our bilinear analogue of (1.16) is more general than the corresponding estimates from [29,
30, 31] because it applies to C2 curves rather than algebraic (or smooth) curves. However, our
bilinear analogue of (1.16) requires slightly stronger assumptions, which do not work well with
induction on scales. Thus we need a new bilinear =⇒ linear argument that does not use induction
on scales. Closely related to this difficulty is the annoyance that intersections between curves need
not be completely tangential or transverse—there are many intermediate amounts of tangency
or transversality. We handle these difficulties by combining a L2 argument at fine scales with a
suitable bilinear version of (1.16) at coarse scales. In brief, we define a parameter ∆ that measures
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the typical amount of tangency between curves; if ∆ = δ then the main contribution to the LHS
of (1.14) comes from pairs of curves that intersect completely tangentially, while if ∆ = 1 then the
main contribution comes from pairs of curves that intersect completely transversely. We then divide
R
2 into rectangles of dimensions ∆×∆1/2. If two curves intersect, then typically this intersection

is localized to one such rectangle, and the curves are tangent at scale ∆. Thus we can use a bilinear
analogue of (1.16) to control the number of tangency rectangles at scale ∆. Within each rectangle,
most pairs of curves intersect with a precisely prescribed amount of transversality. Thus we can
use a L2 argument to control the contribution from each rectangle. This is the most technical part
of the paper, and the details are in Section 5.

1.4. Notation. To reduce clutter, we will write A . B or A = O(B) if there is a constant C > 0 so
that A ≤ CB. The constant C will be allowed to depend on several quantities, which are context-
dependent. Based on context, C may depend on any of the quantities |I|, γ, and dimZ from the
statement of Theorem 1.3, and also the quantites K, D, and ε from the statement of Theorem 1.7.

In the arguments that follow, we will frequently introduce a small parameter δ > 0, and we
will employ dyadic pigeonholing arguments that replace a set X with a subset of size roughly
| log δ|−1(#X). We will write A / B or B ' A if A . | log δ|C0B for some absolute constant C0

(in practice, we will always have C0 ≤ 100). When we write A / B, the relevant quantity δ will
always be apparent from context.

1.5. Thanks. The authors would like to thank Orit Raz for many helpful comments and sugges-
tions throughout the preparation of this manuscript. We would also like to thank Alan Chang,
Jongchon Kim, and the anonymous referee for comments, suggestions, and corrections to an earlier
version of this manuscript. All authors were supported by NSERC Discovery grants.

2. From Theorem 1.7 to Theorem 1.3

In this section, we will expand upon the sketch from Section 1.2. The following version of
Theorem 1.7 is a main ingredient of the proof.

Proposition 2.1. Let us fix ε > 0 and dimensional parameters 0 < α ≤ ζ ≤ 1. Let I be a compact
interval and let γ : I → S2 be a curve satisfying (1.3). Then there exists a positive constant δ0
depending only on these quantities, such that the following is true for all 0 < δ ≤ δ0.

Let E be a (δ, α; δ−ε)1 × (δ, α; δ−ε)1 quasi-product. Let Zδ ⊂ B(0, 1) ⊂ R
3 be a δ-separated set

that satisfies the Frostman-type non-concentration condition

#(Zδ ∩B) ≤ δ−ε(r/δ)ζ for all balls B ⊂ R
3 of radius r ≥ δ. (2.1)

Then
∫

E

(

∑

z∈Zδ

1Γδ
z

)3/2
≤ δ2−α/2−ζ/2−Cε(#Zδ), (2.2)

where C > 0 is an absolute constant, and Γδ
z is the δ-neighborhood of the graph Γz defined in (1.12).

Proof. Proposition 2.1 follows from Theorem 1.7, applying the latter to the family of functions

F =
{

fz : z ∈ Zδ

}

⊂ F =
{

fz : z ∈ B(0; 1)
}

,

where fz(θ) = γ(θ) · z and γ : I → S2 is a curve satisfying (1.3). In order for Theorem 1.7 to be
applicable, we need to verify that F is cinematic (with cinematic constant that depends only on γ)
and that F satisfies a Frostman-type non-concentration bound (1.7). The verification proceeds as
follows. First, we have

sup
f∈F

‖f‖C2(I) = sup
z∈B(0;1)

‖fz‖C2(I) ≤ sup
θ∈I

[

|γ(θ)|+ |γ′(θ)|+ |γ′′(θ)|
]

|z| ≤ ||γ||C2(I) < ∞,
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and depends only on γ. Next, if z1, z2 ∈ B(0, 1) then ‖fz1 − fz2‖C2(I) ≤ ||γ||C2(I)|z1 − z2|. Further-
more, the non-degeneracy condition (1.3) implies that

inf
θ∈I

[

|fz1(θ)− fz2(θ)|+ |f ′
z1(θ)− f ′

z2(θ)|+ |f ′′
z1(θ)− f ′′

z2(θ)|
]

& ‖fz1 − fz2‖C2(I),

where the implicit constant depends only on γ. As a consequence,

‖fz1 − fz2‖C2(I) ∼ |z1 − z2| for z1, z2 ∈ B(0; 1). (2.3)

Thus F is a doubling metric space (with the same doubling constant as R
3). Finally, identifying

F with Zδ, we observe from (2.3) that the Frostman-type non-concentration condition (1.7) for F
follows from the analogous condition (2.1) for the Euclidean set Zδ. �

We are now ready to prove Theorem 1.3. Let γ : I → S2 satisfy (1.3) and let Z ⊂ R
3 be Borel.

After a harmless re-scaling, we can suppose Z ⊂ B(0, 1) and after possibly replacing Z by a subset,
we may suppose that dimZ ≤ 1. Let 0 ≤ s < dimZ. Aiming for a contradiction, suppose if
possible that (1.4) fails, i.e. dimΘI > s, where

ΘI =
{

θ ∈ I : dim
(

Z · γ(θ)
)

< s
}

.

Then ΘI admits a subset Θ with the propery that s < dimΘ ≤ dimZ. Set α = dimΘ. We will
show that the existence of such a set Θ ⊂ ΘI contradicts the validity of Proposition 2.1.

Define

ε =
α− s

2C + 11
> 0, (2.4)

where C is the constant from (2.2).

2.1. Initial discretization. Bourgain [2] proved a discretized projection theorem, which bounded
the number of exceptional directions where the projection of a δ-discretized set can be small.
Bourgain then showed how this discretized theorem implies an analogous Hausdorff dimension
bound. The next set of arguments are similar to the reduction from Theorem 4 to Theorem 3 in
[2], but with a twist. The location of the twist will be noted below.

Let ζ = dimZ and let P be a probability measure supported on Z that satisfies the Frostman
condition

P(B) . rζ−ε for all balls B ⊂ R
3 of radius r > 0. (2.5)

Let ν be a probability measure supported on Θ with

ν(J) . |J |α−ε for all intervals J ⊂ R. (2.6)

Let k0 ∈ Z be chosen sufficiently large, depending on γ, ζ, s and α. The choice of k0 will be

determined as follows: our arguments below will select a number 0 < δ ≤ 2−⌊(1+ε)k0 ⌋ (as in [14,
Section 7]; we do not get to choose δ, but our choice of k0 gives an upper bound for δ). Eventually,
we will arrive at the conclusion that a certain inequality involving δ is impossible, provided δ > 0 is
sufficiently small (depending on γ, ζ, s and α). In order to arrive at a contradiction, we will select

k0 ∈ Z sufficiently large so that any positive δ ≤ 2−⌊(1+ε)k0 ⌋ obeys Proposition 2.1.
For each θ ∈ I, define ρθ : R

3 → R by ρθ(z) = z ·γ(θ). For each θ ∈ supp(ν) ⊂ Θ, cover ρθ(Z) by a

union of sets {Gθ,k}∞k=k0
, where Gθ,k is a (2−⌊(1+ε)k⌋, s; 2ε⌊(1+ε)k⌋)1-set (in Definition 1.4 a (δ, α;C)1-

set must be contained in [0, 1], but it is harmless to apply a translation); see i.e. [14, Lemma 7.5]
for details on how to do this. This is the “twist” alluded to above; in [2], Bourgain simply covers
ρθ(A) by unions of 2−k intervals; he does not ask that these unions satisfy the non-concentration
condition (1.5).

For each θ ∈ supp(ν) we have

1 = P(Z) = P
(

Z ∩ ρ−1
θ (ρθ(Z)

)

= P

(

Z ∩
⋃

k≥k0

ρ−1
θ (Gθ,k)

)

.
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Thus by integrating over I with respect to ν we conclude that
∫

I

∑

k≥k0

P
(

Z ∩ ρ−1
θ (Gθ,k

))

dν(θ) ≥ ν(Θ) = 1.

In particular, there exists k ≥ k0 so that
∫

I
P
(

Z ∩ ρ−1
θ (Gθ,k)

)

dν(θ) &
1

k2
. (2.7)

We will fix this choice of k, and for the remiander of this proof, define δ = 2−⌊(1+ε)k⌋ and Gθ = Gθ,k;

thus the right hand side of (2.7) becomes essentially
(

log(1+ε)
log log(1/δ)

)2
, which is ≥ | log δ|−2 if δ is

sufficiently small relative to ε.
Recalling the notation introduced in Section 1.4, we will write A ' B to mean A & | log δ|−CB,

where C is an absolute constant (in practice, we will always have C ≤ 100).

2.2. Replacing P by a sum over curves. Given the choice of δ above, let us consider a covering
of Z using cubes of sidelength δ/2. After dyadic pigeonholing, we can find a set Q of such cubes
and a “weight” w, so that w ≤ P(Q) < 2w for each Q ∈ Q, and

∫

I
P

(

⋃

Q∈Q
Q ∩ ρ−1

θ (Gθ)
)

dν(θ) ' 1. (2.8)

Let G′
θ = Nδ(Gθ); here and henceforth, Nδ(X) denotes the δ-neighbourhood of the set X. Then

G′
θ is a (3δ, s; 3δ−ε)1-set, and if Q ∈ Q is a cube that intersects ρ−1

θ (Gθ), then Q ⊂ ρ−1
θ (G′

θ). Thus
(2.8) implies that

∫

I
w#

{

Q ∈ Q : Q ⊂ ρ−1
θ (G′

θ)
}

dν(θ) ' 1,

or
∫

I
#
{

Q ∈ Q : ρθ(Q) ⊂ G′
θ

}

dν(θ) ' w−1. (2.9)

Since Q is a cube of side-length δ/2 and γ(θ) ∈ S2, we have that ρθ(Q) is an interval in R of length
∼ δ. Thus

∫

G′

θ
1ρθ(Q)(y)dy ∼ δ for each Q ∈ Q with ρθ(Q) ⊂ G′

θ. Hence (2.9) implies that
∫

I

∫

G′

θ

∑

Q∈Q
1ρθ(Q)(y)dydν(θ) ' δw−1. (2.10)

Note that δ3 . w . δζ−ε, and 1 / w#Q ≤ 1. Let A = δζ−εw−1 & 1, so that #Q ' Aδ−ζ+ε and
w = δζ−εA−1. Thus the right hand side of (2.10) becomes Aδ1−ζ+ε.

Let Z ′
δ denotes the set of centers of the cubes in Q; then the Frostman condition (2.5) implies

that

#(Z ′
δ ∩B) / w−1

P(B) . w−1rζ−ε = A(r/δ)ζ−ε for all balls B of radius r ≥ δ. (2.11)

Note that if Q ∈ Q has center z ∈ Z ′
δ, then Q ⊂ Nδ(z) (this is why we required that the cubes in

Q have side-length δ/2, rather than δ). Thus for each θ ∈ I, we have the implication

y ∈ ρθ(Q) =⇒ |γ(θ) · z − y| ≤ δ.

This leads to the inequality
∑

Q∈Q
1ρθ(Q)(y) ≤

∑

z∈Z′

δ

1Γδ
z
(θ, y). (2.12)

Combining (2.10) and (2.12), we obtain
∫

I

∫

G′

θ

∑

z∈Z′

δ

1Γδ
z
(θ, y)dydν(θ) ' Aδ1−ζ+ε. (2.13)
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Let Zδ be a subset of Z ′
δ obtained by randomly and independently selecting each point of Z ′

δ

with probability p = A−1; we will select the set Zδ so that the following properties hold.

#(Zδ ∩B) ≤ | log δ|A−1#(Z ′
δ ∩B) ≤ δ−ε(r/δ)ζ for all balls B of radius r ≥ δ, (2.14)

and
∫

I

∫

G′

θ

∑

z∈Zδ

1Γδ
z
(θ, y)dydν(θ) ' δ1−ζ+ε. (2.15)

Let us briefly discuss the selection of Zδ. Apriori, (2.14) appears to be an assertion about an
uncountable set of balls {B ⊂ R

3 : radius(B) ≥ δ}. However, it suffices to establish (2.14) (with
the RHS replaced by 1

2δ
−ε(r/δ)ζ ) for a set of roughly δ−3 balls: For each j = 0, . . . , | log δ|, let Bj

be a set of about (2jδ)−3 balls of radius 2j+1δ, so that every ball of radius 2jδ is contained in at

most O(1) balls from Bj. Then it suffices to prove (2.14) for the balls in B =
⋃| log δ|

j=0 Bj; this set has

cardinality . δ−3. If δ is small enough, then using Chernoff’s inequality and (2.11) we can ensure
that the probability that (2.14) fails for any particular ball in B is smaller than δ4. Applying the
union bound over B ∈ B, we deduce that with probability at least 1 − O(δ), the estimate (2.14)
holds for all balls B ∈ B and hence in general for all balls of radius r ≥ δ. Choosing such an
outcome with the additional requirement (also derivable from Chernoff’s inequality) that

#Zδ >
1

100A
#Z ′

δ,

the property (2.15) follows from (2.13) and an expected value calculation (expectation is linear)
and Markov’s inequality.

2.3. Replacing ν by an integral over a quasi-product. Let J0 be the set of intervals in I
(recall I is the domain of γ(θ)) of the form [nδ, (n+ 1)δ), for n ∈ Z. For each J ∈ J0, let θ(J) ∈ J
be a value of θ that gets within a factor of 2 of maximizing the quantity

∫

G′

θ

∑

z∈Zδ

1Γδ
z
(θ, y)dy.

For each J ∈ J0, we have

ν(J)

∫

G′

θ(J)

∑

z∈Zδ

1Γδ
z
(θ(J), y)dy =

∫

J

∫

G′

θ(J)

∑

z∈Zδ

1Γδ
z
(θ(J), y)dydν(θ)

≥ 1

2

∫

J

∫

G′

θ

∑

z∈Zδ

1Γδ
z
(θ, y)dydν(θ).

(2.16)

The first equality is just the statement that ν(J) =
∫

J dν(θ), while the second inequality follows
from the definition of Θ(J). To simplify notion, define

K(J) =

∫

G′

θ(J)

∑

z∈Zδ

1Γδ
z
(θ(J), y)dy,

so the left hand side of (2.16) is ν(J)K(J). Summing (2.16) over J ∈ J0, we obtain

∑

J∈J0

ν(J)K(J) ≥ 1

2

∑

J∈J0

∫

J

∫

G′

θ

∑

z∈Zδ

1Γδ
z
(θ, y)dydν(θ)

=
1

2

∫

I

∫

G′

θ

∑

z∈Zδ

1Γδ
z
(θ, y)dydν(θ)

' δ1−ζ+ε.
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Observe that K(J) . δ#Zδ / δ1−ζ+ε for each J ∈ J0, and
∑

J∈J0
ν(J) = 1. Thus by dyadic

pigeonholing, there is a set J1 ⊂ J0 and a weight δ . w′ ≤ δα−ε so that w′ ≤ ν(J) < 2w′ for each
J ∈ J1, and 1 / w′#J1 ≤ 1. We can write A′ = δα−εw′−1 & 1, and thus #J1 ≈ A′δ−α+ε, and we
have

∑

J∈J1

δα−ε(A′)−1K(J) ' δ1−ζ+ε,

i.e.
∑

J∈J1

K(J) ' A′δ1−ζ−α+2ε.

We will now perform a random sampling argument analogous to how we selected Zδ ⊂ Z ′
δ at the

end of Section 2.2. Let p = (A′)−1, and select J ⊂ J1 by randomly and independently choosing
each J ∈ J1 with probability p. By (2.6), with positive probability, we may choose J so that the
following two properties hold.

|Λ ∩
⋃

J∈J
J | ≤ δ| log δ|(|Λ|/δ)α−ε ≤ δ1−ε(|Λ|/δ)α−ε for all intervals Λ, (2.17)

(i.e.
⋃

J∈J ′′ J is a (δ, α − ε; δ−ε)1-set), and
∑

J∈J
K(J) ' δ1−ζ−α+2ε. (2.18)

(2.17) and (2.18) are the analogues of (2.14) and (2.15), respectively, and the argument is the same.
Next, we claim that if (θ, y) ∈ Γδ

z, and if |θ − θ′| ≤ δ, then θ′ ∈ ΓLδ
z , where

L = sup
z∈Zδ

sup
θ∈I

∣

∣

∣

∣

d

dθ
ρθ(z)

∣

∣

∣

∣

. 1.

Thus for each z ∈ Zδ, each y ∈ R, and each J ∈ J , we have
∫

J
1Γδ

z
(θ(J), y)dθ ≤

∫

J
1ΓLδ

z
(θ, y)dθ. (2.19)

Integrating (2.19) over G′
θ(J) and summing over z ∈ Zδ (and interchanging the order of integration

and summation), we obtain

δK(J) =

∫

J

∫

G′

θ(J)

∑

z∈Zδ

1Γδ
z
(θ(J), y)dydθ

≤
∫

J

∫

G′

θ(J)

∑

z∈Zδ

1ΓLδ
z
(θ, y)dydθ.

Combining this with (2.18), we conclude that

δ2−ζ−α+2ε /
∑

J∈J
δK(J)

≤
∑

J∈J ′′

∫

J

∫

G′

θ(J)

∑

z∈Zδ

1ΓLδ
z
(θ, y)dydθ.

(2.20)

Finally, define

E =
⋃

J∈J
J ×G′

θ(J).

Then E is a (δ, α − ε; δ−ε)1 × (3δ, s; 3δ−ε)1 quasi-product, and (2.20) can be re-written as
∫

E

∑

z∈Zδ

1ΓLδ
z

' δ2−ζ−α+2ε. (2.21)
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Since
|E| . (δ1−α+εδ−ε)×

(

(3δ)1−s3δ−ε
)

∼ δ2−α−s−2ε,

the relation (2.21) together with Hölder’s inequality implies that
∫

E

(

∑

z∈Zδ

1ΓLδ
z

)3/2
' δ2+

1
2
s−α− 3

2
ζ+4ε. (2.22)

2.4. Applying Proposition 2.1. Since E is a (δ, α − ε; δ−ε)1 × (3δ, s; 3δ−ε)1 quasi-product and
s < α, E can be expressed as a union of O(1) many (δ, α, δ−ε)1 × (δ, α, δ−ε)1 quasi-products. Thus
we can apply Proposition 2.1 with #Zδ / δ−ζ−ε and use the triangle inequality to conclude that

∫

E

(

∑

z∈Zδ

1ΓLδ
z

)3/2
/ δ2−

1
2
α− 3

2
ζ−Cε−ε. (2.23)

Comparing (2.22) and (2.23), we conclude that δs−α / δ−(2C+10)ε. By selecting δ > 0 sufficiently
small (depending on ε), we conclude that α− s ≤ (2C+10)ε. But comparing with (2.4), we obtain
a contradiction. This finishes the proof of Theorem 1.3.

3. The geometry of cinematic functions

In this section, we will explore some geometric properties of families of cinematic functions. Many
of the results in this section are inspired by analogous results in [13, 17, 29]. For the definitions
that follow, we will fix a family of cinematic functions F over a compact interval J , with cinematic
constant K and doubling constant D.

For f ∈ F , we write fλ to denote the closed λ-vertical neighborhood of the graph of f , i.e. the
set {(θ, y) ∈ J ×R : |f(θ)− y| ≤ λ}. This definition differs slightly from the definition of f δ given in
the statement of Theorem 1.7. This distinction does not matter, however, since fλ is comparable
to the λ-neighborhood of the graph of f .

Definition 3.1 (Curvilinear rectangles). Let 0 < δ ≤ 1, δ ≤ t ≤ 1, and f ∈ F . A (δ, t)-rectangle
is defined to be a set of the form

f δ(I) = {(θ, y) ∈ I × R : |y − f(θ)| ≤ δ},
where I ⊂ J is an interval of length

√

δ/t.

Definition 3.2 (Comparability). We say two (δ, t)-rectangles R,R′ are λ-comparable, if there is
another (λδ, t)-rectangle R′′ that contains R ∪R′. Otherwise we say R,R′ are λ-incomparable.

Definition 3.3 (Tangency). We say a (δ, t)-rectangle R is λ-tangent to the function f ∈ F (or f
is λ-tangent to R) if R ⊂ fλδ. In most cases we take λ = 5, and we will simply refer to this as R
is tangent to f .

Definition 3.4 (Separation). Let W,B ⊂ F . For t > 0, we say (W,B) is t-separated if ‖w−b‖ ≥ t
for all w ∈ W, b ∈ B.
3.1. Preliminary reductions. We start with the following lemma, which is similar to [13, Lemma
3.1].

Lemma 3.5. If I ⊂ J is an interval of length |I| ≤ (6K)−1, f, g ∈ F , and k is either of the
functions f − g or f ′− g′, then either of the following alternatives hold (depending on the choice of
I and k):

(S) |k(θ)| < (3K)−1‖f − g‖ for all θ ∈ I.
(L) |k(θ)| ≥ (6K)−1‖f − g‖ for all θ ∈ I.

Moreover, if for I the alternative (S) holds for both k = f − g and k = f ′ − g′, then the alternative
(L) must hold for k = f ′′ − g′′.
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Proof. Let B be the closed unit ball of C2(J). Then if |θ − θ′| < (6K)−1 and h ∈ B, we have
|h(θ)− h(θ′)| < (6K)−1 and |h′(θ)− h′(θ′)| < (6K)−1.

Next, fix I ⊂ J with |I| < (6K)−1, and suppose that the alternative (L) fails for k = f − g.
So there is θ0 ∈ I such that |k(θ0)| < (6K)−1‖f − g‖. Then, if θ ∈ I is arbitrary, we have
|θ − θ0| ≤ (6K)−1, and so if we define l = k/‖f − g‖ ∈ B(0, 1), then

|k(θ)|
‖f − g‖ ≤ |k(θ0)|

‖f − g‖ +

∣

∣

∣

∣

k(θ)

‖f − g‖ − k(θ0)

‖f − g‖

∣

∣

∣

∣

<
1

6K
+ |l(θ)− l(θ0)| <

1

3K
.

Thus the alternative (S) holds for k. The proof of the case k = f ′ − g′ is the same. The last
assertion follows from the cinematic curvature assumption (1.6). �

To prove Theorem 1.7, it suffices to prove (1.8) for each individual subinterval I of length
≤ (6K)−1, since the restriction of the functions in F to each such sub-interval I is still family of
cinematic functions with cinematic constant K and doubling constant D. By an abuse of notation,
we continue to write I = J , and assume without loss of generality that |J | ≤ (6K)−1.

The following lemma is an analogue of [13, Lemma 3.2].

Lemma 3.6. For distinct f, g ∈ F , the map θ 7→ f(θ)−g(θ) has at most two zeros in J . Moreover,
if θ 7→ f ′(θ)− g′(θ) has two zeros in J , then the alternative (L) holds for θ 7→ f(θ)− g(θ).

Proof. We start with the second claim. Assume θ 7→ f ′(θ)− g′(θ) has two zeros in J . This implies,
by Rolle’s theorem, that θ 7→ f ′′(θ) − g′′(θ) has a zero in J , so in particular the alternative (L)
cannot hold for θ 7→ f ′′(θ) − g′′(θ). Now Lemma 3.5 implies that the alternative (S) holds for J
and θ 7→ f ′(θ) − g′(θ). Thus by the last sentence of Lemma 3.5, we must have that (L) holds for
θ 7→ f(θ)− g(θ).

The first claim follows from the second one: if θ 7→ f(θ) − g(θ) had three zeros in J , then
θ 7→ f ′(θ)− g′(θ) would have two zeros in J again by the Rolle’s theorem. But then, by the second
claim, θ 7→ f(θ)− g(θ) satisfies the alternative (L) in J , and hence cannot have zeros in J . �

3.2. The tangency parameter ∆. Next, we shall define a quantity that measures how close two
functions f, g ∈ F are to being tangent. Our definition is similar to the quantity (3.1) from [13],
which in turn was inspired by [17, 29].

Definition 3.7. For f, g ∈ F , we define

∆(f, g) = min
θ∈J/2

|f(θ)− g(θ)|+ |f ′(θ)− g′(θ)|, (3.1)

where J/2 is the interval of length |J |/2 with the same midpoint as J .

In particular, we have

∆(f, g) ≤ ‖f − g‖. (3.2)

∆(f, g) measures the tangency between the graphs of functions f, g over the interval J/2. If
∆(f, g) = 0, then f and g are tangent at some point θ ∈ J/2. Note that ∆(f, g) is a pseudo-metric,
since it is symmetric and satisfies the triangle inequality. The restriction to J/2 but not J is needed
for technical reasons, as is also the case of [17] and [13].

The next proposition is a close cousin of [17, Lemma 3.3]. It describes the key geometric infor-
mation about cinematic functions.

Lemma 3.8. Let f, g ∈ F , and define h = f − g, t = ‖f − g‖, and ∆ = ∆(f, g).

(1) There exists c1 = c1(K) > 0 so that if ∆ ≤ c1t, then the following are true.
(a) There is a unique θ0 ∈ 3

5J such that h′(θ0) = 0. We also have |h(θ0)| . ∆.

(b) We have |h(θ)| & t > 0 for every θ ∈ J\(45J). If in addition h changes sign in J , then

h has exactly 2 zeros θ1 < θ2, both within 4
5J , such that |θi − θ0| .

√

∆/t, i = 1, 2.
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(2) For each 0 < δ ≤ t/(6K), the set

Eδ = {θ ∈ J/4 : |h(θ)| ≤ δ} (3.3)

satisfies the following:
(a) Eδ is contained in an interval of length O(

√

(∆ + δ)/t).

(b) Eδ is either a closed interval of length O(δ/
√

(∆ + δ)t) or the union of two closed

intervals of length O(δ/
√

(∆ + δ)t).

(c) If in addition there is some θ̃ ∈ J/4 such that |h(θ̃)| ≤ δ/2, and I is the interval

constituting Eδ that contains θ̃, then |I| & δ/
√

(∆ + δ)t.

Proof. Let θ∆ ∈ J/2 be such that

∆ = |h(θ∆)|+ |h′(θ∆)|.

Thus |h(θ∆)| ≤ ∆ and |h′(θ∆)| ≤ ∆.
We first prove Part (1). If we choose c1 < (3K)−1, then using the definition of ∆(f, g), we have

the alternative (S) holds for both h, h′. Thus the alternative (L) must hold for h′′. Without loss of
generality we may assume h′′(θ) & t.

For Part (1a), using h′′(θ) & t, if c1 is chosen to be small enough, then there is a unique
θ0 ∈

(

1
2 +O(∆/t)

)

J ⊂ 3
5J with h′(θ0) = 0. Also, |θ0 − θ∆| . ∆/t, and thus

|h(θ0)− h(θ∆)| . t|θ0 − θ∆| . ∆.

Since |h(θ∆)| ≤ ∆, we also have |h(θ0)| . ∆.
For Part (1b), write J = [a, b]. Using |h(θ0)| . ∆, for any θ ∈ [θ0, b] we have

|h(θ)| ≥
∣

∣

∣

∣

∫ θ

θ0

h′(s)ds

∣

∣

∣

∣

− C∆ =

∫ θ

θ0

∣

∣h′(s)
∣

∣ ds− C∆

=

∫ θ

θ0

∫ s

θ0

h′′(u)duds − C∆ ≥ ct(θ − θ0)
2 − C∆. (3.4)

Here C, c are absolute constants. The same is true for θ ∈ [a, θ0]. If c1 is small enough, we then
have |h(θ)| & t for every θ ∈ J\(45J), since θ0 ∈ 3

5J and |J | ∼ 1. The statements about the zeros
follow from the intermediate value theorem and a similar application of (3.4).

Now we come to Part (2). First, for Part (2a), if ∆ > c1t then the result is trivial. If ∆ ≤ c1t,
then the argument of Part (1) applies. Let α = inf Eδ and β = supEδ, and hence Eδ ⊂ [α, β].

Using (3.4) we have β − θ0 ≤ C
√

(∆ + δ)/t and θ0 − α ≤ C
√

(∆ + δ)/t. Thus the result follows.
For Part (2b), we first note that the alternative (L) cannot hold for h, otherwise it will contradict

the assumption δ < t/(6K). Thus (L) holds for h′ or h′′. In either case, we see Eδ is a closed interval
or the union of two closed intervals.

For the length estimate, we first consider the easier case ∆ > c1t. In this case, if δ > c1t/2, then
the result is trivial since then δ ∼ ∆ ∼ t. If δ ≤ c1t/2, then for θ ∈ Eδ we have

c1t < ∆ ≤ min
θ∈Eδ

(

|h(θ)|+ |h′(θ)|
)

≤ δ + min
θ∈Eδ

|h′(θ)|,

and thus |h′(θ)| & t on Eδ, and thus each interval constituting Eδ has length . δ/t = δ/
√

(∆ + δ)t.
For the harder case ∆ ≤ c1t, the argument of Part (1) is applicable. We also have two subcases.

First, if δ ≥ c1∆, then the result follows from Part (2a), since then
√

(∆ + δ)/t ∼ δ/
√

(∆ + δ)t.
If δ < c1∆, then we may further assume θ0 ∈ J/2. Otherwise, using (3.4) we have h(θ) & t for

every θ ∈ J/4 if c1 is small enough. In particular, Eδ = ∅ and we have nothing to prove. Thus we
have θ0 ∈ J/2.
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But by the definition of ∆ and θ0, we have |h(θ0)| = |h(θ0)| + |h′(θ0)| ≥ ∆. Thus for every
θ ∈ Eδ ∩ [θ0, b], we have

δ ≥ |h(θ)| ≥ ∆−
∫ θ

θ0

|h′(s)|ds

≥ ∆−
∫ θ

θ0

∫ s

θ0

|h′′(u)|duds ≥ ∆− C ′t(θ − θ0)
2.

Here C ′ is an absolute constant. For θ ∈ Eδ ∩ [a, θ0] the argument is the same. This implies that

|θ − θ0| &
√

∆/t, ∀θ ∈ Eδ. (3.5)

Since h′′(θ) & t in J , this further implies that for θ ∈ Eδ

|h′(θ)| = |h′(θ)− h′(θ0)| & t|θ − θ0| &
√
t∆. (3.6)

Thus each interval constituting Eδ has length O(δ/
√
t∆) = O(δ/

√

(∆ + δ)t).

Now we come to Part (2c). Let I be the interval constituting Eδ that contains θ̃. If I = J/4
then the result is trivial, so we assume I 6= J/4. In this case, there exists an endpoint θI of I so
that |h(θI)| = δ.

If ∆ > c1t, then we have

δ/2 ≤ |h(θI)| − |h(θ̃)| . |θI − θ̃|t,
and so |θI − θ̃| & δ/t ∼ δ/

√

(∆ + δ)t.
If ∆ ≤ c1t, then the argument of Part (1) is applicable. For every θ ∈ Eδ, the argument of Part

(2a) implies that |θ − θ0| .
√

(∆ + δ)/t. Thus

|h′(θ)| = |h′(θ)− h′(θ0)| . t|θ − θ0| .
√

(∆ + δ)t, ∀θ ∈ Eδ.

Hence

δ/2 ≤ |h(θI)| − |h(θ̃)| . |θI − θ̃|
√

(∆ + δ)t,

which implies that |θI − θ̃| & δ/
√

(∆ + δ)t. In particular, |I| & δ/
√

(∆ + δ)t. �

3.3. Further geometric estimates. We conclude this section with some simple arguments that
relate the quantities ‖f − g‖, ∆(f, g), the volume of f δ ∩ gδ, and the number of tangency rectangles
associated to the intersection.

Lemma 3.9. Let f, g ∈ F and let t > 0. If there is a (δ, t)-rectangle R over the interval J/4
(i.e. the interval I from Definition 3.1 is contained in J/4) that is tangent to both f and g, then
(∆(f, g) + δ)‖f − g‖ . δt.

Proof. Let R be a (δ, t)-rectangle over an interval I ⊂ J/4. By Definition 3.3 and the triangle
inequality, for each θ ∈ I we have |f(θ)− g(θ)| ≤ 10λδ. Since I ⊂ J/4, by Part (2b) of Lemma 3.8,
we have

√

δ/t = |I| . δ
√

(∆(f, g) + δ)‖f − g‖
. �

Lemma 3.10. Let I ⊂ J/4 be an interval, let λ ≥ 1, let f, g ∈ F , and let 0 < δ ≤ ‖f − g‖/(6K).
If |f(θ)− g(θ)| ≤ δ on I, then |f(θ)− g(θ)| . λ2δ on λI ∩ J .

Proof. Let k = f − g, let t = ‖f − g‖, and let ∆ = ∆(f, g). Since I ⊂ J/4, by Part (2b) of Lemma

3.8 we have |I| . δ/
√

(∆ + δ)t ≤
√

δ/t.
We will first show that |k′(θ)| ≤ Cλδ|I|−1 on λI ∩ J , for some C . 1. Suppose not. Then there

is some θ1 ∈ λI ∩ J with |k′(θ1)| > Cλδ|I|−1. We have |k′′(θ)| ≤ t in J . Since |I| .
√

δ/t, for any
θ ∈ λI ∩ J we have

|k′(θ)| ≥ Cλδ|I|−1 − λt|I| ≥ Cλδ|I|−1/2,
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provided C ∼ 1 is chosen appropriately. But since k ∈ C2(I) and λ > 1, if C > 4 then it is
impossible for |k′(θ)| ≥ Cλδ|I|−1/2 and |k(θ)| ≤ δ to simultaneously hold for all θ ∈ I. Hence
|k′(θ)| . λδ|I|−1 on λI ∩ J . By the triangle inequality, we thus have |k(θ)| . λ2δ on λI ∩ J . �

Definition 3.11. For R = f δ(I) where I ⊂ J , we define the λ-dilation of R to be

λR = fλδ(λI ∩ J). (3.7)

We will record several technical lemmas related to comparability.

Lemma 3.12. Let f, g ∈ F and λ ≥ 1. Let R = f δ(I) and R′ = gδ(I ′) be two λ-comparable

(δ, t)-rectangles over J/4. Let I ′′ be the convex hull of I ∪ I ′. Then |I ′′| ≤
√

λδ/t, and

|f(θ)− g(θ)| . λ3δ for all θ ∈ I ′′. (3.8)

In particular, R′ ⊂ CλR for some C ∼ 1.

Proof. By definition of comparability, there is some (λδ, t)-rectangle R′′ = hλδ(I0) such that R∪R′ ⊂
R′′ and |I0| =

√

λδ/t. Since I ′′ ⊂ I0, we have |I ′′| ≤
√

λδ/t.
It remains to prove (3.8). If ‖f − g‖ < 12Kλδ then (3.8) is immediate and we are done.
Next, suppose ‖f − g‖ ≥ 12Kλδ. We have

|f(θ)− h(θ)| ≤ λδ for all θ ∈ I.

Using Lemma 3.10 (with 2λδ in place of δ; note that 2λδ ≤ ‖f − g‖/(6K)), we have

|f(θ)− h(θ)| . λ3δ for all θ ∈ I ′′.

The same is true with f replaced by g. Then the result follows from the triangle inequality. �

Corollary 3.13. Let R1, R2, R3 be (δ, t) rectangles over J/4. Suppose that R1 is λ1-comparable to
R2 and R2 is λ2-comparable to R3. Then R1 is λ3-comparable to R3, for some λ3 depending on K,
λ1, and λ2.

Lemma 3.14. Let 0 < c < 1. If C is large enough depending on c and K, then the following
holds. Let f, g ∈ F and R = f δ(I) and R′ = gδ(I ′) be two C-incomparable (δ, t)-rectangles over

subintervals of J/4. For 0 < c < 1, let R̃ = f δ(Ĩ) and R̃′ = gδ(Ĩ ′) where Ĩ = cI, Ĩ ′ = cI ′. Then R̃

and R̃′ are 100-incomparable.

Proof. Suppose towards contradiction that R̃ and R̃′ are 100-comparable. Then

dist(cI , cI′) ≤
√

100cδ/t,

and thus diam(I ∪ I ′) .
√

δ/t. Also, we have |f(θ)− g(θ)| ≤ 100δ for θ ∈ Ĩ, and thus by Lemma
3.12, we have |f(θ)− g(θ)| . δ for θ ∈ I ∪ I ′. Thus R,R′ are C-comparable for a sufficiently large
C, from which a contradiction arises. �

Lemma 3.15. Let R be a family of pairwise 100-incomparable (δ, t)-rectangles R = f δ(I) such that
all f ∈ F are contained in a ball B ⊂ C2(I) of radius 3t. Suppose on the other hand that all R ∈ R
are contained in a (λδ, t)-rectangle R̃ where λ ≥ 100. Then #R . λ5/2.

Proof. We will show that every point in R
2 can be contained in . λ many rectangles R/2 where

R ∈ R. (Here R/2 := f δ(I/2).) Then the lemma follows from the simple inequality

(#R)δ3/2t−1/2 .

∫

R̃

∑

R∈R
1R/2 . λ|R̃| . λ5/2δ3/2t−1/2.

Suppose there is some (θ0, y0) ∈ R
2 that is contained in N pairwise 100-incomparable (δ, t)-

rectangles of the form Ri/2, i = 1, . . . , N . We want to show N . λ.
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It suffices to show that for every pair 1 ≤ i 6= j ≤ N ,

|f ′
i(θ0)− f ′

j(θ0)| ≤ 10λ
√
δt, (3.9)

|f ′
i(θ0)− f ′

j(θ0)| >
√
δt. (3.10)

Suppose (θ0, y0) ∈ (Ri/2) ∩ (Rj/2). In particular, θ0 ∈ (Ii/2) ∩ (Ij/2).

Denote h = hi,j = fi − fj and I = Ii ∩ Ij . Then θ0 ∈ I,
√

δ/t ≤ |I| ≤ 2
√

δ/t and |h(θ0)| ≤ δ.

For (3.9), suppose |h′(θ0)| > 10λ
√
δt. Then since ‖fi−fj‖ ≤ 6t, we have in particular ‖h′′‖∞ ≤ 6t,

and thus for every θ ∈ I, we have

|h′(θ)| > 10λ
√
δt− 12t

√

δ/t ≥ 5λ
√
δt,

since λ ≥ 100. Since |h(θ0)| ≤ δ, this implies that for some θ ∈ I we have

|h(θ)| ≥ 5λ
√
δt
√

δ/t/2− δ > λδ,

contradicting the assumption that all rectangles Ri ⊂ R̃. This establishes (3.9).

For (3.10), we argue similarly. Suppose that |h′(θ0)| ≤
√
δt. Then using ‖h′′‖∞ ≤ 6t, we have

for every θ′ ∈ I

|h′(θ)| ≤
√
δt+ 12t

√

δ/t ≤ 13
√
δt.

Thus for every θ ∈ I we have

|h(θ)| ≤ |h(θ0)|+ 26
√
δt
√

δ/t ≤ 100δ,

contradicting the assumption that Ri, Rj are 100-incomparable. This establishes (3.10). �

Lemma 3.16. Let R be a finite family of pairwise 100-incomparable (δ, t)-rectangles R = f δ(I)
such that all f ∈ F are contained in a ball of radius 3t. If C ≥ 100, then there is a C-incomparable
subcollection R′ ⊂ R such that #R′ ∼ #R.

Proof. Start with R1 ∈ R. Choose a maximally C-incomparable subcollection R′ containing R1.
For each R ∈ R′, let S(R) be the set of rectangles in R which are C-comparable to R. Then
R = ∪R∈R′S(R) by maximality. To prove that #R ∼ #R′, it suffices to show that #S(R) . 1 for
every R ∈ R′. This follows from Lemma 3.12 with λ = C and Lemma 3.15 with λ = C3.

�

We end this section with a coarse bound that will be used in some dyadic pigeonholing argument
later.

Lemma 3.17. Let λ ≥ 100. If R is a collection of pairwise λ-incomparable (δ, t)-rectangles of the
form R = f δ(I) where f ∈ F , then we have a coarse bound #R ≤ δ−C for some C = C(D) for δ
sufficiently small (depending on K).

Proof. Let R = f δ(I) and R′ = gδ(I ′) where f, g ∈ F . It is easy to see that if the centres of I, I ′

are no more than
√

δ/t-separated and ‖f − g‖ ≤ δ, then R,R′ must be λ-comparable. The result
now follows from the fact that F has diameter K and doubling constant D, and choosing δ ≤ K−1

sufficiently small. �

4. Lens counting and a bipartite curve-rectangle tangency bound

In this section, we will use Marcus and Tardos’ lens-counting theorem from [19] to prove a

bipartite version of the weak ℓ3/2 bound (1.16) from Section 1.3. The precise statement is as
follows. We remark that all propositions in this section make no assumption on the doubling
property in the definition of cinematic functions.
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Proposition 4.1. Let F be a family of cinematic functions with cinematic constant K. Then there
is a constant C = C(K) > 0 so that the following holds.

Let A ≥ 1. Let δ, t > 0 with 0 < δ ≤ At. Let W,B ⊂ F be finite sets. Suppose W ∪ B has
diameter at most 6t, and the pair (W,B) is t/A-separated.

Let R be a collection of pairwise 100-incomparable (δ, t)-rectangles of the form f δ(I) where f ∈ F
and I ⊂ J/4. Suppose each rectangle in R is tangent to at least µ elements of W and at least ν
elements of B. Then

#R ≤ CAC

(

#W
µ

+
#B
ν

)3/2

log

(

#W
µ

+
#B
ν

)

. (4.1)

4.1. Preliminary reductions.

Lemma 4.2. Let c > 0. Suppose there exists a constant C1 = C1(K) > 0 so that Proposition 4.1
holds whenever δ ≤ ct. Then there is a constant C = C(C1,K, c) so that Proposition 4.1 holds for
all δ ≤ At.

Proof. If δ ≤ ct then we are done. Suppose instead that δ > ct, and let W, B, R, µ, and ν be as in
the statement of the Proposition. Let C1 ∼ 1 be a constant to be specified below. Apply Lemma
3.16 to find a subcollection R′ ⊂ R that is pairwise C1-incomparable, with #R′ ∼ #R. (By

Lemma 3.17 we may suppose that R is finite.) Next, shrink the length of each R ∈ R′ to be
√

δ/t′

where t′ = c−1δ > t, and so δ = ct′. Denote by R′′ the resulting collection of (δ, t′)-rectangles. If C1

is chosen large enough, then using Lemma 3.14, we have that R′′ is 100-incomparable. Applying
Proposition 4.1 with t′ in place of t, we are done. �

Similar arguments yield the following.

Lemma 4.3. Suppose there exists a constant C2 = C2(K) > 0 so that Proposition 4.1 holds
whenever (W,B) is 2t-separated. Then there is a constant C = C(C2,K) so that Proposition 4.1
holds when (W,B) is t/A-separated.

Lemma 4.4. Suppose there exists a constant C3 = C3(K) so that Proposition 4.1 holds whenever
R is 2Cc-incomparable, where Cc is as in Lemma 4.9 below. Then there is a constant C = C(C3,K)
so that Proposition 4.1 holds when R is 100-incomparable.

From now on we will assume 0 < δ ≤ c2t where c2 = c2(K) will be determined in Lemma 4.9
below. We also assume (W,B) is 2t-separated, and that R is 2Cc-incomparable.

Remark. In the arguments below, we will choose a few constants depending on K. The order of
dependence is as follows: c1 as in Lemma 3.8; λ as in Lemma 4.12; c2 and Cc as in Lemma 4.9.

4.2. Pseudo-circles and lenses. Now we introduce some terminology from Marcus-Tardos [19]
that will be used in the proof of Proposition 4.1.

Definition 4.5. Let C be a family of closed Jordan plane curves (i.e. the homeomorphic image of
S1). We say C forms a family of pseudo-circles if for every pair of distinct c, c′ ∈ C, the following
conditions are satisfied:

(1) #(c ∩ c′) ≤ 2.
(2) If p ∈ c ∩ c′, then c and c′ intersect properly at p. That is, for all sufficiently small circles

C(p) centered at p, the points in C(p) ∩ c and C(p) ∩ c′ appear alternatively cyclically
counterclockwise. (See Figure 1 below).

The first condition is key. The second condition was not explicitly stated in [19], so we included
it here for completeness. It is a technical assumption included to make our settings fit rigorously
to the discrete geometry scenario in [19]. Of course, in the Kakeya type maximal inequality, if two
functions f, g are exactly tangent at some point, then the intersection may be improper. To avoid
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Figure 1. Proper and improper intersection.

non-overlapping lenses overlapping lenses

Figure 2. Overlapping and non-overlapping lenses.

this issue, we will slightly perturb the cinematic functions f by O(δ), such that no exact tangency
could occur. This will do no harm, since if f and g satisfy (1.6) and also ‖f − g‖ ≥ Cδ for a
sufficiently large constant C, then f + O(δ) and g will continue to satisfy (1.6) (with K replaced
by 2K). See Section 4.5 for the details of this perturbation process.

Now we recall the definition of lenses from [19].

Definition 4.6. Let C be a set of pseudo-circles. Let c, c′ ∈ C be two curves that intersect exactly
twice, at the points p, p′. This divides c, c′ into four closed segments, that intersect only at their
endpoints. We say ℓ ⊂ c∪ c′ is a lens if it is a simple closed curve that is the union of two of these
segments.

Note that there are exactly
(

4
2

)

= 6 lenses formed by c, c′; two of these are the curves c and
c′ themselves. See [19, Figure 1]. As a technical aside, we only consider “first-generation lenses”,
that is, we ignore lenses formed by lenses. Thus the total number of lenses determined by an
arrangement C is at most 4

(#C
2

)

+#C.
Definition 4.7 (Overlapping lenses). Let C be a family of pseudo-circles, and let ℓ, ℓ′ be two lenses
formed by C. We say ℓ, ℓ′ overlap if they share a segment of positive length (see Figure 2).

Note that if two lenses intersect (properly) at only finitely many points, then they do not overlap.
We can now state Lemma 10 from [19].

Theorem 4.8. Let C be a family of n pseudo-circles. Then every set of non-overlapping lenses has
cardinality O(n3/2 log n).

4.3. Lenses and pseudo-parabolas. We return to our case of a finite family F ⊂ F of cinematic
functions. By Lemma 3.6, their graphs intersect at most twice, but they are not yet pseudo-circles
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α β

Figure 3. Extending the graph of f ∈ F to a closed curve.

because they are not closed curves. However, we can extend them to be pseudo-circles in the
following way.

We need a mild technical assumption first. Denote J = [α, β]. We require that both sets

{f(α) : f ∈ F}, {f(β) : f ∈ F}

consist of distinct numbers, respectively. We also need that a pair of different cinematic functions
f, g never intersect exactly tangentially at any point in J . As mentioned before, this can be
guaranteed by a careful perturbation; see Section 4.5 for details. Also, we note that all curves are
confined in J × [−M,M ] for a finite M . We index the curves by fj, 1 ≤ j ≤ #F , and rearrange so
that fj(α) is increasing. We first extend each fj(θ) to be equal to fj(α) for θ ∈ [α− j, α] and equal
to fj(β) for θ ∈ [β, β+j]. We then extend by adding the line segments {α−j}× [−M−j, fj(α)] and
{β+j}×[−M−j, fj(β)]. Finally, close the loop by adding the line segment [α−j, β+j]×{−M−j}.
In this way we have extended the graphs of the functions in F to a family C of pseudo-circles, with
all intersections proper. See Figure 3 below.

We observe that if two functions f, g intersect exactly twice in the strip J × R, then they give
rise to exactly one lens ℓ that lies entirely in the strip J × R. See Figure 3. Denote the collection
of these lenses by L. They are the only lenses we are interested in.

Now we explain the connection between overlapping lenses and curve tangencies.

Lemma 4.9. If δ/t ≤ c2 ≤ c1 (where c1 is as in Part (1) of Lemma 3.8) for some small enough
constant c2 = c2(K), then the following holds. Let w, b1, b2 ∈ F . For i = 1, 2, let ti = ‖w − bi‖.
Suppose ti ≥ t, and that w and bi intersect exactly twice in J , thus forming a lens ℓi that lies
over some subinterval of J . Let Ri be a (δ, t)-rectangle that is 2λ-tangent to both w and bi, where
λ = λ(K) is to be determined in Lemma 4.12.

Suppose that ℓ1 and ℓ2 overlap. Then R1 and R2 are Cc-comparable, where Cc (c stands for
“comparable”) depends on λ,K.

Proof. For i = 1, 2, define the interval Ii = [αi, βi] ⊂ J so that Ri is a curvilinear rectangle over Ii.

Since R1, R2 are both tangent to w, it suffices to show that diam(I1 ∪ I2) = O(
√

δ/t).
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By Lemma 3.9, we have ∆(w, bi) . δ. If δ/t is small enough, then ∆(w, bi) ≤ c1t. Thus there is

a unique θ
(i)
0 ∈ 3

5J such that |αi − θ
(i)
0 | = O(

√

δ/ti) = O(
√

δ/t) and |βi − θ
(i)
0 | = O(

√

δ/t). Since

(α1, β1) ∩ (α2, β2) 6= ∅, we have θ
(2)
0 − θ

(1)
0 = O(

√

δ/t).
Now we study Ii. Using the triangle inequality, for θ ∈ Ii we have |w(θ) − bi(θ)| . δ. By Part

(2a) of Lemma 3.8, Ii is contained in an interval of length O(
√

δ/t) centered at θ
(i)
0 . But since

θ
(2)
0 − θ

(1)
0 = O(

√

δ/t), we see that diam(I1 ∪ I2) = O(
√

δ/t), as required. �

4.4. Rectangle tangency bounds for properly intersecting curves. We first prove a special
case of Proposition 4.1, where the curves intersect properly.

Lemma 4.10. Let F be a family of cinematic functions, with cinematic constant K. Then there
is a constant C = C(K) > 0 so that the following holds.

Let δ, t > 0 with 0 < δ ≤ c2t (here c2 is the quantity from Lemma 4.9). Let W,B ⊂ F be a pair
of t-separated finite sets.

Let R be a collection of pairwise Cc-incomparable (δ, t)-rectangles of the form f δ(I), where f ∈ F ,
I ⊂ J/4 and Cc is as in Lemma 4.9. Suppose each rectangle R ∈ R is tangent to at least one
wR ∈ W and at least one bR ∈ B. Suppose furthermore that the following holds.

A1. For each R ∈ R, we have that wR, bR intersect exactly twice in J .
A2. If J = [α, β], then the sets

{f(α) : f ∈ W ∪ B}, {f(β) : f ∈ W ∪ B}
respectively consist of distinct elements.

A3. For all f 6= g ∈ W ∪ B, f, g never intersect tangentially in J , that is, the two quantities
f(θ)− g(θ) and f ′(θ)− g′(θ) are never simultaneously 0 for any θ ∈ J .

Then
#R ≤ C (#W +#B)3/2 log (#W +#B) . (4.2)

Proof. With the additional assumptions A1–A3, each R ∈ R is tangent to a pair (wR, bR) inter-
secting exactly twice in J . After extending them to pseudo-circles in the way described in Section
4.3, we see the pair (wR, bR) gives rise to a lens ℓR in the collection L.

By Lemma 4.9, the lenses in L = {ℓR : R ∈ R} are non-overlapping. Since the mapping R 7→ ℓR
is clearly a bijection, using Theorem 4.8, we conclude that

#R = #L . (m+ n)3/2 log(m+ n). �

4.5. Perturbing the curves. Our next step is to remove the additional assumptions A1–A3 in
Lemma 4.10 by perturbing the functions in W and B. Namely, we would like to prove the following
version of Proposition 4.1.

Lemma 4.11. Let F be a family of cinematic functions, with cinematic constant K. Then there
is a constant C = C(K) > 0 so that the following holds.

Let δ, t > 0 with 0 < δ ≤ c2t/2 (here c2 is the quantity from Lemma 4.9). Let W,B ⊂ F be a
pair of 2t-separated finite sets.

Let R be a collection of pairwise 2Cc-incomparable (δ, t)-rectangles of the form f δ(I) where f ∈ F
and I ⊂ J/4. Suppose each rectangle in R is tangent to at least one element of W and at least one
element of B.

Then
#R ≤ C (#W +#B)3/2 log (#W +#B) . (4.3)

The reduction from Lemma 4.10 to Lemma 4.11 requires two perturbations. The first perturba-
tion (which has size roughly δ) ensures that property A1 holds for a considerable fraction of the
tangency rectangles in R. The second perturbation (which is infinitesimally small) ensures that
properties A2 and A3 hold.
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Lemma 4.12. Let 0 < δ < c1t and let f, g ∈ F with ‖f − g‖ ≥ 2t. Suppose f and g are tangent
to a common (δ, t)-rectangle R over J/4. If λ = λ(K) ≥ 1 is chosen to be large enough, then there
exists η ∈ {−1, 0, 1} so that the function h = f + ηλδ is 2λ-tangent to R, and the functions g and
h intersect exactly twice in J .

Proof. By Part (1b) of Lemma 3.8, it suffices to show that for a suitable η ∈ {−1, 0, 1}, we have
k = h − g changes sign within J . We have three cases. If f − g changes sign in J , then we just
take η = 0. Otherwise, we must have f − g ≥ 0 on J or f − g ≤ 0 on J . In the former case,
we take η = −1, and so k = f − λδ − g. Also, by Lemma 3.9, we have ∆(f, g) . δ, and thus
minθ∈J f(θ0) − g(θ0) ≤ C ′δ for some C ′ = C ′(K), using Part (1a) of Lemma 3.8. If we choose
λ > C ′, then we have minθ∈J k(θ0) < 0, and hence k changes sign in J .

In the case f − g ≤ 0 on J , we take η = 1 and the argument is similar. �

Corollary 4.13. Let δ, t > 0 with 0 < δ ≤ c2t/2. Let W,B ⊂ F be a pair of 2t-separated finite
sets.

Let R be a collection of pairwise 2Cc-incomparable (δ, t)-rectangles of the form f δ(I) where f ∈ F
and I ⊂ J/4. Suppose each rectangle in R is tangent to at least one wR ∈ W and at least one
bR ∈ B.

Then there exists η ∈ {−1, 0, 1} and a set R′ ⊂ R with the following properties.

• #R′ ≥ 1
3#R.

• If we define W ′ = {w + ηλδ : w ∈ W}, then each rectangle in R′ is 2λ-tangent to at least
one wR ∈ W ′ and at least one bR ∈ B.

• For each R ∈ R′, we have that wR, bR intersect exactly twice in J .

We are now ready to prove Lemma 4.11. Applying Corollary 4.13 to W and B, we obtain a
perturbed set W ′ and a subset R′ ⊂ R. We claim that W ′ ∪ B is a finite subset of a family F ′

that has cinematic constant at most 2K. Indeed, we can simply define F ′ = (W − ηλδ) ∪ B (recall
that W ⊂ C2(J), so W − ηλδ = {f − ηλδ : f ∈ W}. It is easy to check that since W and B are
2t-separated, (1.6) continues to hold with 2K in place of K (the only interesting case to check is
when f ∈ W − ηλδ and g ∈ B, or vice-versa). Also, W ′ ∪ B is at least t separated, if c2 is chosen
to be small enough.

Our collection W ′, B, and R′ satisfies property A1 from the statement of Lemma 4.10. After
applying a second harmless infinitesimal perturbation, we can ensure that W ′, B, and R′ satisfy
Properties A2 and A3, while maintaining property A1. Lemma 4.11 now follows from Lemma 4.10.

Finally, in light of the preliminary reductions given by Lemmas 4.2 and 4.3, Proposition 4.1
follows from Lemma 4.11 via a standard random sampling argument. See i.e. the proof of Lemma
1.4 from [29].

5. Proof of Theorem 1.7

We have now assembled the necessary ingredients to execute the proof sketch described in Section
1.3. We will begin with a few preliminary reductions. First, if F ⊂ C2(J) is a family of cinematic
functions, the results from Sections 3 and 4 allow us to control the functions f ∈ F on a slightly
shorter interval J/4. This is inconvenient, since the domain of integration in (1.8) might involve
the entire interval J . Our first task is to show that Theorem 1.7 will follow from the following
(superficially) weaker version, in which the domain of integration has been restricted to a slightly
smaller set.

Lemma 5.1. Let ε > 0, 0 < α ≤ ζ ≤ 1, and D,K ≥ 1. Then the following is true for all
δ > 0 sufficiently small (depending on D,K, and ε). Let F ⊂ C2(J) be a family of cinematic
functions, with cinematic constant K and doubling constant D. Let E be a (δ, α; δ−ε)1× (δ, α; δ−ε)1
quasi-product.
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Let F ⊂ F be a set of functions that satisfies the Frostman-type non-concentration condition

#(F ∩B) ≤ δ−ε(r/δ)ζ for all balls B ⊂ C2(I) of radius r ≥ δ.

Let J ′ = 1
16J and let E′ = E ∩ (J ′ × R). Then

∫

E′

(

∑

f∈F
1fδ

)3/2
≤ δ2−α/2−ζ/2−C0ε(#F ), (5.1)

where C0 = C0(D) > 0 depends on D.

Using Lemma 5.1 we can prove Theorem 1.7 as follows. Let J1, . . . , JN , N ∼ | log δ| be a sequence

of sub-intervals of J , so that J\⋃N
i=1

1
16Ji consists of two intervals of length δ (these intervals will

be at the two endpoints of J). Note that if J0 is an interval of length δ and if E0 = E ∩ (J0 × R),
then

∫

E0

(

∑

f∈F
1fδ

)3/2
. δ2(#F )3/2 ≤ δ2−α/2−ζ/2−C0ε(#F ). (5.2)

For each index i, apply Lemma 5.1 to the restriction F|Ji ⊂ C2(Ji); this is still a family of
cinematic functions, with cinematic constant K and doubling constant D. Using the triangle
inequality, we conclude that

∫

E

(

∑

f∈F
1fδ

)3/2
. | log δ|δ2−α/2−ζ/2−C0ε(#F ).

Theorem 1.7 now follows, provided we select C > C0 and restrict δ > 0 sufficiently small.
Next, we remark that when proving Lemma 5.1, we may suppose that F is δ-separated. This

follows from the triangle inequality and observation that by (1.7) each δ-ball contains at most δ−ε

elements of F .
Finally, we claim that Lemma 5.1 follows from the following restricted weak-type estimate. For

each x ∈ R
2, let F (x) = {f ∈ F : x ∈ f δ}. For each x ∈ R

2, #F (x) ≤ #F . δ−ε−ζ . Thus by dyadic
pigeonholing, there is a set E0 ⊂ E and an integer µ so that µ ≤ #F (x) < 2µ for all x ∈ E0, and
µ3/2|E0| ≈ LHS of (5.1). Thus in order to prove Lemma 5.1 (and hence Theorem 1.7), it suffices
to establish the estimate

|E0| / δ2−
α
2
− ζ

2
−C1ε#Fµ−3/2, (5.3)

for some C1 = C1(D).

5.1. Two ends reductions. In this section, we will find quantities called t and ∆, so that for a
typical point x ∈ E0, the functions in F (x) are localized to a ball in C2(J) of radius t, and for a
typical pair of functions f, g ∈ F (x), we have ∆(f, g) ∼ ∆. Our main tool will be the “two-ends”
reduction. See [25] for an introduction to the topic.

5.1.1. Finding the diameter of F (x). Since F ⊂ C2(J) is bounded, so is the set F (x) for each
x ∈ E0. However, it is possible that F (x) (or a large fraction thereof) has diameter much smaller
than diam(F ) for a typical x ∈ E0. In this section, we will find the “true” diameter of F (x) for a
typical x ∈ E0.

For t > 0 and x ∈ R
2, define

n1(t, x) = sup
g∈C2(J)

#F (x) ∩B(g, t), (5.4)

where B(g, t) ⊂ C2(J) is the ball centered at g ∈ C2(J) of radius t. With this, we further define

n2(x) = sup
t∈[δ,K]

n1(t, x)t
−ε. (5.5)
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Hence, given x, there is some t(x) ∈ [δ,K] such that n2(x) ≤ 2n1(t(x), x)t(x)
−ε. There is also some

gx such that

#F (x) ∩B(gx, t(x)) ≥ n2(t(x), x)/2, (5.6)

so we have

n2(x) ≤ 4t(x)−ε#F (x) ∩B(gx, t(x)). (5.7)

For simplicity we denote Bx = B(gx, t(x)).
Since t(x) ∈ [δ,K], by a dyadic pigeonholing, there is a Borel set E1 ⊂ E0 and a number

t ∈ [δ, 2K] such that t(x) ∈ (t/2, t] for every x ∈ E1, and |E1| ≈ |E0|. It then suffices to show

|E1| / δ2−
α
2
− ζ

2
−C1ε#Fµ−3/2. (5.8)

Since F is doubling, we can cover it by finitely overlapping balls B of radius t, and denote

FB = F ∩ (3B),

so {FB} covers F and is finitely overlapping. Also, let EB be the set of x ∈ E1 such that Bx

intersects B, and thus {EB} is also finitely overlapping. Thus it suffices to show for each B

|EB | / δ2−
α
2
− ζ

2
−C1ε#FBµ

−3/2. (5.9)

Now fix a ball B of radius t and let x ∈ EB . By (5.7), (5.5) and (5.4), we have

#F (x) ∩Bx & tεn2(x) & tεn1(K,x) = tε#F (x) ∼ tεµ.

By another dyadic pigeonholing, we may find a subset E′
B ⊂ EB and a scale µ1 with

tεµ . µ1 ≤ µ, (5.10)

such that |E′
B | ≈ |EB | and for every x ∈ E′

B we have #F (x) ∩ Bx ∼ µ1. It suffices to show (5.9)
with EB replaced by E′

B .
Now let x ∈ E′

B . If B intersects Bx then we have Bx ⊂ 3B. Hence

#FB(x) = #F (x) ∩ (3B) ∩Bx = #F (x) ∩Bx ∼ µ1. (5.11)

From now on we fix such a ball B and aim to prove (5.9). We end with a useful lemma.

Lemma 5.2. Fix x ∈ E′
B and g ∈ C2(J). If δt−1 < λ < 1, then for at most 4 · (2λ)ε fraction of

f ∈ FB(x) we have ‖f − g‖ ≤ λt.

Proof. Let g ∈ C2(J). By (5.7) and (5.11), we have

n2(x) ≤ 4t(x)−ε#F (x) ∩Bx ≤ 4 · 2εt−ε#FB(x).

But by the definition of n2 in (5.5) and λt ∈ [δ,K], we also have

n2(x) ≥ n1(λt, x)(λt)
−ε ≥ #F (x) ∩B(g, λt)λ−εt−ε

Combining the lower and upper bounds of n2(x) gives

#F (x) ∩B(g, λt) ≤ 4 · (2λ)ε#FB(x),

from which the result follows. �



24 MALABIKA PRAMANIK, TONGOU YANG AND JOSHUA ZAHL

5.1.2. Finding the typical tangency of curve-curve intersection. As discussed in Section 1.3, a typ-
ical pair of intersecting curves in F might intersect transversely, tangentially, or something in-
between. In this section, we will find the typical degree of tangency when two curves intersect. We
will do this by using a two-ends reduction argument similar to that in Section 5.1.1. This two-ends
reduction will use a much smaller quantity in place of ε, so that the resulting refinement retains
the two-ends property from Section 5.1.1.

For x ∈ EB and ∆ > 0, define

n3(∆, x) = max
k∈FB(x)

#{f ∈ FB(x) : ∆(f, k) ≤ ∆}. (5.12)

Since FB is contained in 3B which has diameter 6t, invoking (5.11) and the relation ∆(f, k) ≤
‖f − g‖, we have

n3(6t, x) = #FB(x). (5.13)

We further define
n4(x) = sup

∆∈[δ,6t]
n3(∆, x)∆−ε2 . (5.14)

Given x, there is some ∆x ∈ [δ, 6t] such that

n4(x) ≤ 2n3(∆x, x)∆
−ε2

x . (5.15)

There is also some kx ∈ FB(x) attaining the maximum in (5.12), that is,

#{f ∈ FB(x) : ∆(f, kx) ≤ ∆x} = n3(∆x, x), (5.16)

and hence
n4(x) ≤ 2∆−ε2

x #{f ∈ FB(x) : ∆(f, kx) ≤ ∆x}. (5.17)

Since ∆x ∈ [δ, 6t], by a dyadic pigeonholing, there is a Borel set E′′
B ⊂ E′

B and a number ∆ ∈ [δ, 12t]
such that ∆x ∈ (∆/2,∆] for every x ∈ E′′

B , and |E′′
B | ≈ |E′

B |. It then suffices to show

|E′′
B | / δ2−

α
2
− ζ

2
−C1ε#FBµ

−3/2. (5.18)

5.1.3. Shadings. At this point, the set E0 from (5.3) has been divided into (mostly) disjoint pieces
EB . For each x ∈ EB , most of the functions f ∈ F (x) are contained in the ball B, and only
a small fraction of these functions are contained in any ball substantially smaller than B. For a
typical pair of functions f, g ∈ F (x), ∆(f, g) has size roughly ∆. For technical reasons, it will be
convenient to restrict the sets f δ to a slightly smaller “shading” Y1(f), so that the above properties
hold whenever x ∈ Y1(f). More precisely, we define

Y1(f) = {x ∈ E′′
B ∩ f δ : ∆(f, kx) ≤ ∆}. (5.19)

In view of (5.17), (5.13) and ∆x ≤ ∆, for every x ∈ E′′
B we have

#{f ∈ FB(x) : ∆(f, kx) ≤ ∆} & (∆/t)ε
2
#FB(x) ∼ (∆/t)ε

2
µ1. (5.20)

On the other hand, we have a trivial bound

#{f ∈ FB(x) : ∆(f, kx) ≤ ∆} ≤ #FB(x) ∼ µ1.

Now we apply another dyadic pigeonholing to find a subset E2 ⊂ E′′
B with |E2| ≈ |E′′

B | and a scale
µ2 with

(∆/t)ε
2
µ1 . µ2 ≤ µ1, (5.21)

such that for every x ∈ E2 we have

#{f ∈ FB(x) : ∆(f, kx) ≤ ∆} ∼ µ2. (5.22)

Equivalently, we have

#{f ∈ FB : x ∈ Y1(f)} =
∑

f∈FB

1Y1(f)(x) ∼ µ2, ∀x ∈ E2. (5.23)
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It then suffices to prove

|E2| / δ2−
α
2
− ζ

2
−C1ε(#FB)µ

−3/2. (5.24)

We record a coarse bound that is used in some dyadic pigeonholing argument later. Since
#FB(x) & tεµ and µ ≤ #F . δ−1−ε, the right hand side of (5.24) is trivially bounded below by
δ3, for δ small enough. If |E2| ≤ δ3 then we are done, and so in the following we may assume

|E2| > δ3. (5.25)

5.2. Fine-scale rectangles. In this section, we will show that E2 can be covered by curvilinear
rectangles of dimensions roughly δ× δ/

√
t∆, so that these rectangles are (mostly) disjoint, and for

most pairs f, g ∈ FB(x), we have that Y1(f)∩ Y1(g) is localized to roughly one of these rectangles.

Lemma 5.3. There is a constant CR = CR(K) (R stands for “rectangle”) such that the following
is true. Let

t′ = CRt∆/δ. (5.26)

For each x ∈ E2, there is a (δ, t′)-rectangle Rx over J/8, such that x ∈ Rx, and every f ∈ FB with
x ∈ Y1(f) is tangent to Rx.

Proof. Denote x = (θ0, y0) where x ∈ J/16. Let I be the interval of length
√

δ/t′ centred at θ0.
Since t & ∆ ≥ δ, we have I ⊂ J/8 if CR is large enough. With this, define the curvilinear rectangle

Rx = kδx(I), (5.27)

where kx is as in (5.16). We now show that Rx is as required.
First we have x ∈ Rx since kx ∈ FB(x) by (5.12). Also, let f be such that x ∈ Y1(f), then in

particular, x ∈ f δ. By the triangle inequality, |f(θ0)− kx(θ0)| ≤ 2δ. By Part (2c) of Lemma 3.8 at
the scale 4δ, we have

E4δ = {θ ∈ J/4 : |f(θ)− kx(θ)| ≤ 4δ}
contains an interval I ′ obeying θ0 ∈ I ′ and

|I ′| & δd(f, kx)
−1/2(δ +∆(f, kx))

−1/2.

Since x ∈ Y1(f) we have ∆(f, kx) ≤ ∆. Also d(f, k(x)) ≤ 6t. If CR is chosen to be large enough,

then the interval I containing θ0 will have length
√

δ/t′ ≤ |I ′|, and thus I ⊂ I ′ and Rx is tangent
to f . �

5.2.1. Shadings of fine-scale rectangles. For each (δ, t′)-rectangle R, we define its shading as

Y2(R) = {x ∈ CsR ∩ E2 : Rx is Cs-comparable to R}, (5.28)

where Cs = Cs(K) ≥ 100 (s standing for “shadings”) is a suitable constant to be determined.
Intuitively, Y2(R) is an important subset of R since it is where the δ-neighbourhoods of the curves
in FB overlap greatly.

For technical purposes, we also define a slightly smaller shading of R as

Y ′
2(R) = {x ∈ R ∩E2 : Rx is 100-comparable to R}.

By Lemma 5.3, we have

E2 =
⋃

x∈E2

Y ′
2(Rx). (5.29)

We also record an elementary lemma on the shadings of curvilinear rectangles.

Lemma 5.4. If Cs is suitably chosen, then for any pair (R,R′) of 100-comparable (δ, t)-rectangles,
we have Y ′

2(R
′) ⊂ Y2(R).
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Proof. If R,R′ are 100-comparable, then by Lemma 3.12, we have R′ ⊂ CsR if Cs is large enough.
Thus if x ∈ Y ′

2(R
′), then x ∈ CsR ∩ E2. Also, Rx is 100-comparable to R′, and since R′ is 100-

comparable to R, Corollary 3.13 implies that Rx is Cs-comparable to R if Cs is large enough. Thus
Y ′
2(R

′) ⊂ Y2(R). �

5.2.2. Finding an incomparable set of fine-scale rectangles.

Lemma 5.5. There is a pairwise 100-incomparable subcollection R of {Rx : x ∈ E2} such that the
following holds:

(1) There is some Λ ∈ (0, 1) such that for each Rx ∈ R we have Λ ≤ |Y2(Rx)| < 2Λ.
(2) Y2(R) ∩ Y2(R

′) = ∅ for R 6= R′ ∈ R, and

|E2| /
∑

R∈R
|Y2(R)| ∼ Λ#R. (5.30)

(3) We have the coarse bounds

#R ≤ δ−C , Λ ≥ δC
′

, (5.31)

for δ sufficiently small (depending on K,D), where C,C ′ depend on D only.

Proof. Before we construct R, we first construct a larger collection R∗ in the following greedy way.
Denote Λ1 = supx∈E2

|Y ′
2(Rx)|. Since we have assumed |E2| > δ3 we have Λ1 > 0 by (5.29). So

we pick R1 = Rx1 such that |Y ′
2(R1)| > Λ1/2.

To choose R2, we consider all (δ, t)-rectangles Rx that are 100-incomparable to R1; denote this

collection by R(1). Denote Λ2 = supRx∈R(1) |Y ′
2(Rx)|. If Λ2 = 0, then we just let R∗ = {R1}. With

this, (5.29) and Lemma 5.4, we have (here ∼100 means 100-comparable)

|E2| ≤

∣

∣

∣

∣

∣

∣

⋃

x∈E2,Rx∼100R1

Y ′
2(Rx)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

x∈E2,Rx 6∼100R1

Y ′
2(Rx)

∣

∣

∣

∣

∣

∣

≤ |Y2(R1)|+
∑

Rx∈R(1)

∣

∣Y ′
2(Rx)

∣

∣

= |Y2(R1)|.
If Λ2 > 0, then we pick R2 ∈ R(1) such that |Y ′

2(R2)| > Λ2/2. To choose R3, we consider

all (δ, t)-rectangles that are 100-incomparable to both R1 and R2; denote this collection by R(2).
Denote Λ3 = supRx∈R(2) |Y ′

2(Rx)|. If Λ3 = 0, we just let R∗ = {R1, R2}. With this, we similarly
have

|E2| ≤

∣

∣

∣

∣

∣

∣

⋃

x∈E2,Rx∼100R1

Y ′
2(Rx)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

x∈E2,Rx∼100R2

Y ′
2(Rx)

∣

∣

∣

∣

∣

∣

≤ |Y2(R1)|+ |Y2(R2)|.

We can continue arguing in this fashion. Note that Lemma 3.17 implies that the process must stop
at some finite time N < δ−C for some constant C = C(D), proving the first inequality in (5.31).
Thus ΛN+1 = 0, ΛN > 0, R∗ = {R1, . . . , RN}, and

|E2| ≤
N
∑

n=1

|Y2(Rn)|.

We may assume without loss of generality that |Y2(Rn)| ≥ δC+3 for all n. Indeed, we may throw
away all n such that |Y2(Rn)| < δC+3, since the sum of all such |Y2(Rn)| is less than δC+3N < δ3 <
|E2|/2, as |E2| > δ3 by our assumption.

Now for j ≥ 0, we denote

R(j) = {Rn ∈ R∗ : 2j−1ΛN ≤ |Y2(Rn)| < 2jΛN}.



RESTRICTED PROJECTION TO LINES IN R
3 27

There are at most O(| log δ|) many such j’s, since δC+3 ≤ |Y2(Rn)| ≤ 1. By pigeonholing, there
is some j such that

N
∑

n=1

|Y2(Rn)| . | log δ|
∑

n:Rn∈R(j)

|Y2(Rn)|.

We now define

R = R(j), Λ = 2j−1ΛN > 0.

Thus

|E2| ≤
N
∑

n=1

|Y2(Rn)| / Λ#R.

Also, we have Λ ≥ δC+4, since |E2| > δ3 and #R ≤ N < δ−C .
�

We now observe the following. Since Y2(R) ⊂ CsR∩E2, R is over an interval of length ∼
√

δ/t′,
and E2 is further contained in a (δ, α; δ−ε)1 × (δ, α; δ−ε)1 quasi-product, we have

Λ ∼ |Y2(R)| . δ2−ε(
√

δ/t′/δ)α ∼ δ2−ε∆−α/2t−α/2.

With this, we write

Λ = τδ2−ε∆−α/2t−α/2, (5.32)

where

0 < τ . 1. (5.33)

To establish (5.24), it thus suffices to show

#R / τ−1δ−
α
2
− ζ

2
−C2ε∆α/2tα/2#FBµ

−3/2, (5.34)

for some C2 = C2(D).

5.3. Coarse-scale rectangles. In this section, we will show that the fine-scale rectangles from
Section 5.2 are contained in coarse-scale rectangles of dimensions roughly ∆×

√

∆/t. If a fine-scale

rectangle R is contained in a coarse-scale rectangle R̃, then R̃ is (roughly) a dilate of R.

For each R ∈ R, we define R̃(R) as follows. If R = f δ(I), then R̃(R) = f∆(Ĩ), where Ĩ is the

∆/δ dilation of I, and hence it obeys |Ĩ| =
√

∆
CRt where CR is as in Lemma 5.3. Thus R̃(R) is a

(∆, CRt)-rectangle, and trivially we have R ⊂ R̃(R). Also, since I ⊂ J/8, for CR large enough, we

have Ĩ ⊂ J/4.

Lemma 5.6. Let R = Rx and f ∈ FB with x ∈ Y1(f), such that f is tangent to R by Lemma 5.3.

If CR was chosen to be sufficiently large, then f is also tangent to R̃.

Proof. It follows from the same proof as that of Lemma 5.3, with ∆ in place of δ. �

Next, we pick a maximally 100-incomparable subcollection R̃ of {R̃(R) : R ∈ R}, and we will

denote each member of R̃ as R̃. In this way we have partitioned R into subcollections of the form
R(R̃) consisting some of those R ∈ R such that the enlarged R̃(R) of R is 100-comparable to R̃.

For each R ∈ R(R̃), we have R ⊂ R̃(R), and since R̃(R) is 100-comparable to R̃, Lemma

3.12 shows that R̃(R) ⊂ CR̃ for some suitable absolute constant C ≥ 1. Thus R ⊂ CR̃, and so

R ∩ E2 ⊂ CR̃ ∩ E2.
Recall we want to prove (5.34). Using (5.31) and dyadic pigeonholing, we may find a subcollection

R̃1 ⊂ R̃ such that for some M we have

#R(R̃) ∼ M (5.35)



28 MALABIKA PRAMANIK, TONGOU YANG AND JOSHUA ZAHL

for each R̃ ∈ R̃1; moreover, this M is chosen such that if we define R1 = ∪R̃∈R̃1
R(R̃), then

#R1 ≈ #R. As a result, we have #R ≈ #R̃1M . Note that by Lemma 5.5, we also have
|E2| / Λ#R1.

For this reason, in the subsequent argument we will slightly abuse notation and denote R = R1

and R̃1 = R̃. Thus we have
#R ≈ #R̃M, (5.36)

and so it suffices to bound #R̃ and M .
We will now give an easy upper bound of M . Since E2 is contained in a (δ, α; δ−ε)1× (δ, α; δ−ε)1-

quasi product and CR̃ is a the O(∆)-neighbourhood of a curve of length ∼
√

∆/t, we have

|CR̃ ∩ E2| . δ1−ε(∆/δ)αδ1−ε(
√

∆/t/δ)α = δ2−2α−2ε∆3α/2t−α/2.

Recall Y2(R) defined as in (5.28). For R ∈ R(R̃), we have Y2(R) ⊂ CsR ∩E2 ⊂ CsR̃ ∩E2. But by
Lemma 5.5, Y2(R)’s are disjoint, and thus we have a measure bound

M .
|CsR̃ ∩E2|
|Y2(R)| . Λ−1δ2−2α−2ε∆3α/2t−α/2 = τ−1δ−2α−2ε∆2α, (5.37)

where in the last equality we have used (5.32). Later we will give a second bound on M using
Proposition 4.1.

5.4. A bilinear L2 bound. In this section, we will analyze the interaction between fine and
coarse-scale rectangles. We will show that for each fine-scale rectangle R, there are about µ2 pairs
of functions f, g that are tangent to R, so that f δ ∩ gδ is localized to R. Thus if N functions f ∈ F
are tangent to a coarse-scale rectangle R̃, then R̃ contains about N2/µ2 fine-scale rectangles. This
is the “L2 argument” alluded to in the proof sketch from Section 1.3.

We turn to the details. By construction, each R ∈ R is indexed by some x ∈ E2, namely, R = Rx.
We will write x(R) to denote this value of x. Let f ∈ FB and R ∈ R. We say the pair (f,R) is
good if x(R) ∈ Y1(f). Note that if (f,R) is good, then f is tangent to R by Lemma 5.3.

Denote by G the collection of all good pairs. For each f ∈ FB , we define

G(f) = {R ∈ R : (f,R) ∈ G}. (5.38)

For each R ∈ R, we define
G(R) = {f ∈ FB : (f,R) ∈ G}. (5.39)

For each x ∈ E2, we have x ∈ Y1(f) if and only if Rx ∈ G(f). Thus by (5.23) and unravelling the
definitions above, for each R ∈ R we have

#G(R) ∼ µ2. (5.40)

5.4.1. Pigeonholing the good pairs. For each R̃ ∈ R̃, we consider the quantity

#G(f) ∩R(R̃) = #{R ∈ R(R̃) : (f,R) ∈ G}.
By the disjointness of R(R̃), we have

#G =
∑

f∈FB

∑

R̃∈R̃

#G(f) ∩R(R̃).

In view of (5.31), we may apply a dyadic pigeonholing to find an integer q and a set G′ ⊂ G with

#G′ & | log δ|−1#G, so that for each R̃ ∈ R̃ and each f ∈ FB , the quantity #G′(f)∩R(R̃) is either
0 or ∼ q. (Here we define G′(f) and G′(R) similarly as (5.38) and (5.39).)

For each R̃ ∈ R̃, define

F (R̃) = {f ∈ FB : G′(f) ∩R(R̃) 6= ∅}. (5.41)

For each f ∈ F (R̃), we have in particular G(f)∩R(R̃) 6= ∅, and thus there is some R ∈ R(R̃) such

that (f,R) ∈ G. Hence f is tangent to R, and using Lemma 5.6, we also have f is tangent to R̃.
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By construction, #G′(f) ∩R(R̃) ∼ q for each f ∈ F (R̃), and hence

#F (R̃) ∼ 1

q
#{(f,R) ∈ G′ : R ∈ R(R̃)} =

1

q

∑

R∈R(R̃)

#G′(R). (5.42)

More generally, for every ball B(g, r) ⊂ C2(J) we have

#F (R̃) ∩B(g, r) ∼ 1

q

∑

R∈R(R̃)

#G′(R) ∩B(g, r). (5.43)

By (5.40) and (5.35), for each R̃ ∈ R̃′ we have
∑

R∈R(R̃)

#G′(R) ≤
∑

R∈R(R̃)

#G(R) ∼ µ2M,

and hence
#G′ =

∑

R̃∈R̃

∑

R∈R(R̃)

#G′(R) . µ2M#R̃.

On the other hand, we have

#G′ & | log δ|−1#G = | log δ|−1
∑

R̃∈R̃

∑

R∈R(R̃)

#G(R) ∼ | log δ|−1µ2M#R̃, (5.44)

where the final quasi-inequality used (5.40). Combining the upper and lower bounds, we see that

for a & | log δ|−1 fraction of R̃ ∈ R̃ we have
∑

R∈R(R̃)

#G′(R) & | log δ|−1µ2M. (5.45)

Denote this subcollection as R̃′. Similarly, for each R̃ ∈ R̃′, for a & | log δ|−1 fraction of R ∈ R(R̃)
we have

#G′(R) & | log δ|−1µ2. (5.46)

Denote this subcollection as R′(R̃), which has cardinality & | log δ|−1M . Denote

R′ =
⊔

R̃∈R̃′

R′(R̃). (5.47)

Thus #R′ & | log δ|−2#R. Since each #R′(R̃) ≈ M , it suffices to bound #R′.

5.4.2. Each fine-scale rectangle has many good pairs.

Lemma 5.7. If δ > 0 is sufficiently small, then for each R ∈ R′, there are at least (#G′(R))2/3
pairs (f, g) ∈ (G′(R))2 such that δ2εt ≤ ‖f − g‖ ≤ 6t and δε∆ ≤ ∆(f, g) + δ ≤ 2∆.

Proof. Let R = Rx ∈ R′ where x ∈ E2. Fix g ∈ G′(R). We deal with ‖f − g‖ first. If t ≤ δ1−ε,
then we immediately have ‖f − g‖ ≥ δ ≥ δ2εt for every f ∈ G′(R)\{g}, since the elements of F are
δ-separated.

Next, suppose t > δ1−ε, and let λ = δ2ε; by hypothesis we have δt−1 < λ < 1. Thus we can
apply Lemma 5.2 to conclude that

#{f ∈ G′(R) : ‖f − g‖ ≤ λt}
≤ #{f ∈ FB(x) : ‖f − g‖ ≤ λt}
. λεµ1

. λεδ−ε2µ2

= δε
2
µ2
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. δε
2 | log δ|#G′(R),

where the third inequality used (5.21) and in the last inequality we have used (5.46). If δ > 0 is
sufficiently small (depending on ε), then

#{f ∈ G′(R) : ‖f − g‖ ≤ λt} ≤ #G′(R)/3. (5.48)

Next we deal with ∆(f, g). If ∆ ≤ δ1−ε then we immediately have ∆(f, g) + δ ≥ δε∆ for every
f ∈ G′(R). If ∆ > δ1−ε, then we choose

σ = | log δ|−2,

and thus σε−2
∆ ≥ δε∆ > δ for δ small enough. Using (5.14) and (5.15), we have

2n3(∆x, x)∆
−ε2
x ≥ n4(x) ≥ n3(σ

ε−2
∆, x)(σε−2

∆)−ε2 ,

and thus n3(σ
ε−2

∆, x) . σn3(∆x, x) since ∆x ∼ ∆. Now recalling the definition of n3 in (5.12),
taking k = g ∈ FB(x) shows that

n3(σ
ε−2

∆, x) ≥ #{f ∈ FB(x) : ∆(f, g) ≤ σε−2
∆}.

Combining the lower and upper bounds for n3(σ
ε−2

∆, x) we have

#{f ∈ G′(R) : ∆(f, g) ≤ σε−2
∆}

≤ #{f ∈ FB(x) : ∆(f, g) ≤ σε−2
∆}

. σn3(∆x, x)

= σ#{f ∈ FB(x) : ∆(f, kx) ≤ ∆x}
≤ σµ2

. σ| log δ|#G′(R)

≤ #G′(R)/3,

(5.49)

for δ small enough, where in the fourth line we have used (5.16) and in the sixth line we have used
∆x ≤ ∆, (5.22) and (5.46).

By (5.48) and (5.49), we conclude that at least a 1/3 fraction of the functions f ∈ G′(R) satisfy
‖f − g‖ ≥ δ2εt and ∆(f, g) + δ ≥ δε∆. The corresponding upper bounds ‖f − g‖ ≤ 6t and
∆(f, g) + δ ≤ 2∆ hold for every f ∈ G′(R). �

Lemma 5.8. For each pair f, g ∈ FB × FB such that ‖f − g‖ ≥ δ2εt and ∆(f, g) + δ ≥ δε∆, there
are . δ−4ε rectangles R ∈ R′ such that both f, g ∈ G′(R).

Proof. If f ∈ G′(R), then f ∈ G(R) and thus f is tangent to R. It then suffices to show that there
are at most . δ−3ε many R ∈ R′ that are tangent to both f, g.

Let f, g with ‖f − g‖ ≥ δ2εt and ∆(f, g) + δ ≥ δε∆, and suppose R = kδ(I) is tangent to both
f and g. Then over I we have |f(θ) − g(θ)| ≤ 10δ. By Part (2b) of Lemma 3.8 at the scale 10δ,
the union of all R that are tangent to both f and g projects to the θ-axis into a set of Lebesgue
measure

. δ/
√

‖f − g‖(∆(f, g) + δ) . δ1−(3/2)ε(t∆)−1/2 ∼ δ−(3/2)ε
√

δ/t′.

Using Lemma 3.15 with λ . δ−(3/2)ε, we see there are . δ−(15/4)ε ≤ δ−4ε R ∈ R′ that are tangent
to both f, g. �
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5.4.3. A tangency bound on #R(R̃). Now we give another bound on M in addition to (5.37), using

the conclusions in Section 5.4.2. For R̃ ∈ R̃′, define

P(R̃) =
⋃

R∈R′(R̃)

{(f, g) ∈ G′(R)2 : ‖f − g‖ ≥ δ2εt, ∆(f, g) + δ ≥ δε∆}.

By Lemma 5.7, Lemma 5.8 and (5.46) we have

#P(R̃) ' δ4εµ2
2M. (5.50)

On the other hand, we have a trivial bound (recall (5.41))

#P(R̃) ≤ (#F (R̃))2. (5.51)

Combining (5.50) and (5.51) and recalling (5.21) and (5.10), we conclude that

M / δ−4εµ−2
2 (#F (R̃))2 / δ−6εµ−2(#F (R̃))2. (5.52)

This is our second bound on M . Taking a suitable geometric average of these bounds, we have

M / (5.37)1/4(5.52)3/4 / τ−1/4δ−α/2−6ε∆α/2µ−3/2(#F (R̃))3/2. (5.53)

Note that (5.53) holds for every R̃ ∈ R̃′, and the LHS is independent of the choice of R̃. Thus if
we define

l = min
R̃∈R̃′

#F (R̃),

Then using (5.33) and (5.53), (5.34) would follow from the estimate

#R̃′ ≤ δ−C3εδ−ζ/2tα/2l−3/2#FB, (5.54)

for some C3 = C3(D).
In the next section we will establish this estimate.

5.5. Proving Inequality (5.54). Our goal in this section is to bound the size of R̃′. Our main
tool will be Proposition 4.1. However, before the proposition can be applied we need to construct
suitable sets W and B.
5.5.1. Non-concentration of functions tangent to R̃. In this section, we will show that for each
coarse-scale rectangle R̃, the functions from F tangent to R̃ cannot be concentrated inside a ball
of diameter much smaller than t.

Lemma 5.9. Let R̃ ∈ R̃′. For every r > 0 and every g ∈ C2(J), we have

#F (R̃) ∩B(g, r) . | log δ|(r/t)ε(t/∆)ε
2
#F (R̃). (5.55)

Proof. Recall (5.43) that

#F (R̃) ∩B(g, r) ∼ q−1
∑

R∈R(R̃)

#G′(R) ∩B(g, r).

For each R ∈ R(R̃), write R = Rx. using Lemma 5.2 with λ = r/t and (5.11) we have

#G′(R) ∩B(g, r) ≤ #FB(x) ∩B(g, r) . (r/t)ε#FB(x) ∼ (r/t)εµ1.

Thus
#F (R̃) ∩B(g, r) . q−1#R(R̃)(r/t)εµ1 ∼ q−1M(r/t)εµ1.

On the other hand, by (5.42) and (5.45), we have

#F (R̃) ∼ q−1
∑

R∈R(R̃)

#G′(R)

& q−1M | log δ|−1µ2 & q−1M | log δ|−1(∆/t)ε
2
µ1.
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Thus the result follows. �

By Lemma 5.9, we now take

r = tc1/ε| log δ|−1/ε(∆/t)ε, (5.56)

where c = c(D) is a sufficiently small constant to be determined, such that for every ball B(g, r) ⊂
C2(J) and every R̃ ∈ R̃′ we have

#F (R̃) ∩B(g, r) ≤ c#F (R̃). (5.57)

Note that t ≤ δ−2εr/3 for δ small enough.

5.5.2. Applying Proposition 4.1. Since F has doubling constant D, there exists CD ≥ 1 so that we
can cover 3B by a set of (3t/r)CD ≤ δ−2CDε balls of radius r, so that these balls are boundedly
overlapping (with the bound depending on D). Denote this set of balls by O.

If c = c(D) is chosen to be small enough, then for any R̃ ∈ R̃′, by pigeonholing and (5.57), there

are two balls O1(R̃), O2(R̃) ∈ O with their centres ≥ 10r separated, such that for i = 1, 2, we have

#F (R̃) ∩Oi(R̃) & δ2CDε#F (R̃) ≥ δ2CDεl. (5.58)

Since (#O)2 . δ−4CDε, by pigeonholing, there is a pair (O1, O2) ∈ O2 so that (5.58) holds for

& δ−4CDε#R̃′ rectangles in R̃′. Fix this choice of O1 and O2, and let R̃′′ ⊂ #R̃′ be the set of
rectangles for which (5.58) holds.

To establish (5.54), it suffices to prove that

#R̃′′ . δ−ζ/2−C3εtα/2l−3/2#FB , (5.59)

for some C3 = C3(D).

Let W = FB ∩O1(R̃) and B = FB ∩O2(R̃). Then (W,B) is r-separated. Also, by the discussion

right after (5.41), each (∆, CRt)-rectangle R̃ ∈ R̃′′ is in particular tangent to ≥ l many f ∈ W and
≥ l many f ∈ B.

With this, we can now apply Proposition 4.1 to the family #R̃′′ with µ = ν = l, CRt in place of
t, and A ≤ δ−2ε to get

#R̃′′ . δ−C4ε (#FB/l)
3/2 , (5.60)

for some C4 = C4(D).
By (1.7) with 3t in place of r, we have

#FB ≤ δ−ε(t/δ)ζ . (5.61)

Combining (5.60) and (5.61) and using the condition α ≤ ζ, we obtain (5.59) for some suitable C3.
This concludes the proof of Theorem 1.7.

Remark 5.10. For some applications, it may be helpful to replace the Frostman condition (1.7)
with the weaker inequality

#(F ∩B) ≤ A(r/δ)ζ for all balls B ⊂ C2(I) of radius r ≥ δ, (5.62)

for some A ≥ 1. By randomly selecting each f ∈ F with probability 1/A and then applying
Theorem 1.7, we obtain the following analogue of (1.8).

∫

E

(

∑

f∈F
1fδ

)3/2
≤ A1/2δ2−α/2−ζ/2−Cε(#F ). (5.63)
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Appendix A. Sogge’s cinematic curvature, and cinematic functions

In this section, we will explain the connection between cinematic functions (see Definition 1.6)
and Sogge’s cinematic curvature condition, as used by Kolasa and Wolff in [17]. First, we will
show that if Φ: R4 → R satisfies the cinematic curvature condition (for simplicity, we will state
this condition in a form that is convenient to compute with), then there are sets Y ×R ⊂ R

3 and
I × J ⊂ R

2, so that for each (y, r) ∈ Y × R, the curve {x ∈ I × J : Φ(x, y) = r} is the graph of a
function f(y,r) : I → J , and {f(y,r)} is a family of cinematic functions. The proof of this statement
requires careful computation using the inverse function theorem. These computations are described
below.

A.1. Cinematic curvature for normalized defining functions. Let U = I×J×Y ⊂ R
4, where

I, J ⊂ R are open intervals containing 0, and Y ⊂ R
2 is a neighborhood of 0. Let Φ(x, y) : U → R,

with

‖Φ‖C3(U) = C0. (A.1)

We will require

Φ(x, 0) = x2 +O(x3), (A.2)

dy

(

∂x1Φ(x, y)
∂2
x1
Φ(x, y)/|∇xΦ(x, y)|

)
∣

∣

∣

(x,y)=(0,0)
is invertible. (A.3)

Conditions (A.2) and (A.3) are a formulation of Sogge’s cinematic curvature condition for the
defining function Φ. See, for example Section 3 or the beginning of Section 5 from [17].

Shrinking I and Y if necessary, by the inverse function theorem we can find an interval R
containing 0 so that for each (y, r) ∈ Y × R, the curve {x ∈ I × J : Φ(x, y) = r} is the graph
x2 = fy,r(x1), where fy,r ∈ C2(I). We will show that after possibly further shrinking I and Y, the
set

F = {fy,r : (y, r) ∈ Y ×R} ⊂ C2(I) (A.4)

is a cinematic family of functions. Specifically, we will show there exists ε > 0 so that for all
(y, r), (y′, r′) ∈ Y ×R and all x1 ∈ I, we have

|fy,r(x1)− fy′,r′(x1)|+ |ḟy,r(x1)− ḟy′,r′(x1)|+ |f̈y,r(x1)− f̈y′,r′(x1)| ≥ ε|(y, r) − (y′, r′)|. (A.5)

Clearly the metric space F has bounded diameter, and doubling.

Step 1

After shrinking Y, I, and J if necessary (and re-defining U = I × J × Y ), we can suppose that

1/2 ≤ ∂x2Φ(x, y) ≤ 2 for all (x, y) ∈ U, (A.6)

and there exists c > 0 so that
∣

∣

∣
det

(

dy

(

∂x1Φ(x, y)
∂2
x1
Φ(x, y)/|∇xΦ(x, y)|

))∣

∣

∣
≥ c for all (x, y) ∈ U. (A.7)

(A.6) is a consequence of (A.2), while (A.7) is a consequence of (A.3).
Let ε1, ε2, ε3 be small positive numbers. We will choose ε3 sufficiently small depending on c and

C0. We will choose ε2 sufficiently small depending on c, C0 and ε3. We will choose ε1 sufficiently
small depending on c, C0 and ε2, ε3.

After further shrinking Y, I, and J if necessary, we can suppose that

|∂x1Φ(x, y)| ≤ ε1, |∇2
xΦ(x, y)| ≤ ε1 for all (x, y) ∈ U. (A.8)

Step 2 Let (y, r), (y′, r′) ∈ Y × R. Let x1 ∈ I, and let x2, x
′
2 ∈ J so that Φ(x1, x2, y) =

r, Φ(x1, x
′
2, y

′) = r′. We will define x = (x1, x2) and x′ = (x1, x
′
2), so |x− x′| = |x2 − x′2|. Finally,

we will adopt the notation Φ1(x, y) = ∂x1Φ(x, y); Φ2(x, y) = ∂x2Φ(x, y); Φ11(x, y) = ∂2
x1
Φ(x, y),

etc.
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If |x2 − x′2| ≥ 1
4 |r − r′|, then (A.5) holds with ε = 1/4 and we are done. Thus we can suppose

that

|x2 − x′2| <
1

4
|r − r′|. (A.9)

We have

|r − r′| = |Φ(x, y)−Φ(x′, y′)| ≤ |Φ(x, y)− Φ(x′, y)|+ |Φ(x′, y)− Φ(x′, y′)| ≤ 2|x− x′|+ C|y − y′|.
Using (A.9) and re-arranging, we conclude that |r − r′| ≤ 2C|y − y′|, so in particular

|(y, r)− (y′, r′)| ≤ 3C|y − y′|. (A.10)

Step 2

Let ε2 be a small constant to be determined later. If |x2 − x′2| ≥ ε2|y − y′|, then by (A.10), (A.5)
holds with ε = ε2

3C and we are done. Thus we can suppose that

|x2 − x′2| < ε2|y − y′|. (A.11)

Next, let ε3 be a small constant to be determined later. Suppose that

|Φ1(x
′, y)− Φ1(x, y

′)| ≥ ε3|y − y′|. (A.12)

We will show that if ε1 and ε2 were selected sufficiently small (depending on c, C0 and ε3), then

|ḟy,r(x1)− ḟy′,r′(x1)| ≥
ε3
10

|y − y′|, (A.13)

and thus by (A.10), (A.5) holds with ε = ε3
30C .

To establish (A.13), we will make use of the following inequality
∣

∣

∣

A

B
− A′

B′

∣

∣

∣
≥ |A−A′| |B|

|BB′| − |A| |B −B′|
|BB′| (A.14)

In practice, when we apply Inequality (A.14), B and B′ will always have 1
2 ≤ |B| ≤ 2 and similarly

for B′; |A−A′| & |y−y′|; |B−B′| . |y−y′| (with implicit constants that might depend on c and C0),
and |A| ≤ ε1. If A,A

′, B,B′ satisfy these conditions, then we will have |A/B−A′/B′| ≥ 1
8 |A−A′|,

provided ε1 is chosen sufficiently small.
We have

|ḟy,r(x1)− ḟy′,r′(x1)| =
∣

∣

∣

Φ1(x, y)

Φ2(x, y)
− Φ1(x

′, y′)
Φ2(x′, y′)

∣

∣

∣

≥
∣

∣

∣

Φ1(x
′, y)

Φ2(x′, y)
− Φ1(x

′, y′)
Φ2(x′, y′)

∣

∣

∣
−
∣

∣

∣

Φ1(x, y)

Φ2(x, y)
− Φ1(x

′, y)
Φ2(x′, y)

∣

∣

∣
.

(A.15)

By (A.1), (A.6), and (A.11), we have
∣

∣

∣

Φ1(x, y)

Φ2(x, y)
− Φ1(x

′, y)
Φ2(x′, y)

∣

∣

∣
≤ 4C|x− x′| ≤ 4C0ε2|y − y′|.

Applying Inequality (A.14) and using assumption (A.12), we conclude that
∣

∣

∣

Φ1(x
′, y)

Φ2(x′, y)
− Φ1(x

′, y′)
Φ2(x′, y′)

∣

∣

∣
≥ 1

8
|Φ1(x

′, y)− Φ1(x
′, y′)| ≥ ε3

8
|y − y′|.

Thus if ε2 is chosen sufficiently small depending on C0 and ε3, then (A.13) follows from (A.15).

Step 3

Suppose now that (A.12) is false, i.e.

|Φ1(x
′, y)− Φ1(x, y

′)| < ε3|y − y′|. (A.16)

Then by (A.7), we have
∣

∣

∣

Φ11(x
′, y)

|∇Φ(x, y)| −
Φ11(x

′, y′)
|∇Φ(x′, y′)|

∣

∣

∣
≥ c

4
|y − y′|. (A.17)
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We will show that if ε1, ε2, ε3 were chosen sufficiently small, then

|f̈y,r(x1)− f̈y′,r′(x1)| ≥
c

10
|y − y′|, (A.18)

and thus by (A.10), (A.5) holds with ε = c
30C . Thus (A.18) implies that set M defined in (A.4) is a

cinematic family of functions. It remains to establish (A.18). The proof of this inequality uses the
same ideas as the proof of (A.13), though the steps are slightly more complicated.

Define

F (a, b) =
Φ11(a, b)Φ2(a, b)

2 − 2Φ12(a, b)Φ1(a, b)Φ2(a, b) + Φ22(a, b)Φ1(a, b)
2

Φ2(a, b)3

Then

|f̈y,r(x1)− f̈y′,r′(x1)| = |F (x, y)− F (x′, y′)| ≥ |F (x′, y)− F (x, y′)| − |F (x, y) − F (x′, y)|.
By (A.1), (A.6), and (A.11), we have

|F (x, y)− F (x′, y)| . C|x− x′| . Cε2|y − y′|. (A.19)

Thus our goal is to establish a lower bound for |F (x′, y)− F (x, y′)|. We will estimate

|F (x′, y)− F (x, y′)| ≥
∣

∣

∣

Φ11(x
′, y)

Φ2(x′, y)
− Φ11(x

′, y′)
Φ2(x′, y′)

∣

∣

∣

− 2
∣

∣

∣

Φ12(x
′, y)Φ1(x

′, y)
Φ2(x′, y)2

− Φ12(x
′, y′)Φ1(x

′, y′)
Φ2(x′, y′)2

∣

∣

∣

−
∣

∣

∣

Φ22(x
′, y)Φ1(x

′, y)2

Φ2(x′, y)3
− Φ22(x

′, y′)Φ1(x
′, y′)2

Φ2(x′, y′)3

∣

∣

∣
.

(A.20)

For the first term, we will use the inequality AB −A′B′ = (A−A′)B′ + (B −B′)A to write

Φ11(x
′, y)

Φ2(x′, y)
− Φ11(x

′, y′)
Φ2(x′, y′)

=
Φ11(x

′, y)
|∇Φ(x′, y)|

(Φ2
1(x

′, y)

Φ2
2(x

′, y)
+ 1

)1/2
− Φ11(x

′, y′)
|∇Φ(x′, y′)|

(Φ2
1(x

′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2

=
( Φ11(x

′, y)
|∇Φ(x′, y)| −

Φ11(x
′, y′)

|∇Φ(x′, y′)|
)(Φ2

1(x
′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2

+
[(Φ2

1(x
′, y)

Φ2
2(x

′, y)
+ 1

)1/2
−

(Φ2
1(x

′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2] Φ11(x
′, y)

|∇Φ(x′, y)|
Using (A.8) and (A.6), and then (A.17), We have

∣

∣

∣

( Φ11(x
′, y)

|∇Φ(x′, y)| −
Φ11(x

′, y′)
|∇Φ(x′, y′)|

)(Φ2
1(x

′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2∣
∣

∣
≥ 1

2

∣

∣

∣

Φ11(x
′, y)

|∇Φ(x′, y)| −
Φ11(x

′, y′)
|∇Φ(x′, y′)|

∣

∣

∣

≥ c

4
|y − y′|,

and by (A.8),

[(Φ2
1(x

′, y)

Φ2
2(x

′, y)
+ 1

)1/2
−

(Φ2
1(x

′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2] Φ11(x
′, y)

|∇Φ(x′, y)|

≤
[(Φ2

1(x
′, y)

Φ2
2(x

′, y)
+ 1

)1/2
−

(Φ2
1(x

′, y′)

Φ2
2(x

′, y′)
+ 1

)1/2]

(2ε1)

≤ (2C)|y − y′|(2ε1).
Thus if ε1 is selected sufficiently small, we have

∣

∣

∣

Φ11(x
′, y)

Φ2(x′, y)
− Φ11(x

′, y′)
Φ2(x′, y′)

∣

∣

∣
≥ c

5
|y − y′|.
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Bounding the second and third term on the RHS of (A.20) is straightforward, using the estimates
(A.6), (A.8), and (A.16). We conclude that

|F (x′, y)− F (x, y′)| ≥ c

6
|y − y′|.

Combining this with (A.19), we obtain (A.18).
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[7] K. Fässler and T. Orponen. Vertical projections in the heisenberg group via cinematic functions and point-plate

incidences. Adv. Math., 431(2):109248, 2023.
[8] S. Gan, S. Guo, L. Guth, T. L. J. Harris, D. Maldague, and H. Wang. On restricted projections to planes in R

3.
Amer. J. Math. (to appear), 2022. arXiv:2207.13844.

[9] S. Gan, L. Guth, and D. Maldague. An exceptional set estimate for restricted projections to lines in R
3. J. Geom.

Anal., 34(1):Paper No. 15, 13, 2024.
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