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PERIODIC GEODESICS IN SINGULAR SPACES

PANOS PAPASOGLU, ERIC SWENSON

Abstract. We extend the classical result of Lyusternik and Fet
on the existence of closed geodesics to singular spaces. We show
that if X is a compact geodesic metric space satisfying the CAT(κ)
condition for some fixed κ > 0 and πn(X) 6= 0 for some n > 0 then
X has a periodic geodesic. This condition is satisfied for example
by locally CAT(κ) manifolds. Our result applies more generally to
compact locally uniquely geodesic spaces.

1. Introduction

The question of the existence of periodic geodesics in closed Rie-
mannian manifolds was first considered by Poincaré in [14]. Birkhoff
[4] proved existence of periodic geodesics for the sphere Sn and Fet-
Lyusternik extended this to every closed Riemannian manifold [9]. For
a review on the subject we refer to section 10.4 of [3].
Crucial to the existence result is Birkhoff’s shortening process. We

refer to [12] appendix A for an exposition of the Fet-Lyusternik result.
Another more modern exposition of the topic is given in ch. 5 of [8].
It is natural to ask whether the existence result for periodic geodesics

applies to wider classes of spaces and whether this really requires a Rie-
mannian metric. All existing proofs to our knowledge rely on analytic
methods where a Riemannian metric appears to be necessary.
Gruber in [11] showed that generically boundaries of convex bodies

in R
3 do not have any periodic geodesics. This shows that one does

need to impose some restrictions on the space.
We show in this paper that one can prove the existence result under

a quite weak assumption. One needs only assume that X is a geodesic
metric space homeomorphic to a close manifold with the property that
there is an ǫ > 0 so that any two points at distance ≤ ǫ are joined by a
unique shortest path. In fact the hypothesis that X is homeomorphic
to a closed manifold is not needed either, it suffices to assume that
πn(X) 6= 0 for some n > 0.
Our proof of this more general result is geometric and in some ways

simpler than previous proofs.
1
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It applies in particular to closed manifolds with curvature bounded
above in the sense of Alexandrov, i.e. manifolds that satisfy locally the
CAT (κ) condition. These spaces are extensively studied, we refer to
the classic [2] and to the more recent text [7] for the foundations and to
[1], ch II, sec 9 for an up to date exposition. The second author wishes
to thank the Max Planck Institute for Mathematics for their support
while working on this result. We thank S. Sabourau for many useful
comments on a first draft of our paper.

2. Preliminaries

Let X be a metric space. We recall that the length of a continuous
path γ : [0, ℓ] → X is defined as

length(γ) = sup{
n

∑

i=1

d(γ(ti), γ(ti+1)) : 0 = t1 < ... < tn+1 = ℓ, n ∈ N}.

Definition . LetX be a metric space. A continuous path γ : [0, ℓ] → X
is called a shortest path if

d(γ(0), γ(ℓ)) = length(γ).

We say that the path γ is a geodesic if there is an ǫ such that

d(γ(t), γ(s)) = length(γ|[t,s])

if d(γ(t), γ(s)) < ǫ.
We define similarly what it mean to be a geodesic for paths γ : S1 →

X and we call such paths periodic geodesics.
We say that X is a geodesic metric space if any two points in X can

be joined by a shortest path.
We say that the path γ : [0, ℓ] → X is a piecewise shortest path if

there is a partition of [0, ℓ] and γ is a shortest path on each closed
interval of the partition.
Let X be a compact geodesic metric space. We say that X is locally

uniquely geodesic if there is an ǫ > 0 such that any two points x, y ∈ X
with d(x, y) ≤ ǫ can be joined by a unique shortest path. We will also
use ǫ-locally uniquely geodesic when we wish to fix the ǫ in question.

It is convenient to parametrize geodesics by arc-length or propor-
tionally to arc length. We will do this from now on, so when we state
that γ : [0, 1] → X is a piecewise shortest path or a geodesic it will be
implicit that γ is parametrized proportionally to arc length, unless we
specify a different parametrisation.
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Remark 1. By [7, II Proposition 1.4 (1)] CAT (κ) spaces are locally
uniquely geodesic. So Riemannian manifolds and Riemannian polyhe-
dra satisfying the CAT (κ) condition are locally uniquely geodesic.

We recall that a metric space is called proper if closed balls are
compact.

Lemma 2.1. Let X be a geodesic, proper, and ǫ-locally uniquely ge-

odesic metric space. Let an, bn ∈ X such that an → a, bn → b and

d(an, bn) < ǫ for all n. If γn : [0, 1] → X are shortest paths joining an
to bn then γn converges uniformly to the unique shortest path γ joining

a, b.

Proof. The geodesics the γn are all Lipschitz with constant ǫ, and so
equicontinuous. Since X is proper, by Arzela-Ascoli, a subsequence of
(γn) converges uniformly to a path β joining a, b. Since length(γn) =
d(an, bn) → d(a, b) and length(γn) → length(β), β is the unique short-
est path joining a and b. Since X is locally uniquely geodesic β = γ. If
γn does not converge uniformly to β then a subsequence of γn converges
uniformly to a shortest path different from β, contradicting uniquely
geodesic. �

It follows that shortest paths of length less than ǫ vary continuously
with their endpoints in an ǫ-locally uniquely geodesic space.

3. The Birkhoff shortening process

We generalize below the Birkhoff shortening process in the context
of ǫ-locally uniquely geodesic metric space. We note that Bowditch [6]
has generalized this to CAT(1) spaces.
Let X be an ǫ-locally uniquely geodesic metric space and let γ :

[0, 1] → X be a continuous closed path. Let k be an integer such that
the set γ[t, t+ 1

k
] (with t+ 1

k
taken mod 1 if needed) has diameter less

than ǫ
2
for all t ∈ [0, 1] .

We define a process that will shorten this curve in two stages. In the
first stage we consider all integers 0 ≤ i < k and define a homotopy
Rt, where t ∈ [0, 1

k
] by replacing the interval γ([ 2i

2k
, 2i
2k

+ t]) with the
shortest path with the same endpoints. For t = 1

k
we obtain a path γ1

consisting of the unique shortest paths from γ( 2i
2k
) to γ(2i+2

2k
) for each

0 ≤ i < k.
We parametrize each shortest path proportionally to arc length so

that γ1(
2i
2k
) = γ( 2i

2k
) for each integer 0 ≤ i < k. Since γ1 is piecewise

constant speed, γ1 is Lipschitz (even though γ may not have been
Lipschitz at all) with constant equal to the maximal speed
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(1) k max
0≤i<k

d

(

γ

(

2i

2k

)

, γ

(

2i+ 2

2k

))

.

If follows immediately that if γ was Lipschitz with constant µ then
γ1 is Lipschitz with constant µ.
For integers 0 ≤ i < k, define the homotopy St , t ∈ [0, 1

k
] by

replacing the interval γ1([
2i+1
2k

, 2i+1
2k

+ t]) with the shortest path with
the same endpoints (where we consider the numbers mod 1 so 0 ∈
[2k−1

2k
, 1
2k
]). So S1/k(γ1) is the path consisting of shortest paths from

γ1(
2i+1
2k

) to γ1(
2i+3
2k

), where the numbers are taken mod 1 and 0 ≤ i < k.
As before, if γ1 was Lipschitz with constant µ, so is S1/k(γ1).
S1/k(γ1) is the outcome of the Birkhoff shortening process. We denote

by Dt the homotopy from γ to S1/k(γ1) and we set D(γ) = S1/k(γ1).
Notice that we have shown that if γ was Lipschitz with constant µ so
is D(γ)

4. A foliation of the sphere

We will need a standard foliation of the sphere Sn by circles that
we describe now (n ≥ 2). Let Sn ⊆ R

n+1 be the standard sphere. If
e1, ..., en+1 is the standard basis of Rn+1 we denote by Px1,...,xn−1

the
affine plane perpendicular to V = span (e1, ..., en−1) which intersects V
at (x1, ...., xn−1, 0, 0). Each plane Px1,...,xn−1

intersects Sn along a circle
or a point (or has empty intersection).
We would like to pick base points on the circles of the foliation in a

continuous fashion.
We pick the base point of each circle in the foliation to be the unique

point with coordinates satisfying xn = 0, xn+1 ≥ 0. We now param-
eterize the the intersection Sn ∩ Px1,...,xn−1

explicitly. So assuming

Sn ∩ Px1,...,xn−1
6= ∅, then let r =

√

1−
∑n−1

i=1 x2
i , with 0 ≤ r ≤ 1.

Now we define φx1,...,xn−1
: [0, 1] → Sn by

φx1,...,xn−1
(t) = (x1, . . . , xn−1, r sin 2πt, r cos 2πt)

Thus φx1,...,xn−1
(0) = φx1,...,xn−1

(1) = (x1, . . . , xn−1, 0, r) our chosen base
point. We note that the set of base points is equal to a closed half sphere
of dimension n− 1, so it is homeomorphic to a disk Bn−1.

5. Periodic geodesics in compact spaces

Theorem 5.1. Let X be a compact locally uniquely geodesic metric

space with πn(X) 6= 0 for some n ≥ 1. Then X contains a periodic

geodesic.
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Proof. Let’s say that X is ǫ-locally uniquely geodesic.
We treat first the n = 1 case. Since X is locally uniquely geodesic

there is a non-contractible closed path γ : [0, 1] → X of finite length.
We note that any closed curve of length ≤ ǫ is contractible. Indeed by
lemma 2.1 if we join a base point of the curve to the other points we
obtain a contraction.
It follows that length(γ) > ǫ. Let c by the infimum of the lengths of

non-contractible closed paths in X . If γn is a sequence of such closed
paths such that length(γn) → c then since X is compact by passing to
a subsequence we get that γn → β and by lemma 2.1 β is a periodic
geodesic.
We assume now that n ≥ 2. Let f : Sn → X be a non-contractible

map. We consider the foliation of Sn by circles defined in the previus
section and set fx1,...,xn−1

= f ◦ φx1,...,xn−1
: [0, 1] → X , the restriction

of f to one of these circles. Since Sn is compact and f is continuous
there is some k ∈ N such that the diameter of

fx1,...,xn−1
([t, t+ 1/k])

is bounded by ǫ/2 for all x1, ..., xn−1 with x2
1 + · · ·+ x2

n−1 ≤ 1 and for
all t (taken mod 1).
Abusing notation slighlty we write below sometimes f̄ instead of

fx1,...,xn−1
to simplify notation. We apply the Birkhoff shortening pro-

cess to each f̄ : [0, 1] → X and we obtain a homotopic curve of finite
length Df̄ . By lemma 2.1, D applied to each circle induces a map from
Sn to X homotopic to f which we denote byDf .
We define inductively Dkf = D ◦Dk−1f and define Dkf̄ similarly.
Let

ck = max{length(Dkfx1,...,xn−1
) : x2

1 + · · ·+ x2
n−1 ≤ 1}.

Clearly ck is decreasing. Let c = lim ck.
We claim that c ≥ ǫ. Indeed if not ck < ǫ and then we can contract all

Dkf̄ to their base points by a homotopy by lemma 2.1. This homotopy
is continuous on Sn by lemma 2.1.
Since the set of basepoints of the circles of the foliation is a topolog-

ical disc this shows that Dnf is homotopically trivial, a contradiction
since Dnf is homotopic to f .
Let f̄k : [0, 1] → X be curve realizing ck, so f̄k = Dkfx1,...,xn−1

for
some fixed x2

1 + · · ·+ x2
n−1 ≤ 1. Let gk−1 = Dk−1fx1,...,xn−1

, so Dgk−1 =
f̄k. We have ck ≤ length(gk−1) ≤ ck−1.
We must now show that the sequence (gk) is equicontinuous. We do

this by showing that there is an µ > 0 such that gk is µ-Lipschitz for all
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k > 0. We already know that if β : [0, 1] → X is Lipschitz with constant
µ then so is D(β). Fix x1, . . . , xn−1 such that x2

1 + · · ·+ x2
n−1 ≤ 1. By

equation 1 in the Birkhoff shortening process, Dfx1,...,xn−1
is Lipschitz

with constant

k max
0≤i<k

d

(

fx1,...,xn−1

(

2i

2k

)

, fx1,...,xn−1

(

2i+ 2

2k

))

.

By our hypothesis on k

d

(

fx1,...,xn−1

(

2i

2k

)

, fx1,...,xn−1

(

2i+ 2

2k

))

<
ǫ

2

It follows that Dfx1,...,xn−1
is Lipschitz with constant kǫ

2
. This is in-

dependent of the choice of x1, . . . xn−1, and since D of a Lipschitz kǫ
2

function is a Lipschitz kǫ
2
function, it follows that gk is Lipschitz with

constant kǫ
2
for all k > 0.

Thus by Arzela-Ascoli, passing to a subsequence we may assume that
gk converges uniformly to a curve g : [0, 1] → X . Clearly length(g) = c
and by lemma 2.1 g is a periodic geodesic.

�

Corollary 5.2. 1. Let X be a compact CAT (κ) manifold. Then X
contains a periodic geodesic.

2. Let X be a compact CAT (κ) polyhedron such that πn(X) 6= 0 for

some n ≥ 1. Then X contains a periodic geodesic.

3. Let X be a finite dimensional non-contractible compact locally

uniquely geodesic space. Then X contains a periodic geodesic.

Proof. For part 1, taking a double cover if need be, we may assume that
X is orientable and connected, and so Hn(X) = Z where n = dimX .
By the Hurewicz Theorem, πk(X) is non trivial for some 0 < k ≤ n,
and the result follows from the Theorem.
Part 2 follows directly from the Theorem.
For part 3, let’s assume that X is ǫ-locally uniquely geodesic. Then

every metric ball of radius at most ǫ is contractible via the “straight
line” contraction. Thus X is locally contractible. By [5, Corollary V
10.4], X is an ANR (absolute neighborhood retract). The metric space
X is separable since it is compact. It now follows from [13, Theorem
1] that X is homotopy equivalent to a countable CW complex. (The
infinite dimensional case would also work if metric balls of radius less
than ǫ were convex via [13, Lemma 4].) Hence by Whitehead’s Theorem
πn(X) 6= 0 for some n, and the Theorem applies.

�
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Remark 2. It is worth noting that the class of locally uniquely geodesic
spaces is strictly larger than the class of CAT (κ) spaces. To see this
pick a sequence of small spherical caps Cn in spheres of radius 1/2n

drill holes on a plane (or a sphere) converging to a point so that the
distance of successive holes is 1/n and glue the caps Cn to these holes.
The resulting space is locally uniquely geodesic but not CAT (κ).
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