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RIGIDITIES OF ISOPERIMETRIC INEQUALITY

UNDER NONNEGATIVE RICCI CURVATURE

FABIO CAVALLETTI AND DAVIDE MANINI

Abstract. The sharp isoperimetric inequality for non-compact Riemannian manifolds with
non-negative Ricci curvature and Euclidean volume growth has been obtained in increasing
generality with different approaches in a number of contributions [1, 35, 15, 39] culminated
by Balogh and Kristály [13] covering also m.m.s.’s verifying the non-negative Ricci curva-
ture condition in the synthetic sense of Lott, Sturm and Villani. In sharp contrast with
the compact case of positive Ricci curvature, for a large class of spaces including weighted
Riemannian manifolds, no complete characterisation of the equality cases is present in the
literature.

The scope of this paper is to settle this problem by proving, in the same generality of
[13], that the equality in the isoperimetric inequality can be attained only by metric balls.
Whenever this happens the space is forced, in a measure theoretic sense, to be a cone.

Our result applies to different frameworks yielding as corollaries new rigidity results: it
extend to weighted Riemannian manifold the rigidity results of [15], it extend to general RCD
spaces the rigidity results of [9] and finally applies also to the Euclidean setting by proving
that that optimisers in the anisotropic and weighted isoperimetric inequality for Euclidean
cones are necessarily the Wulff shapes.

1. Introduction

The Levy–Gromov isoperimetric inequality [36, Appendix C] asserts that if E is a (suffi-
ciently regular) subset of a Riemannian manifold (Mn, g) with dimension n and Ricg ≥ K > 0,
then

(1.1)
|∂E|

|M |
≥

|∂B|

|S|
,

where B is a spherical cap in the model sphere, i.e. the n-dimensional sphere with constant
Ricci curvature equal to K, and |M |, |S|, |∂E|, |∂B| denote the appropriate n or n − 1 di-
mensional volume, and where B is chosen so that |E|/|M | = |B|/|S|. If there exists a set
E ⊂ M with smooth boundary attaining the equality in (1.1), then Mn is isometric to the
model space, i.e. the n-dimensional round sphere of the same Ricci curvature of Mn, and E
is a metric ball.

If (Mn, g) is a Riemannian manifold, it is natural to consider more general measures other
than the Volg. Then the relevant object to control is the N -Ricci tensor introduced in [11]: if
h ∈ C2(M) with h > 0, the generalised N -Ricci tensor, with N ≥ n, is defined by

Ricg,h,N := Ricg −(N − n)
∇2
gh

1
N−n

h
1

N−n

.

The weighted manifold (Mn, g, hVolg) is said to verify the Bakry-Emery Curvature-Dimension
condition CD(K,N) [12] if Ricg,h,N ≥ Kg. The CD(K,N) condition incorporates information
on curvature and dimension from both the geometry of (Mn, g) and the measure hVolg. In its
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2 RIGIDITIES OF ISOPERIMETRIC INEQUALITY UNDER NONNEGATIVE RICCI CURVATURE

most general form, the sharp (with respect to all parameters) extension of (1.1) to weighted

manifolds (with also bounded diameter) verifying the Bakry–Émery CD(K,N) is due to [45];
we refer as well to [45] for the long list of previous contributions that are too many to list
them all.

In their seminal works Lott–Villani [43] and Sturm [51, 50] introduced a synthetic definition
of CD(K,N) for complete and separable metric spaces (X, d) endowed with a (locally-finite
Borel) reference measure m (“metric-measure space”, or m.m.s.). The synthetic CD(K,N) is
formulated in terms of Optimal Transport (see Section 2 for its definition) and it was shown to

coincide with the Bakry–Émery one in the smooth Riemannian setting (and in particular in the
classical non-weighted one), that it is stable under measured Gromov-Hausdorff convergence
of m.m.s.’s, and that Finsler manifolds and Alexandrov spaces satisfy it.

In [24] the Levy–Gromov isoperimetric inequality has been generalised to the m.m.s.’s
verifying the synthetic CD(K,N) by showing that the same sharp lower bounds obtained in
[45] applies to metric setting. The approach of [24] is based on the localisation paradigm, a
powerful dimensional reduction tool from convex geometry extended to weighted Riemannian
manifolds by means of an L1 optimal transport approach by Klartag [41] and then obtained
for CD(K,N) spaces in [24].

In [24], in the case K > 0, the rigidity of (1.1) has been generalised as well. The equality
in in the isoperimetric inequality implies that (X, d,m) has maximal diameter. If in addition
(X, d,m) satisfies the RCD(0, N) condition (see Section 2), then X is isomorphic as m.m.s. to a
spherical suspensions ([24, Theorem 1.4]. As a consequence, the optimal sets are characterised
as well (are metric balls centred on the tips of the spherical suspensions) producing a rather
clear picture of the isoperimetric inequality in the setting K > 0.

On the other hand, it is well known that without an additional condition on the geometry
of the space no isoperimetric inequality holds true in general spaces in the regime of K = 0,
i.e. those with nonnegative Ricci curvature.

However the classical Euclidean isoperimetric inequality asserts that any Borel set E ⊂ R
n

with smooth boundary satisfy

|∂E| ≥ nω1/n
n |E|

n−1
n .

Hence a way to reconcile Levy–Gromov with the previous inequality is to impose a growth
condition on the space so as to match the Euclidean one. Letting Br(x) = {y ∈ X : d(x, y) < r}
denoting the metric ball with center x ∈ X and radius r > 0, by Bishop–Gromov volume

growth inequality, see [50, Theorem 2.3], the map r 7→ m(Br(x))
rN

is nonincreasing over (0,∞)
for any x ∈ X. The asymptotic volume ratio is then naturally defined by

AVR(X,d,m) = lim
r→∞

m(Br(x))

ωNrN
.

It is easy to see that it is indeed independent of the choice of x ∈ X; the constant ωN is
the volume of the Euclidean unit ball in R

N whenever N ∈ N and it is classically extended
to real values of N via the Γ function. When AVR(X,d,m) > 0, we say that (X, d,m) has
Euclidean volume growth. Whenever no ambiguity is possible, we will prefer the shorter
notation AVRX . In particular, if (M,g) a noncompact, complete n-dimensional Riemannian
manifold having nonnegative Ricci curvature, the asymptotic volume ratio of (M,g) is given
by AVRg := AVR(M,dg,Volg). By the Bishop-Gromov theorem one has that AVRg ≤ 1 with
AVRg = 1 if and only if (M,g) is isometric to the usual Euclidean space R

n endowed with the
Euclidean metric g0.
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The sharp isoperimetric inequality for Riemannian manifolds with Euclidean volume growth
has been obtained in increasing generality with different approaches in a number of contribu-
tions [1, 35, 15, 39]. The most general version (including as subclasses the previous contribu-
tions) is the one valid for m.m.s.’s verifying the CD(0, N) condition; it has been obtained by
Balogh and Kristály in [13] and follows from a refined application of the Brunn–Minkowski
inequality given by optimal transport.

Theorem 1.1 ([13, Theorem 1.1]). Let (X, d,m) be a m.m.s. satisfying the CD(0, N) condition
for some N > 1, and having Euclidean volume growth. Then for every bounded Borel subset
E ⊂ X it holds

(1.2) m+(E) ≥ Nω
1
N

N AVR

1
N

Xm(E)
N−1
N

Moreover, inequality (1.2) is sharp.

More challenging to prove are the rigidity properties of (1.2). So far it has been obtained
only under special assumptions on the space without matching the generality of Theorem 1.1.

To the best of our knowledge, the following two are the most general results in the literature.
The first one is for the smooth setting and is due to Brendle [15].

Theorem 1.2 ([15, Theorem 1.2]). The inequality (1.2) is valid for any (M,g) noncompact,
complete n-dimensional Riemannian manifold with non-negative Ricci curvature and having
Euclidean volume growth. The equality holds in (1.2) for some E ⊂M with C1 smooth regular
boundary and M smooth manifold if and only if AVRg = 1 and E is isometric to a ball B ⊂ R

n.

Antonelli, Pasqualetto, Pozzetta and Semola [9] generalise [15, Theorem 1.2] to the non-
smooth setting by considering RCD(0, N)-spaces and removes the regularity assumptions on
the boundary of E.

Theorem 1.3 ([9, Theorem 1.3]). Let (X, d,HN ) be an RCD(0, N) m.m.s. having Euclidean
volume growth. Then the equality (1.2) holds for some E ⊂ X with HN (E) ∈ (0,∞) if and
only if X is isometric to a Euclidean metric measure cone over an RCD(N − 2, N − 1) space
and E is isometric to a ball centered at one of the tips of X.

Both theorems deals with the unweighted case, i.e. m = Volg and m = HN , respectively.

The scope of the present paper is to improve on the generality of these rigidity results. We
will be able to characterise all the sets attaining the identity (1.2) within the same generality
of Theorem 1.1; rigidity of the space will follow as well.

1.1. The result. The following is the main result of the paper.

Theorem 1.4. Let (X, d,m) be an essentially non-branching m.m.s. satisfying the CD(0, N)
condition for some N > 1, and having Euclidean volume growth. Let E ⊂ X be a bounded
Borel set that saturates (1.2).

Then there exists (a unique) o ∈ X such that, up to a negligible set, E = Bρ(o), with

ρ = ( m(E)
AVRXωN

)
1
N . Moreover, considering the disintegration of m with respect to d(·, o), the

measure m has the following representation

(1.3) m =

∫

∂Bρ(o)
mα q(dα), q ∈ P(∂Bρ(o)), mα ∈ M+(X),

with mα concentrated on the geodesic ray from o through α and mα can be identified (via the
unitary speed parametrisation of the ray) with NωNAVRX t

N−1L1
x[0,∞).
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The essentially non-branching assumption in Theorem 1.4 is necessary to prevent patho-
logical situation within the synthetic CD theory (see for instance the local-to-global property
[22]) and it is verified both by the class of weighted manifolds and the RCD(0, N) spaces. The
uniqueness of the point o has to be meant in the sense that ball E has a unique center, i.e.,
if Bρ(o) = E = Bρ(o

′), then o = o′. The minimizer can be non-unique: for instance, in the
CD(0, 2) space (R× [0,∞), | · |,L2), all balls centered in (x, 0), x ∈ R are isoperimetric sets.

It has also to be noticed that is usually rare to obtain rigidities in our generality where the
failure of the linearity of Laplace operator prevents the use of several known rigidities results.
Nonetheless the isoperimetric inequality seems to make an exception (see also [20] where
optimal sets where obtained in the same generality in the regime K > 0 by a quantitative
analysis).

In the more regular setting of RCD(0, N) spaces one can invoke [27, Theorem 1.1], the so-
called “volume cone implies metric cone”, so to improve the measure rigidity of Theorem 1.4
valid in the CD(0, N) setting to the stronger metric rigidity.

Theorem 1.5. Let (X, d,m) be a m.m.s. verifying the RCD(0, N) condition for some N > 1,
and having Euclidean volume growth. Then the equality (1.2) holds for some bounded set E ⊂
X if and only if X is isometric to a Euclidean metric measure cone over an RCD(N−2, N−1)
space and E is isometric to the ball centered at one of the tips of X.

Thus Theorem 1.5 recovers and extends both Theorem 1.2 and Theorem 1.3 by allowing
more general measures (other than the volume measure or the Hausdorff measure) and not
necessarily spaces with an infinitesimally linear structure. In the case m = HN , the hypothesis
on the boundedness of E can be dropped. Indeed, it was proven [8, Theorem 1.3] that
minimizers of the perimeter are bounded: apply the cited theorem to our setting with G = 0;
the Bishop–Gromov inequality ensures HN (B1(x)) ≥ ωNAVRX > 0.

Remark 1.6. After this paper was submitted for publication, it has been proved [10] that the
minimizers of the perimeter are bounded for RCD(0, N) spaces whose reference measure is pos-
sibly not the Hausdorff measure HN . Therefore, the boundedness hypothesis in Theorem 1.5
can be drop.

Theorem 1.4 finds applications and covers new cases also in the Euclidean setting. We
postpone this discussion to the final part of the Introduction and we now proceed presenting
the proof strategy and the structure of the paper.

The classical approach to rigidity results goes by inspecting known proofs of inequalities
to extract extra information whenever the equality happens. Our approach goes indeed in
this direction by starting from the proof of the isoperimetric inequality for non-compact MCP

spaces obtained in [21]. In [21] the argument uses the localisation given by the optimal
transport problem between the given set E and its complement inside a large ball of radius
R containing E. This produces a disjoint family of one-dimensional transport rays and a
corresponding disintegration of the reference measure m restricted to the metric ball BR.
Then one can apply the one-dimensional weighted Levy-Gromov isoperimetric inequality to
the traces of E along the transport rays and conclude the proof of (1.2) by taking R → ∞.
For the reader’s convenience we have included this proof also here, see Theorem 4.3.

In order to capture the equality case following this proof it is therefore necessary to deal
with this limit procedure. The intuition suggests that whenever a region E attains the equality
in (1.2) then for large values of R the one-dimensional traces have to be almost optimal. The
almost optimality has to be intended in many respects: along each geodesic ray, the diameter
has to be almost optimal, the one-dimensional conditional measures has to be almost tN−1

and the set has to be almost an interval starting from the starting point of the ray. The main
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difficulty here is to perform a quantitative analysis of the right order that will not vanish when
R → ∞. This is done in Section 5 that culminates with Theorem 5.11 where we summarise
the crucial stability estimates for the one-dimensional densities and the geometry of the traces
of E.

Then the natural prosecution is to take the limit as R → ∞ and hopefully obtain a disin-
tegration of m on the whole space having conditional measures verifying the limit estimates.
Disintegration formulas are however typically hard to threat under a limit procedure. For
instance, the maximality of the transport rays is likely not preserved preventing any chances
to get limit estimates. Nonetheless, the almost maximality of E, and all the almost optimal
information deduced from it in Section 5 permits to bypass this intricate issue and obtain
a well behaved limit disintegration. The limit is analysed in Section 6 and summarised by
Corollary 6.14.

The final part of Section 6 is then dedicated to the proof that the optimal set E is a ball
and the disintegration formula (1.3) (see Theorems 7.5 and 7.12).

1.2. Applications in the Euclidean setting. Theorem 1.4 implies new results also in the
Euclidean setting, namely the characterisation of optimal regions for the anisotropic isoperi-
metric inequality for weighted cones.

The setting is the following one: let Σ ⊂ R
n be an open convex cone with vertex at

the origin, and H : Rn → [0,∞) be a gauge, that is a nonnegative, convex and positively
homogeneous of degree one function. Moreover w is weight that is supposed to be continuous
on Σ̄ and positive and locally Lipschitz in Σ.

For a smooth set E ⊂ R
n, the weighted anisotropic perimeter relative to the cone Σ is given

by

Pw,H(E; Σ) =

∫

∂E
H(ν(x))w(x) dS,

where ν(x) is the unit outward normal at x ∈ ∂E, and dS the surface measure. The main
result of [16] is the sharp isoperimetric inequality for the weighted anisotropic perimeter: if in

addition w is positively homogeneous of degree α > 0 and w1/α is concave in Σ, then

(1.4)
Pw,H(E; Σ)

w(E ∩ Σ)
N−1
N

≥
Pw,H(W ; Σ)

w(W ∩ Σ)
N−1
N

,

where N = n+ α and W is the Wulff shape associated to H, for the details see [16, Theorem
1.3]. The expression w(A) with A ⊂ R

n is a short-hand notation for the integral of w over A
in dx.

The inequality (1.4), taking w = 1, Σ = R
n, and H = ‖ · ‖2, recovers the classical sharp

isoperimetric inequality. Taking w = 1 and H = ‖ · ‖2, (1.4) gives back the isoperimetric
inequality in convex cones originally obtained by Lions and Pacella [42]. Finally, if w = 1
Σ = R

n and H be some other gauge, (1.4) is the Wulff inequality.
As observed in [16], Wulff balls W centered at the origin intersected with Σ are always min-

imizers (1.4). However in [16] a characterization of the equality case (or a proof of uniqueness
of those minimizers), is not carried over (see also [38] for a different approach). Despite the
many recent contributions (and an announcement in [16] of a the forthcoming work solving
the problem), this characterisation, in its full generality, seems to be still not present in the
literature.

We now briefly recall the known results. The characterization of the optimal sets has been
obtained in the unweighted and isotropic case (w = 1 and H = ‖ · ‖2) for smooth cones in [42]
and for general cones in [34] via a quantitative analysis. The same approach of [34] has been
recently used in [28] to characterize optimal sets in the unweighted and anisotropic case with
the gauge H assumed additionally to be a norm with strictly convex unitary ball. Finally [26]
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extended [28] to the case of H being a positive gauge (i.e. a not necessarily reversible norm)
still uniformly elliptic.

The characterisation in weighted setting has been solved in [25], in the isotropic case (H =
‖ · ‖2); in [46], the anisotropic case is treated, but the minimizer is assumed to be convex.

Has been already observed in [16] that the assumption that w1/α is concave has a natural
interpretation as the CD(0, N) condition, where N = n+ α, and reported as well in [13] that
(1.4) can be obtained as a particular case of (1.2) when H is a norm. To be precise, if H is
a norm then its dual function H0 is a norm as well and one can associate to the triple Σ, H
and w the metric measure space (Σ, dH0 , wL

n) where dH0(x, y) := H0(x− y). The perimeter
associated to this metric measure spaces (see Section 2.2) will indeed coincide with Pw,H .

Moreover it is well known that for any norm ‖·‖ the metric measure space (Rn, ‖·‖,Ln) ver-
ifies the synthetic CD(0, n), see for instance [53]. From [31, Proposition 3.3] one deduces that

(Rn, ‖ · ‖, wLn) verifies CD(0, n+α), provided w1/α is concave. Moreover, by the homogeneity
properties of H and w, one can check that

AVR(Σ,dH0
,wLn) = lim

R→∞

∫
BdH0

(R)∩Σ w dL
n

ωNRN
=

∫
BdH0

(1)∩Σ w dL
n

ωN
> 0.

Indeed, recall that the Wulff shape W of H is the unitary ball of the dual norm H0, hence
the measure scales with power N = n + α. Conversely, the perimeter of the rescaled Wulff
shape is the derivative w.r.t. the scaling factor of the measure, hence the perimeter of the
Wulff shape is N times its measure, thus (1.4) can be seen as a particular case of (1.2).

We can therefore apply Theorem 1.4 to (Σ, dH0 , wL
n): the uniform ellipticity of H implies

that the unitary ball of H0 is strictly convex and therefore the distance dH0 is non-branching.

Theorem 1.7. Let Σ ⊂ R
n be an open convex cone with vertex at the origin, and H : Rn →

[0,∞) be a norm with strictly convex unitary ball. Consider moreover the α-homogeneous

weight w : Σ̄ → [0,∞) such that w1/α is concave.
Then the equality in (1.4) is attained if and only if E =W ∩Σ, where W is a rescaled Wulff

shape.

To conclude we stress that assumption on w being α-homogeneous can actually be removed
and obtained as a consequence of the measure rigidity part of Theorem 1.4 if we consider the
modified version of (1.4) with the asymptotic volume ratio, i.e., we assume the r.h.s. of (1.4)

to be equal to (ωn+αAVR(Σ,dH0
,wLn))

1/(n+α) > 0.

In this case, Theorem 1.4 applies (the strict convexity of H and the concavity of w1/α imply
the non-branching hypothesis and the CD(0, N) condition, respectively).

The first part of Theorem 1.4 says that the isoperimetric set is a ball in the dual norm of
H, i.e., it is a rescaled Wulff shape.

The second part of Theorem 1.4, regarding the disintegration of the measures along the
rays, provides an integration formula in polar coordinates, where the Jacobian determinant
grows with exponent N − 1 = n + α − 1. Since the density of Lebesgue measure in polar
coordinates is (n− 1)-homogeneous, we deduce that w is α-homogeneous.

Acknowledgement. We would like to thank Daniele Semola for some comments on a pre-
liminary version of this manuscript.

2. Preliminaries

In this section we recall the main constructions needed in the paper. The reader familiar
with curvature-dimension conditions and metric-measure spaces will just need to check Sec-
tions 2.3 and 2.4 for the decomposition of X into transport rays (localization) which is going to
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be used throughout the paper. In Section 2.1 we review geodesics in the Wasserstein distance
and the curvature-dimension conditions; in Section 2.2 the perimeter and BV functions in the
metric setting.

2.1. Wasserstein distance and the Curvature-Dimension condition. A metric mea-
sure space (m.m.s.) (X, d,m) is a triple with (X, d) a complete and separable metric space and
m a Borel non negative measure over X. By M+(X), P(X), and P2(X) we denote the space
of non-negative Borel measures on X, the space of probability measures, and the space of
probability measures with finite second moment, respectively. On the space P2(X) we define
the L2-Wasserstein distance W2, by setting, for µ0, µ1 ∈ P2(X),

(2.1) W2(µ0, µ1)
2 = inf

π

∫

X×X
d
2(x, y)π(dxdy),

making (P2(X),W2) complete. InW2 the infimum is taken over all π ∈ P(X×X) with µ0 and
µ1 as the first and the second marginal, i.e., (P1)♯π = µ0, (P2)♯π = µ1. Of course Pi, i = 1, 2
is the projection on the first (resp. second) factor and (Pi)♯ denotes the corresponding push-
forward map on measures.

Denote the space of geodesics of (X, d) by

Geo(X) :=
{
γ ∈ C([0, 1],X) : d(γs, γt) = |s− t|d(γ0, γ1), for every s, t ∈ [0, 1]

}
.

Any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that
(et)♯ ν = µt for all t ∈ [0, 1], where, for each t ∈ [0, 1], et is the evaluation map:

et : Geo(X) → X, et(γ) := γt.

Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which
(e0 ⊗ e1)♯ ν realizes the minimum in (2.1). If (X, d) is geodesic, then the set OptGeo(µ0, µ1)
is non-empty for any µ0, µ1 ∈ P2(X).

A set F ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ F , it
holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1t = γ2t =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

With this terminology, we recall from [49] the following definition.

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching if and only if
for any µ0, µ1 ∈ P2(X), with µ0, µ1 absolutely continuous with respect to m, any element of
OptGeo(µ0, µ1) is concentrated on a set of non-branching geodesics.

The CD(K,N) for condition for m.m.s.’s has been introduced in the seminal works of
Sturm [51, 50] and Lott–Villani [43]; here we briefly recall only the basics in the case K = 0,
1 < N <∞ (the setting of the present paper) and its form under the additional assumptions
on space to be essentially non-branching spaces. For the general definition of CD(K,N) see
[43, 51, 50]. The equivalence between the two formulations follows from [23] (see also [50,
Proposition 4.2]).

Definition 2.2 (CD(0, N) for essentially non-branching spaces). An essentially non-bran-
ching m.m.s. (X, d,m) satisfies CD(0, N) if and only if for all µ0, µ1 ∈ P2(X, d,m), there
exists a unique ν ∈ OptGeo(µ0, µ1), ν is induced by a map (i.e. ν = S♯(µ0), for some map
S : X → Geo(X)), µt := (et)#ν ≪ m for all t ∈ [0, 1], and writing µt = ρtm, we have for all
t ∈ [0, 1]:

ρ
−1/N
t (γt) ≥ (1− t) ρ

−1/N
0 (γ0) + t ρ

−1/N
1 (γ1) for ν-a.e. γ ∈ Geo(X).
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If (X, d,m) verifies the CD(0, N) condition then the same is valid for (suppm, d,m); hence
we directly assume X = suppm.

If (M,g) is a Riemannian manifold of dimension n and h ∈ C2(M), with h > 0, then the
m.m.s. (M, dg, h Volg) verifies CD(0, N) with N ≥ n if and only if (see Theorem 1.7 of [50])

Ricg,h,N := Ricg −(N − n)
∇2
gh

1
N−n

h
1

N−n

≥ 0,

in other words if and only if the weighted Riemannian manifold (M,g, h Volg) has non-negative
generalized N -Ricci tensor. If N = n the generalized N -Ricci tensor Ricg,h,N = Ricg requires
h to be constant.

Unless otherwise stated, we shall always assume that the m.m.s. (X, d,m) is essentially non-
branching and satisfies CD(0, N), for some N > 2 with supp(m) = X. This implies directly
that (X, d) is a geodesic, complete, and locally compact metric space.

2.2. Perimeter and BV functions in metric measure spaces. Given u ∈ Lip(X), the
space of real-valued Lipschitz functions over X, its slope |Du|(x) at x ∈ X is defined by

|Du|(x) := lim sup
y→x

|u(x) − u(y)|

d(x, y)
.

Following [2, 3, 47] and the more recent [5], given a Borel subset E ⊂ X and Ω open, the
perimeter of E relative to Ω is denoted by P(E; Ω) and is defined as follows

P(E; Ω) := inf

{
lim inf
n→∞

∫

Ω
|Dun| dm : un ∈ Lip(Ω), un → 1E in L1(Ω,m)

}
.

We say that E ⊂ X has finite perimeter in X if P(E;X) < ∞. We recall also few properties
of the perimeter functions:

(a) (locality) P(E; Ω) = P(F ; Ω), whenever m((E∆F ) ∩ Ω) = 0;
(b) (l.s.c.) the map E 7→ P(E; Ω) is lower-semicontinuous with respect to the L1

loc(Ω)
convergence;

(c) (complementation) P(E; Ω) = P(X\E; Ω).

Moreover, if E is a set of finite perimeter, then the set function Ω → P(E;A) is the restriction
to open sets of a finite Borel measure P(E; ·) in X (see Lemma 5.2 of [5]), defined by

P(E;A) := inf{P(E; Ω): Ω ⊃ A, Ω open}.

In order to simplify the notation, we will write P(E) instead of P(E;X). Finally, we recall
that the perimeter can be seen [6] as the l.s.c. envelope of the Minkowsky content

m+(E) := lim inf
ǫ→0

m(Eǫ)−m(E)

ǫ
,

where Eǫ = {x ∈ X : dist(x,E) < ǫ}.

The isoperimetric profile function of (X, d,m), denoted by I(X,d,m), is defined as the point-
wise maximal function so that P(A) ≥ I(X,d,m)(m(A)) for every Borel set A ⊂ X, that is

I(X,d,m)(v) := inf
{
P(A) : A ⊂ X Borel, m(A) = v

}
.

Milman [45] gave an explicit isoperimetric profile IK,N,D function such that if a Riemannian
manifold (M,g) with smooth density h has diameter at most D > 0, generalized N -Ricci
tensor Ricg,h,N ≥ K ∈ R, then the isoperimetric profile function of (M, dg, h Volg) is bounded
below by IK,N,D. During the paper, we will make extensive use of of IK,N,D in the case K = 0.
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In this case, the isoperimetric profile computed by Milman [45, Corollary 1.4, Case 4] is indeed
given by the formula

I0,N,D(v) :=
N

D
inf
ξ≥0

(v ∧ (1− v)(ξ + 1)N + v ∨ (1− v)ξN )
N−1
N

(ξ + 1)N − ξN
,

and it is obtained by optimising among a family of one-dimensional space; we will expand
this analysis in Section 4. In order to keep the notation short, we will write IN,D in place of
I0,N,D.

The classical theory of the perimeter in R
n makes extensive use of BV function. The notion

of BV functions in the setting of m.m.s. has been first introduced in [47] and then more deeply
studied in [5]. In particular, three different definitions of BV functions has been proven to be
equivalent.

One of these three notions is given by relaxation of the energy functional. We say that
a function f ∈ L1(X) is in BV∗((X, d,m)), if there exists a sequence fn ∈ Lip(X) ∩ L1(X)
converging to f in L1, such that supn

∫
X |∇fn| dm <∞. In this case one can define the relaxed

total variation

|Df |∗(Ω) := inf

{
lim inf
n→→∞

∫

X
|Dfn| dm : fn ∈ Liploc(Ω), fn → f in L1(Ω)

}
,

where Ω ⊂ X is an open set. It has been shown [47] that the total variation extends uniquely
to a finite Borel measure.

Another definition of BV functions is given using test plans. We say that a probability
measure π ∈ P(C([0, 1];X)) is a ∞-test plan if: 1) π is concentrated on Lipschitz-continuous
curves; 2) there exists a constant C = C(π) > 0 (named compression of the test plan) such
that (et)#π ≤ Cm. A Borel subset Γ ⊂ C([0, 1];X) is said to be 1-negligible if π(Γ) = 0,
for every ∞-test plan π. We say that a function f ∈ L1(X) is of weak-bounded variation
(f ∈ w-BV ((X, d,m))), if the following two conditions holds

(1) there exists a 1-negligible subset Γ such that f ◦ γ ∈ BV ((0, 1)), ∀γ ∈ C([0, 1];X)\Γ
and

|f(γ0)− f(γ1)| ≤ |D(f ◦ γ)|((0, 1));

(2) there exists a measure µ ∈ M+(X) such that for every ∞-test plan π, for every Borel
set B ⊂ X we have that

(2.3)

∫
γ#|D(f ◦ γ)|(B)π(dγ) ≤ C(π)

∥∥∥ sup
t∈[0,1]

|γ̇t|
∥∥∥
L∞(π)

µ(B).

Moreover, one can prove that there exists a least measure satisfying (2.3). Such measure is
named weak total variation and it is denoted by |Df |w.

Theorem 2.3 ([5, Theorem 1.1]). Let (X, d,m) be a complete and separable metric measure
space, with m a locally finite Borel measure (i.e. for all x ∈ X there exists r > 0 such that
m(Br(x)) <∞). Then the spaces BV∗((X, dm)) and w-BV ((X, d,m)) coincide and for every
function f ∈ BV∗((X, d,m)) = w-BV ((X, d,m)) it holds

|Df |∗(B) = |Df |w(B), for every Borel set B.

It is clear that a set E ⊂ X has finite perimeter whenever 1E ∈ BV∗((X, d,m)) and in this
case it holds

P(E;A) = |D1E |∗(Ω) = |D1E |w(Ω), ∀Ω ⊂ X open.
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2.3. Localization. The localization method reduces the task of establishing various analytic
and geometric inequalities on a full dimensional space to the one-dimensional setting.

In the Euclidean setting goes back to Payne and Weinberger [48], it has been developed and
popularised by Gromov and V. Milman [37], Lovász–Simonovits [44], and Kannan–Lovasz–
Simonovits [40]. In 2015, Klartag [41] reinterpreted the localization method as a measure
disintegration adapted to L1-Optimal-Transport, and extended it to weighted Riemannian
manifolds satisfying CD(K,N). The first author and Mondino [24] have succeeded to generalise
this technique to essentially non-branching m.m.s.’s verifying the CD(K,N), condition with
N ∈ (1,∞). Here we only report the case K = 0.

Theorem 2.4 (Localization on CD(0, N) spaces [24, Teorem 3.28]). Let (X, d,m) be an essen-
tially non-branching m.m.s. with supp(m) = X and satisfying CD(0, N), for some N ∈ (1,∞).

Let f : X → R be m-integrable with
∫
X f m = 0 and

∫
X |f(x)|d(x, x0)m(dx) < ∞ for some

(hence for all) x0 ∈ X. Then there exists an m-measurable subset T ⊂ X (named transport
set) and a family {Xα}α∈Q of subsets of X, such that there exists a disintegration of mxT on
{Xα}α∈Q:

mxT =

∫

Q
mα q(dα),

and for q-a.e. α ∈ Q:

(1) Xα is a closed geodesic in (X, d).
(2) mα is a Radon measure supported on Xα with mα ≪ H1

xXα .
(3) (Xα, d,mα) verifies CD(0, N).
(4)

∫
f dmα = 0, and f = 0 m-a.e. on X \ T .

Moreover, the Xα are called transport rays and two distinct transport rays can only meet at
their extremal points (having measure zero for mα).

Few comments are in order.
By H1 we denote the one-dimensional Hausdorff measure on the underlying metric space.

Given {Xα}α∈Q a partition of X, a disintegration of m on {Xα}α∈Q is a measure space
structure (Q,Q, q) and a map

Q ∋ α 7→ mα ∈ M(X,X )

such that

(1) For q-a.e. α ∈ Q, mα is concentrated on Xα.
(2) For all B ∈ X , the map α 7→ mα(B) is q-measurable.
(3) For all B ∈ X , m(B) =

∫
Qmα(B) q(dα); this is abbreviated by m =

∫
Qmα q(dα).

We point out that the disintegration is unique for fixed q. That means that, if there is a
family (m̃α)α satisfying the conditions above, then for q-a.e. α, mα = m̃α. If we change q with
a different measure q̂, such that q̂ = ρq, then the map α 7→ ρ(α)mα still satisfies the conditions
above, with q̂ in place of q.

Concerning the fact that (Xα, d,mα) verifies CD(0, N), since (Xα, d) is a geodesic, it is
isometric to a real interval and therefore the CD(0, N) condition is equivalent to have mα =

hαH
1
xXα and h

1
N−1
α being concave (here we are identifying Xα with a real interval).

2.4. L1-optimal transportation. In this section we recall only some facts from the theory
of L1 optimal transportation which are of some interest for this paper; we refer to [4, 7, 14,
19, 22, 32, 33, 41, 52] and references therein for more details on the theory of L1 optimal
transportation.
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Theorem 2.4 has been proven studying the optimal transportation problem between µ0 :=
f+m and µ1 := f−m, where f± denote the positive and the negative part of f , with the
distance as cost function.

By the summability properties of f (see the hypothesis of Theorem 2.4) one deduces the
existence of an L1-Kantorovich potential ϕ, solution of the dual problem. Using ϕ we can
construct the set

Γ := {(x, y) ∈ X ×X : ϕ(x)− ϕ(y) = d(x, y)},

inducing a partial order relation whose maximal chains produce a partition made of one
dimensional sets of a certain subset of the space, provided the ambient space X verifies some
mild regulartiy properties.

This procedure has been already presented and used in several contributions ([7, 14, 33,
41, 52]) when the ambient space is the euclidean space, a manifold or a non-branching metric
space (see [14, 17] for extended metric spaces). The analysis in our framework started with
[19] and has been refined and extended in [22]; we will follow the notation of [22] to which we
refer for more details.

The transport relation Re and the transport set with end-points T e are defined as:

Re := Γ ∪ Γ−1 = {|ϕ(x) − ϕ(y)| = d(x, y)}, T e := P1(R
e \ {x = y}),

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y} and Γ−1 = {(x, y) ∈ X × X :
(y, x) ∈ Γ}. Since ϕ is 1-Lipschitz, Γ,Γ−1 and Re are closed sets and therefore, from the local
compactness of (X, d), σ-compact; consequently T e is σ-compact.

We restrict T e to a smaller set where Re is an equivalent relation. To exclude possible
branching we need to consider the following sets, introduced in [19]:

A+ := {x ∈ T e : ∃z, w ∈ Γ(x), (z, w) /∈ Re},

A− := {x ∈ T e : ∃z, w ∈ Γ−1(x), (z, w) /∈ Re};

where Γ(x) = {y ∈ X : (x, y) ∈ Γ} denotes the section of Γ through x in the first coordinate;
Γ−1(x) and Re(x) are defined in the same way. A± are called the sets of forward and backward
branching points, respectively. Note that both A± are σ-compact sets. Then the non-branched
transport set has been defined as

T := T e \ (A+ ∪A−),

and it is a Borel set; in the same way define the non-branched relation as R = Re ∩ (T × T ).
It was shown in [19] (cf. [14]) that R is an equivalence relation over T and that for any x ∈ T ,
R(x) ⊂ (X, d) is isometric to a closed interval in (R, | · |).

A priori the non-branched transport set T can be much smaller than T e. However, under
fairly general assumptions one can prove that the sets A± of forward and backward branching
are both m-negligible. In [19, Proposition 4.5] this was shown for a m.m.s. (X, d,m) verifying
RCD

∗(K,N) and supp(m) = X. The same proof works for an essentially non-branching m.m.s.
(X, d,m) satisfying CD(0, N) and supp(m) = X (see [23]).

One can chose Q ⊂ T a Borel section of the equivalence relation R (this choice is possible
as it was shown in [14, Proposition 4.4]). Define the quotient map Q : T → Q as Q(x) = α,
where α is the unique element of R(x) ∩ Q. Given a finite measure q ∈ M+(Q), such that
q ≪ Q#(mxT ), the Disintegration Theorem applied to (T ,B(T ),mxT ), gives an essentially
unique disintegration of mxT consistent with the partition of T given by the equivalence classes
{R(α)}α∈Q of R:

mxT =

∫

Q
mα q(dα).
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In the sequel, we will use also the notation Xα to denote the equivalence class R(α). Note
that such measure q can always be build, by taking the push-forward via Q of a suitable finite
measure absolutely continuous w.r.t. mT .

The existence of a measurable section also permits to construct a measurable parameter-
ization of the transport rays. First define the (possibly infinite) length of a transport ray
|Xα| := supx,y∈Xα

d(x, y). Then, we can define

g : Dom(g) ⊂ Q× [0,+∞) → T

that associates to (α, t) the unique x ∈ R(α) in such a way ϕ(g(α, t)) − ϕ(g(α, s)) = s − t,
provided t, s ∈ (0, |Xα|). In other words, g(α, · ) is the unit-speed, maximal parametriza-
tion of Xα such that d

dtϕ(g(α, t)) = −1. We specify that this parametrization ensures that
f(g(α, 0)) ≥ 0. By continuity of g w.r.t. the variable t, we extend g, in order to map also the
end-points of the rays Xα; the restriction of g to the set {(α, t) : t ∈ (0, |Xα|)} is injective.

Finally to prove that the disintegration is CD(0, N), i.e. that for q-a.e. α ∈ Q the space
(Xα, d,mα) is CD(0, N), one uses the presence of the L2-Wasserstein geodesics inside the
transport set T (see [18, Lemma 4.6]). We refer to [24, Theorem 4.2] for all the details.

The measuremα will be absolutely continuous w.r.t.H1
xXα as a consequence of the CD(0, N)

condition in one-dimensional spaces: there exists a map hα : (0, |Xα|) → R such that

mα = (g(α, · ))#(hαL
1
x(0,|Xα|)).

The construction does not depend on the function f but only on the L1-Kantorovich potential
ϕ.

Theorem 2.5. Let (X, d,m) be an essentially non-branching m.m.s. with supp(m) = X and
satisfying CD(0, N), for some N ∈ (1,∞). Assume that ϕ : X → R is a 1-Lipschitz function,
and let T and (Xα)α∈Q be respectively the transport set and the transport rays as they were
defined in the previous paragraphs. Let Q and Q : T → Q be the quotient set and the quotient
map, respectively, and assume that there exists a measure q ≪ Q#(mT ). Then there exists a
disintegration of mxT on {Xα}α∈Q

mxT =

∫

Q
mα q(dα),

and for q-a.e. α ∈ Q:

(1) Xα is a closed geodesic in (X, d).
(2) mα is a Radon measure supported on Xα with mα ≪ H1

xXα .
(3) The metric measure space (Xα, d,mα) verifies CD(0, N).

Theorem 2.4 follows from the previous theorem, provided that we are able to localize con-
straint

∫
X f dm = 0. The localization is a consequence of the properties of the L1-optimal

transport problem (see [24, Theorem 5.1]).

3. Localization of the measure and the perimeter

To prove Theorem 1.4 we will need to consider the isoperimetric problem inside a family of
large subsets of X with diameter approaching ∞. In order to apply the classical dimension
reduction argument furnished by localization theorem (see Subsections 2.3 and 2.4), one needs
in principle these subsets to also be convex. As the existence of an increasing family of convex
subsets recovering at the limit the whole space X is in general false, we will overcome this
issue in the following way.
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Given any bounded set E ⊂ X with 0 < m(E) <∞, fix any point x0 ∈ E and then consider
R > 0 such that E ⊂ BR (hereinafter we will adopt the following notation BR := BR(x0)).
Consider then the following family of zero mean functions:

fR(x) =

(
χE −

m(E)

m(BR)

)
χBR

.

Clearly fR satisfies the hypothesis of Theorem 2.4 so we obtain an m-measurable subset
TR ⊂ X and a family {Xα,R}α∈QR

of transport rays, such that there exists a disintegration of
mxTR on {Xα,R}α∈QR

:

(3.1) mxTR=

∫

QR

mα,R qR(dα), qR(QR) = m(TR),

with the probability measures mα,R having an CD(0, N) density with respect to H1
xXα,R

. The
localization of the zero mean implies that

(3.2) mα,R(E) =
m(E)

m(BR)
mα,R(BR), qR-a.e. α ∈ QR.

We denote by gR(α, · ) : [0, |Xα,R|] the unit speed parametrisation of the geodesic Xα,R. For
this reason, it holds

mα,R = (gR(α, · ))#(hα,RL
1
x[0,|Xα,R|]),

for some CD(0, N) density hα,R.
Also we specify that the direction of the parametrisation of Xα,R is chosen such that

gR(α, 0) ∈ E. Equivalently, if ϕR denotes a Kantorovich potential associated to the local-
ization of gR, then the parametrisation is chosen in such a way that ϕR is decreasing along
Xα,R with slope −1.

We then define Tα,R to be the unique element of [0, |Xα,R|] such that

mα,R(gR(α, [0, Tα,R])) = mα,R(BR) :

since mα,R is absolutely continuous with respect to H1
xXα,R

the existence of a unique Tα,R
follows. Moreover from the measurability in α of mα,R we deduce the same measurability for
Tα,R.

Notice that diam(BR∩Xα,R) ≤ R+diam(E): since gR(α, · ) is a unit speed parameterization
of Xα,R, then d(gR(α, 0), gR(α, t)) ≤ d(gR(α, 0), x0)+d(gR(α, t), x0) ≤ diam(E)+R, provided
gR(α, t) ∈ BR∩Xα,R. Hence the same upper bound is valid for Tα,R, i.e. Tα,R ≤ R+diam(E).

We restrict mα,R to X̂α,R := gR(α, [0, Tα,R]) so to have the following disintegration:

(3.3) mx
T̂R

=

∫

QR

m̂α,R q̂R(dα), m̂α,R :=
mα,RxX̂α,R

mα,R(BR)
∈ P(X), q̂R = m·,R(BR)qR;

where T̂R := ∪α∈QR
X̂α,R; in particular q̂R(QR) = m(BR), using (3.1) and the fact that

BR ⊂ TR.
The disintegration (3.3) will be a localisation like (3.2) only if (E∩Xα,R) ⊂ X̂α,R, implying

that

m̂α,R(E) =
m(E)

m(BR)
, q̂R-a.e. α ∈ QR.

To prove this inclusion we will impose that E ⊂ BR/4. Since gR(α, · ) : [0, |Xα,R|] → Xα,R has
unit speed, we notice that

d(gR(α, t), x0) ≤ d(gR(α, 0), x0) + t ≤ diam(E) + t ≤
R

2
+ t,
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where in the second inequality we have used that each starting point of the transport ray has to
be inside E, being precisely where fR > 0. Hence gR(α, t) ∈ BR for all t < R/2. This implies
that ((gR(α, · ))

−1(BR) ⊃ [0,min{R/2, |Xα,R|}], hence “no holes” inside (gR(α, · ))
−1(BR)

before min{R/2, |Xα,R|}, implying that |X̂α,R| ≥ min{R/2, |Xα,R|}. Since diam(E) ≤ R/2,

we deduce that (gR(α, · ))
−1(E) ⊂ [0,min{R/2, |Xα,R|}] implying that (E ∩Xα,R) ⊂ X̂α,R.

We can give an explicit description of the measure q̂R in term of a push-forward via the
quotient map QR of the measure mxE

q̂R(A) =

∫

QR

1A(α)
m(BR)

m(E)
m̂α,R(E) q̂R(dα)

=

∫

QR

m(BR)

m(E)
m̂α,R(E ∩Q−1

R (A)) q̂R(dα) =
m(BR)

m(E)
m(E ∩Q−1

R (A)),

hence q̂R = m(BR)
m(E) (QR)#(mxE).

We need to study the relation between the perimeter and the disintegration of the mea-
sure (3.3). Fix Ω ⊂ X an open set and consider the relative perimeter P(E; Ω). Let un ∈
Liploc(Ω) be a sequence such that un → 1E in L1

loc(Ω) and limn→∞

∫
Ω |Dun| dm = P(E; Ω).

Using the Fatou Lemma, we can compute

P(E; Ω) = lim
n→∞

∫

Ω
|Dun| dm

≥ lim inf
n→∞

∫

Ω∩T̂R

|Dun| dm = lim inf
n→∞

∫

QR

∫

Ω
|Dun| m̂α,R(dx) q̂R(dα)

≥

∫

QR

lim inf
n→∞

∫

Ω
|Dun| m̂α,R(dx) q̂R(dα)

≥

∫

QR

lim inf
n→∞

∫

Xα,R∩Ω
|u′n| m̂α,R(dx) q̂R(dα)

≥

∫

QR

P
X̂α,R

(E; Ω) q̂R(dα),

where u′n denotes the derivative along the curve gR(α, · ) and P
X̂α,R

the perimeter m.m.s.

(X̂α,R, d, m̂α,R).
By arbitrariness of Ω, we deduce the following disintegration inequality

P(E; · ) ≥

∫

QR

P
X̂α,R

(E; · ) q̂R(dα).

Moreover, the fact that the geodesic gR(α, · ) : [0, |X̂α,R|] → X̂α,R has unit speed, implies that

PX̂α,R
(E; · ) = (gR(α, · ))#(Phα,R

((gR(α, · ))
−1(E); · )).

We summarise this construction in the following

Proposition 3.1. Given any bounded E ⊂ X with 0 < m(E) <∞, fix any point x0 ∈ E and
then fix R > 0 such that E ⊂ BR/4(x0).

Then there exists a Borel set T̂R ⊂ X, with E ⊂ T̂R and a disintegration formula

mxT̂R
=

∫

QR

m̂α,R q̂R(dα), m̂α,R(X̂α,R) = 1, q̂R(QR) = m(BR),(3.4)
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such that

m̂α,R(E) =
m(E)

m(BR)
, for q̂R-a.e. α ∈ QR and q̂R =

m(BR)

m(E)
(QR)#(mxE),(3.5)

and the one-dimensional m.m.s. (X̂α,R, d, m̂α,R) verifies the CD(0, N) condition and has di-
ameter bounded by R+ diam(E). Furthermore, the following formula holds true

(3.6) P(E; · ) ≥

∫

QR

P
X̂α,R

(E; · ) q̂R(dα).

The rescaling introduced in Proposition 3.1 will be crucially used to obtain non-trivial limit
estimates as R→ ∞.

4. One dimensional analysis

Proposition 3.1 is the first step to obtain from the optimality of a bounded set E an almost

optimality of E ∩ X̂α,R. We now have to analyse in details the one-dimensional isoperimetric
profile function.

We fix few notation and conventions.
We will be considering the m.m.s. (I, | · |, hL1), with I ⊂ R an interval and verifying

the CD(0, N) condition; when the interval has finite diameter, we will always assume that

I = [0,D]. We will assume also that
∫ D
0 h = 1, unless otherwise specified. For consistency with

the conditional measures from Disintegration theorem, we will use the notation mh = hL1.
We also introduce the functions vh : [0,D] → [0, 1] and rh : [0, 1] → [0,D] as

vh(r) :=

∫ r

0
h(s) ds, rh(v) := (vh)

−1(v);

notice that from the CD(0, N) condition, h > 0 over I making vh invertible and in turn the
definition of rh well-posed.

We will denote by Ph the perimeter in the space ([0,D], | · |, hL1
[0,D]). If E ⊂ [0,D] is a set

of finite perimeter, then it can be decomposed (up to a negligible set) in a family of disjoint
intervals

E =
⋃

i

(ai, bi),

and the union is at most countable. In this case we have that the perimeter is given by the
formula

Ph(E) =
∑

i:ai 6=0

h(ai) +
∑

i:bi 6=D

h(bi).

We shall denote by Ih the isoperimetric profile Ih(v) := infE:mh(E)=v Ph(E).

4.1. Properties of the isoperimetric profile function. For our purpose, we consider the
model spaces ([0,D], | · |, hN,D(ξ, · )L

1
x[0,D]), for N > 1, D > 0, and, ξ ≥ 0, where

(4.1) hN,D(ξ, x) :=
N

DN

(x+ ξD)N−1

(ξ + 1)N − ξN
.
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For the model spaces, we can easily compute the functions vN,D(ξ, · ) := vhN,D(ξ,·) and

rN,D(ξ, · ) := rhN,D(ξ,·)

vN,D(ξ, r) =
(r + ξD)N − (ξD)N

DN ((1 + ξ)N − ξN )
,

rN,D(ξ, v) = D
(
(v(1 + ξ)N + (1− v)ξN )

1
N − ξ

)
.(4.2)

We can easily deduce that if E is an isoperimetric set of measure v ∈ (0, 1) for a model space,
then (up to a negligible set)

E =

{
[0, rN,D(ξ, v)], if v ≤ 1

2 ,

[rN,D(ξ, 1− v),D], if v ≥ 1
2 ,

with the convention that if v = 1
2 , both cases are possible. Indeed, if v ≤ 1

2 we can “push”
all the mass to left obtaining a new set E′ = [0, rN,D(ξ, v)]; the monotonicity of hN,D(ξ, ·)
ensures that E′ has smaller perimeter than E′. If, on the contrary, v ≥ 1

2 , then we have that
the complementary [0,D]\E is an isoperimetric set, then [0,D]\E = [0, rN,D(1 − v)]. This
allows us to explicitly compute the isoperimetric profile of the model spaces

IN,D(ξ, v) = hN,D(ξ, rN,D(min{v, 1 − v}))

=
N

D

(min{v, 1 − v}(ξ + 1)N +max{v, 1 − v}ξN )
N−1
N

(ξ + 1)N − ξN
.

We also define an auxiliary function GN as

(4.3) GN (ξ, v) :=

(
(ξ + 1)N + ( 1v − 1)ξN

)N−1
N

(ξ + 1)N − ξN
.

Notice that, if v ≤ 1
2 , then

GN (ξ, v) =
D

N

IN,D(ξ, v)

v1−
1
N

.

One advantage of this function is that it is not depending on D. This is indeed quite natural,
as the isoperimetric profile scales with D.

For the family of one-dimensional CD(0, N) of spaces with diameter not larger than D, an
explicit and sharp lower bound for the isoperimetric profile function has been established in
[45] (see for instance Corollary 1.4 and [24, Section 6.1] for the non-smooth analog). Defining

IN,D(v) :=
N

D
inf
ξ≥0

(min{v, 1 − v}(ξ + 1)N +max{v, 1 − v}ξN )
N−1
N

(ξ + 1)N − ξN
= inf

ξ≥0
IN,D(ξ, v),

then one obtains that Ih(v) ≥ IN,D(v), for every h : [0,D′] → R satisfying the CD(0, N)
condition, with D′ ∈ (0,D].

We obtain the following lower bound.

Lemma 4.1. Fix N > 1. Then, we have the following estimate for IN,D

IN,D(w) ≥
N

D
w1− 1

N (1 −O(w
1
N )) =

N

D
(w1− 1

N −O(w)), as w → 0.

Proof. Recalling the definition of GN , what we have to prove becomes

inf
ξ≥0

GN (ξ, w) ≥ 1−O(w
1
N ), as w → 0.
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The minimum in the infimum in the expression above is attained, at least for all w small
enough. Indeed, we have that

(4.4) GN (ξ, v) =

((
1 + ξ−1

)N
+
(
1
w − 1

))N−1
N

ξ
(
(1 + ξ−1)N − 1

) =

((
1 + ξ−1

)N
+
(
1
w − 1

))N−1
N

ξ (1 +Nξ−1 − o (ξ−1)− 1)
,

thus the limit limξ→∞ GN (ξ, w) = ( 1
w − 1)(N−1)/N/N ≥ 1 = GN (0, w) implies the coerciveness

of ξ 7→ GN (ξ, w). Define ξw ∈ argminξ∈[0,∞] GN (ξ, w); we trivially have that GN (ξw, w) ≤ 1.

First we prove that lim supw→0 ξw < ∞ (we soon will improve this estimate). Suppose the
contrary, i.e., there exists some sequence wn → 0 such that ξwn → ∞. Then we have

(4.5)

1 ≥ lim sup
n→∞

GN (ξwn , wn) ≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N ξN−1

wn

(ξwn + 1)N − ξNwn

= lim sup
n→∞

( 1
wn

− 1)
N−1
N

ξwN
(1 +Nξ−1

wn + o(ξ−1
wn)− 1)

= ∞,

which is a contradiction. Since lim supw→0 ξw < ∞, then we have (ξw + 1)N−1 − ξN−1
w ≤ C,

for all w small enough, for some constant C > 0. We improve the estimate above

(4.6) 1 ≥ lim sup
w→0

GN (ξw, w) ≥ lim sup
w→0

(( 1
w − 1)ξNw )

N−1
N

(ξw + 1)N−1 − ξNw
≥ lim sup

w→0

(( 1
w − 1)ξNw )

N−1
N

C
,

which implies lim supw→0 ξw ≤ 0, i.e., ξw → 0 as w → 0. We can improve the estimate again
(4.7)

1 ≥ lim sup
w→0

GN (ξw, w) = lim sup
w→0

(
(1 + ξw)

N + ξNw
w − ξNw

)N−1
N

(ξw + 1)N−1 − ξNw
=

(
1 + lim sup

w→0

ξNw
w

)N−1
N

,

yielding lim supw→0 ξw/w
1
N ≤ 0, i.e., ξw = o(w

1
N ) as w → 0. Finally we can conclude noticing

that

inf
ξ≥0

GN (ξ, w) = GN (ξw, w) =

(
(ξw + 1)N +

(
1
w − 1

)
ξNw
)N−1

N

(ξw + 1)N − ξNw

=
(1 + o(1))

N−1
N

1 +O(ξw)
= 1−O(w

1
N ). �

Corollary 4.2. Fix N > 1. Then for all D ≥ D′ > 0 and for all h : [0,D′] → R satisfying
the CD(0, N) condition it holds that

Ph(E) ≥ Ih(mh(E)) ≥
N

D′
mh(E)1−

1
N (1−O(mh(E)

1
N )

≥
N

D
mh(E)1−

1
N (1−O(mh(E)

1
N ),

for any Borel set E ⊂ [0,D′].

4.2. Sharp isoperimetric inequalities in CD(0, N) spaces with Euclidean volume

growth. We re-obtain Theorem 1.2 via localization.

Theorem 4.3. Let (X, d,m) be an essentially non-branching CD(0, N) space having AVRX >
0. Let E ⊂ X be any bounded Borel set then

(4.8) P(E) ≥ Nω
1
N

N AVR

1
N

Xm(E)
N−1
N .
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Proof. Let x0 ∈ E be any point. We then consider R > 0 such that E ⊂ BR(x). For shortness
we will write BR = BR(x0). We use Propsition 3.1 and in particular (3.6), obtaining

(4.9) P(E) ≥

∫

QR

PX̂α,R
(E) q̂R(dα).

Using Corollary 4.2, and the fact that each ray X̂α,R has length at most diamE + R, we
deduce

P(E) ≥

∫

QR

IN,diamE+R(m̂α,R(E)) q̂R(dα) ≥ m(BR)IN,diamE+R

(
m(E)

m(BR)

)

≥ m(BR)
N

diamE +R

(
m(E)

m(BR)

)1− 1
N

(
1−O

((
m(E)

m(BR)

) 1
N

))

= N

(
m(BR)

RN

) 1
N

m(E)1−
1
N −

O(1)

diamE +R
.

We conclude by taking the limit as R→ ∞ in the equation above. �

4.3. One dimensional reduction for the optimal region. Assuming E ⊂ X to turn
inequality (4.8) into an identity and following the proof of Theorem 4.3, a natural guess is
that the r.h.s. of (4.9) converges to the l.h.s. as R → ∞. The measure q̂R(QR) = m(BR) is
converging to infinity with order O(RN ), so the integrand should converge to 0 with order
O(R−N ). We now confirm this heuristic.

Definition 4.4. Let D ≥ D′ > 0 and let h : [0,D′] → R be a CD(0, N) density. If E ⊂ [0,D′]
is Borel subset, we define the D-residual of E as

(4.10) ResDh (E) :=
DPh(E)

N(mh(E))1−
1
N

− 1.

If v ∈ (0, 1/2), we define the D-residual of v as

ResDh (v) := ResDh ([0, rh(v)]) =
Dh(rh(v))

Nv1−
1
N

− 1.

Corollary 4.2 can be restated as

(4.11) ResDh (E) ≥ −O(mh(E)
1
N ).

We now apply the definition of residual to the disintegration rays.
In order to simplify the notation, we denote by Pα,R the perimeter measure of the one-

dimensional m.m.s. (X̂α,R, d, m̂α,R). The measure m̂α,R will be identified with the ray map g
to hα,RL

1. Then

Resα,R := Res
R+diam(E)
hα,R

(g(α, ·)−1(E ∩ X̂α,R)), for α ∈ QR,

Resx,R := ResQR(x),R, for x ∈ E.

The good rays are those rays having small residual. We quantify their abundance.

Proposition 4.5. Assume that (X, d,m) is an essentially non-branching CD(0, N) space such
that AVRX > 0. If E ⊂ X is a bounded set attaining the identity in the inequality (4.8), then

(4.12) lim
R→∞

‖Resα,R‖L1(QR)

m(BR)
= 0,

where the reference measure for the Lebesgue space L1(QR) is qR.
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Proof. We first check that the function α→ Resα,R is integrable. To this extent, it is enough
to check that (Resα,R)

−, is integrable; indeed, this last fact derives from the isoperimetric

inequality Resα,R ≥ −O(( m(E)
m(BR))

1
N ), as stated in (4.11). We can now compute the integral

in (4.12)

1

m(BR)

∫

QR

|Resα,R | q̂R(dα) =
1

m(BR)

∫

QR

(2(Resα,R)
− +Resα,R) q̂R(dα)

≤ O

((
m(E)

m(BR)

) 1
N

)
+

1

m(BR)

∫

QR

Resα,R q̂R(dα).

The first term is infinitesimal, so we focus on the second one

∫

QR

Resα,R q̂R(dα) =

∫

QR

(
(R + diam(E))Pα,R(E)

N

(
m(BR)

m(E)

)1− 1
N

− 1

)
q̂R(dα)

=
R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

∫

QR

Pα,R(E) q̂R(dα) −m(BR)

≤
R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

P(E) −m(BR)

≤ m(BR)
R + diam(E)

m(BR)
1
N

(AVRXωN )
1
N −m(BR),

yielding

1

m(BR)

∫

QR

Resα,R qR(dα) ≤
R+ diam(E)

m(BR)
1
N

(AVRXωN )
1
N − 1,

and the r.h.s. goes to 0, as R→ ∞. �

Corollary 4.6. Let (X, d,m) be an essentially non-branching CD(0, N) space having AVRX >
0. Let E ⊂ X be a set saturating the isoperimetric inequality (4.8), then it holds true:

lim
R→∞

∥∥ResQR(x),R

∥∥
L1(E)

= 0.

Proof. A direct computation gives

∥∥ResQR(x),R

∥∥
L1(E)

=

∫

QR

∫

E
|ResQR(x),R | m̂α,R(dx) q̂R(dα)

=

∫

QR

|Resα,R | m̂α,R(E) q̂R(dα) =
m(E)

m(BR)
‖Resα,R‖L1(QR) → 0. �

5. Analysis along the good rays

We now use the residual to control how distant is the density h : [0,D′] → R from the
model density x ∈ [0,D] 7→ NxN−1/D as well as the one-dimensional traces of E from the
optimal ones.

The results in this section go in the direction of proving that, given D ≥ D′ > 0, h :
[0,D′] → R a CD(0, N) density, a subset E ⊂ [0,D′], if the measure mh(E) and the residual

ResDh (E) are small, then the set E is closed to the interval [0,Dmh(E)
1
N ] and the density h is

closed to the model density NxN−1/D.
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Remark 5.1. We will make an extensive use of the Landau’s “big-O” and “small-o” notation.
If we are in a situation where several variables appears, but only a few of them are converging,
either the “big-O” or “small-o” could depend on the non-converging variables.

In our setting, the converging variables will be w → 0 and δ → 0. The free variables will
be: 1) D, a bound from above on the diameter of the space; 2) D′ ∈ (0,D], the diameter of
the space; 3) h : [0,D′] a CD(0, N) density; 4) E ⊂ [0,D′] a set with measure mh(E) = w and
residual ResDh (E) ≤ δ.

The following estimates are infinitesimal expansions as w → 0 and δ → 0 and whenever a
“big-O” or “small-O” appears, it has to be understood that this expression can be substituted
with a function going to 0 with the same order uniformly w.r.t. the other free variables.

Remark 5.2. Another point to remark is the fact that we focus only on the case when E is
on the left. We will sometimes assume that E is of the form [0, r] ⊂ [0,D′] and sometimes
that E ⊂ [0, L], with the tacit understanding that r ≪ D′ or L≪ D′. This is possible because
the rays come from the L1-optimal transport problem from the measure mxE

m(E) to the measure
mxBR

m(BR) , where E is our original set. Hence the rays are lines starting from E and going away,

thus the intersection of E with any ray lays at the beginning of the ray.

5.1. Almost rigidity of the diameter. We start our analysis focusing on the diameter of the
space: the inequality D ≥ D′ tends to be saturated if mh(E) = w → 0 and ResDh (E) ≤ δ → 0.
It follows from the fact that the isoperimetric profile IN,D scales according to D.

Proposition 5.3. Fix N > 1. The following estimates hold for w → 0 and δ → 0

(5.1) D′ ≥ D(1− o(1)),

where D ≥ D′ > 0 and h : [0,D′] → R is a CD(0, N) density such that E ⊂ [0,D′] is a subset
satisfying mh(E) = w and ResDh (E) ≤ δ.

Proof. The definition of residual (4.10) gives

N

D′
w1− 1

N (1 + ResD
′

h (E)) = Ph(E) =
N

D
w1− 1

N (1 + ResDh (E)).

Since ResDh (E) ≥ O(w
1
N ) by (4.11), if w is small enough, we can multiply by the factor

D′w
1
N
−1/(N(1 + ResDh (E)), obtaining

D′

D
=

1 + ResD
′

h (E)

1 + ResDh (E)
≥

1−O(w
1
N )

1 + ResDh (E)
≥

1−O(w
1
N )

1 + δ
= 1− o(1). �

5.2. Almost rigidity of the set E: the convex case. We now prove that the set E has to

be close to [0,Dmh(E)
1
N ]. We start considering the special case when the set E of the form

E = [0, r].

Proposition 5.4. Fix N > 1. The following estimates hold for w → 0 and δ → 0

rh(w) ≤ D(w
1
N (1 + o(1))),(5.2)

rh(w) ≥ D(w
1
N (1 + o(1))),(5.3)

where D ≥ D′ > 0 and h : [0,D′] → R is a CD(0, N) density such that ResDh (w) =

ResDh ([0, rh(w)]) ≤ δ.

Proof. In order to simplify the notation, we write r = rh(w).
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Part 1 Inequality (5.2).

By the CD(0, N) of the function h, we have that h(x) ≤ h(r)
rN−1x

N−1, for r ≤ x ≤ D′. If we
integrate in [r,D′] we obtain

1− w ≤

∫ D′

r

h(r)

rN−1
xN−1dx =

h(r)(D′N − rN )

NrN−1
≤
h(r)D′N

NrN−1
≤
h(r)DN

NrN−1
,

yielding to

rN−1 ≤
DN

N(1− w)
h(r) =

DN

N(1− w)

N

D
w1− 1

N (1 + ResDh (w)) ≤ (Dw
1
N )N−1 1 + δ

1− w
.

Part 2 Inequality (5.3).
This second part is a bit more difficult. The first step is to show that we can lead back
ourselves to the case of model spaces, namely that we can assume h = hN,D′(ξ, ·) for some

ξ ≥ 0 (cfr. (4.1)). That is, we want to show that given h, we find ξ, such that ResDhN,D′(ξ,·)(w) ≤

ResDh (w) ≤ δ and rhN,D′(ξ,·)(w) ≤ r.

To this extent, consider the function s : [0,∞) → R given by

s(a) :=

∫ D′

r

(
h(r)

1
N−1 + a(x− r)

)N−1
dx.

Clearly this function is strictly increasing and it holds

s

(
h(r)

1
N−1

r

)
=

∫ D′

r

h(r)

rN−1
xN−1dx ≥

∫ D′

r
h(x)dx = 1− w,

s(0) = (D′ − r)h(r) = (D′ − r)
N

D
w1− 1

N (1 + ResDh (w)) ≤ 2Nw
1− 1

N

N < 1− wN ≤ 1− w,

where in the second line we assumed that ResDh (w) ≤ δ ≤ 1 and w ≤ wN (for some wN > 0
depending only on N), which is possible since w → 0 and δ → 0. From the two inequalities

above, it follows that there exist a unique a ∈ (0, h(r)
1

N−1 /r], such that s(a) = 1−w. We can

define the CD(0, N) density h̄(x) := (h(r)
1

N−1 + a(x− r))N−1, which satisfies

∫ D′

r
h̄(x)dx =

∫ D′

r
h(x)dx = 1−w.

By mean-value theorem, there exists y ∈ (r,D′) such that h(y) = h̄(y), thus, by convexity of

h
1

N−1 , h̄(x) ≥ h(x) for all x ∈ [0, r]. This implies that
∫ r

0
h̄(x) dx ≥

∫ r

0
h(x) dx = w.

Define

V :=

∫ D′

0
h̄(x)dx =

(h(r)
1

N−1 + a(D′ − r))N − (h(r)
1

N−1 − ar)N

Na

=

∫ D′

r
h̄(x)dx+

∫ r

0
h̄(x)dx ≥ 1− w +

∫ r

0
h(x)dx = 1,

r̄ := rh̄(wV ) ≤ rh̄(V − (1−w)) = rh̄

(∫ r

0
h̄(x)dx

)
= r,
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where wV ≤ V − (1 − w) follows from 1 − w ∈ [0, 1] and V ≥ 1. Finally, we renormalize h̄,
defining

ĥ(x) :=
h̄(x)

V
= Na

(h(r)
1

N−1 + a(x− r))N−1

(h(r)
1

N−1 + a(D′ − r))N − (h(r)
1

N−1 − ar)N
.

If we set ξ = h(r)
1

N−1 −ar
aD′ ≥ 0, then it turns out that (cfr. (4.1))

ĥ(x) = hN,D′(ξ, x) =
N(x+D′ξ)N−1

D′N ((1 + ξ)N − ξN )
.

This function satisfies

rN,D′(ξ, w) = r̄ ≤ rh(w) and hN,D′(ξ, r̄) ≤ h̄(r̄) ≤ h̄(r) = h(r)

(the inequality h̄(r̄) ≤ h̄(r) follows from the fact that a ≥ 0, hence h̄ is non increasing). This
latter inequality can be restated as

(5.4) ResDhN,D′(ξ,·)(w) ≤ ResDh (w) ≤ δ.

For this reason we can assume that h is of the type hN,D′(·, ξ) for some ξ ≥ 0.
Recalling Equation (4.2), we notice that

(5.5) rN,D′(ξ, w) = D′
(
(w(1 + ξ)N + (1− w)ξN )

1
N − ξ

)
≥ D′(w

1
N − ξ).

What we are going to prove is that ξ is “small” in a sense that we will soon specify. Us-
ing the definition of residual, inequality (5.4) can be restated as (we already defined GN in
Equation (4.3))

GN (ξ, w) =
((1 + ξ)N + ( 1

w − 1)ξN )
N−1
N

(1 + ξ)N − ξN
≤
D′

D
(1 + δ) ≤ 1 + δ.

Define the set

Lδ(w) := {ξ : GN (η,w) > 1 + δ : ∀η > ξ}.

We have already proved in (4.4) that limξ→∞ GN (ξ, w) = N−1w
1−N
N , hence the set Lδ(w) is

non-empty.
At this point define the function ξδ(w) := inf Lδ(w). By the definition of ξδ and the

continuity of GN , it clearly holds that

GN (ξ, w) ≤ 1 + δ =⇒ ξ ≤ ξδ(w),

GN (ξδ(w), w) = 1 + δ.

Now we follow the line of the proof of Proposition 4.1. First, like in (4.5), we can see that
ξδ(w) is bounded as w → 0 and δ → 0. Indeed, suppose the contrary, i.e., that there exists
two sequences wn → 0 and δn → 0 such that ξδn(wn) → ∞. Then we have

1 ≥ lim sup
n→∞

GN (ξδn(wn), wn) ≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N ξδn(wn)

N−1

(ξδn(wn) + 1)N − ξδn(wn)
N

≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N

ξδn(wn)

((
1

ξδn (wn)
+ 1
)N

− 1

) = ∞,
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which is a contradiction. Like in (4.6) we can prove that ξδ(w) → 0, as w → 0 and δ → 0:

1 ≥ lim sup
w→0
δ→0

GN (ξδ(w), w) ≥ lim sup
w→0
δ→0

(( 1
w − 1)ξδ(w)

N )
N−1
N

(ξδ(w) + 1)N − ξδ(w)N

≥ lim sup
w→0
δ→0

(( 1
w − 1)ξδ(w)

N )
N−1
N

C
.

Finally, like in (4.7), we have that

1 = lim
w→0
δ→0

GN (ξδ, (w), w) = lim
w→0
δ→0

((1 + ξδ(w))
N + ( 1

w − 1)ξδ(w)
N )

N−1
N

(1 + ξδ(w))N − ξδ(w)N

= lim
w→0
δ→0

(
1 +

ξδ(w)
N

w

)N−1
N

,

yielding

lim
w→0
δ→0

ξδ(w)
N

w
= 1.

Using Landau’s notation, the above becomes ξδ(w) = o(w
1
N ), as w → 0 and δ → 0.

At this point we can recall (5.5), obtaining

rN,D′(ξδ(w), w) ≥ D′(w
1
N − ξδ(w)) ≥ D′(w

1
N − o(w

1
N )).

If we use the estimate (5.1), we can continue the chain on inequalities and conclude:

rN,D′(ξδ(w), w)

D
≥
D′

D
(w

1
N − o(w

1
N )) ≥ (1− o(1))(w

1
N − o(w

1
N )) = w

1
N (1− o(1)). �

5.3. Almost rigidity of the set E: the general case. We now drop the assumption
E = [0, r]. Up to a negligible set, E =

⋃
i∈N(ai, bi) where the intervals (ai, bi) are far away

from each other (i.e. bi < aj or bj < ai, for i 6= j). By boundedness of the original set of our
isoperimetric problem, we can also assume that E is included in the interval [0, L], for some
L > 0. Define b(E) := ess supE ≤ L.

In the next proposition we exclude the existence of a sequence such that (ain , bin) goes to
b(E).

Lemma 5.5. Fix N > 1 and L > 0. Then there exists two constants w̄ > 0 and δ̄ > 0
(depending only on N and L) such that the following happens. For all D ≥ D′ > 0 with
D ≥ 3L, for all h : [0,D′] → R satisfying the CD(0, N) condition, and for all E ⊂ [0, L], such
that mh(E) ≤ w̄ and ResDh (E) ≤ δ̄, there exists a ∈ [0, b(E)) and an at most countable family
of intervals ((ai, bi))i such that, up to a negligible set,

E =
⋃

i

(ai, bi) ∪ (a, b(E)),

with ai, bi < a, ∀i.
Moreover, h is strictly increasing on [0, b(E)].

Proof. By Proposition 5.3, we have that, if mh(E) and ResDh (E) are small enough, then D′

is closed to D ≥ 3L and in particular D′ ≥ 2L. We already know that the set E is of the
form E =

⋃
i(ai, bi) (up to a negligible set); our aim is to prove that there exists j such that

ai, bi < aj , for all i 6= j. In this case a = aj . Suppose the contrary, i.e., ∀j, ∃i 6= j such that
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ai > aj . With this assumption, we can build a sequence (jn)n, so that (ajn)n is increasing,
thus converging to some y ∈ (0, L]. By continuity of h, we have that h(ajn) → h(y) > 0. We
can compute the perimeter

∞ =
∑

n∈N

h(ajn) ≤ Ph(E) =
N

D
(mh(E))1−

1
N (1 + ResDh (E)) <∞,

which is a contradiction.
It remains to prove that h is increasing on [0, b(E)]. In order to simplify the notation, let

b := b(E). Denote by t := limzց0(h(b + z)
1

N−1 − h(b)
1

N−1 )/z the right-derivative of h
1

N−1 in

b, which must exists because h
1

N−1 is concave. We want to prove that t > 0; from this and

the fact that h
1

N−1 is concave it will follow that h is strictly increasing in [0, b]. Suppose the

contrary, i.e., t ≤ 0. Then, by concavity of h
1

N−1 , we have that

h(x) ≤ h(b)

(
D′ − x

D′ − b

)N−1

, ∀x ∈ [0, b], and h(x) ≤ h(b), ∀x ∈ [b,D′].

If we integrate we obtain

(5.6)

1 ≤

∫ b

0
h(b)

(
D′ − x

D′ − b

)N−1

dx+

∫ D′

b
h(b) dx

=
h(b)

N

(
D′N − (D′ − b)N

(D′ − b)N−1
+N(D′ − b)

)

≤
Ph(E)

N

(
D′N

(D′ − b)N−1
+ND′

)
=

Ph(E)D′

N

((
1−

b

D′

)1−N

+N

)

=
Ph(E)D′

N

(
1 + (N − 1)

b

D′
+ o

(
b

D′

)
+N

)
.

Consider the two factors in the r.h.s. of the estimate above. The former is controlled just
using the definition of residual

Ph(E)D′

N
≤

Ph(E)D

N
= mh(E)1−

1
N (1 + ResDh (E)),

and, if mh(E) → 0 and ResDh (E) is bounded, then the term above goes to 0. Regarding the

latter factor, we just need to prove that b
D′ is bounded:

b

D′
≤

L

D′
≤

L

2L
=

1

2
.

If we put together this last two estimates, we obtain that the r.h.s. of (5.6) converges to 0 as
mh(E) → 0 and ResDh (E) → 0, whereas the l.h.s. is equal to 1, obtaining a contradiction. �

What we have just proven is that there exists a right-extremal connected component for the
set E and this component is precisely the interval (a, b(E)). We will denote by a(E) the number
a given by the just-proven proposition. Since our estimates are infinitesimal expansions in
the limit as mh(E) → 0 and ResDh (E) → 0, we will always assume that mh(E) ≤ w̄ and

ResDh (E) ≤ δ̄, so that the expression a(E) makes sense. We will make an extensive use of the
fact that h is increasing in the interval [0, b(E)]: since, again, our estimates are in the limit
as mh(E) → 0 and ResDh (E) → 0, the fact that h is increasing in [0, b(E)] will be taken into
account, without explicitly referring to the previous Lemma.

We now prove that this component (a(E), b(E)) tends to fill the set E and that b(E)

converges as expected to Dmh(E)
1
N .
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Proposition 5.6. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0

b(E) ≤ Dw
1
N +Do(w

1
N )(5.7)

b(E) ≥ Dw
1
N −Do(w

1
N )(5.8)

a(E) ≤ Do(w
1
N ),(5.9)

where D ≥ 3L, D′ ∈ (0,D], h : [0,D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]
satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof.

Part 1 Inequality (5.8).
Since the density h is strictly increasing on [0, b(E)] and E ⊂ [0, b(E)] (up to a null measure
set), we have that rh(w) ≤ b(E) and

ResDh (w) =
Dh(rh(w))

Nw1− 1
N

− 1 ≤
Dh(b(E))

Nw1− 1
N

− 1 ≤
DPh(E)

Nw1− 1
N

− 1 = ResDh (E) ≤ δ.

We now exploit Proposition 5.4 (in particular the estimate (5.3)), yielding

D(w
1
N − o(w

1
N )) ≤ rh(w) ≤ b(E),

and we have concluded the proof of (5.8).

Part 2 Inequality (5.9).
First we prove that a(E) < rh(w) for w and δ small enough. Suppose the contrary, i.e., that
a(E) ≥ rh(w). This implies that h(a(E)) ≥ h(rh(w)), hence Ph(E) ≥ 2h(rh(w)). We deduce
that

−O(w
1
N ) ≤ ResDh (w) =

Dh(rh(w))

Nw1− 1
N

− 1 ≤
DPh(E)

2Nw1− 1
N

− 1 =
1

2
(ResDh (E) − 1) ≤

δ − 1

2
.

If we take the limit as w → 0 and δ → 0 we obtain a contradiction.
We exploit the Bishop–Gromov inequality and the isoperimetric inequality (respectively)

to obtain

h(a(E)) ≥ h(rh(w))

(
a(E)

rh(w)

)N−1

h(b(E)) ≥ h(rh(w)) ≥
N

D
w1− 1

N (1−O(w
1
N )),

Putting together the inequalities above and using the definition of residual we obtain

N

D
w1− 1

N (1 + ResDh (E)) = Ph(E) ≥ h(b(E)) + h(a(E)) ≥ h(rh(w)) + h(a(E))

≥ h(rh(w))

(
1 +

(
a(E)

rh(w)

)N−1
)

≥
N

D
w1− 1

N (1−O(w
1
N ))

(
1 +

(
a(E)

rh(w)

)N−1
)
,

yielding

a(E) ≤ rh(w)

(
1 + ResDh (E)

1 +O(w
1
N )

− 1

) 1
N−1

≤ rh(w)
(
(1 + δ)(1 −O(w

1
N ))− 1

) 1
N−1

≤ rh(w) o(1) ≤ Dw
1
N (1 + o(1))o(1) = Do(w

1
N ),
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where the estimate (5.2) was taken into account. This concludes the proof of (5.9).

Part 3 Inequality (5.7).
Since

∫

E
h =

∫ rh(w)

0
h,

we can deduce (together with the fact that a(E) ≤ rh(w) ≤ b(E))
∫

E∩[0,rh(w)]
h+

∫ b(E)

rh(w)
h =

∫

E∩[0,rh(w)]
h+

∫

[0,rh(w)]\E
h =

∫

E∩[0,rh(w)]
h+

∫

[0,a(E)]\E
h,

hence

(b(E) − rh(w))h(rh(w)) ≤

∫ b(E)

rh(w)
h =

∫

[0,a(E)]\E
h ≤

∫ a(E)

0
h ≤ a(E)h(a(E)),

yielding

b(E) − rh(w) ≤ a(E)
h(a(E))

h(rh(w))
≤ a(E).

We conclude by combining the inequality above with the already-proven estimate (5.8) and
the estimate (5.2) from Proposition 5.4. �

5.4. Almost rigidity of the density h. We now prove that the density h converges to the
density of the model space NxN−1/DN . Relying on the Bishop–Gromov inequality, we obtain
an estimate of h from below.

Proposition 5.7. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0

h(x) ≥
N

DN
xN−1(1− o(1)), uniformly w.r.t. x ∈ [0, b(E)],(5.10)

where D ≥ 3L, D′ ∈ (0,D], h : [0,D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]
satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix x ∈ [0, b(E)]. We can compute, using the Bishop–Gromov inequality

h(x) ≥ h(b(E))
xN−1

b(E)N−1
≥ h(rh(w))

xN−1

b(E)N−1
.

The first factor is controlled using the isoperimetric inequality

h(rh(w)) ≥
N

D
w1− 1

N (1−O(w
1
N )) =

N

D
w1− 1

N (1− o(1)).

For the term b(E) we use the estimate (5.7)

b(E) ≤ Dw
1
N (1 + o(1)).

The thesis follows from the combination of these last two inequalities. �

Before going on we prove the following, purely technical lemma.

Lemma 5.8. Fix N > 1 and consider the function f : [0, 1) × [0,∞] → R given by

f(t, η) =
1 + η − tN

1− t
.

Define the function g by

(5.11) g(η) = sup{t− s : f(t, 0) ≤ f(s, η)}.

Then limη→0 g(η) = 0.
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Proof. The proof is by contradiction. Suppose that there exists ǫ > 0 and three sequences in
(ηn)n, (tn)n, and (sn)n, such that ηn → 0, f(tn, 0) ≤ f(sn, ηn), and tn−sn > ǫ. Up to a taking
a sub-sequence, we can assume that tn → t and sn → s, hence 1 ≥ t ≥ s + ǫ. The functions
f(·, ηn) converge to f(·, 0), uniformly in the interval [0, 1− ǫ

2 ]. This implies f(sn, ηn) → f(s, 0),
yielding f(t, 0) ≤ f(s, 0). Since t 7→ f(t, 0) is strictly increasing, we obtain t ≤ s ≤ t − ǫ,
which is a contradiction. �

We now obtain an estimate of h from above in the interval [a(E), b(E)] going in the opposite
direction of the Bishop–Gromov inequality.

Proposition 5.9. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0

(5.12) h(x) ≤ h(b(E))

(
x

b(E)
+ o(1)

)N−1

, uniformly w.r.t. x ∈ [a(E), b(E)],

where D ≥ 3L, D′ ∈ (0,D], h : [0,D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]
satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix x ∈ [a(E), b(E)] and, in order to simplify the notation, define

a := a(E), b := b(E), k := h(x)
1

N−1 , l := h(b(E))
1

N−1 .

By concavity of h
1

N−1 , it holds true that

h(y) ≥
(y
x

)N−1
kN−1, ∀y ∈ [a, x],

h(y) ≥

(
l + (k − l)

b− y

b− x

)N−1

, ∀y ∈ [x, b].

We can integrate these two inequalities, obtaining

w ≥

∫ x

a

yN−1

xN−1
kN−1dy +

∫ b

x

(
l + (k − l)

b− y

b− x

)N−1
dy

=
kN−1 (xN − aN )

NxN−1
+
b− x

N

lN − kN

l − k
,

yielding

1−
(
k
l

)N

1− k
l

≤
Nw − kN−1(xN−aN )

xN−1

lN−1(b− x)
=

Nw
blN−1 − kN−1(xN−aN )

b(lx)N−1

1− x
b

≤
Nw
blN−1 − xN−aN

bN

1− x
b

=
Nw
blN−1 + aN

bN
− xN

bN

1− x
b

,

where in the last inequality we used the Bishop–Gromov inequality written in the form kN−1

lN−1 ≥
xN−1

bN−1 . At this point, we estimate the terms Nw
blN−1 and aN

bN
. Regarding the former, taking into

account (5.8) and the isoperimetric inequality, we notice

Nw

blN−1
=

Nw

b(E)h(b(E))
≤

Nw

b(E)h(rh(w))

≤
Nw

Dw
1
N (1− o(1)) N

Dw
1− 1

N (1−O(w
1
N )

= 1 + o(1).

The latter term is even more simple (recall (5.7) and (5.9))

aN

bN
=
a(E)N

b(E)N
≤

DNo(w)

DNw(1 − o(1))N
= o(1).
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We can put all the pieces together obtaining

f

(
k

l
, 0

)
=

1−
(
k
l

)N

1− k
l

≤
Nw
blN−1 + aN

bN
− xN

bN

1− x
b

≤
1 + o(1) − xN

bN

1− x
b

= f
(x
b
, o(1)

)
,

where f is the function of Lemma 5.8. We can apply said Lemma (and in particular (5.11))
and we get

k

l
−
x

b
≤ g(o(1)) = o(1).

If we explicit the definitions of k, l, and b, it turns out that the inequality above is precisely
the thesis. �

5.5. Rescaling the diameter and renormalizing the measure. We now obtain a first
limit estimate of the densities h. The presence of factor 1

DN in the estimate (5.10) suggests the

need of a rescaling to get a non-trivial limit estimate. We will rescale by 1
b(E) and renormalise

the measure by mh(E).
Fix k > 0 and define the rescaling transformation Sk(x) = x/k. If h : [0,D′] → R is a

density and E ⊂ [0, L], we can define

νh,E = (Sb(E))#

(
mhxE

mh(E)

)
∈ P([0, 1]).

The probability measure νh,E is absolutely continuous w.r.t. L1. Denote by h̃E : [0, 1] → R

the Radon–Nikodym derivative
dνh,e
dL1 . The density h̃E can be computed explicitly

(5.13) h̃E(t) = 1E(b(E)t)
b(E)

mh(E)
h(b(E)t).

Since E could be disconnected, the indicator function in (5.13) prevents h̃
1

N−1

E from being
concave and therefore ([0, 1], | · |, νh,E) from satisfing the CD(0, N) condition.

Proposition 5.10. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0∥∥∥h̃E −NtN−1
∥∥∥
L∞(0,1)

≤ o(1)

where D ≥ 3L, D′ ∈ (0,D], h : [0,D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]
satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix t ∈ [0, 1]. The proof is divided in four parts.

Part 1 Estimate from below and t > a(E)
b(E) .

Since t > a(E)
b(E) , then t b(E) ∈ E (for a.e. t). By a direct computation, we have

h̃E(t) =
b(E)

w
h(tb(E)) ≥

Nb(E)N

DNw
tN−1(1− o(1))

≥
NDNw(1 + o(1))N

DNw
tN−1(1− o(1)) = NtN−1 −NtN−1o(1),

where we have used the estimate (5.10), with x = tb(E), in the first inequality and (5.8) in
the first and second inequalities, respectively. Since t ∈ [0, 1], then −tN−1o(1) ≥ o(1) and we
conclude this first part.

Part 2 Estimate from below and t ≤ a(E)
b(E) .

In this case it may happen that t b(E) /∈ E, so the best we can say about h̃E is that it is
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non-negative in t. The point here is to exploit the fact that the interval [0, a(E)
b(E) ] is “short”

and that t ≤ a(E)
b(E) . By a direct computation (we recall (5.8) and (5.9)) we have

h̃E(t) ≥ 0 ≥ NtN−1 −NtN−1 ≥ NtN−1 −N
a(E)N−1

b(E)N−1

≥ NtN−1 −N
DN−1o(w1− 1

N )

DN−1w1− 1
N (1 + o(1))N−1

≥ NtN−1 − o(1).

Part 3 Estimate from above and t > a(E)
b(E) .

We take into account the estimate (5.12), with x = tb(E) and compute

h̃E(t) =
b(E)

w
h(tb(E)) ≤

b(E)

w
h(b(E))(t + o(1))N−1 ≤

b(E)

w
h(b(E))(tN−1 + o(1))

≤
Dw

1
N (1 + o(1))

w
Ph(E)(tN−1 + o(1))

=
Dw

1
N (1 + o(1))

w

N

D
w1− 1

N (1 + ResDh (E))(tN−1 + o(1))

≤ N(1 + o(1))(1 + δ)(tN−1 + o(1)) = NtN−1 + o(1)

(in the second inequality we exploited the uniform continuity of t ∈ [0, 1] 7→ tN−1; in the third
one, estimate (5.7)).

Part 4 Estimate from above and t ≤ a(E)
b(E) .

Fix ǫ > 0 and compute

h̃E(t) = b(E)
1E(tb(E))

mh(E)
h(b(E)t) ≤

b(E)

mh(E)
h(b(E)t)

≤
b(E)

mh(E)
h

(
b(E)

(
a(E)

b(E)
+ ǫ

))
= h̃E

(
a(E)

b(E)
+ ǫ

)
,

and the last equality holds true for a.e. ǫ small enough. At this point we can take into account
the previous part and continue

h̃E(t) ≤ h̃E

(
a(E)

b(E)
+ ǫ

)
≤ N

(
a(E)

b(E)
+ ǫ

)N−1

+ o(1).

If we take the limit as ǫ→ 0 we can conclude

h̃E(t) ≤ N

(
a(E)

b(E)

)N−1

+ o(1) ≤ o(1) ≤ NtN−1 + o(1). �

The following theorem summerizes the content of this section.

Theorem 5.11. Fix N > 1 and L > 0. Then there exists a function ω : Dom(ω) ⊂ (0,∞) ×
R → R, infinitesimal in 0, such that the following holds. For all D ≥ 3L, D′ ∈ (0,D), for all
h : [0,D′] → R a CD(0, N) density, and for all E ⊂ [0, L], it holds

∣∣∣b(E) −Dmh(E)
1
N

∣∣∣ ≤ Dmh(E)
1
N ω(mh(E),ResDh (E)),(5.14)

∥∥∥h̃E −NtN−1
∥∥∥
L∞

≤ ω(mh(E),ResDh (E)),(5.15)

where b(E) = ess supE and h̃E is the density of mh(E)−1(Sb(E))#mhxE, with Sb(E)(x) =
x/b(E).
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6. Passage to the limit as R→ ∞

We now go back to the studying the identity case of the isoperimetric inequality: E is a
bounded Borel such that

P(E) = N(ωNAVRX)
1
N m(E)1−

1
N ,

where (X, d,m) is an essentially non-branching CD(0, N) space having AVRX > 0 and
We make use of the notation of Section 3; denote by ϕR the Kantorovich potential associated

to fR and (3.1). Since the construction does not change if we add a constant to ϕR, we can
assume that ϕR are equibounded on every bounded set. Using the Ascoli–Arzelà theorem and
a diagonal argument we deduce that, up to subsequences, ϕR converges to a certain 1-Lipschitz
function ϕ∞, uniformly on every bounded set.

We recall the disintegration given by Proposition 3.1,

mx
T̂R

=

∫

QR

m̂α,R q̂R(dα), and P(E; · ) ≥

∫

QR

P
X̂α,R

(E; · ) q̂R(dα).(6.1)

We would like to take the limit in the disintegration formula (6.1). To the knowledge of the
authors there is no easy way to take such limit. For this reason, the effort of this section goes
in the direction to understand how the properties of the disintegration behave at the limit.

6.1. Passage to the limit of the radius. We start by defining the radius function rR : Ē →
[0,diamE]. Fix x ∈ E ∩ T̂R and let Ex,R := (gR(QR(x), ·))

−1(E) ⊂ [0, |X̂QR(x),R|]. Define

rR(x) :=

{
ess supEx,R, if x ∈ E ∩ T̂R,

0, otherwise.
(6.2)

Notice that rR(x) = b(Ex,E), where the notation b(E) was introduced in 5.3.
The function rR is defined on Ē for two motivations: we require a common domain not

depending on R and the domain must be a compact metric spaces.

Remark 6.1. The set E ∩ T̂R has full mxE-measure in Ē. This means that it does not
really matter how rR is defined outside E ∩ T̂R. This fact is particularly relevant, because we
will only take limits in the mxE-a.e. sense or in senses which are weaker than the pointwise
convergence.

The next proposition ensures that, in limit as R → ∞, the function rR converges to the

constant ( mh(E)
ωNAVRX

)
1
N , which is precisely the radius that we expect.

Proposition 6.2. Up to subsequences it holds true

lim
R→∞

rR =

(
m(E)

ωNAVRX

) 1
N

, mxE−a.e..

Proof. By Corollary 4.6 we have that
∥∥ResR,QR(x)

∥∥
L1(Ē;mxE)

→ 0, as R → ∞, hence there

exists a negligible subset N ⊂ E and a sequence Rn → ∞, such that limn→∞Resx,Rn = 0, for
all x ∈ E\N .

Define G :=
⋂
n T̂Rn\N and notice that m(E\G) = 0. Now fix n ∈ N and x ∈ G and let

α := QRn(x) ∈ QRn . By triangular inequality, it holds
∣∣∣∣rRn(x)−

(
m(E)

ωNAVRX

) 1
N

∣∣∣∣ ≤
∣∣∣∣rRn(x)− (Rn + diamE)

(
m(E)

m(BRn )

) 1
N

∣∣∣∣

+

∣∣∣∣(Rn + diamE)
(

m(E)
m(BRn )

) 1
N
−
(

m(E)
ωNAVRX

) 1
N

∣∣∣∣ ,
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and the second term goes to 0 by definition of AVR.

Let’s focus on the first term. Consider the ray (X̂α,Rn , d, m̂α,Rn). By definition, we have
that

ResRn+diamE
hα,Rn

(Ex,Rn) = Resα,Rn

We are in position to use Theorem 5.11 and, in particular, estimate (5.14) implies
∣∣∣∣rRn(x)− (Rn + diamE)

(
m(E)

m(BRn )

) 1
N

∣∣∣∣ =
∣∣∣rRn(x)− (Rn + diamE)(mhα,Rn

(Ex,Rn))
1
N

∣∣∣

≤ (Rn + diamE)mhα,Rn
(E)

1
N ω(mhα,Rn

(E),ResRn+diamE
hα,Rn

(Ex,Rn))

= (Rn + diamE)

(
m(E)

m(BRn)

) 1
N

ω

(
m(E)

m(BRn)
,ResQR(x),Rn

)
.

Since the r.h.s. in the inequality above is infinitesimal, we can take the limit as n → ∞ and
conclude. �

Hence in the limit the length of the rays converge to a well defined constant; this will turn

out to be the radius of E. From now on we will write ρ := ( m(E)
ωNAVRX

)
1
N .

6.2. Passage to the limit of the rays. Consider now a constant-speed parametrization of
the rays inside E:

γx,Rs :=

{
gR(QR(x), s rR(x)), if x ∈ E ∩ T̂R,

x, otherwise,

where x ∈ Ē and s ∈ [0, 1]. Remark 6.1 applies also to the map x 7→ γx,R. A direct
consequence of the definition of γx,R is

d(γx,Rt , γx,Rs ) = ϕR(γ
x,R
t )− ϕR(γ

x,R
s ), ∀ 0 ≤ t ≤ s ≤ 1, for m-a.e. x ∈ E,(6.3)

d(γx,R0 , γx,R1 ) = rR(x), for m-a.e. x ∈ E,

x ∈ γx,R, for m-a.e. x ∈ E.(6.4)

We stress out the order of the quantifiers in (6.3): said equation has to be understood in the
sense that ∃N ⊂ E such that m(N) = 0 and ∀t ≤ s, ∀x ∈ E\N , (6.3) holds true. Regarding

(6.4), we point out that the expression x ∈ γx,R means that ∃t ∈ [0, 1] such that x = γx,Rt , or,

equivalently, mint∈[0,1] d(x, γ
x,R
t ) = 0.

In order to capture the limit behaviour of γx,R as R → ∞ we proceed as follows. First
define K := {γ ∈ Geo(X) : γ0, γ1 ∈ Ē}. Since a CD(K,N) space is locally compact and E is
bounded, Ē is compact and so is K. Then define the measure

τR := (Id× γ · ,R)#mxE ∈ M(Ē ×K).

The measures τR have mass m(E) and enjoy the following immediate properties

(P1)#τR = mxE , and γ = γx,R, for τR-a.e. (x, γ) ∈ Ē ×K.

We can restate the properties (6.3)–(6.4) using a more measure-theoretic language

d(et(γ), es(γ)) − ϕR(et(γ)) + ϕR(es(γ)) = 0, ∀ 0 ≤ t ≤ s ≤ 1,(6.5)

d(e0(γ), e1(γ))− rR(x) = 0,(6.6)

x ∈ γ,(6.7)
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for τR-a.e. (x, γ) ∈ Ē×K. Since the measures τR have the same mass and Ē×K is compact,
the family of measures (τR)R>0 is tight, thus we can extract a sub-sequence (which we do not
relabel) such that τR ⇀ τ weakly, i.e.,

∫
Ē×K ψ dτR →

∫
Ē×K ψ dτ , for all ψ ∈ Cb(Ē ×K).

The next proposition affirms that the properties (6.5)–(6.7) pass to the limit as R→ ∞.

Proposition 6.3. For τ -a.e. (x, γ) ∈ Ē ×K, it holds thas

d(et(γ), es(γ)) = ϕ∞(et(γ))− ϕ∞(es(γ)), ∀ 0 ≤ t ≤ s ≤ 1,(6.8)

d(e0(γ), e1(γ)) = ρ,(6.9)

x ∈ γ.(6.10)

Proof. Fix t ≤ s and integrate (6.5) in Ē ×K, obtaining

0 =

∫

Ē×K
(d(et(γ), es(γ)) − ϕR(et(γ)) + ϕR(es(γ))) τR(dx dγ)

=

∫

Ē×K
Lt,sϕR

(γ) τR(dx dγ),

where we have set Lt,sψ (γ) := d(et(γ), es(γ))− ψ(et(γ)) + ψ(es(γ)). The map Lt,sϕR : K → R is

clearly continuous and converges uniformly (recall that ϕR → ϕ∞ uniformly on every compact)

to Lt,sϕ∞
. For this reason we can take the limit in the equation above obtaining

0 =

∫

Ē×K
Lt,sϕ∞

(γ) τ(dx dγ)

=

∫

Ē×K
(d(et(γ), es(γ)) − ϕ∞(et(γ)) + ϕ∞(es(γ))) τ(dx dγ).

The 1-lipschitzianity of ϕ∞, yields Lt,sϕ∞
(γ) ≥ 0, ∀γ ∈ K, hence

d(et(γ), es(γ)) = ϕ∞(et(γ)) − ϕ∞(es(γ)) for τ -a.e. (x, γ) ∈ Ē ×K.

In order to conclude, fix P ⊂ [0, 1] a countable dense subset, and find a τ -negligible set
N ⊂ Ē ×K such that

d(et(γ), es(γ)) = ϕ∞(et(γ)) − ϕ∞(es(γ)), ∀t, s ∈ P, with t ≤ s, ∀(x, γ) ∈ (Ē ×K)\N.

If we have 0 ≤ t ≤ s ≤ 1, we approximate t and s with two sequences in P and we can pass
to the limit in the equation above concluding the proof of (6.8).

Now we prove (6.9). The idea is similar, but in this case we need to be more careful, because
the function rR fails to be continuous. Like before, we can integrate Equation (6.6) obtaining

0 =

∫

Ē×X
|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ).

If the functions rR were continuous and converged uniformly to ρ, then we could pass to the
limit and conclude. Unfortunately Proposition 6.2, provides a limit only the a.e. sense. We
overcome this issue using Lusin’s and Egorov’s theorems. Fix ǫ > 0 and find a compact set
L ⊂ E, such that: 1) the restrictions rR|L are continuous; 2) the restricted maps rR|L converge
uniformly to ρ; 3) m(E\L) ≤ ǫ. We can now compute the limit

0 = lim
R→∞

∫

Ē×K
|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥ lim inf
R→∞

∫

L×K
|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥

∫

L×K
|d(e0(γ), e1(γ))− ρ| τ(dx dγ) ≥ 0,
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hence

d(e0(γ), e1(γ)) = ρ, for τ -a.e. (x, γ) ∈ L×K.

This means that the equation above holds true except for a set of measure at most ǫ. By
arbitrariness of ǫ, we conclude the proof of (6.9). Finally we prove (6.10). Consider the
continuous, non-negative function L(x, γ) := inft∈[0,1] d(x, et(γ)). Equation (6.7) implies

0 =

∫

Ē×K
L(x, γ) τR(dx dγ).

The equation above passes to the limit as R → ∞, hence we deduce L(x, γ) = 0 for τ -a.e.
(x, γ) ∈ Ē ×K, which is precisely (6.7). �

6.3. Disintegration of the measure and the perimeter. Recalling the disintegration
formula (6.1), we define the map Ē ∋ x 7→ µx,R ∈ P(Ē) as

µx,R :=

{
m(BR)
m(E) (m̂QR(x),R)xE , if x ∈ E ∩ T̂R,

δx, otherwise.

This new family of measures satisfies the disintegration formula

(6.11) mxE=

∫

Ē
µx,RmxE(dx).

Indeed, by a direct computation (recall (3.4)–(3.5))

m(A ∩ E) =

∫

QR

m̂α,R(A ∩E) q̂R(dα) =
m(BR)

m(E)

∫

QR

m̂α,R(A ∩ E) (QR)#(mxE)(dα)

=
m(BR)

m(E)

∫

X
m̂QR(x),R(A ∩ E)mxE(dx) =

∫

X
µx,R(A)mxE(dx).

Remark 6.4. We give a few details regarding the measurablity of the integrand function
in Equation (6.11). Said equation should be interpreted in the following sense: the map
x 7→ µx,R(A) is measurable and the formula (6.11) holds. Indeed, the map x 7→ µx,R(A) is (up

to excluding the negligible set Ē\(E ∩ T̂R)) the composition of QR ∋ α 7→ m(BR)
m(E) m̂α,R(A ∩ E)

and the projection QR. The former map is q̂R-measurable, while the map QR is m-measurable,
with respect to the σ-algebra of QR, thus the composition is measurable.

Since m̂α,R = (gR(α, ·))#(hα,RL
1
x
[0,|X̂α,R|]

), we can explicitly compute the measure µx,R

(recall that by (6.2) rR(x) = ess supEx,R, for mxE-a.e. x)

µx,R =
m(BR)

m(E)
(gR(QR(x), ·))#

(
(gR(QR(x), ·))

−1(E)hQR(x),RL
1
x[0,rR(r)]

)

= (gR(QR(x), ·))#

(
1Ex,R

m(BR)

m(E)
hQR(x),RL

1
x[0,rR(x)]

)

= (γx,R)#(h̃
x,R
E L1

x[0,1]), for mxE-a.e. x ∈ Ē

where

h̃x,RE (t) = 1Ex,R
(rR(x)t) rR(x)

m(BR)

m(E)
hQR(x),R(rR(x)t).
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Thanks to (3.6), we can perform a similar operation for the perimeter. Having in mind that
hR,QR(x)(rR(x))δrR(x) ≤ PhR,QR(x)

(Ex,R; · ), we define the map

px,R : =

{
min

{
m(BR)
m(E) hR,QR(x)(rR(x)),

N
ρ

}
δgR(QR(x),rR(x)), if x ∈ E ∩ T̂R,

N
ρ δx, if x ∈ Ē\(E ∩ TR).

Using the maps γx,R and h̃x,R, we can rewrite px,R as

px,R =





min

{
h̃x,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

., if x ∈ E ∩ T̂R,

N

ρ
δx, if x ∈ Ē\(E ∩ TR).

The definition of px,R immediately yields

px,R ≤
m(BR)

m(E)
PXR,QR(x)

(E; · ), for mxE-a.e. x ∈ Ē,

hence we deduce the following “disintegration” formula (equations (3.6) and (3.5) are taken
into account)

(6.12)

P(E;A) ≥

∫

QR

PXα,R
(E;A) q̂R(dα) =

m(BR)

m(E)

∫

Ē
PXR,QR(x)

(E;A)mxE(dx)

≥

∫

Ē
px,R(A)m(dx), ∀A ⊂ Ē Borel.

Let F := e(0,1)(K) = {γt : γ ∈ K, t ∈ [0, 1]} and let S ⊂ M+(F ) be the subset of the
non-negative measures on F with mass at most N/ρ. We endow the sets P(F ) and S with the
weak topology of measures. Since K and F are compact Hausdorff spaces, by Riesz–Markov
Representation Theorem, the weak topology on P(F ) and S, coincides with the weak* topology
induced by the duality against continuous functions C(F ). It is well-known that the weak*
convergence can be metrized on bounded sets, if the primal space is separable. For instance,
a possible suitable metric is given by

(6.13) d(µ, ν) =

∞∑

k=1

1

2k ‖fk‖∞

∣∣∣∣
∫

X
fk dµ−

∫

X
fk dν

∣∣∣∣ ,

where {fk}k is dense set in C(X). We endow the spaces P(F ) and S with the distance defined
in (6.13).

Define the map GR : Ē ×K → P(F ) × S, as

GR(x, γ) :=

(
γ#(h̃

x,R
E L1

x[0,1]),min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
.

The function GR is measurable w.r.t. the variable x and continuous w.r.t. the variable γ. At
this point we can define the measure

σR := (Id×GR)#τR ∈ M+(Ē ×K × P(F ) × S).

Notice that the mass of σR is m(E) for all R > 0. In order to simplify the notation, set
Z = Ē ×K × P(F ) × S.
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Proposition 6.5. The measure σR satisfies the following properties∫

E
ψ dm =

∫

Z

∫

E
ψ(y)µ(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (Ē),(6.14)

∫

Ē
ψ(y)P(E, dy) ≥

∫

Z

∫

Ē
ψ(y) p(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (Ē), ψ ≥ 0.

Proof. Fix a test function ψ ∈ C0
b (Ē). First we notice that for σR-a.e. (x, γ, µ, p) ∈ Z, we

have that µ = µx,R. Indeed, it holds that

µ = γ#(h̃
x,R
E L1

x[0,1]) = (γx,R)#(h̃
x,R
E L1

x[0,1]) = µx,R, for σR-a.e. (x, γ, µ, p) ∈ Z,

and we used the fact that γ = γx,R for τR-a.e. (x, γ) ∈ Ē ×K. We conclude this first part by
a direct computation

∫

E
ψ dm =

∫

E

∫

E
ψ(y)µx,Rm(dx) =

∫

Z

∫

E
ψ(y)µx,R(dy)σR(dx dγ dµ dp)

=

∫

Z

∫

E
ψ(y)µ(dy)σR(dx dγ dµ dp),

we conclude the proof of inequality (6.14).
Now fix an open set Ω ⊂ X and compute using (6.12)

P(E; Ω) ≥

∫

E
min

{
h̃Ex,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

(Ω) dm(dx)

=

∫

Z
min

{
h̃Ex,R(1)

d(e0(γx,R), e1(γx,R))
,
N

ρ

}
δe1(γx,R)(Ω) dσR(dx dγ dµ dp)

=

∫

Z
min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)(Ω) dσR(dx dγ dµ dp).

If we use the fact that

p = min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N(ωNAVRX)

1
N

m(E)
1
N

}
δe1(γ)(Ω), for σR-a.e. (x, γ, µ, p) ∈ Z,

we continue the chain of inequalities obtaining

P(E; Ω) ≥

∫

Z
min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)(Ω) dσR(dx dγ dµ dp)

=

∫

Z
p(Ω) dσR(dx dγ dµ dp).

Since the perimeter is outer-regular, i.e., P(E;A) = inf{P(E; Ω) : Ω ⊃ A is open}, we can
conclude. �

At this point we are in position to take the limit as R → ∞, as the properties we have
proven pass to the limit, but before proceeding we prove the following technical Lemma.

Lemma 6.6. Let X be a complete and separable metric space, let Y , Z be two compact
metric spaces, and let m be a finite Radon measure on X. Consider a sequence of functions
fn : X × Y → Z and f : X × Y → Z, such that f and fn are Borel-measurable in the first
variable and continuous in the second. Assume that for m-a.e. x ∈ X the sequence fn(x, ·)
converges uniformly to f(x, ·). Consider a sequence of measures µn ∈ M+(X × Y ) such that
µn ⇀ µ weakly in M+(X × Y ) and (πX)#µn = m.
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Then it holds

(Id× fn)#µn ⇀ (Id× f)#µ, weakly in M(X × Y × Z).

Proof. In order to simplify the notation, set νn = (Id×fn)#µn and ν = (Id×f)#µ. Fix ǫ > 0.
We would like to use an extension of the Egorov’s and Lusin’s Theorems for functions

taking values in separable metric spaces. The reader can find a proof these theorems in [30,
Theorem 7.5.1] (for the Egorov’s Theorem) and [29, Appendix D] (for the Lusin’s Theorem).
In this setting, we deal with maps taking value in C(Y,Z), the space of continuous functions
between the compact spaces Y and Z, which turns out to be separable.

Using said Theorems, we can find a compact K ⊂ X such that: 1) the maps x ∈ K 7→
fn(x, ·) ∈ C(Y,Z) are continuous (and the same holds for f in place of fn); 2) the restricted
maps x ∈ K 7→ fn(x, ·) converge to x ∈ K 7→ f(x, ·), uniformly in the space C(K,C(Y,Z));
3) m(X\K) ≤ ǫ. Regarding point 2), this immediately implies that the restriction fn|K×Y →
f |K×Y converges uniformly in K × Y .

We test the convergence of νn against ϕ ∈ C0
b (X × Y × Z)

∣∣∣∣
∫

X×Y×Z
ϕdνn −

∫

X×Y×Z
ϕdν

∣∣∣∣ ≤ ‖ϕ‖C0 (νn((X\K) × Y × Z) + ν((X\K) × Y × Z))

+

∣∣∣∣
∫

K×Y×Z
ϕdνn −

∫

K×Y×Z
ϕdν

∣∣∣∣

= ‖ϕ‖C0 (m(X\K) +m(X\K))

+

∣∣∣∣
∫

K×Y×Z
ϕdνn −

∫

K×Y×Z
ϕdν

∣∣∣∣

≤ 2ǫ ‖ϕ‖C0 +

∣∣∣∣
∫

K×Y×Z
ϕdνn −

∫

K×Y×Z
ϕdν

∣∣∣∣ .

We focus on the second term and we compute the integral∫

K×Y×Z
ϕdνn =

∫

K×Y
ϕ(x, y, fn(x, y))µn(dx dy).

The function ϕ|K×Y×Z is uniformly continuous (because it is continuous and defined on a
compact space), hence ϕ(x, y, fn(x, y)) converges to ϕ(x, y, f(x, y)) uniformly in K × Y . For
this reason, together with the fact that µn ⇀ µ weakly we can take the limit in the equation
above obtaining

lim
n→∞

∫

K×Y
ϕ(x, y, fn(x, y))µn(dx dy) =

∫

K×Y
ϕ(x, y, f(x, y))µ(dx dy)

=

∫

K×Y×Z
ϕdν,

and this concludes the proof. �

Corollary 6.7. Consider the function G : Ē ×K → P(F ) × S defined as

G(x, γ) =

(
γ#(Nt

N−1L1
x[0,1]),max

{
N

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
,

and let σ := (Id×G)#τ . Then we have that σR ⇀ σ in the weak topology of measures.

Proof. We just need to check the hypotheses of the previous Lemma. The set Ē is compact,
hence complete and separable. The set K is compact and so is P(F ) × S (w.r.t. the weak
topology). As we have already pointed out, the maps GR are measurable in the first variable
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and continuous in the second variable. Finally, we need to see that for a.e. x, the limit
GR(x, γ) → G(x, γ) holds uniformly w.r.t. γ. Fix x and γ and pick ψ ∈ Cb(F ) a test function.
Compute

∣∣∣∣
∫

F
ψ(y) γ#(h̃

x,R
E L1

x[0,1])(dy) −

∫

F
ψ(y) γ#(Nt

N−1L1
x[0,1])(dy)

∣∣∣∣

=

∣∣∣∣
∫ 1

0
ψ(γt)(h̃

x,R
E −NtN−1) dt

∣∣∣∣ ≤ ‖ψ‖C(F )

∥∥∥h̃x,RE −NtN−1
∥∥∥
L∞

.

The r.h.s. of the inequality above does not depend on γ (but only on x and ψ) and converges
to 0 by Theorem 5.11, in particular (5.15). This means that the first component of GR(x, γ)
converges (in the weak topology of P(F )), uniformly w.r.t. γ (see (6.13)). For the other
component the proof is analogous, so we omit it. �

The next proposition reports all the relevant properties of the limit measure σ.

Proposition 6.8. The measure σ satisfies the following disintegration formulae
∫

E
ψ(y)m(dy) =

∫

Z

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp), ∀ψ ∈ L1(E;mxE),(6.15)

∫

Ē
ψ(y)P(E; dy) =

N

ρ

∫

Z
ψ(e1(γ))ψ σ(dx dγ dµ dp), ∀ψ ∈ L1(Ē;P(E; · )).(6.16)

Furthermore, for σ-a.e. (x, γ, µ, p) ∈ Z it holds

d(et(γ), es(γ)) = ϕ∞(et(γ)) − ϕ∞(es(γ)), ∀0 ≤ t ≤ s ≤ 1,(6.17)

d(e0(γ), e1(γ)) = ρ,(6.18)

x ∈ γ,(6.19)

µ = γ#(Nt
N−1L1

x[0,1]),(6.20)

p =
N

ρ
δe1(γ).(6.21)

Proof. Equations (6.17)–(6.19) are just a restatement of (6.8)–(6.10), respectively. Equa-
tion (6.20) is an immediate consequence of the definition of G. Similarly, taking into ac-
count (6.18), we can deduce (6.21)

p = min

{
N

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ) =

N

ρ
δe1(γ).

In order to prove (6.15), fix ψ ∈ C0
b (F ) = C0

b (e(0,1)(K)) and define the function Lψ :

P(F ) → R as Lψ(µ) =
∫
F ψ dµ. This function is bounded and continuous w.r.t. the weak

topology of P(F ). Hence, we take into account the definition of weak convergence of measures
and we compute the limit using (6.14) and (6.20)

∫

E
ψ dm = lim

R→∞

∫

Z

∫

F
ψ(y)µ(dy)σR(dx dγ dµ dp)

= lim
R→∞

∫

Z
Lψ(µ)σR(dx dγ dµ dp)

=

∫

Z

∫

F
ψ(y)µ(dy)σ(dx dγ dµ dp) =

∫

Z

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp).
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Using standard approximation arguments, we see that the equation above holds true also for
any ψ ∈ L1(E;mxE).

Regarding (6.16), using the same argument we can deduce that
∫

Ē
ψ(y)P(E; dy) ≥

N

ρ

∫

Z
ψ(e1(γ))σ(dx dγ dµ dp), ∀ψ ∈ L1(Ē;P(E; · )), ψ ≥ 0.

If we test the inequality above with ψ = 1, the inequality is saturated meaning that the two
measures have the same mass, so the inequality improves to an equality. �

6.4. Back to the classical localization notation. We are now in position to re-obtain a
“classical” disintegration formula for both the measure m and the perimeter of E.

We recall the definition of some of the objects that were introduced in Subsection 2.4. For
instance, let Γ∞ = {(x, y) : ϕ∞(x)− ϕ∞(y) = d(x, y)} and Re

∞ = Γ∞ ∪ Γ−1
∞ be the transport

relation. The transport set with endpoints is T e
∞ := P1(R

e
∞\{x = y}); clearly E ⊂ T e

∞, up to
a negligible set. The sets of forward and backward branching points are defined as

A+
∞ := {x ∈ T e

∞ : ∃z, w ∈ Γ∞(x), (z, w) /∈ Re
∞},

A−
∞ := {x ∈ T e

∞ : ∃z, w ∈ Γ−1
∞ (x), (z, w) /∈ Re

∞}.

The transport set is defined as T∞ := T e
∞\(A+

∞∪A−
∞); since the sets A+

∞ and A−
∞ are negligible,

then T∞ has full measure in T e
∞. Let Q∞ be the quotient set and let Q∞ : T∞ → Q∞ be the

quotient map; denote by Xα,∞ := Q−1(α) the disintegration rays and let g∞ : Dom(g∞) ⊂

R ×Q∞ → X be the parametrization of the rays such that d
dtϕ∞(g∞(t, α)) = −1. For every

α ∈ Q∞, let tα : Xα,∞ → [0,∞) be the function tα(x) := (g(α, · ))−1 = d(x, g∞(Q∞(x), 0));
the function tα measures how much a point is translates from the starting point of the ray
Xα,∞.

The following proposition guarantees that the geodesics on which the measure σ is supported
lay on the transport set T∞.

Proposition 6.9. For σ-a.e. (x, γ, µ, p) ∈ Z, it holds that et(γ) /∈ A+
∞∪A−

∞, for all t ∈ (0, 1).

Proof. Fix ǫ > 0 and let

P := {(x, γ, µ, p) ∈ Z : eǫ(γ) ∈ A+
∞ and conditions (6.15)–(6.21) holds}

Notice that by definition of A+
∞, if (x, γ, µ, p) ∈ P , then γt ∈ A+

∞, for all t ∈ [0, ǫ], thus we can
compute

0 = m(A+
∞) =

∫

Z

∫ 1

0
1A+

∞

(et(γ))Nt
N−1 dt σ(dx dγ dµ dp)

≥

∫

P

∫ ǫ

0
1A+

∞

(et(γ))Nt
N−1 dt σ(dx dγ dµ dp) ≥ ǫNσ(P ),

so P is negligible. Fix now (x, γ, µ, p) /∈ P . By definition of A+
∞ and P , we have that γt 6∈ A+

∞,
for all t ∈ [ǫ, 1]. By arbitrariness of ǫ, we deduce that for σ-a.e (x, γ, µ, p) ∈ Z, it holds that
et(γ) /∈ A+

∞, for all t ∈ (0, 1]. The proof for the set A−
∞ is analogous. �

Corollary 6.10. For σ-a.e. (x, γ, µ, p) ∈ Z, it holds that et(γ) ∈ XQ(x),∞ and

(6.22) et(γ) = g(Q(x), tQ(x)(e0(γ)) + ρt).

Define q̂ := 1
m(E)(Q∞)#(mxE) ≪ (Q∞)#mxT∞ and let q̃ be a probability measure such that

(Q∞)#mxT∞≪ q̃. The disintegration theorem gives the following two formulae

(6.23) mxE=

∫

Q∞

m̂α,∞ q̂(dα), and mxT∞=

∫

Q∞

m̃α,∞ q̃(dα),
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where the measures m̂α,∞ and m̃α,∞ are supported on Xα,∞. By comparing the two expres-

sions above, it turns out that dq̂
dq̃(α) m̂α,∞ = 1Em̃α,∞. Theorem 2.5, ensures that the space

(Xα,∞, d, m̃α,∞) satisfies the CD(0, N) condition. Note that the disintegration α 7→ m̂α,∞ does
not fall under the hypothesis of Theorem 2.5: indeed, in this case we are disintegrating a
measure concentrated on E and not on the transport set T∞. Define the functions ĥα and h̃α
as the functions such that

m̂α,∞ = (g(α, · ))#(ĥαL
1
(0,|Xα,∞|)), and m̃α,∞ = (g(α, · ))#(h̃αL

1
(0,|Xα,∞|)).

Clearly, it holds that dq̂
dq̃(α)ĥα(t) = 1E(g(α, t))h̃α(t), thus we can derive a somehow weaker

concavity condition for the function ĥ
1

N−1
α : for all x0, x1 ∈ (0, |Xα,∞|) and for all t ∈ [0, 1], it

holds that

ĥα((1− t)x0 + tx1)
1

N−1 ≥ (1− t)ĥα(x0)
1

N−1 + tĥα(x1)
1

N−1 ,

if ĥα((1 − t)x0 + tx1) > 0.

The inequality above implies that

(6.24) the map r 7→
ĥα(r)

rN−1
is decreasing on the set {r ∈ (0, |Xα,∞|) : ĥα(r) > 0}.

Define the set Ẑ ⊂ Z as

Ẑ := {(x, γ, µ, p) ∈ Z : x ∈ E ∩ T∞, and the properties given by

Equations (6.15)–(6.16) and (6.22) holds}.

Clearly Ẑ has full σ-measure in Z. We give a partition for Ẑ

Ẑα := {(x, γ, µ, p) ∈ Ẑ : Q∞(x) = α},

and we disintegrate the measure σ according to the partition (Ẑα)α∈Q∞

(6.25) σ =

∫

Q∞

σα q(dα),

where the measures σα are supported on Ẑα. Moreover, let να ∈ P([0,∞)) be the measure
given by

να :=
1

m(E)
(tα ◦ e0 ◦ πK)#(σα)

(we recall that tα = (g(α, · ))−1 and πK(x, γ, µ, p) = γ).

The following proposition states that the density ĥα is given by the convolution of the model
density and the measure να.

Proposition 6.11. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX

∫

[0,∞)
(r − t)N−11(t,t+ρ)(r) να(dt), ∀r ∈ (0, |Xα,∞|).

Proof. Fix ψ ∈ L1(mxE) and compute its integral using Equations (6.15) and (6.25)
∫

E
ψ(x)m(dx) =

∫

Ẑ

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp)

=

∫

Q∞

∫

Ẑα

∫ 1

0
ψ(et(γ))Nt

N−1 dt σα(dx dγ dµ dp) q(dα).
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Fix now α ∈ Q∞ and compute (recall (6.22) and the definition of Ẑ)
∫

Ẑα

∫ 1

0
ψ(et(γ))Nt

N−1 dt σα(dx dγ dµ dp)

=

∫

Ẑα

∫ ρ

0
ψ(es/ρ(γ))N

sN−1

ρN
ds σα(dx dγ dµ dp)

=

∫

Ẑα

∫ ρ

0
ψ(g∞(Q(x), t(α, γ0) + s))N

sN−1

ρN
ds σα(dx dγ dµ dp)

=

∫

Ẑα

∫ |Xα,∞|

0
ψ(g∞(α, r))N

(r − t(α, γ0))
N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r)

dr σα(dx dγ dµ dp)

=

∫ |Xα,∞|

0
ψ(g∞(α, r))

∫

Ẑα

N
(r − t(α, γ0))

N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r)

σα(dx dγ dµ dp) dr,

hence, by the uniqueness of the disintegration, we deduce that

ĥα(r) =

∫

Ẑα

N
(r − t(α, γ0))

N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r)σα(dx dγ dµ dp)

= NωNAVRX

∫

[0,∞)
(r − t)N−11(t,t+ρ)(r) να(dt). �

Proposition 6.12. For q̂-a.e. α ∈ Q∞, it holds that να = δ0.

Proof. Let T := inf supp να. If we set r ∈ (T, T + ρ), we can compute

(6.26)

ĥα,∞(r)

NωNAVRX
=

∫

[0,∞)
(r − t)N−11(t,t+ρ)(r) να(dt) =

∫

[T,r)
(r − t)N−1 να(dt)

≥

∫

[T,r)

(
r − T

2
1[T,(r+T )/2](t)

)N−1

να(dt) =
(r − T )N−1

2N−1
να([T,

r+T
2 ]).

By definition of T , we have that να([T,
r+T
2 ]) > 0, hence ĥα(r) > 0, for all r ∈ (T, T + ρ). On

the other hand

(6.27)
ĥα,∞(r) = NωNAVRX

∫

[T,r)
(r − t)N−1 να(dt)

≤ NωNAVRX(r − T )N−1 να([T, r)) → 0. as r → T+.

We claim that T = 0. Indeed, if T > 0, then limr→T+ ĥα(r)/r
N−1 = 0 contradicting (6.24).

We now derive the non-increasing function

(0, ρ) ∋ r 7→
ĥα(r)

rN−1
=
NωNAVRX

rN−1

∫

[0,r)
(r − t)N−1 να(dt),

obtaining

0 ≥ NωNAVRX

(
1−N

rN

∫

[0,r)
(r − t)N−1 να(dt) +

1

rN−1

d

dr

∫

[0,r)
(r − t)N−1 να(dt)

)
.
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The second term can be computed as

d

dr

∫

[0,r)
(r − t)N−1 να(dt)

= lim
h→0

∫

[r,r+h)

(r + h− t)N−1

h
να(dt)

+ lim
h→0

∫

[0,r)

(r + h− t)N−1 − (r − t)N−1

h
να(dt)

≥ 0 +

∫

[0,r)
lim
h→0

(r + h− t)N−1 − (r − t)N−1

h
να(dt)

= (N − 1)

∫

[0,r)
(r − t)N−2 να(dt),

yielding

0 ≥ (1−N)

∫

[0,r)
(r − t)N−1 να(dt) + r

d

dr

∫

[0,r)
(r − t)N−1 να(dt)

≥ (N − 1)

∫

[0,r)
(r(r − t)N−2 − (r − t)N−1) να(dt)

= (N − 1)

∫

[0,r)
t(r − t)N−2 να(dt).

The inequality above implies that να((0, r)) = 0, for all r ∈ (0, ρ), hence να(0, ρ) = 0. We
deduce that

ĥα(r) = NωNAVRX

∫

[0,r)
(r − t)N−1 να(dt) = NωNAVRX r

N−1να({0}), ∀r ∈ (0, ρ).

If να([ρ,∞)) = 0, then να = δ0 (because να has mass 1) completing the proof. Assume
on the contrary that να([ρ,∞)) > 0, and let S := inf supp(ναx[ρ,∞)) ≥ ρ. In this case we

follow the computations (6.26) and (6.27), with S in place of T , deducing limr→S+ ĥα(r) = 0,
contradicting (6.24). �

Corollary 6.13. For q̂-a.e. α ∈ Q∞, for σα-a.e. (x, γ, µ, p) ∈ Zα, it holds that et(γ) =
g(α, ρt), ∀t ∈ [0, 1].

Proof. The fact that να = δ0, implies tα(γ0) = 0 for σα-a.e. (x, γ µ, p) ∈ Ẑα, hence, recall-

ing (6.22) and the definition of Ẑ, we have that et(γ) = g(α, tα(e0) + ρt) = g(α, ρt) . �

The next corollary concludes the discussion of the limiting procedures of the localization.

Corollary 6.14. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX1(0,ρ)(r)r
N−1.

Moreover, the following disintegration formulae hold

m = NωNAVRX

∫

Q∞

(g(α, · ))#(r
N−1 L1

x(0,ρ)) q̂(dα),(6.28)

P(E; · ) = P(E)

∫

Q∞

δg(α,ρ) q̂(dα).(6.29)



42 RIGIDITIES OF ISOPERIMETRIC INEQUALITY UNDER NONNEGATIVE RICCI CURVATURE

Proof. The only non-trivial part is Equation (6.29). Using (6.16) and Corollary 6.13, we can
deduce that ∀ψ ∈ L1(Ē;P(E; · ))

∫

Ē
ψ(x)P(E; dx) =

N

ρ

∫

Ẑ
ψ(e1(γ))ψ σ(dx dγ dµ dp)

=
N

ρ

∫

Q∞

∫

Ẑα

ψ(e1(γ))σα(dx dγ dµ dp) q̂(dα)

=
N

ρ

∫

Q∞

ψ(g(α, ρ))

∫

Ẑα

σα(dx dγ dµ dp) q̂(dα). �

7. E is a ball

The aim of this section is to prove that E coincides with a ball of radius ρ. Before starting
the proof, we give a few technical lemmas. The first Lemma states that a BV function with
null differential on an open connected set is constant. This fact is already known for Sobolev
functions and it follows from either the Sobolev-to-Lipschitz property or the local Poincaré
inequality.

Lemma 7.1. Let (X, d,m) be an essentially non-branching CD(K,N) space with X = suppm
and let Ω ⊂ X be an open connected set. If v ∈ w-BV((Ω, d,m)) and |Du| = 0, then u is
constant in Ω (i.e., there exists C ∈ R such that v(x) = C for m-a.e. x ∈ Ω).

Proof. The proof in given only for the case K = 0. We refer to Section 2.2 for the notation.
Fix x ∈ Ω and let r > 0 such that B3r(x) ⊂ Ω. Assume by contradiction that there are two
constants a < b such that the sets

A := {y ∈ Br(x) : v(y) ≤ a} and B := {y ∈ Br(x) : v(y) ≥ b}

have strictly positive measure. Consider the probability measures µ0 = mxA

m(A) and µ1 = mxB

m(B) .

Let π ∈ OptGeo(µ0, µ1) and µt = (et)#π. The CD(K,N) condition (as stated in Definition 2.2)
reads

ρt(γt) ≤
(
(1− t)ρ

−1/N
0 (γ0) + tρ

−1/N
1 (γ1)

)−N
≤ (1− t)ρ0(γ0) + tρ1(γ1)

= m(A)−1 +m(B)−1, for π-a.e. γ,

and this proves that there exists a constant C > 0 such that (et)#π ≤ Cm. What we have
proven and the fact that Lip(γ) = d(γ0, γ1) ≤ 2r, for π-a.e. γ, implies that π is an ∞-test
plan. For π-a.e. γ, we have that |D(v ◦ γ)|([0, 1]) ≥ b− a, because γ is a curve from A to B,
thus

b− a ≤

∫
γ#|D(v ◦ γ)|(X)π(dγ) ≤ C ‖Lip(γ)‖L∞(π) µ(X) ≤ 2rCµ(X),

where µ is any weak upper gradient for v. Since we can chose the null measure as weak upper
gradient we obtain a contradiction. Thus there exists a constant cx such that v = cx a.e. in
Br(x). Taking into account the connectedness of Ω, we deduce that v is globally constant. �

The following Lemma is topological. It can be seen as a weak formulation of the following
statement: let Ω be an open connected subset of a topological space X and let E ⊂ X be any
set; if Ω ∩ E 6= ∅ and Ω\E 6= ∅, then ∂E ∩Ω 6= ∅.

Lemma 7.2. Let (X, d,m) be an essentially non-branching CD(K,N) space with X = suppm.
Let E ⊂ X be a Borel set and let Ω ⊂ X be an open connected set. If m(E ∩ Ω) > 0 and
m(Ω\E) > 0, then P(E; Ω) > 0.
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Proof. Assume on the contrary that P(E; Ω) = 0. In this case, there exists a sequence un ∈
Liploc(Ω) such that un → 1E in L1

loc and
∫
Ω | lip un| dm → 0. This immediately implies that

un → v in the space BV∗((Ω, d,m)) for some v ∈ BV∗((Ω, d,m)) such that |Dv| = 0. By
uniqueness of the limit, 1E = v a.e. in Ω, whereas Lemma 7.1 implies that v is constant,
which is a contradiction. �

The next Lemma ensures that if two balls coincide, then they must share their center.

Lemma 7.3. Assume that (X, d,m) is an essentially non-branching, CD(K,N) space with
X = suppm and let x, y ∈ X and r > 0. If Br(x) = Br(y) and m(X\Br(x)) > 0, then x = y.

Proof. Assume by contradiction x 6= y. Since (X, d) is a geodesic space, then (Br(x))
t =

Br+t(x) = Br+t(y), hence if z ∈ X is such that d(z, x) = r+t, then z ∈ Br+t+ǫ(x) = Br+t+ǫ(y),
for all ǫ > 0, thus d(z, y) ≤ r + t = d(z, x). We deduce d(z, y) = d(z, x), for all z ∈ X\Br(x).
Consider now two disjoint sets A,B ⊂ X\Br(x), such that m(A) = m(B). Consider the maps

T (z) =

{
x, if z ∈ A,

y, if z ∈ B,
S(z) =

{
y, if z ∈ A,

x, if z ∈ B.

Since d(S(z), x) = d(S(z), y) = d(T (z), x) = d(T, x),∀z ∈ A∪B, these maps are two different
solutions of the Monge problem infR

∫
A∪B d

2(z,R(z))m(dz), among all possible maps R : X →
X such that R#(mxA∪B) = m(A)(δx + δy). Since said problem admits a unique solution [23,
Theorem 5.1], we have found a contradiction. �

Proposition 7.4. For q̂-a.e. α ∈ Q∞, it holds that

ϕ∞(g∞(α, 0)) ≤ ess sup
E

ϕ∞, and ϕ∞(g∞(α, ρ)) ≥ ess inf
E

ϕ∞.

Proof. We prove only the former inequality, for the latter has the same proof. In order to
simplify the notation defineM := ess supE ϕ∞. Let H := {α ∈ Q∞ : ϕ∞(g∞(α, 0)) ≥M+2ǫ}.
Define the following measure on E

n(T ) = NωNAVRX

∫

H

∫ ǫ

0
1T (g∞(α, r))rN−1 dr q̂(dα), ∀T ⊂ E Borel.

Clearly, n ≪ m (compare with (6.28)), so ϕ∞(x) ≤M , for n-a.e. x ∈ E. We can compute the
integral

0 ≥

∫

E
(ϕ∞(x)−M) n(dx) = NωNAVRX

∫

H

∫ ǫ

0
(ϕ∞(g∞(α, t)) −M) tN−1 dt q̂(dα)

= NωNAVRX

∫

H

∫ ǫ

0
(ϕ∞(g∞(α, 0)) − t−M) tN−1 dt q̂(dα)

≥ NωNAVRX

∫

H

∫ ǫ

0
ǫtN−1 dt q̂(dα) = ǫN q̂(H).

We deduce that q̂(H) = 0 and, by arbitrariness of ǫ, we can conclude. �

Theorem 7.5. There exists a unique point o ∈ X, such that, up to a negligible set, E = Bρ(o),

where ρ = ( m(E)
ωNAVRX

)
1
N . Moreover, it holds that

(7.1) ϕ∞(o) = ess sup
E

ϕ∞ = max
Bρ(o)

ϕ∞.

Proof. Define Ẽ := supp1E . Recall that by definition of support, Ẽ =
⋃
C C, where the inter-

section is taken among all closed sets C such that m(E\C) = 0; and in particular m(E\Ẽ) = 0.
Let o ∈ argmaxẼ ϕ∞. The uniqueness will follow from Lemma 7.3.
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First we prove the first equality of (7.1). Let N := {x ∈ E : ϕ∞(x) > ϕ∞(o) = maxẼ ϕ∞}.

By definition of maximum, N ∩ Ẽ = ∅, so N ⊂ E\Ẽ, hence m(N) = 0, thus

M = ess sup
E

ϕ∞ ≤ ϕ∞(o).

On the other side, consider the open set P := {x : ϕ(x) > M}. By definition of essential

supremum, we have that m(E ∩P ) = 0, hence Ẽ ⊂ X\P , thus ϕ∞(o) ≤M . the other eqiality
in (7.1) will follow from the fact E = Bρ(o) (up to a negligible set).

It is sufficient to prove only that Bρ(o) ⊂ E, for the other inclusion is a consequence.
Indeed, the Bishop–Gromov inequality, together with the definition of a.v.r. yields

m(E) ≥ m(Bρ(o)) ≥ ωNAVRXρ
N = m(E),

and the equality of measures improves to an equality of sets.
Fix now ǫ > 0 and define A = Bρ−ǫ(o). If m(E\A) = 0, then we deduce that Bρ−ǫ(o) ⊂ E

and, by arbitrariness of ǫ, we can conclude.
Suppose the contrary, i.e., that m(E\A) > 0. Clearly A is connected and m(A ∩ E) > 0

(otherwise o /∈ Ẽ), so we exploit Lemma 7.2 obtaining P(E;A) > 0. Define H = {α ∈ Q∞ :
g∞(α, ρ) ∈ A}. A simple computation shows that the set H is non-negligible (recall (6.29))

0 <
P(E;A)

P(E)
=

∫

Q∞

1A(g∞(α, ρ)) q̂(dα) =

∫

H
1A(g∞(α, ρ)) q̂(dα) = q̂(H).

The lipschitz-continuity of ϕ∞ yields

ϕ∞(x) ≥ ϕ∞(o)− ρ+ ǫ ≥M − ρ+ ǫ, ∀x ∈ A = Bρ−ǫ(o)

hence

ϕ∞(g∞(α, ρ)) ≥M − ρ+ ǫ, ∀α ∈ H.

We continue the chain of inequalities, obtaining

ϕ∞(g∞(α, 0)) ≥ ϕ∞(g∞(α, ρ)) + ρ ≥M + ǫ, ∀α ∈ H.

The line above, together with the fact that q̂(H) > 0, contradicts Proposition 7.4. �

7.1. ϕ∞(x) coincides with −d(x, o). The present section is devoted in proving that, ϕ∞(x) =
−d(x, o) + ϕ∞(o).

Proposition 7.6. For q̂-a.e. α ∈ Q∞, it holds that

d(o, g(α, t)) = t, ∀t ∈ [0, ρ].(7.2)

Proof. The 1-lipschitzianity of ϕ∞, and the fact that E = Bρ(o) (up to a negligible set)
implies that, ϕ∞(x) ≥ ϕ∞(o) − ρ, for m-a.e. x ∈ E. Thus we deduce, using Proposition 7.4
and Equation (7.1), that

ϕ∞(g∞(α, 0)) ≤ ϕ∞(o), and ϕ∞(g∞(α, ρ)) ≥ ϕ∞(o)− ρ.

Since d
dtϕ∞(g∞(α, t)) = −1, t ∈ (o, ρ), the inequalities above are saturated and

ϕ∞(g∞(α, t)) = ϕ∞(o)− t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞.

The 1-lipschitzianity of ϕ∞, together with the Equation above, yields

(7.3) d(o, g∞(α, t)) ≥ ϕ∞(o)− ϕ∞(g∞(α, t)) = t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞.

Fix ǫ > 0 and let C = {α ∈ Q∞ : d(o, g∞(α, 0)) > 2ǫ}. The function

f(t) := inf{d(o, g∞(α, t)) : α ∈ C}
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is 1-Lipschitz and satisfies f(0) ≥ 2ǫ, hence f(t) ≥ 2ǫ− t, yielding (cfr. (7.3))

f(t) ≥ max{(2ǫ− t), t} ≥ ǫ.

The inequality above implies that g∞(α, t) /∈ Bǫ(o) for all t ∈ [0, 1], for all α ∈ C. We compute
the measure of Bǫ(o) using the disintegration formula (6.28)

m(Bǫ(o))

NωNAVRX
=

∫

Q∞

∫ ρ

0
1Bǫ(o)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫

Q∞\C

∫ ρ

0
1Bǫ(o)(g∞(α, t)) tN−1 dt q̂(dα).

If 1Bǫ(o)(g∞(α, t)) = 1, then inequality (7.3) yields t ≤ ǫ, so we continue the computation

m(Bǫ(o))

NωNAVRX
=

∫

Q∞\C

∫ ρ

0
1Bǫ(o)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫

Q∞\C

∫ ǫ

0
1Bǫ(o)(g∞(α, t)) tN−1 dt q̂(dα)

≤

∫

Q∞\C

∫ ǫ

0
tN−1 dt q̂(dα) = (q̂(Q∞)− q̂(C))

ǫN

N
.

On the other hand, the Bishop–Gromov inequality states that

m(Bǫ(o)) ≥
ǫN

ρN
m(Bρ(o)) =

ǫN

ρN
m(E) = ǫNωNAVRX ,

thus, comparing with the previous inequality, we obtain q̂(C) = 0. By arbitrariness of ǫ, we
deduce that g∞(α, 0) = o for q̂-a.e. α ∈ Q∞.

Finally, using again (7.3), we can conclude

t ≤ d(o, g∞(α, t)) ≤ d(o, g∞(α, 0)) + d(g∞(α, 0), g∞(α, t)) = t,

∀t ∈ [0, ρ], for q̂-a.e α ∈ Q∞. �

Corollary 7.7. It holds that for all x ∈ Bρ(o), ϕ∞(x) = ϕ∞(o) = −d(x, o).

Proof. If x ∈ E ∩ T∞, then x = g(α, t) for some t, with α = Q∞(x). By the previous
proposition we may assume that g∞(α, 0) = o, hence we have that

ϕ∞(x)− ϕ∞(o) = ϕ∞(g∞(α, t)) − ϕ∞(g∞(α, 0)) = −d(g∞(α, t), g∞(α, 0)) = −d(x, o).

Since T∞ ∩E has full measure in Bρ(o) and suppm = X, we conclude. �

7.2. Localization of the whole space. At this point, we are in position to extend the
localization given in Section 6.4 to the whole space X. Since we do not know the behaviour of
ϕ∞ outside Bρ(o), we take as reference function −d(o, · ), which coincides with ϕ∞ on Bρ(o).

In this section we will use some of the concept introduced in Subsection 2.4. In particular
we will refer to transport relation Re; the transport set T turns out to have full m-measure.
We will denote by Q the quotient set and Q : T → Q be the quotient map; let Xα := Q−1(α)
be the disintegration rays and let g : Dom(g) ⊂ R×Q → X be the standard parametrization.
Define q := 1

m(E)Q#(mxE) (note that for the moment we still do not know if Q#(mxE) ≪ q).

Proposition 7.8. For q-a.e. α ∈ Q, it holds that d(o, g(α, t)) = t, for all t ∈ [0, |Xα|].

Proof. Let q̃ ∈ P(Q) be a measure such that q̃ ≪ Q#(m) ≪ q̃. The maximality of the

rays (see [22, Theorem 7.10]) guarantees that R̊e(α) ⊂ Xα, for q̃-a.e. α ∈ Q, where R̊e(α)
denotes the relative interior of Re(α). By definition of distance o ∈ Rb(α), for all α ∈ Q, thus
g(α, 0) = o for q̃-a.e. α ∈ Q. Since q ≪ Q#m ≪ q̃, the thesis follows. �
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Proposition 7.9. It holds true that Q#m ≪ q.

Proof. Let q̃ ∈ P(Q) be a measure such that Q#(m) ≪ q̃. Using the Localization Theorem,
we get that m =

∫
Q m̃α q̃(dα), where the measures m̃α are supported on Xα and satisfy the

CD(0, N) condition. Let A ⊂ Q be a set such that q(A) = 0, that is 0 = m(Bρ(0)∩Q−1(A)) =∫
Am(Bρ(o)) q̃(dα), thus m̃α(Bρ) = 0, for q̃-a.e. α ∈ A Since d(o, g(α, t)) = t, for q̃-a.e. α ∈ A
(compare with the previous proof), the CD(0, N) condition applied to every m̃α yields m̃α = 0
for q̃-a.e. α ∈ Q. It follows that m(Q−1(A)) = 0. �

The previous proposition allows us to use the Theorem 2.5, hence there exists a unique
disintegration for the measure m

(7.4) m =

∫

Q
mα q(dα),

such that: 1) the measures mα are supported on Xα; 2) the space (Xα, d,mα) satisfy the
CD(0, N) condition. We denote by hα : (0, |Xα|) → R the density function such that mα =
(g(α, ·))#(hαL

x

(0,|Xα|)
).

The next two propositions bound together the localization obtained in section 6.4 (in par-
ticular Corollary (6.14)) with the localization using −d(o, · ) as 1-Lipschitz reference function.

Proposition 7.10. There exists a unique measurable map L : Dom(L) ⊂ Q∞ → Q such that
the domain of L has full q̂ in Q∞ and it holds

L(Q∞(x)) = Q(x), ∀x ∈ Bρ(o) ∩ T∞ ∩ T , and q = L#q̂.

Proof. Since ϕ∞ = ϕ∞(o)− d(o, · ) on Bρ(o), the partitions (Xα,∞)α∈Q∞
and (Xα)α∈Q agree

on the set Bρ(o) ∩ T∞ ∩ T , that is, given x, y ∈ Bρ(o) ∩ T∞ ∩ T , we have that (x, y) ∈ R∞ if
and only if (x, y) ∈ R. Consider the set

H := {(x, α, β) ∈ (Bρ(o) ∩ T∞ ∩ T )×Q∞ ×Q : Q∞(x) = α and Q(x) = β},

and let G := πQ∞×Q(H) be the projection of H on the second and third variable. For what
we have said G is the graph of a map L : Dom(L) ⊂ Q∞ → Q. The other properties easily
follow. �

Proposition 7.11. For q-a.e. α ∈ Q, it holds that |Xα| ≥ ρ and

hα(r) = NωNAVRXr
N−1, ∀r ∈ [0, ρ].

Proof. Comparing Equation (7.2) with Proposition 7.8 we deduce that for q̂-a.e. α ∈ Q∞, it
holds that

g∞(α, t) = g∞(L(α), t), ∀t ∈ (0,min{ρ, |Xα|}).

Comparing the disintegration formulas (6.23) and (7.4), we deduce

mxE=

∫

Q
m̂α,∞ q̂(dα) =

∫

Q
mαxE q(dα) =

∫

Q∞

(mL(α))xE q̂(dα),

hence m̂α,∞ = (mL(α))xE , thus, recalling (6.28), we deduce that

hα(r) = NωNAVRXr
N−1, ∀r ∈ (0,min{ρ, |Xα|}).

The fact that |Xα| ≥ ρ follows from the expression above. �

Theorem 7.12. For q-a.e. α ∈ Q, it holds that |Xα| = ∞ and

hα(r) = NωNAVRXr
N−1, ∀r > 0.
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Proof. Fix ǫ > 0 and let

C :=

{
α ∈ Q : lim

R→∞

∫ R

0
hα/R

N < ωNAVRX(1− ǫ)

}
,

with the convention that the limit above is 0 if |Xα| <∞ (notice that the limit always exists
and it is not larger than ωNAVRX by the Bishop–Gromov inequality applied to each density
hα). We compute the a.v.r. using the disintegration

AVRXωN = lim
R→∞

m(BR)

RN
= lim

R→∞

∫

Q

∫ R

0

hα(t)

RN
dt q(dα)

=

∫

Q
lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα)

=

∫

C
lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα) +

∫

Q\C
lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα)

≤

∫

C
ωNAVRX(1− ǫ) q(dα) +

∫

Q\C
ωNAVRX q(dα)

= ωNAVRX(1− ǫq(C)),

thus q(C) = 0. By arbitrariness of ǫ we deduce that limR→∞

∫ R
0 hα/R

N = ωNAVRX , hence

hα(t) = NωNAVRXt
N−1, for q-a.e. α ∈ Q̃. �

The proof of Theorem 1.4 is therefore concluded. As described in the introduction, Theorem
1.5 and Theorem 1.7 are immediate consequences.
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