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Approximate Carathéodory bounds via

Discrepancy Theory

Victor Reis * Thomas Rothvoss †

Abstract

The approximate Carathéodory problem in general form is as follows: Given two

symmetric convex bodies P,Q ⊆R
m , a parameter k ∈N and z ∈ conv(X ) with X ⊆ P ,

find v1, . . . , vk ∈ X so that ‖z− 1
k

∑k
i=1 vi‖Q is minimized. Maurey showed that if both

P and Q coincide with the ‖ ·‖p -ball, then an error of O(
√

p/k) is possible.

We prove a reduction to the vector balancing constant from discrepancy theory

which for most cases can provide tight bounds for general P and Q . For the case

where P and Q are both ‖ · ‖p -balls we prove an upper bound of

√

min{p,log( 2m
k

)}

k .

Interestingly, this bound cannot be obtained taking independent random samples;

instead we use the Lovett-Meka random walk. We also prove an extension to the

more general case where P and Q are ‖ ·‖p and ‖ ·‖q -balls with 2 ≤ p ≤ q ≤∞.

1 Introduction

The (exact) Carathéodory Theorem is part of most introductory courses on the theory

of linear programming: given any vector z ∈ conv(X ) where X ⊆R
m , there is a subset of

points X ′ ⊆ X with |X ′| ≤ m +1 so that already z ∈ conv(X ′). More recently, the approxi-

mate version gained interest, where only k vectors from X may be selected with uniform

weights and the goal is to minimize the error in a given norm.

Barman [Bar15] used an approximate Carathéodory bound for algorithms to com-

pute approximate Nash equilibria for bimatrix games as well as for finding k-densest

subgraphs. The core argument of [Bar15] is as follows: if one has two players with

n strategies each and some payoff matrix A ∈ [−1,1]n×n , then for any mixed strategy

y of the column player (i.e. y ∈ R
n
≥0 and ‖y‖1 = 1) one can apply the approximate

Carathéodory Theorem for norm ‖ · ‖∞ (or rather equivalently for ‖ · ‖log(n)) and find

k := Θ(
log(n)

ε2 ) columns a1, . . . , ak of A so that ‖Ay − 1
k

∑k
i=1

ai‖∞ ≤ ε. In other words,

any mixed strategy can be ε-approximated by the unweighted average of only Θ(
log(n)

ε2 )
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many pure strategies which then allows for an efficient enumeration. The approxi-

mate Carathéodory Theorem has also been useful in algebraic settings. For example

Deligkas et al [DFMS22] use it to find approximate solutions to systems of polynomial

(in)equalities and Bhargava, Saraf and Volkovich [BSV20] use approximate Carathéodory

to prove that sparse polynomials have only sparse factors which then allows efficient de-

terministic factorization of sparse polynomials; both applications use the variant with

respect to the ‖ ·‖∞-norm.

To make the statements formal, for symmetric convex bodies P,Q ⊆ R
m and k ∈ N,

we denote

ack (P,Q) := sup
X⊆P,

z∈conv(X )

inf
v1,...,vk∈X

∥
∥
∥z −

1

k

k∑

i=1

vi

∥
∥
∥

Q

as the best error bound with respect to the ‖·‖Q -norm for approximating a point z in the

convex hull of some points in P . We would like to point out that the vectors v1, . . . , vk may

be taken with repetition. Here, ‖ · ‖Q is the norm with ‖x‖Q = min{s ≥ 0 | x ∈ sQ}. A folk-

lore result is that for the Euclidean norm one has ack (B m
2 ,B m

2 ) ≤ 1p
k

for any k ≥ 1, which

gives a dimension free bound. More generally, for p ≥ 1, it is true that ack(B m
p ,B m

p ) ≤

O(
√

p

k
) where B m

p := {x ∈R
m | ‖x‖p ≤ 1} is the ‖ ·‖p -unit ball. This bound is derived from

Maurey’s Lemma from functional analysis (which was reported by Pisier [Pis81]; for an

English version, see the appendix of Bourgain and Nelson [BN13]). Algorithmically, the

result is simple: write z =
∑N

i=1λi ui where λ1, . . . ,λN ≥ 0 and
∑N

i=1λi = 1. Then sample

v1, . . . , vk ∈ {u1, . . . ,uN } independently according to the probabilities λi (possibly with

repetition).

Another approach in the literature by Mirrokni et al [MLVW17] is based on the desire

to avoid the computation of z =
∑N

i=1λi ui . Instead they use the Mirror Descent algo-

rithm from convex optimization to compute the sequence v1, . . . , vk directly. In fact they

reprove the bound of ack (B m
p ,B m

p ) ≤O(
√

p

k
) using their framework. More recently, Com-

bettes and Pokutta [CP21] show that the Frank-Wolfe algorithm can also be used to re-

cover the same bounds. From the current state of the literature, there are two directions

that appear natural to follow:

• Approximate Carathéodory for general pairs of norms. The existing bounds are for

the case where P and Q are the same ‖ · ‖p -ball. Is there a convenient framework

that can handle general symmetric convex bodies or at least P = B m
p and Q = B m

q ?

• Tight bounds for approximate Carathéodory. Generally, it is stated that for example

the bound ack (B m
p ,B m

p ) ≤O(
√

p

k
) is tight (see e.g. [MLVW17]). But that is only true

if one aims for a dimension independent bound. So for which regimes of m vs. k

and p is it possible to improve the bound?

A classical area within combinatorics that appears related to these questions is dis-

crepancy theory. Let S1, . . . ,Sm ⊆ {1, . . . ,n} be a set system over n elements. Then the goal
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is to find a bi-coloring x ∈ {−1,1}n so that the worst imbalance maxi=1,...,m |
∑

j∈Si
x j | is

minimized. A seminal result of Spencer [Spe85] says that for m ≥ n, the discrepancy

is bounded by O(
√

n log( 2m
n

)). If no element is in more than t sets, then one can also

prove a bound of 2t , see Beck and Fiala [BF81]. A convex geometry based method by Ba-

naszczyk [Ban98] shows that for any A ∈ R
m×n with column length ‖A j ‖2 ≤ 1 for all j =

1, . . . ,n and any symmetric convex body K ⊆R
m with Gaussian measure at least 1/2 (for

example K =Θ(
√

log(m)) ·B m
∞ or K =Θ(

p
m) ·B m

2 work), there is a coloring x ∈ {−1,1}n

with Ax ∈ 5K . Interestingly, neither of these cited results of [Spe85, BF81, Ban98] can be

obtained by merely taking a uniform random coloring x . But for example, the result by

Spencer allows for elegant algorithmic proofs. While the first such algorithm was due to

Bansal [Ban10], we focus on the later work of Lovett and Meka [LM12] whose main claim

can be paraphrased as follows:

Theorem 1 ([LM12]). Let A ∈ R
m×n and x0 ∈ [−1,1]n and let C1,C2 > 0 be small enough

constants. Then there is an efficiently computable distributionD(A, x0) with the follow-

ing properties:

(A) One has |{ j ∈ [n] : x j ∈ {±1}}| ≥ n
2

for all x ∼D(A, x0).

(B) One has ‖A(x − x0)‖∞ ≤∆ for all x ∼D(A, x0) where ∆≥ 0 is any parameter satis-

fying
∑m

i=1
exp(−C1

∆
2

‖Ai‖2
2

) ≤C2n.

(C) One has Ex∼D(A,x0 )[x] = x0.

(D) The random vector x−x0 is O(1)-subgaussian. In particular ‖〈Ai , x −x0〉‖ψ2 . ‖Ai‖2

for all i = 1, . . . ,m.

The running time to compute a sample is1 T (m,n)≤O(n1+ω+n2m).

Here we use the notation A .B if there is a universal constant C > 0 so that A ≤C ·B .

The statement differs in several aspects to the original statement of [LM12]. We discuss

and justify the changes in Appendix A. Intuitively, D(A, x0) is simply the outcome of a

Brownian motion starting at x0 that freezes coordinates as soon as they hit +1 or −1 and

it freezes constraints if | 〈Ai , x −x0〉 | = ∆. For example, if A ∈ {0,1}m×n with m ≥ n is

the incidence matrix in Spencer’s setting, then one may choose ∆ :=Θ(
√

n log( 2m
n

)) and

obtain a partial coloring of discrepancy ∆ that colors at least half the coordinates2.

1Throughout this work, we will use T (m,n) as the best running time to generate a sample from the de-

scribed distribution. Whenever we state a running time using T (·, ·) we implicitly assume that the function

T is non-decreasing in m and n and that T (m,n) ≥ mn which corresponds to the input length.
2One can then obtain a full coloring by iterating the argument O(logn) times. In the i th such iter-

ation (with i ≥ 0) there are at most n/2i elements uncolored, so the suffered discrepancy decreases to

O(
√

(n/2i ) log 2m
n/2i ). Summing over these terms gives a convergent sum of value O(∆).
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1.1 Our contribution

The vector balancing constant for two symmetric convex bodies P,Q ⊆R
m is

vb(P,Q) := sup
{

min
x∈{−1,1}n

∥
∥
∥

n∑

i=1

xi vi

∥
∥
∥

Q
| n ∈N, v1, . . . , vn ∈ P

}

The connection between the approximate Carathéodory problem and vector balancing

was already discovered by Dadush et al [DNTT18] who proved that for any symmetric

convex bodies P,Q ⊆ R
m one has ack (P,Q) ≤ vb(P,Q)

k
. But for example for P = Q = B m

2

one has vb(B m
2 ,B m

2 ) =Θ(
p

m) and so the obtained bound is O(
p

m
k

), which is suboptimal

if k ≪ m. Instead, we suggest a reduction to a slight variant of the vector balancing

constant that allows for tight bounds. Let

vbn(P,Q) := sup
{

min
x∈{−1,1}n

∥
∥
∥

n∑

i=1

xi vi

∥
∥
∥

Q
| v1, . . . , vn ∈P

}

be the vector balancing constant restricted to exactly n vectors3. We prove the following:

Theorem 2. For any symmetric convex bodies P,Q ⊆R
m and any k ∈N one has

ack (P,Q) ≤ 4
∑

ℓ≥1

1

k2ℓ
·vbk2ℓ(P,Q)

The vectors v1, . . . , vk can be found in time O(logm) times the time to find a coloring

behind vbt (P,Q) where t ≤ m +1, assuming we are given z as convex combination of at

most m +1 vectors from X .

For most bodies the quantity vbk(P,Q) grows sublinear in k and the sum is domi-

nated by the first term, in which case one has ack (P,Q) . 1
k
· vbk (P,Q). For example if

P = Q = B m
2 one then has vbk(B m

2 ,B m
2 ) = Θ(

p
k) and so one recovers the O( 1p

k
) bound

mentioned earlier4. Also note that by [LSV86], for any symmetric convex bodies P,Q ⊆
R

m and any t ∈N one has vbt (P,Q) ≤ 2vbm(P,Q), meaning that the worst case is basically

attained for m many vectors. Then the infinite sum in Theorem 2 is dominated by the

first log(2m/k) terms if k ≤ m and the first term if k ≥ m.

For balancing vectors in B m
p into B m

q we prove the following:

3We should note that this is the same as asking for at most n vectors as 0 ∈P .
4Though not all bodies allow for such a sublinear dependence. For example fix 1 ≤ k ≤ m/2. Then

one has vbk (Bm
1 ,Bm

1 ) =Θ(k) and so Theorem 2 provides a suboptimal bound of ack (Bm
1 ,Bm

1 ) ≤ O(log m
k

).

On the other hand, indeed it is true that ack (Bm
1 ,Bm

1 ) ≥Ω(1) meaning that the approximate Carathéodory

bound does not even improve with k (at least as long as k ≤ m/2). To see this, consider X := {e1, . . . ,em } and

a target of z := ( 1
m , . . . , 1

m ). Then for any v1, . . . , vk ∈ X one has ‖z − 1
k

∑k
i=1 vi‖1 ≥Ω(1) since any coordinate

whose unit vector is not included will contribute 1
m to the norm.
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Theorem 3. For 2 ≤ p ≤ q ≤∞ and n ≤ m one has

vbn(B m
p ,B m

q ) .

√

min{p, log( 2m
n

)}

1
2
− 1

p
+ 1

q

·n1/2−1/p+1/q

The time to find the corresponding coloring is O(logn) ·T (m,n).

We should point out that the upper bound on vbn(B m
p ,B m

q ) itself is already proven

in [RR20]. However, that argument goes via the Gaussian measure of the suitable partial

colorings and the only known algorithms are via convex optimization resulting in large

polynomial running times. In contrast, here we give a streamlined argument that shows

that the more efficient Lovett-Meka algorithm can be used to obtain the same bound

rather than relying on convex optimization.

Combining the results above then gives:

Theorem 4. Let 2 ≤ p ≤ q ≤∞ and k ∈N. Then

ack(B m
p ,B m

q ).
1

1
2
− 1

p
+ 1

q

·

√

min{p, log( 2m
k

)}

k1/2+1/p−1/q

The vectors v1, . . . , vk can be found in time O(log2 m) ·T (m,m + 1) ≤ O(m1+ω log2(m))

assuming we are given z as a convex combination of at most m +1 vectors in X .

To the best of our knowledge this is the first approximate Carathéodory bound for

pairs of different ‖ · ‖p -norms. In particular, when p = q this improves upon the O(
√

p

k
)

bound in [MLVW17] whenever p ≪ log( 2m
k

):

Corollary 5. Let 2≤ p ≤∞ and k ∈N. Then

ack (B m
p ,B m

p ).

√

min{p, log( 2m
k

)}

k

The vectors v1, . . . , vk can be found in time O(log2 m) ·T (m,m + 1) ≤ O(m1+ω log2(m))

assuming we are given z as a convex combination of at most m +1 vectors in X .

Finally, we show that the bound in Theorem 3 is tight up to a factor of 1
2
− 1

p
+ 1

q
:

Theorem 6. Let 2 ≤ p ≤ q ≤∞ and n ≤ m ≤ 2n . Then

vbn(B m
p ,B m

q )&

√

min
{

p, log
(2m

n

)}

·n1/2−1/p+1/q .

2 Preliminaries

In this section we review a few facts that we later rely on. Let Sm−1 := {x ∈R
m | ‖x‖2 = 1}

be the sphere.

5



Convex functions. Recall the following well known fact:

Lemma 7 (Jensen Inequality for convave functions). Let X be any R-valued random vari-

able and let F : R→R be a concave function, then F (E[X ]) ≥ E[F (X )].

Estimates on ‖·‖p norms. It will be useful to understand how the norm ‖z‖p of a vector

can change depending on p ∈ [1,∞].

Lemma 8. For any z ∈R
m and 1 ≤ p ≤ q ≤∞ one has ‖z‖q ≤ ‖z‖p ≤ m1/p−1/q‖z‖q .

Lemma 9. For any z ∈R
m and 1 ≤ p ≤ q ≤∞, we have ‖z‖q

q ≤ ‖z‖p
p · ‖z‖q−p

∞ .

The subgaussian norm. We introduce a concept from probability theory that is ex-

tremely useful and convenient when dealing with random variables that have Gaussian-

type tails. For a random variable X ∈R we define the subgaussian norm as

‖X ‖ψ2 := inf
{

s > 0 : E
[

exp
( X 2

s2

)]

≤ 2
}

One may think of ‖X ‖ψ2 as the minimum number so that the tail of X is dominated

by the Gaussian N (0,‖X ‖2
ψ2

). For example if X ∼ N (0, t 2) then ‖X ‖ψ2 = Θ(t ) and also if

X ∼ {−t , t } uniformly, then ‖X ‖ψ2 = Θ(t ). It may not be obvious but indeed ‖ · ‖ψ2 is a

norm on the space of jointly distributed random variables, i.e. ‖t X ‖ψ2 = |t | · ‖X ‖ψ2 and

‖X1 + X2‖ψ2 ≤ ‖X1‖ψ2 +‖X2‖ψ2 for jointly distributed random variables X1, X2 (even if

they are dependent). We will use in particular the following properties:

Lemma 10. The subgaussian norm satisfies the following:

(A) For any real random variable X and any p ≥ 1 one has E[|X |p ]1/p .
p

p · ‖X ‖ψ2 .

(B) If X1, . . . , XN are independent real mean-zero random variables5, then

‖X1 +·· ·+XN‖ψ2 .
( N∑

i=1

‖Xi‖2
ψ2

)1/2

(C) For a ∈R
m and x ∼ Sm−1 uniformly one has ‖〈a, x〉‖ψ2 .

1p
m
‖a‖2.

(D) For any real random variable X with E[X ] = 0 and any λ≥ 0 one has

Pr[|X | ≥λ‖X ‖ψ2 ] ≤ 2e−Cλ2

,

where C > 0 is a universal constant.

5The argument also works in the Martingale setting. Suppose for any condititioning on X1, . . . , Xi−1 one

has ‖Xi ‖ψ2 ≤ Li . Then ‖X1 +·· ·+XN ‖ψ2 . (
∑N

i=1 L2
i

)1/2.

6



We recommend the excellent textbook of Vershynin [Ver18] for details. For the lower

bound we will use the following reverse Chernoff bound from [KY15]:

Lemma 11. Given independent random variables x1, . . . , xn ∼ {−1,1} and λ ∈ [3,
p

n/2],

Pr[x1 +·· ·+xn ≥λ
p

n] ≥ exp(−9λ2/2).

3 Reduction from Approximate Carathéodory to Vector Bal-

ancing

In this section, we prove the reduction of the approximate Carathéodory problem to

vector balancing as stated in Theorem 2. The idea is to follow the classical approach of

[LSV86]: begin with an arbitrary convex combination and round the coefficients bit-by-

bit. The same basic approach was also followed by Dadush et al [DNTT18]. We prove an

auxiliary lemma that bounds the error when “doubling the fractionality”.

Lemma 12. Let P,Q ⊆ R
m be symmetric convex bodies and let δ > 0. Let z =

∑n
i=1λi vi

where v1, . . . , vn ∈P andλ ∈ δZn
≥0. Then there is a vector z ′ =

∑n
i=1λ

′
i
vi whereλ′ ∈ 2δZn

≥0

so that ‖z − z ′‖Q ≤ δ ·vbn(P,Q) and
∑n

i=1
λ′

i
≤

∑n
i=1

λi .

Proof. Write λi = 2δai +δbi with bi ∈ {0,1} and ai ∈ Z≥0. Let I := {i ∈ [n] | bi = 1}. Now,

let x ∈ {−1,1}I be the coloring so that ‖
∑

i∈I xi vi‖Q ≤ vb|I |(P,Q) ≤ vbn(P,Q). We may

assume that
∑

i∈I xi ≤ 0 — otherwise replace x with −x . We may extend the vector to

x ∈ {−1,0,1}m by setting xi := 0 for i ∉ I . We update λ′
i

:= 2δai +δ(1+ xi )bi ∈ 2δZ≥0 for

i ∈ [n]. Next, we define z ′ :=
∑n

i=1λ
′
i
vi . Then

‖z − z ′‖Q = δ
∥
∥
∥

∑

i∈I

xi vi

∥
∥
∥

Q
≤ δ ·vbn(P,Q)

Note that
∑

i∈I xi ≤ 0 implies that
∑n

i=1
λ′

i
≤

∑n
i=1

λi . This gives the claim.

Next, we iteratively apply Lemma 12 to an initial convex combination until the con-

vex coefficients are multiples of 1
k

. We almost obtain the desired claim, just that the

number of vectors might be less than k.

Lemma 13. Let P,Q ⊆ R
m be symmetric convex bodies. Then for any z ∈ conv(X ) with

X ⊆ P and k ∈N there are s ∈ {0, . . . ,k} and v1, . . . , vs ∈ X so that

∥
∥
∥z −

1

k

s∑

i=1

vi

∥
∥
∥

Q
≤

∑

ℓ≥1

2

k2ℓ
·vbk2ℓ(P,Q)

The vectors can be found in time O(logm) times the time to find the colorings in vbt (P,Q)

where t ≤ m +1.

7



Proof. Fix a point z ∈ conv(X ) where X ⊆ P . Then we can write z =
∑n

i=1λi vi where n ≤
m +1, v1, . . . , vn ∈ X , λi ≥ 0 for all i = 1, . . . ,m and

∑m
i=1λi = 1. Without loss of generality

we may assume that λ ∈ 2−L

k
Z

n
≥0 for some L ∈N. We abbreviate z (L) := z . Now suppose

for ℓ ∈ {0, . . . ,L} the current iterate is z (ℓ) so that z (ℓ) =
∑n

i=1λ
(ℓ)
i

vi andλ(ℓ) ∈ 2−ℓ

k
Z

n
≥0.

Then we apply Lemma 12 to obtain a vector z (ℓ−1) =
∑n

i=1λ
(ℓ−1)
i

vi withλ(ℓ−1) ∈ 2−(ℓ−1)

k
Z

n
≥0

and
∑n

i=1λ
(ℓ−1)
i

≤ 1. Using that |supp(λ(ℓ))| ≤ k2ℓ, the approximation error satisfies

∥
∥z (ℓ) − z (ℓ−1)

∥
∥

Q ≤
1

2ℓk
·vb|supp(λ(ℓ))|(P,Q) ≤

1

2ℓk
·vbk2ℓ(P,Q)

Note that the final iterate is of the form z (0) =
∑n

i=1
λ(0)

i
vi with λ(0)

i
∈ Z≥0

k
and

∑n
i=1

λ(0)
i

≤
1. Then for s := k

∑n
i=1λ

(0)
i

∈ {0, . . . ,k}, let u1, . . . ,us be a list of vectors that contains vi

exactly kλ(0)
i

∈Z≥0 times. Using the triangle inequality we obtain

∥
∥
∥z −

1

k

s∑

i=1

ui

∥
∥
∥

Q
≤

L∑

ℓ=1

‖z (ℓ) − z (ℓ−1)‖Q ≤
∑

ℓ≥1

1

k2ℓ
·vbk2ℓ(P,Q)

Now let us discuss the running time. First, we can choose L ≤ O(logm) while possibly

making a rounding error of max{‖y‖Q : y ∈ P } ≤ vb1(P,Q), which we absorb by paying an

extra factor of 2. Then the running time is dominated by the time to find the colorings.

Note that we call vbt (P,Q) only L times for parameters t with t ≤ m +1.

Now we will use the same trick as Dadush et al [DNTT18] in order to obtain exactly k

vectors, at the expense of a factor 2 in the approximation error:

Proof of Theorem 2. Let z ∈ conv(X ) where X ⊆ P . Fix a vector u0 ∈ X and write X ′ :=
{u−u0 | u ∈ X }. Note that in particular 0 ∈ X ′ and z −u0 ∈ conv(X ′). We apply Lemma 13

and obtain vectors v1, . . . , vs ∈ X ′ with s ≤ k so that

∥
∥
∥(z −u0)−

1

k

s∑

i=1

vi

∥
∥
∥

Q
≤

∑

ℓ≥1

2

k2ℓ
·vbk2ℓ(2P,Q)

using that X ′ ⊆ 2P . Since 0 ∈ X ′, we can extend this sequence to a list v1, . . . , vk of k

vectors. Each vi ∈ X ′ can be written as vi = ui −u0 with u1, . . . ,uk ∈ X . Then

∥
∥
∥z −

1

k

k∑

i=1

uk

∥
∥
∥

Q
=

∥
∥
∥(z −u0)−

1

k

k∑

i=1

(uk −u0)
∥
∥
∥

Q
≤ 4

∑

ℓ≥1

1

k2ℓ
·vbk2ℓ(P,Q).

4 Vector balancing from B m
p to B m

q

From now on, we focus on the case where P = B m
p and Q = B m

q .

8



4.1 Balancing from B m
p to B m

p

Suppose we have a matrix A ∈ R
m×n with A1, . . . , An ∈ B m

p . Then for a uniform random

x ∈ {−1,1}n one has E[‖Ax‖p ].
p

pn. This result extends to the case where x is subgaus-

sian rather than independent.

Lemma 14. Let A1, . . . , An ∈B m
p for p ≥ 2 and let x0 ∈ [−1,1]n . Then

E
x∼D(A,x0 )

[‖A(x −x0)‖p ] .
p

pn.

Proof. It will be convenient to abbreviate B ∈R
m×n as the matrix with entries Bi j := A2

i j
.

Then we have

E
x∼D(A,x0 )

[‖A(x −x0)‖p ]
(∗)
≤ E

x∼D(A,x0)

[

‖A(x −x0)‖p
p

]1/p

=
( m∑

i=1

E
x∼D(A,x0)

[

| 〈Ai , x −x0〉 |p
])1/p

Thm 1.(D)+Lem 10.(A)

.
( m∑

i=1

(p
p · ‖Ai‖2

)p
)1/p

= p
p ·

m∑

i=1

( n∑

j=1

A2
i j

)p/2)1/p

= p
p ·

(( m∑

i=1

( n∑

j=1

Bi j

)p/2)2/p)1/2

= p
p ·

(∥
∥
∥

n∑

j=1

B j
∥
∥
∥

p/2

)1/2

triangle ineq.
≤ p

p ·
( n∑

j=1

‖B j‖p/2
︸ ︷︷ ︸

≤1

)1/2 (∗∗)
≤ p

p ·
p

n.

Here we are using Jensen’s Inequality (Lemma 7) with the concavity of f (z) = z1/p in (∗).

Finally in (∗∗) we have made use of

‖B j ‖p/2 =
( m∑

i=1

(A2
i j )p/2

)2/p
=

( m∑

i=1

|Ai j |p

︸ ︷︷ ︸

≤1

)2/p
≤ 1.

This shows the claim.

4.2 A dimension-free upper bound on ‖ · ‖∞
Now suppose we have a matrix A ∈R

m×n with A1, . . . , An ∈B m
p and we want to find a col-

oring x with small value of ‖Ax‖∞. If we were to take a random coloring and the matrix

9



happens to contain a row of all-ones, then in expectation one would have ‖Ax‖∞&
p

n.

It turns out that the Lovett-Meka distribution improves significantly over this bound.

However, obtaining a bound solely dependent on n is slightly delicate since the Eu-

clidean norm bound of ‖A j ‖2 ≤ m1/2−1/p on the columns might be tight.

Lemma 15. Let p ≥ 2, x0 ∈ [−1,1]n and let Am×n be a matrix with ‖A j ‖p ≤ 1 for all j =
1, . . . ,n. Then for any x ∼D(A, x0) one has ‖A(x −x0)‖∞ .

p
p ·n1/2−1/p .

Proof. The goal is to verify that the condition in Theorem 1.(B) applies for a value of ∆

that is of the order
p

p ·n1/2−1/p . First we convert the bound on the ‖ · ‖p-norm of the

columns A j into information about the ‖ ·‖2-norm of the rows Ai . In particular one has

( 1

n

m∑

i=1

‖Ai‖
p
2

)1/p Lem 8
≤ n1/2−1/p ·

( 1

n

m∑

i=1

‖Ai‖
p
p

)1/p
= n1/2−1/p

( 1

n

n∑

j=1

‖A j ‖p
p

)1/p
≤ n1/2−1/p (∗∗∗)

Then we use this to estimate that

m∑

i=1

exp
(

−C1
∆

2

‖Ai‖2
2

)

≤
m∑

i=1

pp/2
C

p/2
1 ‖Ai‖

p
2

∆p
≤ n ·

(
√

C1pn1/2−1/p

∆

)p
≤C2n

if we set ∆ :=
p

C1

C
1/p
2

p
p ·n1/2−1/p . Here we have used the following estimate:

Claim I. For p ≥ 1 and y > 0 one has exp(− 1
y

) ≤ pp/2y p/2.

Indeed, for y > 1, one has exp(− 1
y

) < 1 < pp/2y p/2. Since exp( 1
y

) =
∑

k∈N
1

k!·yk ≥ 1
k!·yk for

any k ∈N, one has for y ≤ 1:

exp
(

−
1

y

)

≤ ⌈p/2⌉! · y⌈p/2⌉ ≤ ⌈p/2⌉⌊p/2⌋y p/2 ≤ pp/2 y p/2.

4.3 Balancing from B m
p to B m

q

Now we show how to find partial colorings for balancing vectors in the B m
p -ball into

scalars of the B m
q -ball using the Lovett-Meka distribution:

Theorem 16. Let 2 ≤ p ≤ q ≤ ∞, x0 ∈ [−1,1]n and let A ∈ R
m×n with A1, . . . , An ∈ B m

p .

Then

E
x∼D(A,x0)

[

‖A(x −x0)‖q

]

.
√

min
{

p, log( 2m
n

)
}

·n1/2−1/p+1/q

Proof. We will make use of the inequality ‖z‖q ≤ (‖z‖p
p · ‖z‖q−p

∞ )1/q for all z ∈ R
m , see

10



Lemma 9. Then combining the estimates from Lemma 14 and Lemma 15 we obtain

E
x∼D(A,x0)

[‖A(x −x0)‖q ] ≤ E
x∼D(A,x0)

[(

‖A(x −x0)‖p
p · ‖A(x −x0)‖q−p

∞
)1/q]

(∗∗∗∗)

Lem 15

. E
x∼D(A,x0)

[

‖A(x −x0)‖p/q
p

]

· (ppn1/2−1/p )(q−p)/q

Jensen
≤ E

x∼D(A,x0)

[

‖A(x −x0)‖p

]p/q · (ppn1/2−1/p )(q−p)/q

Lem 14

. (
p

pn)p/q · (ppn1/2−1/p )(q−p)/q =p
pn ·n−1/p+1/q

Here we have used Jensen’s inequality (see Lemma 7) with the concavity of the function

y 7→ y p/q for 0 < y <∞.

Note that this settles the claim in the parameter range p ≤ ln(e2 m
n

). Now consider

the case of p > ln(e2 m
n

). We define p0 := ln(e2 m
n

). Note that 2 ≤ p0 ≤ p. Then applying

the bound of (∗∗∗∗) proven above, with parameters 2 ≤ p0 ≤ q we obtain

Pr
x∼D(A,x0)

[

‖A(x −x0)‖q

]

.
p

p0 ·n1/2−1/p0+1/q ·max{‖A j ‖p0 : j = 1 . . . ,n}

≤ p
p0 ·n1/2−1/p+1/q ·m1/p0−1/p ·max{‖A j ‖p

︸ ︷︷ ︸

≤1

: j = 1, . . . ,n}

= p
p0 ·n1/2−1/p+1/q ·

(m

n

)−1/p

︸ ︷︷ ︸

≤1

·
(m

n

)1/p0

≤
√

ln
(

e2
m

n

)

·n1/2−1/p+1/q ·
(m

n

)1/ln(e2 m
n )

︸ ︷︷ ︸

≤O(1)

This completes the proof.

4.4 From partial colorings to full colorings

The result from Theorem 16 allows us to find a partial coloring — the next step is to

iterate the argument in order to find a full coloring:

Proof of Theorem 3. Consider n vectors from B m
p that we conveniently write as column

vectors A1, . . . , An ∈ B m
p . We set x0 := 0 ∈ R

n and n0 := n. In iteration t = 0,1, . . . we

have maintained a vector xt ∈ [−1,1]n where nt := |{i ∈ [n] | −1 < xt (i ) < 1}| denotes the

number of uncolored elements. We draw xt+1 ∼D(A, xt ) and repeat until the bound of

the expectation provided by Theorem 16 is attained (say up to a factor of 2). In particular

∥
∥A(xt+1 −xt )

∥
∥

q .
√

min
{

p, log
(

2m
nt

)}

·n1/2−1/p+1/q
t

11



and nt+1 ≤ nt /2. Then nt+1 ≤ n
2t and so x∗ := xlog2(n)+1 will be in {−1,1}n and by the

triangle inequality, the discrepancy is at most

‖Ax∗‖q .
∑

t≥0

√

min
{

p, log
(

2m
n/2t

)}

· (n/2t )1/2−1/p+1/q .

√

min{p, log( 2m
n

)}

1/2−1/p +1/q
n1/2−1/p+1/q

To see the ultimate inequality, consider the exponent α := 1/2−1/p +1/q > 0. Then it

takes 1/α iterations until the quantity nα
t has decreased by a factor of 2 (while the term

log(2m/nt ) has a miniscule growth). Then the cumulated discrepancy is dominated by

the first 1
α terms. The running time is bounded by O(log n) ·T (m,n).

5 Approximate Carathéodory bounds for ‖ · ‖p norms

Next, we prove the bound on ack(B m
p ,B m

q ) claimed in Theorem 4:

Proof of Theorem 4. Let 2 ≤ p ≤ q ≤∞. We apply the reduction to the vector balancing

constant from Theorem 2 and combine this with the bound from Theorem 3:

ack (B m
p ,B m

q )
Thm 2
≤

∑

ℓ≥1

1

k2ℓ
·vbk2ℓ(B m

p ,B m
q )

Thm 3

.
1

1
2
− 1

p
+ 1

q

∑

ℓ≥1

√

min{p, log( 2m
k2ℓ

)}

(k2ℓ)1/2+1/p−1/q

.
1

1
2
− 1

p
+ 1

q

·

√

min{p, log( 2m
k

)}

k1/2+1/p−1/q
.

Note that the exponent α := 1/2+1/p −1/q satisfies α ≥ 1/2 and so the sum is already

dominated by the very first term. The running time to find the vectors v1, . . . , vk is dom-

inated by O(logm) calls to find the coloring behind vbt (B m
p ,B m

q ) where t ≤ m +1 which

results in a total running time of O(log2 m) ·T (m,m +1)≤O(m1+ω log2(m)) as ω≥ 2.

Remark 1. In the case where p = 2 and q =∞, we can apply Theorem 4 with q ′ := log2 m

to obtain ack (B m
2 ,B m

∞) .
logm

k
by noting that Lemma 8 implies ‖x‖∞ ≤ ‖x‖log2 m ≤ 2‖x‖∞

for any x ∈R
m . But for P = B m

2 and Q = B m
∞ one has vbk (B m

2 ,B m
∞).

√

logm by the result

of Banaszczyk [Ban98], so that Theorem 2 yields the improved bound

ack (B m
2 ,B m

∞).

√

logm

k
.

It remains an interesting open question whether this may be improved to O( 1
k

).
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6 Lower bounds for vector balancing

In this section we show that the vector balancing bounds in Theorem 3 are tight up to

the factor of 1
2
− 1

p
+ 1

q
:

Proof of Theorem 6. First, let us focus on the case when m ≤ 2p n so that log(2m/n) =
min

{

p, log
(

2m
n

)}

. We will also assume that m ≥ 8n, since otherwise we can use instead

n′ := ⌊n/8⌋ and add n −n′ columns of zeros. Let B denote an m ×n random matrix with

i.i.d ±1 entries. For any fixed x ∈ {−1,1}n , let Nx denote the number of rows i ∈ [m] with

〈Bi , x〉 ≥λ
p

n for λ :=
√

2
9

log
(

m
2n

)

. Since λ≤
p

n/2, by Lemma 11 we have

Pr
[

〈Bi , x〉 ≥λ
p

n
]

≥
2n

m
,

so that E[Nx ] ≥ 2n. The standard Chernoff bound then gives Pr[Nx ≤ (1−0.9) ·2n] < 2−n ,

so that by the union bound there exists a matrix B ∈ {−1,1}m×n for which Nx ≥ n/5 for

all x ∈ {−1,1}n . Thus for any such x ,

‖B x‖q ≥ (|Nx | · (λ
p

n)q )1/q & n1/2+1/q log
( m

2n

)1/2
& n1/2+1/q log

(2m

n

)1/2
,

where in the last step we used m ≥ 8n. The matrix A := m−1/p B has columns in B m
p and

‖Ax‖q &

√

log
( m

2n

)

·
n1/2+1/q

m1/p
&

√

log
( m

2n

)

·n1/2−1/p+1/q

for all x ∈ {−1,1}n , as claimed.

For the case when m ≥ 2p n we may use the same construction for m′ := ⌊2p n⌋ with

m −m′ additional rows of zeros.
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A The Lovett-Meka random walk

In this section we want to justify Theorem 1. First, the original main technical statement

of Lovett and Meka [LM12] is as follows:

Theorem 17 ([LM12]). Let A1, . . . , Am ∈ R
n , x0 ∈ [−1,1]n , δ > 0 small enough and let

λ1, . . . ,λm ≥ 0 so that
∑m

i=1 exp(−λ2
i
/16) ≤ n

16
. Then there exists an efficient randomized

algorithm which with probability at least 1
10

finds a point x ∈ [−1,1]n so that

(i) | 〈Ai , x −x0〉 | ≤λi‖Ai‖2 for all i = 1, . . . ,m.

(ii) |x j | ≥ 1−δ for at least n/2 many indices.

Moreover, the algorithm runs in time O((m +n)3 ·δ−2 log(mn/δ)).

First, note that if ∆ is a parameter with
∑m

i=1
exp(− ∆

2

16‖Ai ‖2
2

) ≤ n
16

, then λi := ∆

‖Ai‖2
is

a feasible choice. The algorithm behind Theorem 17 works as follows: let γ > 0 be

a parameter that is logarithmically smaller than δ. We compute a random sequence

x0, x1, x2, . . . of points. In iteration t we have already computed xt ; next we define a sub-

space Vt ⊆ R
n that is orthogonal to coordinates ei with |xi | ≥ 1−δ and to directions Ai

with | 〈Ai , x −x0〉 | ≥λi −δ. Then update xt+1 = xt +γut where ut ∼ N (0, IVt ) is a random

Gaussian from that subspace Vt .

What is slightly unsatisfactory is that we will not actually have coordinates equal to

±1. But there is an easy way to remedy this: consider the polyhedron K := {x ∈ [−1,1]n |
| 〈Ai , x −x0〉 | ≤ λi‖Ai‖2 ∀i = 1, . . . ,m}. We say that a coordinate j is tight for a point x

if |x j | = 1 and a constraint i is tight for x if | 〈Ai , x −x0〉 | = λi‖Ai‖2. Then consider the

following random walk:

(1) FOR t = 1,2, . . . ,8n DO

(2) Let Vt := {y ∈R
n | 〈y , xt 〉 = 0; y j = 0 if j ∈ [n] is tight for xt ; 〈Ai , y〉 = 0 if i is tight for xt }.

If dim(Vt ) ≤ n
8

then return FAIL

(3) Let ut ∼ Sn−1 ∩Vt .

(4) Let rt := max{r ≥ 0 | xt + r ut ∈K and xt − r ut ∈ K }

(5) Let δt := min{1,rt }

(6) Update xt+1 := xt +σtδt ut where σt ∼ {−1,1}

(7) IF xt+1 has at least n/2 coordinates tight THEN return xt+1.

(8) RETURN FAIL

The key modification compared to [LM12] is that the step length is not uniform but

it is capped so that we do not exit K . As we walk orthogonal to the current point, one

has ‖xt+1‖2
2 = ‖xt‖2

2 +δ2
t for all t and so

∑

t δ
2
t ≤ 4n. Let us call a step t long if δt = 1 and
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short otherwise. So we cannot have more than 4n many long steps. But in each short

step (i.e. δr = rt ) we have a probability of at least 1/2 that some coordinate or constraint

becomes tight and this cannot happen more than 7
8

n times before exiting at (2). So the

probability of reaching (8) is less than (1/2)n .

Now let x be the random vector when the algorithm stops (either in (2), (7) or (8)). Fix

a constraint i ; the next step is to analyze the concentration behaviour of 〈Ai , x −x0〉. In

each iteration t one has ‖〈Ai ,σtδt ut 〉‖ψ2 ≤ ‖〈Ai ,ut 〉‖ψ2 .
‖Ai ‖2p

n
by Lemma 10 as ut is a

unit vector from a subspace of dimension at least n/8. As there are at most 8n iterations,

we have ‖〈Ai , x −x0〉‖ψ2 . 8n · (
‖Ai‖2p

n
)2 . ‖Ai‖2. Then Pr[| 〈Ai , x0 −x〉 | ≥ λi‖Ai‖2] ≤

exp(−C1λ
2
i
) by Lemma 10.(D) for some constant C1 > 0. In other words, the probabil-

ity that the i th constraint becomes tight at any point in the algorithm is upper bounded

by exp(−C1λ
2
i
) and so with good probability the number of tight constraints remains

below, say, n
4

. This gives an upper bound on the probability to exit in (2). Finally, we de-

fine D(A, x0) as the vector xt+1 returned in (7), that means conditioned on the run being

successful.

We briefly discuss the running time. In every of the at most 8n iterations we compute

a basis of Vt which using fast matrix multiplication can be done in time O(nω). Then

to compute rt (and to determine which constraints determine Vt ) can be done in time

O(nm). This results in the claimed bound of T (m,n) ≤O(n1+ω+n2m).
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