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GRASSMANNIANS IN THE LATTICE POINTS OF DILATIONS OF

THE STANDARD SIMPLEX

PRAISE ADEYEMO

Abstract. A remarkable connection between the cohomology ring H∗(Gr(d, d + r),Z)
of the Grasssmannian Gr(d, d+ r) and the lattice points of the dilation r∆d of the stan-
dard d-simplex is investigated. The natural grading on the cohomology induces different
gradings of the lattice points of r∆d. This leads to different refinements of the Ehrhart
polynomial L∆d

(r) of the standard d-simplex. We study two of these refinements which
are defined by the weights (1, 1, . . . , 1) and (1, 2, . . . , d). One of the refinements interprets
the Poincaré polynomial P(Gr(d, d + r), z) as the counting of the lattice points which
lie on the slicing hyperplanes of the dilation r∆d. Therefore, on the combinatorial level
the Poincaré polynomial of the Grassmannian Gr(d, d+ r) is a refinement of the Ehrhart
polynomial L∆d

(r) of the standard d-simplex ∆d.

1. Introduction

Consider the diagonal sequence Dd of natural numbers realized from the Pascal triangle
illustrated below

D
1 :

1

D
2 :

1 1

D
3 :

1 2 1

D
4 :

1 3 3 1

D
5 :

1 4 6 4 1

D
6 :

1 5 10 10 5 1

... 1 6 15 20 15 6 1
... ... ... ... ... ... ...

Pascal Triangle

One of the combinatorial interpretations of the terms of the sequence Dd :=
(

r+d

d

)

r=0
,

d ∈ N, has to do with the counting of the lattice points associated with the dilations r∆d

of the standard d-simplex ∆d. By the standard d-simplex ∆d we mean the convex hull of
the set {0, e1, . . . , ed} where e′is, 1 ≤ i ≤ d are the standard vectors in Rd and 0 is the
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origin. That is,

(1.1) ∆d := conv(0, e1, . . . , ed) = {x ∈ R
d : x · ei ≥ 0,

d
∑

i=1

x · ei ≤ 1}

and the dilation r∆d, is given by

(1.2) r∆d = {x ∈ R
d : x · ei ≥ 0,

d
∑

i=1

x · ei ≤ r, r ∈ N}

Lattice points are the points whose coordinates are integers. Asking for the lattice points
on r∆d is tantamount to counting the integer solutions for the inequality

(1.3)

d
∑

i=1

x · ei ≤ r

The number of lattice points on any given lattice polytope is well known. This is central
theme of Ehrhart polynomials, [3], [6], [10], [11] and [16]. In fact the number of the lattice
points on r∆d is given by

(1.4) |r∆d ∩ Z
d
≥0| =

(

r + d

d

)

and its generating function by

(1.5) P(r∆d, z) =

∞
∑

r=0

Arz
r =

1

(1− z)d+1
, where Ar =

(

r + d

d

)

On the other hand, Grassmannians are ubiquitous in nature and they constitute one of the
best understood algebraic varieties. They admit algebraic, combinatorial and geometric
structures which are very elegant. Their classical cohomology theory has taken the center
stage in algebraic combinatorics in recent years, see [4], [5], [7] , [8], [9], [10] and [12]. It
turns out that the lattice points on r∆d encode some vital information about the indexing
partitions of the Schubert varieties contained in the Grassmannian Gr(d, d + r). This
sheds more light on the cohomology ring of the Grassmannian. It is well known that the
multiplicative generators of the cohomology of the Grassmannian Gr(d, d + r) are given
by the special Schubert cycles σλ, see [3]. These cycles are indexed by one-row partitions
λ = (k), 1 ≤ k ≤ r and they constitute the total Chern class of the quotient bundle Q,
that is,

c(Q) = 1 + σ + σ + · · ·+ σ ··· 1×r

We study the monomials identified with the semi standard tableaux of these one-row Young
diagrams and realize a natural graded polynomial Tr(t) called dilation polynomial. This
is our first refinement of the Ehrhart polynomial L∆(r) of the standard d-simplex ∆d. It
comes with the natural weight (1, 1, . . . , 1). The second refinement is the the Poincaré
polynomial P(Gr(d, d+ r), z) of the Grassmannian Gr(d, d+ r) interpreted as the slicing
of r∆d with hyperplanes with respect to the weight (1, 2, . . . , d). It is interesting to note
that the natural grading on the cohomology of the Grassmannian Gr(d, d + r) induces
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different gradings of the lattice points of the dilation r∆d which give various refinements
of the Ehrhart polynomial L∆(r). The paper is a generalisation of the previous studies in
[1] and [2]. In section 2, we introduce a technique of counting lattice points by grading
with respect to the weight a = (1, 1, . . . , 1). This is just the slicing of the dilation r∆d into
parallel regular (d− 1)-simplices. The The polynomial

(1.6) T (1,...,1)
r (t) =

r
∑

k=0

(

k + d− 1

d− 1

)

tk

refines the Ehrhart polynomial L∆(r). We give a generating function for such polynomials
as r grows. This grading allows us to establish in Section 3, a bijection between the lattice
points of the dilation r∆d and the semi standard tableaux of row Young diagrams indexing
the special Schubert cycles of the Grassmanninan Gr(d, d + r). By using another weight
h = (1, 2, . . . , d) which gives a different slicing of the simplex, we construct a polynomial

(1.7) P
(1,2,...,d)
r∆d

(z) =

[(

k + d

d

)]

z

for 0 ≤ k ≤ r

which is a z-binomial coefficient. This gives a bijection between the lattice points in r∆d

and partitions fitting into an r × d rectangle, and establishes that the grading given here
to a lattice point eventually identifies this polynomial with the Poincaré polynomial of the
Grassmannian Gr(d, d+ r).

2. The Dilation Polynomial Tr∆d
, r ≥ 1

We define the lexicographical order <lex on the set r∆d ∩ Z
d
≥0 of lattice points on r∆d as

follows: Let a = (a1, . . . , ad) and b = (b1, . . . , bd) be any two lattice points in r∆d ∩ Zd
≥0.

We say a <lex b if, in the integer coordinate difference a − b ∈ Zd, the leftmost nonzero
entry is negative. As noted earlier, the set r∆d∩Z

d
≥0 of lattice points on r∆d is the integer

solution set of the inequality (1.3). It turns out that the upper bound r in (1.3) defines a
relation on the lattice points of the solution set which brings about the disjoint subdivisions
of the integer solution set.

Proposition 2.1. Let a and b be two lattice points in r∆d ∩ Z
d
≥0 such that a <lex b. The

relation a ∼ b defined by
∑d

i=1(ai − bi) = 0 is an equivalence relation.

The relation partitions the set r∆d ∩Zd
≥0 into disjoint equivalence classes. Notice that the

integer solution set is complete with respect to the bound r in the sense that the sum of
integer coordinates of the lattice points in r∆d ∩Z

d
≥0 takes all the values of the integers in

the closed interval [0, r]. Completeness is one of the beautiful properties of the standard
d-simplex not all the lattice polytopes enjoy this feature.

Corollary 2.2. Any two lattice points in r∆d ∩ Zd
≥0 belong to the same class if and only

if they share the same sum of their respective integer coordinates.

Corollary 2.3. |r∆d ∩ Zd
≥0/ ∼ | = r + 1
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Proof. This follows corollary 2 and the fact that r∆d ∩ Zd
≥0 is complete

(2.1) r∆d ∩ Z
d
≥0/ ∼:= {Xk :

d
∑

i=1

xi = k, 0 ≤ k ≤ r, ∀x = (x1, . . . , xd) ∈ Xk}

and hence, |r∆d ∩ Zd
≥0/ ∼ | = r + 1

�

Corollary 2.4. The class of the origin 0 ∈ r∆d ∩ Zd
≥0 is a singleton set.

Proof. The class of the origin denoted by X0 is given by

(2.2) X0 = {x = (x1, . . . , xd) ∈ r∆d ∩ Z
d
≥0 :

d
∑

i=1

xi = 0}

Suppose that there is a lattice point a which belongs to X0 such that a is not the origin.
Since the origin 0 is <lex than every lattice point a ∈ r∆d ∩ Zd

≥0, so, 0 ∼ a implies that
∑d

i=1(0 − ai) < 0, This integer value is not in [0, r], therefore, there is no lattice point
r∆d ∩ Z

d
≥0 which is equivalent to the origin apart from itself hence |X0| = 1 �

We now compute the size of each of the equivalence classes Xk such that 0 ≤ k ≤ r.

Theorem 2.5. Let A = r∆d ∩Zd
≥0 denote the set of lattice points on r∆d and let Xk ⊂ A

be the collection of lattice points whose sum of their integer coordinates is k such that
0 ≤ k ≤ r. Then |Xk| =

(

k+d−1
d−1

)

.

Proof. Notice that the chain of the following inclusions

{(0, . . . , 0)} ⊂ ∆d ∩ Z
d
≥0 ⊂ 2∆d ∩ Z

d
≥0 · · · ⊂ r∆d ∩ Z

d
≥0

implies the following chain.

∆d ∩ Z
d
>0 ⊂ 2∆d ∩ Z

d
>0 ⊂ · · · ⊂ r∆d ∩ Z

d
>0

The subcollection Xk is given by

Xk = {x = (x1, . . . , xd) ∈ A :
d

∑

i=1

xi = k, 0 ≤ k ≤ r}

X0 = {(0, . . . , 0)}, so |Xk| = 1. Observe that

Xk = k∆d ∩ Z
d
≥0/(k − 1)∆d ∩ Z

d
≥0, 2 ≤ k ≤ r

In fact, X ′
ks define a partition of the set r∆d ∩ Zd

≥0 of the lattice points on r∆d, that is,

r
⋂

k=0

Xk = ∅,
r
⋃

k=0

Xk = A

From Ehrhart theory, using 1.4,

|∆d ∩ Z
d
≥0| =

(

1 + d

d

)

= |X0 ∪X1|.
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This implies that |X1| = d, Similarly,

|2∆d ∩ Z
d
≥0| =

(

2 + d

d

)

= |X0 ∪X1 ∪X2|.

This gives

|X2| =

(

2 + d

d

)

− d− 1 =

(

1 + d

d− 1

)

Continuing this way,

|Xk| =

(

k + d

d

)

−
k

∑

j=1

(

k + d− j

d

)

=

(

k + d− 1

d− 1

)

�

The disjoint union ∪Xk of subcollections Xk, 0 ≤ k ≤ r of the set r∆d ∩ Zd
≥0 of lattice

points on r∆d defines a polynomial Tr(t) of degree r in variable t given by

(2.3) Tr(t) =

r
∑

k=0

(

k + d− 1

d− 1

)

tk

We call Tr(t) the dilation polynomial of degree r identified with the dilation r∆d. This is
precisely the slicing of r∆d with hyperplanes perpendicular to the direction a := (1, . . . , 1)
and enumerate all the lattice points in the different layers. That is,

(2.4)

(

k + d− 1

d− 1

)

= #{v ∈ r∆d ∩ Z
d
≥0 : v · a = k, 0 ≤ k ≤ r}

The dilation polynomial T4(t) for the 4th dilation of the standard 3-simplex is illustrated
in Figure 2.

Remark 2.6. Dilation polynomials identified with r∆2 and r∆3 are called triangular and
tetrahedral polynomials respectively

Theorem 2.7. Let M = {Tr(t)}r=0 be the sequence of dilation polynomials of lattice points
counting on r∆d for r ≥ 0. Then its generating series G(t, z) =

∑

r=0 Tr(t)z
r is given by

G(t, z) =
z

(1− z)(1 − tz)d
.

Proof. Notice from the equation (2.3) that

Tr(t) = Tr−1(t) +
(r + 1) · · · (r + d− 1)

(d− 1)!
tr and

∑

r≥0

(r + 1) · · · (r + d− 1)

(d− 1)!
zr =

1

(1− z)d
.

G(t, z) =
∑

r≥0

Tr(t)z
r =

∑

r≥0

[

Tr−1(t) +
(r+1)···(r+d−2)

(d−1)!
tr−1

]

zr.

G(t, z) = zG(t, z) +
∑

r≥1

[

(r+1)···(r+d−1)
(d−1)!

tr−1
]

zr, and so

G(t, z) =
z

(1− z)(1 − tz)d
.

�
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Figure 1. T4(t) = 1 + 3t+ 6t2 + 10t3 + 15t4

3. The Cohomology ring of Grassmannian Gr(d, d+ r)

Let V be an n-dimensional complex vector space. The set of all maximal chains of subspaces

in V is called the flag variety Fℓn(C) of dimension n(n−1)
2

. That is,

Fℓn(C) := {V• := {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V such that dimVi = i}

The Grassmannian Gr(d, n) is the spacial case of the flag variety being the set of all
d-dimensional subspaces in V. Its dimension is d(n− d). There is a projection

π : Fℓn(C) −→ Gr(d, n)

from the full flag variety Fℓn(C) to the Grassmannian Gr(d, n) with π−1(Xλ(F•)) =
Xw(λ)(F•), where Xλ(F•) is a Schubert variety in the Grassmannian Gr(d, n) defined as
the closure of the Schubert cell Cλ(F•) given by

Cλ(F•) = {Vd ∈ Gr(d, n) : dimVd ∩ Fn+i−λi
= i, 1 ≤ i ≤ d},

with respect to the fixed flag F•:

F• := {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V such that dimFi = i

The partition λ is called fitted in the sense that it has at most length d and each part
cannot exceed n− d. The permutation w(λ) identified with the partition λ = (λ1, . . . , λd)
is given by

(3.1) wi = i+ λd+1−i, 1 ≤ i ≤ d and wj < wj+1, d+ 1 ≤ j ≤ n.
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This permutation is called Grassmannian in that it has a unique descent by definition.
Every such permutation has the code c(w(λ)) of the form (w1−1, w2−2, . . . , wd−d, 0, . . . , 0)
which can be represented by (m1, m2, . . . , md) by disregarding the string of zeros at the right
hand. It turns out that the partition λ indexing the Schubert variety Xλ can be recovered
from this code as λ = (mi1 , mi2, . . . , mid) where mi1 ≥ mi2 ≥ · · · ≥ mid and mip 6= 0, 1 ≤
ip ≤ d. Recall that for any permutation w in the symmetric group Sn, the code c(w) of w is
the sequence (c1(w), . . . , cn(w)) where ci(w) =| {j : 1 ≤ i < j ≤ n and w(i) > w(j)} |. For
instance the code c(w) of the permutation w = 315426 ∈ S6 is (2, 0, 2, 1, 0, 0). The string of
zeros at the right hand may be discarded. Notice that ci(w) ≤ n− i. The length ℓ(w) of w
is #{(i, j) : w(i) > w(j), 1 ≤ i < j ≤ n}, the number of inversions in w, that is, the sum
of integer coordinates of the code of w. It is well known that the cohomology ring of the
Grassmannian Gr(d, n) is generated by the Schubert cycles σλ. These are Poincaré dual of
the fundamental classes in the homology of Schubert varieties. The Grassmannian Gr(d, n)
admits many important vector bundles, most importantly there is a universal short exact
sequence: 0 −→ S −→ Cn × Gr(d, n) −→ Q −→ 0 of bundles on Gr(d, n) which makes
it easy to compute the Chern class c(Q) of the quotient bundle Q on the Grassmannian
Gr(d, n). Recall that Q is a globally generated vector bundle of rank r := n − d and all
its global sections are from the trivial bundle C

d+r × Gr(d, d + r). The total Chern class
is the sum over all the one-row partitions inside the rectangle �r×d. That is,

(3.2) c(Q) = 1 + σ + σ + · · ·+ σ ··· 1×r

It turns out that the set of all one-row Young diagrams indexing the multiplicative gen-
erators of the cohomology of the Grassmannian Gr(d, d+ r) is deeply connected with the
lattice points of r∆d. Let Cd,r be the set of row Young diagrams with at most r boxes and
adjoin the empty set φ. That is,

Cd,r = {�1×k : 1 ≤ k ≤ r} ∪ ∅.

The filiing of the boxes of the row Young diagrams in Cd,r using the numbers in [d] :=
{1, . . . , d} is semi standard, that is, the numbers weakly increase from the left to the right.
We denote the collection of all such fillings by Cd

d,r and call it the d-filling set of the dilation

r∆d. For instance, the 3-filling set C3
3,3 associated the second dilation 3∆3 of the standard

3-simplex is the following collection

.
,

1
,

2
,

3
,

1 1
,

1 2
,

2 2
,

1 3
,

2 3
,

3 3
,

1 1 1
,

1 1 2
,

1 2 2
,

2 2 2
,

1 1 3
,

1 3 3
,

3 3 3
,

2 2 3
,

2 3 3
,

1 2 3

These 20 semi standard Young tableaux can be organized in terms of their defining Young
diagrams. It turns out that this arrangement can be expressed as a polynomial, given
by T3(t) = 1 + 3t + 6t2 + 10t3. This is the graded semi-standard polynomial of degree 3
illustrated in Figure 2.
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2 3

.

1

1 1

2 3

1 2
1 3

2 2

3 3

1 1 1

3 3 3

2 2 2

1 1 2

1 2 2

2 2 3
2 3 3

1 1 3

1 3 3
1 2 3

Figure 2. T3(t) = P3(t) = 1 + 3t+ 6t2 + 10t3

Theorem 3.1. (i.) The size Ld(r) of the d-filling set Cd
d,r is

(

r+d

d

)

and the sequence

(Ld(r))∞r=0 of cardinalities as r grows is recorded by the generating function

P (Cd
(d,r), z) =

1

(1− z)d+1

(ii.) More is true, there is a graded counting polynomial of the semi standard tableaux
in Cd

d,r given by

Pr(t) =

r
∑

k=0

(

k + d− 1

d− 1

)

tk

that is, a k-box row diagram gives
(

k+d−1
d−1

)

semi standard Young tableaux. This has
a generating function

G(t, z) =
z

(1− z)(1 − tz)d
.

Theorem 3.2. There is a bijection T 7→ v(T ) between the set Cd
d,r and the set r∆d ∩ Zd

≥0

of the lattice points of the dilation r∆d. Furthermore, the semi-standard polynomial Pr(t)
is precisely the dilation polynomial Tr(t) identified with r∆d.
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Proof. To each semi standard tableau T ∈ Cd
(d,r) there exists a unique exponent vector

v(T ) := (v(T )1, . . . , v(T )d) in which the coordinate v(T )j is the number of appearances of
j in T , 1 ≤ j ≤ d.Thi is a bijection.

The number of semi standard fillings of each of the row diagram with shape λ = (k), 0 ≤
k ≤ r using the elements of the set {1, . . . , d} has a well known closed formula. Notice
that for a fixed point a = (1, . . . , 1) the following identity holds

∏

1≤i<j≤d

λi − λj + j − i

j − i
=

(

k + d− 1

d− 1

)

= #{v ∈ r∆d ∩ Z
d
≥0 : v · a = k, 0 ≤ k ≤ r}

Therefore, the semi-standard polynomial Pr(t) can be viewed as the dilation polynomial
Tr(t). The bijection is a polynomial preserving map, see figure 2 �

4. Grassmannian Monomials

It is clear from the Theorem 3.1 that every standard tableau T ∈ Cd
(d,r) defines a monomial

tv(T ) where v(T ) := (v(T )1, . . . , v(T )d), that is,

(4.1) tv(T ) :=

d
∏

j=1

t# times j appears in T
j , where v(T ) ∈ r∆d ∩ Z

d
≥0

For instance, the monomial defined by T = 1 1 2 3 3 ∈ C4
(4,5) is given by

ta = t21t2t
2
3 where a = (2, 1, 2, 0). We call such monomials in Cd

(d,r) Grassmannian because
they encode the data of indexing partitions of Schubert varieties in the Grassmannian
Gr(d, d+ r). We denote these monomials by W r

d , that is,

W r
d := {ta11 · · · tadd :

d
∑

i=1

ai ≤ r, 0 ≤ ai ≤ r}

Proposition 4.1. Let W r
d and W r′

d be two Grassmannian monomial sets such that r ≤ r′.
Then W r

d ⊆ W r′

d .

Proposition 4.2. Every monomial ta ∈ Z[t1, . . . , td] is Grassmannian.

Proof. It suffices to produce a Grassmannian set W r
d containing ta. By (4.1) there is a

semi-standard tableau T which encodes the exponent vector a and this implies that there
exists r ∈ N such that T is an element of the d- filling set Cd

(d,r), so ta belongs to the
Grassmannian monomial set W r

d . �

Corollary 4.3. If r =
∑d

i=1 ai, where ai is an integer coordinate of a then the Grassman-
nian set W r

d is the smallest set containing the monomial ta.

It is important to quickly point out that the sum Pr(t1, . . . , td) of all the monomials in W r
d ,

that is,

(4.2) Pr(t1, . . . , td) =
∑

T∈Cd
(d,r)

d
∏

j=1

t# times j appears in T
j
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is deeply connected with a polynomial representation (V, ρ) of the general linear group
GLd(C) where V :=

⊕r

k=0 Sym
k(Cd) is the space of the direct sum of homogeneous sym-

metric polynomials of dgree k in d variables. Let C[X ] := C[x11, x12 . . . , xdd] be the ring
of polynomial functions on d × d matrices. There is an action of G = GLd(C) on C[X ]
by conjugation. The character of the polynomial representation (V, ρ) is the polynomial
χρ ∈ C[X ] given by the trace of the matrix ρ(X). Recall that the character χρ of every
polynomial representation (V, ρ) lies in the invariant ring C[X ]G. Interested reader can
consult [15] and [17].

Theorem 4.4. The character χV of V :=
⊕r

k=0 Sym
k(Cd) as a polynomial representation

ρ of the general linear group GLd(C) is Pr(t1, . . . , td), that is,

χV =
∑

T∈Cd
(d,r)

d
∏

j=1

t# times j appears in T
j

The sum ranging over all the semi standard fillings of the row diagrams with at most r
boxes.

Proof. Let t1, . . . , td be eigenvalues of a generic d × d matrix X . The map C[X ]G −→
C[t1, t2, . . . , td]

Sn defined byf 7→ f(diag(t1, . . . , td)) is an isomorphism. Set λ = (k) since
k′s define the rows diagrams with at most r boxes, so the image of the character fρ(X) is

r
∑

k=0

det(tλi+d−j
i )1≤i,j≤d

det(td−j
i )1≤i,j≤d

.

�

Corollary 4.5. The dimension of the vector space V :=
⊕r

k=0 Sym
k(Cd) is χV (1, 1, . . . , 1) :=

|r∆d ∩ Z≥0|, the number of lattice points of the dilation r∆d.

Proof. The Grassmannian set W r
d spans the vector space V :=

⊕r

k=0 Sym
k(Cd). �

Now to every monomial ta ∈ Z[t1, . . . , td] we associate a weight wa defined by

(4.3) wa =
d

∑

k=1

kak

It turns out that wa admits two important partitions λ, λ∗ ⊢ wa which can be identified
with the monomial ta . These partitions, λ and λ∗ are called α-partition and β-partition
respectively. A partition λ ⊢ wa is said to be the α-partition of the monomial ta11 · · · tadd if the
number of parts of size i in λ is ai, 1 ≤ i ≤ d. The length ℓ(λ) of α-partition is a1+· · ·+ad.

The β partition λ∗ = (λ∗
1, . . . , λ

∗
d) of wa is such that λ∗

k =
∑d

i≥k ai, 1 ≤ k ≤ d and its length

is d. For instance, the α-partition associated with the monomial t31t
2
2t

3
3t

2
4 ∈ Z[t1, t2, t3, t4]

is (4,4,3,3,3,2,2,1,1,1) while its β partition i λ∗ is (10, 7, 5, 2). In fact, α and β partitions
identified with the monomial ta can be realized in terms of the sum of the entries of the
d× d upper triangular matrix Ma associated with the exponent vector a = (a1, . . . , ad) of
the monomial, that is,
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(4.4) Ma =













a1 a2 a3 · · · ad
a2 a3 · · · ad

a3 · · · ad
...
ad













The sum of the entries in the column k divided by k is the number of parts of size k in the
α- partition λ of wa. The β partition λ∗ = (λ∗

1 . . . λ
∗
d) of wa is such that λ∗

k is the sum of
the entries in the row k where 1 ≤ k ≤ d. For instance, the 4×4 matrix Ma corresponding
to the monomial t31t

2
2t

3
3t

2
4 ∈ Z[t1, t2, t3, t4] is

Ma =









3 2 3 2
2 3 2

3 2
2









so the α-partition λ and the β-partition λ∗ identified with the matrix Ma are 13223342 and
(10, 7, 5, 2) respectively.

Proposition 4.6. Let λ be the α-partition of wa associated with the monomial ta =
ta11 · · · tadd ∈ Z[t1, . . . , td]. Then its corresponding β-partition λ∗ is the transpose of λ and
vice versa.

Proof. Let λ = (λ1, . . . , λa1+···+ad) and λ∗ = (λ∗
1, . . . , λ

∗
d). It is obvious that these partitions

satisfy the following identity
a1+···+ad
∑

k=1

(2k − 1)λk =

d
∑

k=1

λ∗2
k .

�

It would be interesting to characterize and study all the monomials for which α-partition
and β-partition coincide. This amounts to the characterization of all self conjugate parti-
tions. Recall that for all n ∈ N such that n > 2 there is a bijection between the set of self
conjugate partitions of n and the set of all distinct odd parts partitions of n. For instance,
a square free monomial of the form t1t2 · · · td admits the stair case partition (d, d−1, . . . , 1),
this is deeply connected with the distribution of triangular numbers in the set N of natural
numbers. We give a few other examples of such monomials.

Example 4.7. Some monomials for which α and β-partitions coincide:

(i.) All monomials of the form t
d
2
d
2

t
d
2
d ∈ Z[t1, t2, . . . , td] for even d.

(ii) All monomials of the form t1t
d−2td ∈ Z[t1, t2, . . . , td].

(iii.) All monomials of the form td−1
1 td ∈ Z[t1, t2, . . . , td].
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(iv.) All monomials of the form td−2td−1t
d−2
d ∈ Z[t1, t2, . . . , td].

Lemma 4.8. Let λ∗ = (λ1, . . . , λd) be the β-partition identified with the monomial ta11 · · · tadd ∈
Z[t1, t2, . . . , td]. Then the exponent vector (a1, . . . , ad) is equivalent to (λ1 − λ2, λ2 −
λ3, . . . , λd−1 − λd, λd).

Proof. It follows from the construction of the β partition λ∗ from the exponent vector
(a1, . . . , ad). �

Theorem 4.9. Let ta ∈ W r
d be a Grassmannian monomial associated with exponent vector

a ∈ r∆d∩Z
d
≥0. If a partition λ∗ is the β-partition identified with ta then the length ℓ(w(λ∗))

of the Grassmannian permutation w(λ∗) is the weight wa.

Proof. The code c(w(λ∗)) of the Grassmannian permutation w(λ∗) is of the form
(m1, m2, . . . , md, 0, 0, . . . , 0). The rearrangement of m1, m2, . . . , md in weakly decreasing
order yields the fitted partition λ∗ = (λ∗

1, . . . , λ
∗
d). The sum of the entries of the code

c(w) = (c1(w), c2(w), . . . , cn(w)) of any permutation w is the length ℓ(w) of the partition,
since each entry ci(w) is the number of inversions associated to the value wi in the position
i. Hence the length ℓ(w(λ∗)) of w(λ∗) is the size |λ∗| of λ∗. Next we show that the weight
wa of the exponent vector a = (a1, . . . , ad) of the Grassmannian monomial ta = ta11 · · · tadd
is |λ∗|. From Lemma 3.12 ai = λ∗

i − λ∗
i+1, 1 ≤ i ≤ d− 1, ad = λ∗

d. Therefore, the weight

wa =
∑d−1

i=1 i(λ
∗
i − λ∗

i+1) + dλ∗
d = |λ∗|. �

Corollary 4.10. Every β-partition λ∗ identified with each of the monomials ta ∈ W r
d fits

into the r × d rectangle �r×d.

Proof. It is sufficient to establish that the parts of λ∗ cannot exceed r and the length ℓ(λ∗)
of λ∗ is d. Notice that the exponent vector a is a lattice point of r∆d and by definition
a1 + · · ·+ ad ≤ r. Therefore each part λ∗

k of λ∗ is at most r and length ℓ(λ∗) is d by the
definition of λ∗. �

Corollary 4.11. The set of β-partitions λ∗ identified with monomials in W r
d index the

Schubert varieties in the Grassmannian Gr(d, d + r), giving a bijection between lattice
points in r∆d and partitions fitting into an r × d rectangle.

The weight wa defined in the equation (3.2) gives another refinement P h
r∆d

(z) of the Ehrhart
polynomial of r∆d with respect to a fixed point h = (1, 2, . . . d).

(4.5) P h
r∆d

(z) =
dr
∑

m=0

Amz
m.

where Am = #{a ∈ r∆d ∩ Zd
≥0 : a · h = m, 0 ≤ m ≤ dr}, that is, the number of exponent

vectors a which share the weight m. We call P h
r∆d

(z) the weighted polynomial associated
with the dilation r∆d.

Lemma 4.12. The polynomial P h
r∆d

(z) =
∑dr

m=0Amz
m specializes at z = 1 to the Ehrhart

polynomial L∆d
(r).



GRASSMANNIANS IN THE LATTICE POINTS OF DILATIONS OF THE STANDARD SIMPLEX 13

Remark 4.13. Notice that Am is precisely the number of lattice points in the intersection of
the dilation r∆d with the hyperplane Hm perpendicular to the direction h := (1, 2, . . . , d).
It is also interesting to note that the grading given here to a lattice point eventually iden-
tifies the weighted polynomial P h

r∆d
(z) with the Poincaré polynomial of the Grassmannian

Gr(d, d+ r).

Theorem 4.14. Let P h
r∆2

(z) be the weighted polynomial of the lattice points of the dilation
r∆d . Then the Poincaré polynomial P (Gr(d, d+ r), t) of the Grassmannian Gr(d, d+ r)
coincides with the weighted polynomial P h

r∆d
(z).

Proof. It is well known from the Borel presentation of the cohomology ring H∗(Gr(d, d+
r),Z) of the Grassmannian Gr(d, d+ r) that the Poincaré polynomial P(Gr(d, d+ r), t) is
given by the following Gaussian polynomial

(1− t)(1− t2) · · · (1− td+r)

(1− t) · · · (1− td)(1− t) · · · (1− tr)

This is combinatorially simplified as
∑

λ⊆�d×r

t|λ|

where |λ| is the number of boxes in the Young diagram of shape λ. The size |λ| coincides
with the length ℓ(w(λ)) (the number of inversions) of the Grassmannian permutation w(λ)
identified with λ in the equation (3.1). Notice that |λ| ≤ dr, therefore, It follows from the
Theorem 4.9 that |λ| is the weight wa of the monomial ta ∈ W r

d , a ∈ r∆ ∩ Zd
≥0, therefore,

∑

λ⊆�2×r
t|λ| is precisely the polynomial

∑dr

m=0Amz
m. �

Ouestion: Does the set r∆d ∩ Zd
≥0 encode some data about the degree and the Hilbert

polynomial of Gr(d, d+ r)?
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like to thank Balazs Szendröi for his hospitality and contributions during my visit to the
University of Oxford where the work was carried out. The author is supported by EPSRC
GCRF grant EP/T001968/1, part of the Abram Gannibal Project.

References

1. P. Adeyemo, The lattice points of the dilations of the standard 2-simplex and the
Grassmannian Gr(2,n) , manuscript 2022.

2. P. Adeyemo, The Lattice Points of the Standard 3-simplex and the Grassmannian
Gr(3,n), manuscript 2022.

3. E. Ehrhart, Sur les polyedres rationnels homothétiques a n dimensions, C. R. Acad.
Sci. Pari 254 (1962), 616-618.

4. D. Eisenbud and J. Harris, 3264 & All that intersection Theory in Algebraic Ge-
ometry.



14 PRAISE ADEYEMO

5. W. Fulton, Young tableaux, volume 35 of London Mathematical Society Student
Texts. Cambridge University Press, Cambridge, 1997.
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