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Shape optimization for a nonlinear elliptic problem

related to thermal insulation
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Abstract

In this paper we consider a minimization problem of the type

Iβ,p(D; Ω) = inf

{
ˆ

Ω
|Dφ|pdx + β

ˆ

∂∗Ω
|φ|pdHn−1, φ ∈ W 1,p(Ω), φ ≥ 1 in D

}

,

where Ω is a bounded connected open set in R
n, D ⊂ Ω̄ is a compact set and β is a

positive constant.
We let the set D vary under prescribed geometrical constraints and Ω \ D of fixed thick-
ness, in order to look for the best (or worst) geometry in terms of minimization (or
maximization) of Iβ,p. In the planar case, we show that under perimeter constraint the
disk maximize Iβ,p.
In the n-dimensional case we restrict our analysis to convex sets showing that the same
is true for the ball but under different geometrical constraints.

1 Introduction

Insulation problems have interested many researchers and it’s a very active field of research
as it is related to environmental improvement. In fact, thermal insulation may be applied to
save energy and even if it may seem counterintuitive, having too much insulation can have a
negative impact on the energy efficiency; furthermore, adding too much insulation is expensive
and unsustainable.
In this paper we consider a problem of this type: let Ω be a bounded connected open set of
R

n, D ⊂ Ω a compact set, β > 0 a fixed constant.

Iβ,p(D; Ω) = inf

{

ˆ

Ω

|Dφ|pdx + β

ˆ

∂Ω

|φ|pdHn−1, φ ∈ W 1,p(Ω), φ ≥ 1 in D

}

. (1)
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Our aim is to study maximization and minimization problems of Iβ,p(D, Ω), among domains
with given geometrical constraints. If Ω has Lipschitz boundary, then there exists a minimizer
u of (1) that satisfies























∆pu = 0 in Ω \ D

u = 1 in D

|Du|p−2 ∂u

∂ν
+ β|u|p−2

u = 0 on ∂Ω

where
∆pu = div(|Du|p−2

Du)

is the p-Laplace operator, and the functional Iβ,p(Ω, D) assumes the following form

Iβ,p(Ω, D) = β

ˆ

∂Ω

|u|p−2
u dHn−1.

In this order of ideas, the case p = 2 has been treated in [8]. In this case the minimization
problem arises from a thermal insulation problem. Related results are also contained in [1, 2,
3, 6, 4, 5, 8, 9, 10, 11].
In the present paper we consider the general case 1 < p < +∞.
The plan of the paper is the following: after recalling some well-known fact on convex domains
in section 2, we prove some basic properties of Iβ,p(Ω, D) in Section 3.
In section 4-6 we discuss our main results. First, we consider the domains Ω = D + δB,
with δ > 0; in the planar case studied in section 4, we found that if D is an open, bounded,
connected set of Rn with piecewise C1 boundary, the maximum of Iβ,p(D, D + δB) is achieved
at the disk having the same perimeter of D. In section 5 we consider the n-dimensional case
for convex sets and we obtain that among the convex sets Ω = D + δB, with fixed δ and of
given Wn−1 quermassintegral of D, the maximum is attained when D is a ball.
Finally in section 6, we show a counterintuitive behaviour of the functional Iβ,p(D, Ω); indeed
we prove that for suitable values of β, there exists a positive constant δ0 such that for any
bounded domain Ω, with D ⊂ Ω and |Ω| − |D| < δ0, then Iβ,p(BR, Ω) > Iβ,p(BR, BR).

2 Preliminaries

Here we list some basic facts on convex sets (see, for example [7, 12]). Let K be a nonempty,
bounded, convex set in R

n and let δ > 0. Then the Steiner formulas for the volume and the
perimeter read as

|K + δB| =
n
∑

j=0

(

n

j

)

Wj(K)δj

= |K| + nW1(K)δ +
n(n − 1)

2
W2(K)δ2 + · · · + ωnδn

and
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P (K + δB) = n
n−1
∑

j=0

(

n − 1

j

)

Wj+1(K)δj

= P (K) + n(n − 1)W2(K)δ + · · · + nωnδn−1,

(2)

where B is the unit ball in R
n centered at the origin, whose measure is denoted by ωn and

K + δB stands for the Minkowski sum.
The coefficients Wj(K) are the so-called quermassintegrals of K. In particular W0 is the volume
of K, W1 = P

n
and Wn = ωn.

It immediately follows that

lim
δ→0+

P (K + δB) − P (K)

δ
= n(n − 1)W2(K). (3)

If K has C2 boundary, with nonzero Gaussian curvature, the quermassintegrals are related to
the principal curvatures of ∂K. Indeed, in such a case

Wi(K) =
1

n

ˆ

∂K

Hi−1(x)dHn−1, i = 1, · · · , n. (4)

Here Hj denotes the j-th normalized elementary symmetric function of the principal curvatures
of ∂K, that is H0 = 1, and

Hj(x) =

(

n − 1

j

)−1
∑

1≤i1≤···≤ij≤n−1

ki1
(x) · · · kij

(x), j = 1, · · · , n − 1,

where k1(x) · · · kn−1(x) are the principal curvatures at a point x ∈ ∂K. In particular, by (3)
and (4) we get also that

lim
δ→0+

P (K + δB) − P (K)

δ
= (n − 1)

ˆ

∂K

H1(x)dHn−1,

where H1(x) is the mean curvature of ∂K at a point x.
The Alexandrov-Fenchel inequalities state that

(

Wj(K)

ωn

)
1

n−j

≥

(

Wi(K)

ωn

)
1

n−i

, 0 ≤ i < j ≤ n − 1, (5)

where the inequality is replaced by an equality if and only if K is a ball.
In what follows, the Alexandrov-Fenchel inequalities will be used for particular values of i and
j. When i = 0 and j = 1, we have the classical isoperimetric inequality:

P (K) ≥ nωn

1

n |K|1− 1

n .

Moreover, if i = k − 1, and j = k, we have

Wk(K) ≥ ωn

1

n−k+1 Wk−1(K)
n−k

n−k+1 .
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Let us denote by K∗ a ball such that Wn−1(K) = Wn−1(K
∗). Then by the Alexandrov-Fenchel

inequalities (5), for 0 ≤ i < n − 1 it holds that

(

Wi(K
∗)

ωn

)
1

n−i

=
Wn−1(K∗)

ωn

=
Wn−1(K)

ωn

≥

(

Wi(K)

ωn

)
1

n−i

,

hence
Wi(K) ≤ Wi(K

∗), 0 ≤ i ≤ n − 1. (6)

Now consider the the two dimensional case. For an open, bounded, connected set D ⊂ R
2 we

denote by D∗ the disk having the same perimeter of D. If Ω = D + δB and Ω∗ = D∗ + δ∗B,
where B is the disk centered at the origin, the Steiner formulae become

|Ω| = |D| + P (D)δ + πδ2, P (Ω) = P (D) + 2πδ

|Ω∗| = |D∗| + P (D∗)δ∗ + πδ2
∗, P (Ω∗) = P (D∗) + 2πδ∗.

Let us observe that, in our context, if we ask that the area of the insulating material Ω \ D

remains constant, then

|Ω| − |D| = P (D)δ + πδ2 = |Ω∗| − |D∗| = P (D∗)δ∗ + πδ2
∗ .

Since P (D) = P (D∗), then δ = δ∗ and, as byproduct, P (Ω) = P (Ω∗). On the contrary, if
δ = δ∗, then |Ω| − |D| = |Ω∗| − |D∗|.
For a general bounded domain with piecewise C1 boundary, it holds that

|Ω| ≤ |D| + P (D)δ + πδ2, P (Ω) ≤ P (D) + 2πδ, (7)

hence δ = δ∗ implies
|Ω| − |D| ≤ |Ω∗| − |D∗|,

which means that the area of the insulating material increases keeping fixed the perimeter
P (D) and the thickness δ.

3 The variational problem

Given a compact set D in R
n and a bounded connected open set Ω of Rn with D ⊂ Ω̄, we are

interested to study

Iβ,p(Ω, D) = inf

{

ˆ

Ω

|Dφ|pdx + β

ˆ

∂∗Ω

|φ|pdHn−1, φ ∈ W 1,p(Ω), φ ≥ 1 in D

}

, (8)

with β > 0. The following result holds.
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Proposition 3.1. If Ω is bounded connected open set of Rn with Lipschitz boundary, and D

is a compact set with D ⊂ Ω, then there exists a unique positive minimizer u ∈ W 1,p(Ω) of (8)
such that satisfies























∆pu = 0 in Ω \ D

u = 1 in D

|Du|p−2 ∂u

∂ν
+ β|u|p−2

u = 0 on ∂Ω

(9)

Moreover the functional can be written as

Iβ,p(Ω, D) = β

ˆ

∂Ω

up−1 dHn−1, (10)

where u is the solution to (9).

Proof. The proof follows by a standard application of a calculus of variation’s argument. We
sketch the proof for completeness.
Let un be a minimizing sequence for Iβ,p(Ω, D). Then un is bounded in W 1,p, ∃unk

→ u

weakly in W 1,p(Ω), strongly in Lp and a.e in Ω. Then by semicontinuity, u is a minimizer of
Iβ,p(Ω, D). Moreover, being |u| still a minimizer, we can assume u ≥ 0. By Harnack, u > 0 in
Ω. Furthermore, by convexity, u is the unique minimizer and it satisfies























∆pu = 0 in Ω

u = 1 in D̄

|Du|p−2 ∂u

∂ν
+ βup−1 = 0 on ∂Ω

If we denote with W
1,p

D
(Ω) the closure in W 1,p(Ω) of {φ|Ω : φ ∈ C∞(Rn) with D̄ ∩ supp φ = ∅},

this is true, by definition, if and only if

ˆ

Ω\D

|Du|p−2
DuDφ dx + β

ˆ

∂Ω

up−1φ dHn−1 = 0

for any φ ∈ W
1,p

D
(Ω).

So, if we take φ = u − 1 ∈ W
1,p

D
(Ω),

ˆ

Ω

|Du|p−2
Du(Du) dx + β

ˆ

∂Ω

up−1u(u − 1) dHn−1 = 0

that is
ˆ

Ω

(Du)p dx + β

ˆ

∂Ω

(up − up−1) dHn−1 = 0

and this implies (10).
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4 The planar case

In this section we consider the case where Ω is the Minkowski sum

Ω = D + δB,

B is the unit ball centered at the origin and δ is a positive constant, representing the thickness
of Ω \ D. Then we set

Iβ,p,δ(D) = Iβ,p(D, D + δB).

Theorem 4.1. Let D be an open, bounded connected set of R
2 with piecewise C1 boundary.

Then
Iβ,p,δ(D) ≤ Iβ,p,δ(D

∗),

where D∗ is the disk having the same perimeter of D.

Proof. Let v be the radial minimizer of Iβ,p,δ(D
∗) and Ω∗ = D∗ + δB. Given R, the radius of

D∗, then denote by
vm = v(R + δ) = min

Ω∗

v

and
max

Ω∗

v = v(R) = 1.

Being v radial, the modulus of the gradient of v is constant on the level lines of v.
Let us consider the function

g(t) = |Dv|v=t, vm < t ≤ 1

and

w(x) = G(R + d(x)), x ∈ Ω, where G−1(t) = R +

ˆ 1

t

1

g(s)
ds

and d(x) is the distance of a point x from D. In particular, v is decreasing and the function
g can be zero only for v = 1. This means that G−1 is decreasing, therefore so is G and then
w ∈ W 1,p(Ω). It results:

max
Ω

w = w|∂D = 1 = G(R),

wm = min
Ω

w = w|∂Ω = G(R + δ) = vm,

|Dw|w=t = |Dv|v=t = g(t), wm ≤ t ≤ 1.

Hence w is a test function. Then

Iβ,p,δ(D) ≤

ˆ

Ω\D

|Dw|p dx + β

ˆ

∂Ω

|w|p dH1.

Let
Et = {x ∈ Ω : w(x) > t} = {x ∈ Ω : d(x) < G−1(t)} = D + G−1(t)B
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and let
Bt = {x ∈ Ω∗ : v(x) > t}.

By Steiner formula (7) we get
P (Ω) ≤ P (D) + 2πδ,

so
P (Et) ≤ P (D) + 2πG−1(t) = P (D∗) + 2πG−1(t) = 2π(R + G−1(t)) = P (Bt)

for every t ∈ ]wm, 1]. Hence,

ˆ

w=t

|Dw|dH1 =

ˆ

w=t

g(t)dH1 = g(t)P (Et) ≤ g(t)P (Bt) =

ˆ

v=t

|Dv|dH1, wm < t ≤ 1.

Then, by co-area formula

ˆ

Ω\D

|Dw|pdx =

ˆ 1

wm

dt

ˆ

w=t

|Dw|p−1
dH1

=

ˆ 1

wm

[g(t)]p−1P (Et)dt ≤

ˆ 1

wm

[g(t)]p−1P (Bt)dt

=

ˆ

Ω\D∗

|Dv|pdx.

(11)

Since by construction w = wm = vm on ∂Ω and P (Ω) = P (Ω∗), we have
ˆ

∂Ω

|w|pdH1 = |wm|pP (Ω) = |vm|pP (Ω∗) =

ˆ

∂Ω∗

|v|pdH1. (12)

Hence, by (14) and (12) it holds that

Iβ,p,δ(D) ≤

ˆ

Ω\D

|Dw|pdx + β

ˆ

∂Ω

|w|pdH1 ≤

ˆ

Ω∗\D∗

|Dv|pdx + β

ˆ

∂Ω∗

|v|pdH1 = Iβ,p,δ(D
∗).

5 The n-dimensional case

Now we prove that in higher dimension (n ≥ 3) balls still maximize Iβ,p,δ, but our result finds
its natural generalization in the class of convex domains D.

Theorem 5.1. Let D be an open, bounded, convex set of Rn. Then

Iβ,p,δ(D) ≤ Iβ,p,δ(D
∗),

where D∗ is the ball having the same Wn−1 quermassintegral of D, that is Wn−1(D) = Wn−1(D
∗).
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Proof. Let be Ω∗ = D∗+δB, and v the radial minimizer of Iβ,p,δ(D
∗). Since Ω = D+δB, Steiner

formula for the perimeter (2) and Aleksandrov-Fenchel inequalities (6) imply P (Ω) ≤ P (Ω∗).
We denote by vm = v(R + δ) = minΩ∗ v and by maxΩ∗

v = v(R) = 1. Being v radial, the
modulus of the gradient of v is constant on the level lines of v.
Let us consider the function

g(t) = |Dv|v=t, vm < t ≤ 1

and

w(x) = G(R + d(x)), x ∈ Ω, where G−1(t) = R +

ˆ 1

t

1

g(s)
ds,

and d(x) is the distance of a point x from D.
By construction w ∈ W 1,p(Ω) and being G decreasing it results:

max
Ω

w = w|∂D = 1 = G(R),

wm = min
Ω

w = w|∂Ω = G(R + δ) = vm,

|Dw|w=t = |Dv|v=t = g(t), wm ≤ t ≤ 1.

Then

Iβ,p,δ(D) ≤

ˆ

Ω\D

|Dw|p dx + β

ˆ

∂Ω

|w|p dHn−1.

Let
Et = {x ∈ Ω : w(x) > t} = {x ∈ Ω : d(x) < G−1(t)} = D + G−1(t)B

and
Bt = {x ∈ Ω∗ : v(x) > t}.

Being Wn−1(D) = Wn−1(D
∗), using the Steiner formula and (6), we get for wm < t ≤ 1 and

ρ = G−1(t) that

P (Et) = P (D + ρB) = n
n−1
∑

n=0

(

n − 1

k

)

Wk+1(D)ρk

≤
n−1
∑

n=0

(

n − 1

k

)

Wk+1(D
∗)ρk = P (D∗ + ρB) = P (Bt).

Hence
ˆ

w=t

|Dw|dHn−1 = g(t)P (Et) ≤ g(t)P (Bt) =

ˆ

v=t

|Dv|dHn−1, wm < t ≤ 1

then, by co-area formula
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ˆ

Ω\D

|Dw|pdx =

ˆ 1

wm

dt

ˆ

w=t

|Dw|p−1
dHn−1

=

ˆ 1

wm

[g(t)]p−1P (Et)dt ≤

ˆ 1

wm

[g(t)]p−1P (Bt)dt

=

ˆ

Ω\D∗

|Dv|pdx.

Since by construction w = wm = vm on ∂Ω and P (Ω) ≤ P (Ω∗), we have

ˆ

∂Ω

|w|pdHn−1 = |wm|pP (Ω) = |vm|pP (Ω∗) =

ˆ

∂Ω∗

|v|pdHn−1.

So,

Iβ,p,δ(D) ≤

ˆ

Ω\D

|Dw|pdx + β

ˆ

∂Ω

|w|pdHn−1

≤

ˆ

Ω∗\D∗

|Dv|pdx + β

ˆ

∂Ω∗

|v|pdHn−1 = Iβ,p,δ(D
∗).

6 Remarks

There is a counterintuitive behaviour of the functional Iβ,p,δ(D, Ω) when Ω and D are concentric
balls, which is very peculiar and that can be summarized in next two propositions.

Proposition 6.1. Let BR be a ball of radius R. If β ≥

[

n − 1

R(p − 1)

]p−1

then Iβ,p,δ(BR) is

decreasing in δ. When β <

[

n − 1

R(p − 1)

]p−1

, then Iβ,p,δ(BR) is increasing for δ <

(

n − 1

p − 1

)

1

β
1

p−1

−

R and decreasing for δ >

(

n − 1

p − 1

)

1

β
1

p−1

− R.

Proof. If D = BR is a ball with radius R, then obviously Ω = BR + δB = BR+δ and the
minimum of (8), u(x) = u(r), is

u(r) =















1 − γ1

1

p−1

(

p − 1

p − n

)

R
p−n

p−1

[(

r

R

)

p−n

p−1

−1

]

p 6= n

1 − γ1

1

n−1 log r
R

p = n

(13)
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for a suitable constant γ1. This follows from the fact that

rn−1∆pu =
d

dr
(rn−1|u′(r)|

p−2
u′(r)) = 0,

but u is decreasing and positive, then

u′(r) = −
γ1

1

p−1

r
n−1

p−1

, r ∈ [R, R + δ]

If p 6= n, then integrating by parts and keeping in mind that u(R) = 1 it holds

u(r) = −γ1

1

p−1

(

p − 1

p − n

)[

r
p−n

p−1 − R
p−n

p−1

]

+ 1.

If p = n,

u(r) = −γ1

1

n−1 log
r

R
+ 1.

Now, we can find γ1 using the boundary conditions.
If p 6= n,then using Robin condition on ∂Ω it holds that

−(−u′(R + δ))p−1 + β(u(R + δ))p−1 = 0.

By using the explicit expression of u,

γ1

1

p−1 (R + δ)− n−1

p−1 = β
1

p−1

(

−γ1

1

p−1

(

p − 1

p − n

)

R
p−n

p−1

(

1 −

(

R + δ

R

)
p−n

p−1
)

+1

)

and we have that

γ1 =
β

[

(R + δ)− n−1

p−1 +

(

p − 1

p − n

)

β
1

p−1 R
p−n

p−1

((

R + δ

R
− 1

)
p−n

p−1
)]p−1

.

In particular,
ˆ

∂(Ω\D)

(|Du|p−2
Du · ν) dHn−1 = 0

and using the divergence theorem

−

ˆ

Ω\D

|Du|p +

ˆ

∂(Ω\D)

u(|Du|p−2
Du · ν) = 0

−

ˆ

Ω\D

|Du|p −

ˆ

∂Ω

βup +

ˆ

∂D

u(|Du|p−2
Du · ν) = 0.

This implies that

Iβ,p,δ(BR) =

ˆ

∂BR

|Du|p−2 ∂u

∂ν
dHn−1.
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Let us observe that
Iβ,p,δ(BR) = nωnγ1

and we have
∂δ[Iβ,p,δ(BR)] < 0

if

∂δ

[

(R + δ)
1−n
p−1 + β

1

p−1

(

p − 1

p − n

)

R
p−n

p−1

((

R + δ

R

)
p−n

p−1

−1

)]

> 0

and this is true if

δ >

(

n − 1

p − 1

)

1

β
1

p−1

− R.

On the other hand, when p = n we have

γ1 =
β

[

1
(R+δ)

+ β
1

n−1 log R+δ
R

]n−1

and

Iβ,n,δ(BR) =
nωnβ

[

1
(R+δ)

+ β
1

n−1 log R+δ
R

]n−1 .

So
∂δ[Iβ,p,δ(BR)] < 0

if

∂δ

[

1

(R + δ)
+ β

1

n−1 log

(

1 +
δ

R

)]

> 0

and this is true if and only if

δ >
1

β
1

n−1

− R,

and the proposition is proved.

To show next result, we first need the following Lemma, using the following notation.
Let D = BR ⊂ Ω, and denote by

P = P (BR) = nωnRn−1, V = |BR|

= ωnRn, ∆P = P (Ω) − P (BR), ∆V = |Ω| − |BR|.

Lemma 6.2. Let D = BR and BR ⊂ Ω. For any δ0 > 0, there exists a constant

C =
nωnRn−1

δ0

[(

1 +
δ0

ωnRn

)1− 1

n

−1

]

such that if ∆V ≤ δ0 it holds that
∆P ≥ C∆V.
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We refer to [8] for the proof.
Now, we want to prove that, in the regime β "small", if the thickness δ is below a certain
threshold value, Iβ,p(BR, Ω) is greater then Iβ,p(BR, BR).

Proposition 6.3. Let D = BR(0) and β <

[

n − 1

R(p − 1)

]p−1

. Then there exists a positive

constant δ0 such that for any bounded domain Ω, with D ⊂ Ω and |Ω| − |D| < δ0, then

Iβ,p(BR, Ω) > Iβ,p(BR, BR)

Proof. Let u be the minimizer of Iβ,p(BR, Ω). Consider

Σ = Ω \ BR, Γm = ∂Ω \ ∂BR, Γt = ∂{u > t} \ ∂BR, Γ1 = ∂BR ∩ Ω

and
p(t) = P ({u > t} ∩ Σ), for a.e. t > 0.

We want to show that

Iβ,p(BR; BR) = βP (BR) < Iβ,p(BR; Ω) =

ˆ

Ω

|Du|pdx + β

ˆ

∂Ω

|u|pdHn−1

or equivalently

Hn−1(Γ1) <
1

β

ˆ

Ω

|Du|pdx +

ˆ

Γ0

|u|pdHn−1

then using coarea formula and Fubini theorem we have

ˆ 1

0

tp−1p(t)dt =

ˆ 1

0

tp−1P ({u > t} ∩ Σ)dt

=

ˆ 1

0

(

ˆ

Γ1

tp−1dHn−1

)

dt +

ˆ 1

0

(

ˆ

Γt∩Ω

tp−1dHn−1

)

dt +

ˆ 1

0

(

ˆ

Γt∩∂Ω

tp−1dHn−1

)

dt

=
Hn−1(Γ1)

p
+

1

p

ˆ

Γ0

updHn−1 +

ˆ

Ω

up−1|Du|dx.

(14)
From the Lemma 6.2 we know that for |Σ| < δ0, with δ0 fixed,

p(t) − 2Hn−1(Γ1) ≥ Cµ(t)

and then
ˆ 1

0

tp−1p(t)dt ≥ 2

ˆ 1

0

tp−1Hn−1(Γ1)dt + C

ˆ 1

0

tp−1µ(t)dt =
2

p
Hn−1(Γ1) +

C

p

ˆ

Ω

updx,
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where C is the constant of the Lemma 6.2. Hence, substituing in (14)

2

p
Hn−1(Γ1) +

C

p

ˆ

Ω

updx ≤
Hn−1(Γ1)

p
+

1

p

ˆ

Γ0

updHn−1 +

ˆ

Ω

up−1|Du|dx.

On the other hand, by the Young inequality
ˆ

Ω

up−1|Du|dx ≤
p − 1

pǫ
1

p−1

ˆ

Ω

updx +
ǫ

p

ˆ

Ω

|Du|pdx

Hn−1(Γ1) + C

ˆ

Ω

|u|pdx ≤

ˆ

Γ0

updHn−1 +
p − 1

ǫ
1

p−1

ˆ

Ω

updx + ǫ

ˆ

Ω

|Du|pdx =

=

ˆ

Γ0

updHn−1 +
p

ǫ
1

p−1

ˆ

Ω

updx −
1

ǫ
1

p−1

ˆ

Ω

updx + ǫ

ˆ

Ω

|Du|pdx

and choosing ǫ =
1

β
it holds that

Hn−1(Γ1) + [C − β
1

p−1 (p − 1)]

ˆ

Ω

updx ≤

ˆ

Γ0

updHn−1 +
1

β

ˆ

Ω

|Du|pdx.

Then, being R <
n − 1

(p − 1)β
1

p−1

, for δ0 sufficiently small the constant C is larger then β
1

p−1 (p−1)

and thesis follows.
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