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VLASOV EQUATIONS ON DIRECTED HYPERGRAPH MEASURES

CHRISTIAN KUEHN 1,2 AND CHUANG XU 3

Abstract. In this paper we propose a framework to investigate the mean field limit (MFL)
of interacting particle systems on directed hypergraphs. We provide a non-trivial measure-
theoretic viewpoint and make extensions of directed hypergraphs as directed hypergraph
measures (DHGMs), which are measure-valued functions on a compact metric space. These
DHGMs can be regarded as hypergraph limits which include limits of a sequence of hyper-
graphs that are sparse, dense, or of intermediate densities. Our main results show that the
Vlasov equation on DHGMs are well-posed and its solution can be approximated by em-
pirical distributions of large networks of higher-order interactions. The results are applied
to a Kuramoto network in physics, an epidemic network, and an ecological network, all of
which include higher-order interactions. To prove the main results on the approximation
and well-posedness of the Vlasov equation on DHGMs, we robustly generalize the method
of [Kuehn, Xu. Vlasov equations on digraph measures, arXiv:2107.08419, 2021] to higher-
dimensions. In particular, we successfully extend the arguments for the measure-valued
functions f : X → M+(X) to those for f : X → M+(Xk−1), where X is the vertex space
of DHGMs and k ∈ N \ {1} is the cardinality of the DHGM.

1. Introduction

Many science phenomena in diverse areas including epidemiology [30], ecology [43], physics
[40], social science [25], communication systems [17], etc., can be described as an interacting
particle system (IPS), or equivalently, a dynamical system on networks [39, 40]. Classical
works mainly focused on the dynamics of the IPS with interactions of rather simple types
coupled on an all-to-all graph [39]. More recently, studies have concentrated more on the
complex dynamics caused by (i) the interaction types and (ii) the heterogeneity of the under-
lying network/graph [2]. In particular, certain IPS incorporating indirect interactions beyond
pairwise interactions between two particles have been considered [6, 7]. For instance, in a
deterministic chemical reaction network, the concentration of a species A depends on all re-
actions where A appears either in the reactant or in the product [20]. Such interactions are
called higher order (or polyadic) interactions [2, 49, 8].

It is in general difficult to analyze an IPS analytically or numerically, due to the large size
(the total species counts in a chemical reaction network [20] or the total population size [37])
of the IPS. One popular way to study these IPS is via the so-called mean field analysis [46].
For example, given a large system of indistinguishable oscillators coupled on a given graph,
one asks how to characterize the dynamics of a typical oscillator? It turns out that one can
first sample the individual behavior of the oscillators on each node independently to derive a
empirical distribution of the first N oscillators, and then consider a weak limit of the sequence
of empirical distributions as N → ∞. Such a limit, if it exists, is the so-called mean field
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2 CHRISTIAN KUEHN AND CHUANG XU

limit (MFL) [46, 23]. MFLs generally relate to a transport type PDE, the so-called Vlasov
equation (VE), whose weak solution is the density of the MFL. Hence to explore the dynamics
of the IPS of a large size, one can turn to study the dynamics of the VE.

Let us review some recent works, where the emphasis is the influence of the heterogeneity of
the underlying graph on the dynamics of the network, in which case particles are distinguish-
able. Among all types of networks in epidemiology, ecology, social science, one key benchmark
example is the Kuramoto network, a network of oscillators used to model diverse phenomena
in e.g., physics, neuroscience, etc. [40]. For deterministic oscillator dynamics (particularly
for deterministic Kuramoto network coupled on deterministic or random (e.g., Erdős-Rényi)
graphs), the well-posedness and approximation of the MFL has been investigated [28, 15] for
a Kuramoto network coupled on a sequence of heterogeneous graphs whose limit is a graphon
[35]. Based on the VE, one can then further study the bifurcations in the Kuramoto network
[15]. Later, the results were generalized to the situation, where the graph limit may not ne-
cessarily be a graphon, e.g., a graphop [22], a digraph measure [31], or a limit of a sequence of
sparse graphs–a generalized graphon [26]. We point out that the technical approach in [26] is
different from that in [31]. In stochastic settings, MFL results were established for IPS based
on systems of SDEs coupled also on heterogeneous graphs (particularly sparse graphs due to
practical considerations) [34, 33, 42].

There are many network models with higher-order interactions, e.g., the Kuramoto-Sakaguchi
network [5], mathematical models based on random replicator dynamics [2], three-player
games [2], Chua oscillator models [21], among many others. Effectively almost all of these
models have been only been studied by direct numerical simulation or formal analytical tech-
niques [2]. In contrast, rigorous theoretical results for MFLs of IPS with higher-order in-
teractions are extremely rare. The underlying topological structure for such systems are
hypergraphs (see Figure 1 for the illustration of a hypergraph) [38]. In [6], the MFL of a
Kuramoto network coupled on complete k-partite hypergraphs for finite k ∈ N was analyzed.
In [29], quenched mean field approximation (QMFA) of continuous time Markov chains on
directed hypergraphs of a uniformly bounded cardinality (for the definition of cardinality, see
Definition 2.6 in the next section) was analyzed. It is noteworthy that the QMFA is also
called N -intertwined mean field approximation (NIMFA). Such mean field approximation
neglects dynamical correlation between nodes of the hypergraph, which is different from the
mean field limit. Our results on MFLs may help provide a deeper insight, how dynamics of a
network of higher-order interactions depend on the heterogeneity of the underlying coupling
graph/hypergraph.

Indeed, even from the viewpoint of graph theory, there exists a much smaller literature on
hypergraph limits (a special case of hypergraph limits, is called ultralimit hypergraph in [19],
corresponding to the limit of dense hypergraphs) [47, 24, 27, 19, 35, 13, 51], in comparison to
the graph limits [4, 36, 35, 32, 1].

In this paper, we aim to propose a general framework to study the MFL of a class of
IPS coupled on heterogeneous hypergraphs. For the ease of exposition, here we only con-
sider dynamical systems on one hypergraph. Straightforward extension to a finitely many
hypergraphs can be done, e.g., in a similar manner as in [31].

Consider the following network dynamical system on an r-layer directed hypergraph of
rank κ:

φ̇N
i =hN

i (t, φN
i ) +

r∑

ℓ=1

1

Nkℓ−1

N∑

j1=1

· · ·
N∑

jkℓ−1=1

W
(ℓ,N)
i,j1,...,jkℓ−1

gℓ(t, φ
N
i , φ

N
j1
, . . . , φN

jkℓ −1
),(1.1)

where for ℓ = 1, . . . , r, gℓ is the coupling function of layer ℓ, W (ℓ,N) = (W
(ℓ,N)
i,j1,...,jkℓ−1

) is

the weight matrix associated with the kℓ-uniform hypergraph Hℓ,N = (VN , Eℓ,N ) of layer
ℓ with the set of nodes V N = [N ] consisting of integers from 1 to N and the set Eℓ,N of
(hyper)-edges; φN

i ∈ Rd stands for the dynamics on the i-th node, and hN
i is the vector
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field for node i, for i = 1, . . . , N . Note that a directed edge (i, j1, . . . , jkℓ−1) ∈ Eℓ,N if and

only if W ℓ,N
i,j1,...,jkℓ−1

> 0. Hence one can regard HN = (VN , EN ) with E = ∪r
ℓ=1Eℓ,N , is

a hypergraph of rank κ := max{kℓ : ℓ=1,...,,r}. We assume w.l.o.g. that {kℓ}
r
ℓ=1 consists of

distinct numbers. Indeed, one can always take the uinon of all uniform hypergraphs of the
same cardinality as a new hypergraph. We emphasize that κ (and therefore r) is independent
of the graph size N . Although such framework may not be suitable for modelling networks on
a sequence of simplicial complexes with growing cardinalities [41, 44], it already covers several
important network dynamical models from different disciplines of sciences [2]. Furthermore,
one can easily extend the results of this paper to investigate the MFL of IPS on Riemannian
manifolds with higher-order interactions (see Section 6.1).

To better reveal the essence of our main result (Theorem 5.6), we illustrate it here for
a one-dimensional Kuramoto network coupled on a higher-dimensional ring which can be
decomposed into two uniform hypergraphs, where in (1.1), r = 2, the adjacency matrices
associated with a 2-uniform and a 3-uniform hypergraphs for ℓ = 1, 2 are

W
(1,N)
ij =

{
1, if |i− j| = 1 mod N,

0, else,
W

(2,N)
ijk =

{
1, if |i − j| = |j − k| = 1 mod N, k 6= i,

0, else.

This is a sparse hypergraph of cardinality 3. Assume hN
i (t, u) ≡ h(t, u) for some h ∈ C1([0, T ]×

T) and T > 0, for all i = 1, . . . , N and N ∈ N. Let X = T. It is readily verified that the weak
limit of W (ℓ,N) is a measure-valued function ηℓ : x 7→ ηx

ℓ defined as follows for ℓ = 1, 2:

ηx
1 = 2δx, ηx

2 = 2δ(x,x), for x ∈ X.

Then the VE (i.e., the mean field equation) is given by

∂ρ

∂t
(t, x, φ) + divφ

(
ρ(t, x, φ)V̂ [η, ρ(·), h](t, x, φ)

)
= 0, t ∈ (0, T ], x ∈ X, m-a.e. φ ∈ T,

ρ(0, ·) = ρ0(·),

where

V̂ [η, ρ(·), h](t, x, φ) =

∫

X

∫

T

g1(t, φ, ψ1)ρ(t, y1, ψ1)dψ1dηx
1 (y1) +

∫

X2

∫

T

∫

T

g2(t, φ, ψ1, ψ2)

ρ(t, y2, ψ2)ρ(t, y1, ψ1)dψ2dψ1dηx
2 (y1, y2) + h(t, x, φ).

As we will see in Section 6.1, one may obtain well-posedness as well as approximation of the
MFL as an application of Theorem 5.6. In fact, our most general result applies to the model

v1

v2
v3

v5

v4

e1
e2

e3

Figure 1. A hypergraph of rank 3, one hyper-edge of cardinality 2 (e2),
and two hyper-edges of cardinality 3 (e1 and e3). The set of vertices is
V = {v1, . . . , v5}, and the set of hyper-edges is E = {e1, e2, e3}.
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(1.1) on hypergraph limits using a suitable equation of characteristics involving generalized
measure-valued functions ηℓ, see Section 3.

In the following, we describe the methods we use to obtain the well-posedness as well as
approximation in the context of model (1.1). First, we propose directed hypergraph measures
(abbreviated as DHGM), which are measure-valued functions defined on a compact metric
space. The definition of DHGM is motivated by the so-called digraph measure proposed
in [31], corresponding to the limit of a sequence of directed graphs. We point out that
such a generalization to hypergraphs is different from the hypergraph limits defined in the
literature of combinatorics and graph theory [19, 35]. In particular, we compare the difference
between two DHGMs using uniform bounded Lipschitz metric, in contrast to the classical
homeomorphism density [19, 26] used in the contexts of both graph limits and hypergraph
limits. Resting on the proposed notion of DHGM, we propose a generalized model of (1.1),
which can be regarded as the fiberized equation of characteristics associated with (1.1). We
mention that such type of equation of characteristics indexed by vertices of a graph limit
seemed to first appear in [28]. Moreover, we then prove the well-posedness of the equation
of characteristics. Using the flow generated by this equation of characteristics, we define
the generalized VE (or, fixed point equation), which is a time-dependent measure-valued
equation (i.e., the measure at time t is the push-forward of the initial measure under the
flow of the equation of characteristics). Then, under rather mild conditions for the DHGM
(basically, uniform boundedness of the DHGM), we obtain the well-posedness of the VE (a
transport type PDE whose uniform weak solution is the density of the MFL). To obtain the
approximation of the MFL by empirical measures, we rely on the recently developed result
of uniform approximation of probability measures on Euclidean spaces [50, 14, 3] (see also
[31]), which is different from the Martingale Convergence Theorem for the approximation of
integrable functions exmployed in [28]. For the approximation results to hold, we need some
continuity of the DHGM.

We like to point out that for combinatorial reasons, it is known to be inappropriate to
view hypergraph limits as a function defined on the space of vertices [35], provided e.g. the
underlying metric is the homomorphism density. Nevertheless, for analytical reasons, we here
use a uniform bounded Lipschitz metric, which may induce a uniform weak topology on the
space of measure-valued functions [31]. To work under this metric, we successfully obtain
the results on the MFL. This also demonstrates the robustness of the idea initiated in [31] to
study MFLs of IPS on heterogeneous graph limits.

Next, we outline the structure of the paper. In Section 2, we introduce the notation, provide
some basics in measure theory, and define directed hypergraph measures (DHGM) with ample
examples of independent interest. In Section 4, using DHGM, we propose a generalized
model of (1.1), which serves as the fiberized equation of characteristics. In Section 5, we
prove approximation of the MFL by a sequence of ODEs coupled on hypergraphs, based on
several lemmas from [31]. Finally in Section 6.1, we apply our theoretical results to three
network models of higher-order interactions in physics, epidemiology, and ecology.

2. Preliminaries

Notation. Let R+ be the set of nonnegative real numbers. For i = 1, 2, let Xi be a complete
subspace of a finite dimensional Euclidean space endowed with the metric di induced by
the ℓ1-norm | · |. For instance Xi can be a sphere, a torus, or any other compact set of a
Euclidean space. For any k ∈ N and x ∈ Rk, let [k] := {j}k

j=1, δx denote the Dirac measure

at x, and m be the Lebesgue measure on Rk; here we omit the explicit dependence of m on
the dimension k. For any measurable subset A in a Euclidean space endowed with norm
| · − · |, let dimH(A) denote the Hausdorff dimension of A, DiamA := supx,y∈A |x − y| be
its diameter; by convention, DiamA = 0 if the cardinality #A ≤ 1. We use λ|A to denote
the uniform (probability) measure over A whenever appropriate (e.g., when A is either finite
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or Lebesgue measurable with a finite Lebesgue measure). Let 1A be the indicator function
on A. Let X be a Borel measurable space. For k ∈ N, and for any Borel set A ⊆ Xk,
let π1A = {z1 ∈ X : z ∈ A} denote the projection of A onto the first coordinate in X ; let
Ax = {(z2, . . . , zk) : z1 = x, z ∈ A} be the vertical slice of A through a point in A with the
first coordinate x ∈ X . For any a ∈ A, let δx be the Dirac measure at the point a ∈ A. For

two real-valued functions f and g, we denote f - g if there exists C > 0 such that f(x)
g(x) ≤ C,

and f ∼ g if both f - g and g - f .

Measure-valued functions. Let M+(X2) be the set of all finite Borel positive measures on
X2 and P(X2) the space of all Borel probability measures on X2. Given a reference measure
µX2 ∈ P(X2), let M+,abs(X2) ⊆ M+(X2) be the space of all absolutely continuous finite
positive measures w.r.t. µX2 .

Let B(X1, X2) (C(X1, X2), Cb(X1, X2), respectively) be the space of bounded measurable
functions (continuous functions, bounded continuous functions, respectively) from X1 to X2

equipped with the same uniform metric:

d(f, g) = sup
x∈X1

d2(f(x), g(x)).

Let L(X1, X2) := {g ∈ C(X1, X2) : L(g) := supx 6=y
d2(g(x),g(y))

d1(x,y) < ∞} be the space of Lipschitz

continuous functions from X1 to X2. Hence BL(X1, X2) = B(X1, X2)∩L(X1, X2) denotes the
space of bounded Lipschitz continuous functions. In particular, when X2 = R, we suppress
X2 in B(X1, X2) and simply write B(X1). Similarly, we write C(X1) for C(X1,R), etc. In this
case, B(X1), C(X1) and Cb(X1) are all Banach spaces with the supremum norm

‖f‖∞ := sup
x∈X1

|f(x)|.

Let µX1 ∈ P(X1) be the reference measure on X1. Let BL1(X2) = {g ∈ BL(X2) : BL(g) :=
‖g‖∞ + L(g) ≤ 1}.

Define the bounded Lipschitz norm (on the space of all finite signed Borel measures):

‖ν‖BL := sup
f∈BL1(X2)

∫

X1

fdν, ν ∈ M+(X2),

which induces the bounded Lipschitz distance: For ν1, ν2 ∈ M+(X2),

dBL(ν1, ν2) = sup
f∈BL1(X2)

∫
f(x)d(ν1(x) − ν2(x)).

Recall that (M+(X2), dBL) is a complete metric space [10]. Define the uniform bounded
Lipschitz metric:

(2.1) d∞(η1, η2) = sup
x∈X

dBL(ηx
1 , η

x
2 ), for η1, η2 ∈ B(X1,M+(X2)).

Hence B(X1,M+(X2)) and Cb(X1,M+(X2)) equipped with the uniform bounded Lipschitz
metric are complete.

For every η ∈ M+(X2), let

‖η‖TV = sup
A∈B(X2)

η(A) = η(X2)

be the total variation norm of η, where B(X2) is the Borel sigma algebra of X2. For
B(X1,M+(X2)) ∋ η : x 7→ ηx, let

‖η‖ := sup
x∈X1

‖ηx(X2)‖

Let

B∗(X1,M+(X2)) :=

{
η ∈ B(X1,M+(X2)) :

∫

X1

ηx(X2)dµX1 (x) = 1

}
,
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C∗(X1,M+(X2)) := B∗(X1,M+(X2)) ∩ C(X1,M+(X2)),

Let I ⊆ R be a compact interval and k ∈ N. For h ∈ C(I ×X1 ×X2,R
k), let

‖h‖∞,I := sup
τ∈I

sup
u∈X1

sup
v∈X2

|h(τ, u, v)|.

For η· ∈ C(I,B(X1,M+(X2))), let

‖η·‖ = sup
t∈I

sup
x∈X1

‖ηx
t ‖TV

be the norm of the function η·
To construct solutions to Vlasov equations on DHGMs, we need to first define “weak

continuity” of measure-valued functions [31].

Definition 2.1. For i = 1, 2, let Xi be a complete subspace of a finite dimensional Euclidean
space. Assume (X1,B(X1), µX1 ) is a compact probability space. For

B∗(X1,M+(X2)) ∋ η :

{
X1 → M+(X2),

x 7→ ηx,

η is weakly x-continuous (or weakly continuous if the variable is clear from the context) if for
every f ∈ Cb(X2),

C(X1) ∋ η(f) :

{
X1 → R,

x 7→ ηx(f) :=
∫

X2
fdηx.

Definition 2.2. For i = 1, 2, let Xi be a complete subspace of a finite dimensional Euclidean
space. Assume (X1,B(X1), µX1 ) is a compact probability space. Let I ⊆ R be a compact
interval. For

η· :

{
I → B(X1,M+(X2)),

t 7→ ηt,

η· is x-uniformly weakly t-continuous (or uniformly weakly t-continuous if the spatial variable
x is clear from the context) if for every f ∈ Cb(X2), t 7→ ηx

t (f) is continuous in t uniformly in
x ∈ X1.

Recall the following proposition from [31, Proposition 3.9] on the relation between con-
tinuity and (uniform) weak continuity. This proposition will be used the proofs of the main
results.

Proposition 2.3. For i = 1, 2, let Xi be a subspace of a finite dimensional Euclidean space.
Assume X1 and X2 are both compact, and (X1,B(X1), µX1 ) is a probability space. Let I ⊆ R

be a compact interval.

(i) Let η· : I → B∗(X1,M+(X2)). Then η· is x-uniformly weakly t-continuous if and
only if η· ∈ C(I,B∗(X1,M+(X2))).

(ii) Assume η·, ξ· ∈ C(I,B∗(X1,M+(X2))), then ‖η·‖ < ∞ and t 7→ d∞(ηt, ξt) is conti-
nuous.

(iii) Assume η ∈ C(X1,M+(X2)). Then η is weakly x-continuous.
(iv) Assume η ∈ C(X1,M+(X2)). Let m ∈ N,

η(m) : Xm
1 ∋ (x1, . . . , xm) 7→ ⊗m

j=1η
xj ∈ M+(Xm

2 ).

Then η(m) is weakly x-continuous.

Proof. Items (ii)-(iii) follow directly from [31, Proposition 3.9]. The last statement (iv) can
be proved similarly to (iii). We only prove (i).
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Step I. x-uniform weak t-continuity implies continuity. Assume η· is x-uniformly weakly t-
continuous. Fix t ∈ I and I ∋ tj → t. Since η· is x-uniformly weakly t-continuous,
for every f ∈ Cb(X2),

(ηtj
)x(f) → (ηt)x(f) uniformly in x.

Since X2 is a complete, separable metric space, dBL metrizes the weak-∗ topology of
M+(X2) [10, Thm. 8.3.2]. Using the supremum representation of dBL and note that
BL1(X2) ⊆ Cb(X2), we have

lim
j→∞

dBL((ηtj
)x, (ηt)x) = 0,

and the convergence is uniform in x ∈ X1. This means that

lim
j→∞

sup
x∈X1

dBL((ηtj
)x, (ηt)x) = 0,

i.e.,

lim
j→∞

d∞(ηtj
, ηt) = 0,

which shows η· ∈ C(I,BµX1 ,1(X1,M+(X2))).

Step II. Continuity implies x-uniform weak t-continuity. Assume η· ∈ C(I,BµX1 ,1(X1,M+(X2))).
For every fixed t ∈ I and I ∋ tj → t, we have

(2.2) lim
j→∞

d∞(ηtj
, ηt) = 0.

Let f ∈ Cb(X2). Since X2 is compact, by [16, Corollary 6.2.2] for every ε > 0, there

exists M ≥ 1 and f̃ ∈ BL(X2) such that BL(f̃) ≤ M and

(2.3) ‖f − f̃‖∞ <
ε

3(1 + ‖η·‖)

It follows from (2.2) that there exists J ∈ N such that for all j ≥ J ,

(2.4) sup
g∈BL1(X2)

|ηx
tj

(g) − ηx
t (g)| <

ε

3M

Note that f̃
M ∈ BL1(X2). Hence

|ηx
tj

(f̃) − ηx
t (f̃)| = M |ηx

tj
(f̃/M) − ηx

t (f̃ /M)| < M ·
ε

3M
=
ε

3
, for all x ∈ X

Using triangle inequality, (2.3) and (2.4),

|ηx
tj

(f) − ηx(f)| ≤|ηx
tj

(f) − ηx
tj

(f̃)| + |ηx
tj

(f̃) − ηx(f̃)| + |ηx(f̃) − ηx(f)|

≤‖f − f̃‖∞‖η·‖ +M |ηx
tj

(f̃ /M) − ηx(f̃ /M)| + ‖f − f̃‖∞‖η·‖

≤
ε

3(1 + ‖η·‖)
+M

ε

3M
+

ε

3(1 + ‖η·‖)
< ε

This shows that η· is x-uniformly weakly t-continuous.

�

Definition 2.4. For i = 1, 2, let Xi be a complete subspace of a finite dimensional Euclidean
space. Assume that (X1,B(X1), µX1 ) is a compact probability space. Let I ⊆ R be a compact
interval and α > 0. For ν1

· , ν
2
· ∈ C(I,B∗(X1,M+(X2))), let

dα(ν1
· , ν

2
· ) = sup

t∈I
e−αtd∞(ν1

t , ν
2
t )

be a weighted uniform metric. In particular,

d0(ν1
· , ν

2
· ) = sup

t∈I
d∞(ν1

t , ν
2
t ).
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Proposition 2.5. [31, Proposition 3.11] For i = 1, 2, let Xi be a complete subspace of a
finite-dimensional Euclidean space. Assume that (X1,B(X1), µX1 ) is a compact probability
space. Let I ⊆ R be a compact interval and α > 0. Then (C(I,B∗(X1,M+(X2))), dα) and
(C(I, C∗(X1, M+(X2))), dα) are both complete.

2.1. Hyper-digraph measures. In this subsection, we recall some basics of hypergraphs
and define their generalizations with illustrative examples.

Definition 2.6. Let κ ∈ N. A directed hypergraph H is a pair H = (V , E), where V is the set
of N ∈ N vertices, and E ⊆ ∪k∈IVk with I ⊆ [κ], consists of hyper-edges (or edges for short, so
long as no confusion will arise in the context) identified as a vector without having repetitions
in the coordinates. We assume w.l.o.g. that κ ∈ I (otherwise one can choose max I to replace
κ), and κ is called the rank of H. For every directed hyper-edge e = (vi1 , vi2 , . . . , vik

) for some
k ∈ I, vi1 and vik

are the head and the tail of the hyper-edge, respectively; k is the cardinality
of the edge e. In particular, if I = {k} is a singleton, then H is a k-uniform directed hypergraph
with k being the cardinality of each directed edge. A k-uniform directed hypergraph (VN , EN )
is [k]-permutation invariant if EN = {((jσ(1), jσ(2), . . . , jσ(k))) : (j1, j2, . . . , jk) ∈ EN } for any
permutation σ : [k] → [k]. A [k]-permutation invariant directed hypergraph is a k-uniform
hypergraph. A k-uniform hypergraph consisting of all possible hyper-edges of cardinality k is
called a complete k-uniform hypergraph, and denoted Kk

N . for a directed hyper-edge e ∈ E
of cardinality k. If every directed hyper-edge e ∈ E is assigned a positive weight ae, then
the directed hypergraph H is called a weighted directed hypergraph.1 A directed hypergraph
H of a finite rank κ can be decomposed into a finite union of k-uniform hypergraphs Hk for
2 ≤ k ≤ κ of the same set of vertices; in this case, each subhypergraph Hk is called a layer of
H, and H is a multi-layer directed hypergraph if it contains more than one layer.

Remark 2.7. • The concept of layer of a hypergraph of a finite rank comes from [18].
• We point out that hypergraph defined in the literature (e.g.,[19]) is undirected in the

sense that each edge is regarded as a set of distinct vertices rather than a vector. For
example, let H = (V , E) with V = [4] be a directed 3-hypergraph with E consisting
of all hyper-edges of cardinality 3. Hence (1, 2, 3) and (1, 3, 2) stand for two different
directed hyper-edges.

• The density of a sequence of k-uniform hypergraphs {HN = (VN , EN )}N∈N is char-
acterized by the asymptotics of the sequence of degrees of the hypergraphs:

(2.5) D(HN ) =
#EN

(
#V

N

k

) .

The sequence {HN}N∈N is dense ifD(HN ) ∼ 1; it is sparse if #EN - #VN ; otherwise,
it is neither dense nor sparse.

Example 2.8. Consider the hypergraph given in Figure 1. It is a 2-layer hypergraph H =
(E ,V) consisting of in total of 2 k-uniform hypergraphs with V = {vi}5

i=1:

• a 2-uniform hypergraph H2 = (V , E2) with E2 = {e2};
• a 3-uniform hypergraph H3 = (V , E3) with E3 = {e1, e3};

When H is regarded as a weighted directed hypergraph, we can assign a unit weight to each
hyper-edge, i.e., aej

= 1 for j = 1, 2, 3.

Now we propose one candidate as a generalization of directed k-uniform hypergraph.

Definition 2.9. For k ∈ N \ {1}, a measure-valued function in B(X,M+(Xk−1)) is called
a k-uniform directed hypergraph measure (abbreviated as “k-uniform DHGM”). A k-uniform

1Throughout we will omit “weighted” since we will always refer to weighted hypergraphs.
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DHGM η ∈ B(X,M+(Xk−1)) is a k-HGM if ξ := µX ⊗ ηx as a measure in M+(Xk)2 is
[k]-permutation invariant for any permutation σ : [k] → [k]:

dξ(x1, . . . , xk) = dξ(σ(x1), . . . , σ(xk)), (x1, . . . , xk) ∈ Xk.

A measure-valued function η in B(X,M+(Xk−1)) is called a directed hypergraph measure of
rank κ if it is a finite sum of kℓ-uniform directed hypergraph measure ηℓ for 1 ≤ ℓ ≤ m such
that η =

∑m
ℓ=1 ηkℓ

with κ = max1≤ℓ≤m kℓ. In this case, η is a multi-layer DHGM, and each
kℓ-uniform directed hypergraph measure ηℓ is called a layer of η.

Definition 2.10. A DHGM η ∈ B(X,M+(Xk−1)) is called a directed hyper-graphon w.r.t. a
reference measure µX ∈ P(X) if µX ⊗ηx ∈ M+(Xk) is absolutely continuous w.r.t. ⊗k

j=1µX .

A [k]-permutation invariant directed hyper-graphon is a hyper-graphon.

Based on the density characterization of a sequence of k-uniform hypergraphs in Re-
mark 2.7, we propose the criterion for density of a k-uniform DHGM.

Definition 2.11. A k-uniform DHGM η is dense if

inf
x∈X

dimH(supp ηx) = dimH(X) > 0.

Hence a hypergraphon is dense. A k-uniform DHGM η is sparse if

sup
x∈X

|supp ηx| < ∞.

A sparse DHGM is called a directed hypergraphing.

Remark 2.12. In contrast to a directed multi-layer hypergraph of a finite rank, a DHGM may
not always be decomposed into finitely many k-uniform DHGMs. Instead it may be decom-
posed into countably infinite uniform DHGMs of unbounded ranks (e.g., simplicial complexes
of unbounded ranks [44]). In this case, this directed hypergraph limit may be represented as
an object even more complicated than a measure-valued function in B(X,M+(X∞)).

Representation of finite hypergraphs. There are many ways of representing a finite
(hyper)graph: by extended real-valued functions or measurable sets (graphons [36], extended
graphons [26], or hypergrahons in the sense of [19]), by positive linear operators (graphop [1]),
or by measure-valued functions (so-called digraph measures [31]). We now provide two ways
of representing a fintie hypergraph here (assuming X = [0, 1] with µX being the Lebesgue
measure on X , for the ease of exposition).

Let HN = ([N ], EN ) be a weighted k-uniform directed hypergraph. Let {IN
i } be an equipar-

tition of X with

(2.6) IN
i =

[
i−1
N , i

N

[
, 1 ≤ i ≤ N − 1, and IN

N =
[

N−1
N , 1

]

Then {IN
i1,...,ik

} is a uniform partition of Xk with cubes IN
i1,...,ik

:= ⊗k
j=1I

N
ij

for {i1, . . . , ik} ∈

[N ]k. We associate with EN an Nk-dimensional non-negative adjacency matrix (aN
i1...ik

) such

that aN
i1...ik

> 0 if and only if (i1 . . . ik) ∈ EN .

(i) Function representation. Define a simple function WN ∈ Lp(Xk):

(2.7) WN =

N∑

i1=1

· · ·
N∑

ik=1

aN
i1,...,ik

1IN
i1,...,ik

2ξ is understood as:

ξ(A) :=

∫

π1A

ηx(Ax)dµX (x), for all measurable set A ⊆ Xk
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Define a piecewise uniform measure valued function ηN ∈ B(X,M+(Xk−1)):

dηx
N (y1, . . . , yk−1)

d(⊗k−1
ℓ=1µX)(y1, . . . , yk−1)

= WN (x, y1, . . . , yk−1), x ∈ X

where ⊗k−1
ℓ=1µX is the product measure on Xk−1 satisfying

(⊗k−1
ℓ=1µX)(

k−1∏

ℓ=1

Aℓ) = ⊗k−1
ℓ=1µX(Aℓ),

and Aℓ ⊆ X for ℓ = 1, . . . , k − 1 are Borel measurable sets.
(ii) Atomic mesaure representation. Define η̃N ∈ B(X,M+(Xk−1)):

η̃x
N = N−(k−1)

N∑

i2=1

· · ·
N∑

ik=1

aN
i1,...,ik

δ( 2i2−1

2N
,...,

2ik−1

2N

), x ∈ IN
i1

Indeed, assume that:

(H) max1≤i≤N

∑N
j1=1 · · ·

∑N
jk−1=1 a

N
i,j1,...,jk−1

= o(Nk)

Then these two representations are asymptotically the same.

Proposition 2.13. Assume (H). Then limN→∞ d∞(ηN , η̃N ) = 0.

Proof.

d∞(ηN , η̃N ) = sup
x∈X

dBL(ηx
N , η̃

x
N )

= max
1≤i≤N

sup
x∈IN

i

sup
f∈BL1(Xk−1)

∫

Xk−1

f(y1, . . . , yk−1)d(ηx
N − η̃x

N )

= max
1≤i≤N

sup
x∈IN

i

sup
f∈BL1(Xk−1)

N∑

j1=1

· · ·
N∑

jk−1=1

∫
∏

k−1

ℓ=1
IN

jℓ

f(y1, . . . , yk−1)d(ηx
N − η̃x

N )

= max
1≤i≤N

sup
x∈IN

i

sup
f∈BL1(Xk−1)

N∑

j1=1

· · ·
N∑

jk−1=1

aN
i,j1,...,jk−1

·

∫
∏

k−1

ℓ=1
IN

jℓ

(
f(y1, . . . , yk−1) − f(2i2−1

2N , . . . , 2ik−1
2N )

)
d(⊗k−1

ℓ=1µX)(y1, . . . , yk−1)

≤ max
1≤i≤N

N∑

j1=1

· · ·
N∑

jk−1=1

aN
i,j1,...,jk−1

·

∫
∏

k−1

ℓ=1
IN

jℓ

|(y1, . . . , yk−1) − (2i2−1
2N , . . . , 2ik−1

2N )|d(⊗k−1
ℓ=1µX)(y1, . . . , yk−1)

≤ max
1≤i≤N

N∑

j1=1

· · ·
N∑

jk−1=1

aN
i,j1,...,jk−1

·

∫
∏

k−1

ℓ=1
IN

jℓ

(
|y1 − 2i2−1

2N | + . . .+ |yk−1 − 2ik−1
2N |

)
d(⊗k−1

ℓ=1µX)(y1, . . . , yk−1)

≤
k − 1

4
max

1≤i≤N
N−k

N∑

j1=1

· · ·
N∑

jk−1=1

aN
i,j1,...,jk−1

→ 0, as N → ∞

�
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Remark 2.14. (i) Proposition 2.13 implies that with weights of appropriate scales, the
two sequences of measure-valued functions representing the same sequence of finite
graphs, diverge simultaneously, or converge to the same limit, i.e., whether the se-
quence of hypergraphs viewed as DHGMs converges or not is independent of the
choice of the representation.

(ii) Note that

‖ηN ‖ = ‖η̃N ‖ = max
1≤i≤N

N−k+1
N∑

j1=1

· · ·
N∑

jk−1=1

aN
i,j1,...,jk−1

and (H) is equivalent to ‖η̃N ‖ = o(N), which is a necessary condition for {ηN }N∈N

as well as {η̃N }N∈N to be convergent. Moreover, if assuming {ηN }N∈N as well as
{η̃N}N∈N converges, then from the proof we know that d∞(ηN , η̃N ) vanishes with a
rate no slower than N−1.

(iii) This proposition also rules out the illusion that the atomic measure representation
of finite (hyper)graphs implies the sequence of the (hyper)graphs are sparse. See
Example 2.15 below.

(iv) As will be seen below, X is not always chosen to be [0, 1]. Nevertheless, one can
always represent a finite hypergraph in two ways analogously defined above.

Example 2.15. Let k ∈ N \ {1} and {KN
k }N≥k be the sequence of complete k-uniform

hypergraphs [35]. Then {KN
k }N≥k, represented as DHGMs (in either of the two ways afore-

mentioned), converges to the complete k-uniform hypergraphon η ∈ B(X,M+(Xk−1)):

ηx ≡ λ|Xk−1 for all x ∈ X.

Example 2.16. Consider the graph of N vertices with the adjacency matrix

aN
ij =

{
Nα, if j = i+ 1, i < N

0, else

for some constant α > 0. Hence

max
1≤i≤N

N∑

j=1

aN
ij = Nα.

For 0 ≤ α < 2, (H) is satisfied, and there is no difference in the two representations in the con-
vergence of the graph sequence. With the atomic mesaure representation ξN ∈ B(X,M+(X)):

η̃x
N = Nα−1δ(2i+1)/(2N), x ∈ IN

i , i = 1, . . . , N − 1,

where {IN
i }N

i=1 is given in (2.6). The sequence converges to ξ(α) ∈ B(X,M+(X)) given by

(2.8) ξx(α) =

{
δx, for x ∈ X, α = 1

0, for x ∈ X, α < 1

which is a non-trivial graph limit if and only if α = 1. This shows that the sequence no matter
represented in either way, diverges in B(X,M+(X)) for 1 < α < 2. In contrast, using the
function representation, one can construct a 2-uniform DHGM (a so-called digraph measure
(DGM) [31]) ηN ∈ B(X,M+(X)) with the density at each x ∈ X given by WN (x, ·):

WN (x, y) =
dηx

N (y)

dµX(y)
=

{
Nα if x ∈ IN

i , y ∈ IN
i+1, i = 1, . . . , N − 1

0 else a.e. y ∈ [0, 1]

It is obvious that

‖WN‖Lp(X2) =

{
Nα−2/p(N − 1)1/p if 0 < p < ∞

Nα if p = ∞
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Directed Hypergraph limits

HDGMs Hypergraphons

[19]

Figure 2. Venn diagram for different hypergraph limits.

Hence {WN}N∈N converges to 0 ∈ Lp(X2) for 0 < p < 1
α while diverges in Lp(X2) for

1
α ≤ p ≤ ∞. Hence in a space of integrable graphons, the sequence of graphs either converges
to a trivial limit or diverges. Despite the cut metric is different from the metric induced by the
L1-norm induced, the convergence of {WN }N∈N in L1-norm coincides with the convergence
in the cut metric.

Remark 2.17. • The topology induced by the total variation distance is stronger than
the weak topology (note that for absolutely continuous measures of the same mass, the
distance between two measures in total variation norm is equivalent to the distance of
their densities in Lp-norm), which results in a fact that the Lp graphons are a proper
subset of the space of positive measures in general. This also explains why DHGMs
may contain non-dense graph limits.

• Here we provide some explanation on why our definition of hypergraphon differs from
the standard one defined in [19], pertaining the dimension of the vertex space. In [19],
in order to define limit object of k-uniform hypergraphs w.r.t. the topology induced
by homomorphism density, one needs to regard the limit object as a measurable subset

of [0, 1]2
k

, where 2k is the number of subsets of [k]. Since the empty set plays no role

[35], one can also barely consider measurable subsets of [0, 1]2
k−1, by excluding the

coordinate of a point indexed by the empty set. The reason of considering the limit
of hypergraphs as such sets rather than a function is due to the topology induced
by some generalized homomorphism density [19]. For k = 2, homomorphism density
from graph F to graph G refers to as the probability of a random mapping from the
vertex set of F = ([N ], E) to that of G, whose definition can be extended as

(2.9) t(F ,W) =

∫

[0,1]N

∏

(i,j)∈E
W(xi, xj)dx1 . . . dxN ,

representing the homomorphism density from a finite graph F to a limit object
(graphon)–a measurable function W : [0, 1]2 → [0, 1]. The convergence characterized
in terms of the homomorphism density can also be characterized by the cut distance
[12, Theorem 3.8]. However, in order to ensure the existence of the limit for a con-
vergent sequence of hypergraphs w.r.t. the distance defined below analogous to (2.9)
[35]:

(2.10) t(F ,W) =

∫

[0,1]N

∏

(i1,...,ik)∈E
W(xi1 , . . . , xik

)dx1 . . . dxN ,
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for any k-uniform test hypergraph F = ([N ], E), a näıve straightforward extension
to limit of hypergraphs defined as measurable functions on [0, 1]k, is impossible. The
interested reader may refer to [35] for an example. Hence an appropriate generalized
definition of homomorphism density as a probability when regarding hypergraph limit

as measurable subsets of [0, 1]2
k

, is proposed [19]. The existence of limit theorem, con-
fined to the family of such measurable sets as the space of hypergraph limits, holds
w.r.t. this generalized definition of homomorphism density [19]. In short, such a
definition of hypergraph limit is for the completeness of the limit objects under homo-
morphism density. In contrast, we treat these limits from the measure-valued function
viewpoint, and the completeness is naturally guaranteed due to very basic properties
of space of continuous/bounded functions on a (compact) complete metric space.
Hence, the set of hypergraph limits as HGMs may not coincide with that defined as
hypergraphons in [19]. For instance for k = 2, despite the uniform weak topology
induced by the uniform bounded Lipschitz metric is stronger than the topology in-
duced by homomophism density (essentially due to the “uniformity” supx∈X), the
space of graph measures [31] is not a proper subset of any space of integral graphons
as it contains non-absolutely continuous measure-valued functions, evidenced by Ex-
ample 2.16 as well as examples below. Hence they may share a non-trivial intersection
of dense graph limits (see Figure 2). In addition, due to the smaller dimension of the
underlying space the functions defined in, the set of hypergraphons in the sense of
Definition 2.10 should be a subset of that of hypergraphons defined in [19]. It would
be of great interest to identify the non-empty (evidenced by, e.g., the counterexample
in [35]) complement set and compare the differences, in order to see how narrow our
definition can be, so that we may have a chance to further generalize the definition.
Conversely, two DHGMs, when viewed as measurable functions on Xk, may coincide
so long as they differ on a measure zero set. For the same reason, non-dense graph
limits may be represented as non-trivial DHGMs; but not as (hyper)graphons, they
are identified as zero.

• We would like to point out that, graph limits have been defined as measures on the
square X2 [32] in the literature, which particularly are used to characterize sparse
graphs. Nevertheless, the DGMs [31] as well as HDGMs defined here and in [31] are
measure-valued functions on X , and the motivation of such a definition rather than
product measures or kernels (graphons) on the product space owes to the fiberized
characteristic equation indexed by vertices of graph limits. Nevertheless, though rare
in the literature, it is noteworthy that similar topics have been dealt with under the
more combinatorial cut metric in a very elegant way in [26]. The results in [26] only
pertain sparse graph limits. It will be interesting to see if the approach in [26] can be
further generalized to cover non-sparse (hyper)graph limits.

Next, we provide several examples of k-uniform HDGMs which are not dense.

Example 2.18. Torical graph measure. For everyN ∈ N, let GN = (VN , EN ) with VN = [N ]2

and EN = {((i1, i2), (j1, j2)) ∈ (VN )2 : i1 − j1 = ⌊N/2⌋ mod N} with the weights

a(i1,i2),(j1,j2) =

{
1 if j1 − i1 = ⌊N/2⌋ mod N

0 otherwise

Now we represent GN as a graph measure [31] ηN ∈ B(X,M+(X)) with X = T2 given as
follows:

ηx
N = λT

( 2i−1
2N

+ 1
2 ) mod 1

, x ∈ ĨN
i × ĨN

j , i, j = 1, . . . , N,

where

(2.11) ĨN
i = [ i−1

N , i
N [ for i = 1, . . . , N,
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x1

x2

x3

x

Figure 3. Example 2.18. Torical graph measure. Every point on the blue
circle connects to every point on the red circle.

and Ta := {a} × T for every a ∈ T. Then it is readily shown that ηN converges to η ∈
B(X,M+(X)) with

ηx = λT
(x1+ 1

2
) mod 1

, x ∈ X

which is an absolutely continuous measure supported on a subset of X of a lower Hausdorff
dimension. Geometrically, on the generalized graph η, every vertex x = (x1, x2) on the circle
T

x2 := {y ∈ X : y2 = x2} connects to every vertex on the circle T(x1+1/2)mod 1 perpendicular
to Tx2 . We call η torical graph measure.

Example 2.19. Sparse triangle 3-uniform hypergraphing. Consider a sequence of hyper-
graphs {HN }N of rank 3 with vertex sets being triangularization points of X :

VN =
{(

i
2N ,

√
3

2 · j
2N

)
: j ≤ min{2i, 4N − 2i}, i, j = 0, . . . , 2N

}
,

EN =
{((

i
2N ,

√
3

2 · j
2N

)
,
(

i+N
2N ,

√
3

2 · j
2N

)
,
(

i+N
2N ,

√
3

2 · j+N
2N

))
:

j ≤ min{2i, 2N − 2i}, i, j = 0, . . . , N
}

Let aN
v1,v2,v3

=

{
1 if (v1, v2, v3) ∈ EN

0 otherwise
We represent HN as a 3-uniform HGM ηN ∈

B(X,M+(X2)):

ηx
N =




δ( 2i−1

4N ,

√
3

2 · 2j−1
4N

) if x ∈ AN
i ×BN

j , j ≤ min{2i, 2N − 2i}, i, j = 0, . . . , N

0 otherwise

Let X be the triangle with vertices (0, 0), (0,
√

3
2 ), and (1

2 ,
1
2 ). Define η ∈ B(X,M+(X2)):

ηx =




δ(

x+
(

1
2 ,0

)
,x+

(
1
4 ,

√
3

4

)) if x ∈ 1
2X

0 otherwise

where 1
2X = {y ∈ X : 2y ∈ X}. It can be readily shown that d∞(ηN , η) → 0 as N → ∞.

Note that η is a 3-uniform hypergraphing.

Below we provide more examples of k-uniform DHGM for general k.
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10

1

Figure 4. 3-uniform triangular hypergraph H5 in Example 2.19. A typical
hyperedge consisting of three nodes as vertices of the triangle is colored in
green (all others are blue). The darker shaded area consists of all vertices
which belong to one “triangle” hyperedge located in the lower left corner.

Example 2.20. Let k ∈ N. Define η : X → M+(Xk−1) by

ηx = f(x)δg(x), x ∈ X,

where f ∈ C(X,R+) and g ∈ C(X,Xk−1). Such DHGM can be a k-uniform directed hyper-
graphing.

Example 2.21. Let X = T, µX = λ|T, and k ∈ N \ {1}. Define the circular k-DHGM
η ∈ B(X,M+(Xk−1)):

ηx = ⊗k−1
j=1 (δ(x+1/4) mod 1 + δ(x+3/4) mod 1), x ∈ T.

It is readily verified that #supp ηx = 2k−1, and hence the circular k-DHGM is sparse.

Example 2.22. Let X = [0, 1], µX = λ|X , and k ∈ N \ {1}. Let ∆ := {(x1, . . . , xk) ∈

Rk
+ :

∑k
j=1 xj ≤ 1} and ∆x1 be the slice of ∆ for x1 ∈ X . Define η ∈ B(X,M+(Xk−1)):

ηx1 = k(1 − x1)k−1λ|∆x1
, for x1 ∈ X.

Then it is straightforward to show that µX ⊗ ηx1 can be viewed as the uniform (probability)
measure on ∆, which is a dense k-DHGM. See Figure 5.

x1

∆x1

0
1

1

1

Figure 5. Example 2.22 for k = 3.
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Example 2.23. Let k ∈ N\{1}. Consider the following sequence of dense directed k-uniform
directed hypergraphs {HN }N∈N with HN = (VN , EN ) with VN = [N ] and

EN =
{

(i, j1, . . . , jk−1) : i+
⌊

N
4

⌋
≤ j1, . . . , jk−1 ≤ i+

⌊
3N
4

⌋
mod N, 1 ≤ i ≤ N

}

Let X = T, µX = λ|T. We can represent this hypergraph sequence as ηN ∈ B(X,M+(Xk−1)):

ηx
N = 1

∏
k−1

ℓ=1
ĨN

jℓ

(y1, . . . , yk−1), x ∈ ĨN
i , (i, j1, . . . , jk−1) ∈ EN ,

where ĨN
ℓ is defined in (2.11). Then it is readily verified that ηN converges in the uniform

bounded Lipschitz metric to the k-uniform DHGM η ∈ B(X,M+(Xk−1))

ηx = ⊗k−1
j=1λ|[x+1/4,x+3/4[ mod 1, for x ∈ X.

Note that η is also a dense k-DHGM since infx∈X dimH(supp ηx) = k − 1 = dimH Xk−1.

Example 2.24. Let k ∈ N \ {1, 2} and X = T. Define η ∈ B(X,M+(Xk−1)):

ηx = ⊗k−1
j=1η

x
j , x ∈ X

where for j = 1, . . . , k − 1,

ηx
j =

{
δ(x+1/4) mod 1 + δ(x+3/4) mod 1 if j is odd,

λ|[x+1/4,x+3/4[ mod 1 if j is even.

Then by Definition 2.11, η is neither dense nor sparse.

Example 2.25. Let X = Sd for some d ∈ N and 2 ≤ k ≤ d be an integer. Let E =
{(x1, . . . , xk) ∈ Xk : xi · xj = 0, for any i 6= j, 1 ≤ i, j ≤ k} be the set of hyperedges.
Then (X, E) can be regarded as a generalized k-uniform hypergraph. Next, we define η ∈
B(X,M+(Xk−1)) to represent this generalized hypergraph:

ηx1 = λ|S(x1), x1 ∈ X,

where

S(x1) := {(x2, . . . , xk) : x2 ∈ x⊥
1 , x3 ∈ x⊥

1 ∩ x⊥
2 , . . . , xℓ ∈ ∩ℓ−1

j=1x
⊥
j , . . . , xk ∈ ∩k−1

j=1x
⊥
j },

where a⊥ := {y ∈ Xk : a · y = 0}. Note that

0 < dimH(S(x1)) =

k−1∑

j=1

(d− j) = (2d−k)(k−1)
2 < dimH(Xk−1) = d(k − 1)

Hence η is neither dense nor sparse. We call this η d-dimensional spherical k-uniform HGM.

x

w

y

zx⊥

w⊥

u

Figure 6. 2-dimensional spherical 3-uniform HGM. X = S2. ηx = λ|S(x)

with S(x) = {(y, z) ∈ X2 : y ∈ x⊥, z ∈ x⊥ ∩y⊥}. Note that dimH(S(x)) = 1.
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3. Generalized interacting particle system

To state a generalized IPS on hypergraphs, we first collect some standing assumptions.

3.1. Assumptions.

(A1) (X,B(X), µX) is a compact Polish probability space equipped with the metric induced
by the 1-norm of Rr1 ⊇ X .

(A2) For ℓ = 1, . . . , r, (t, u) 7→ gℓ(t, u) ∈ Rr2(kℓ−1) is continuous in t ∈ I, and locally Lipschitz
continuous in u ∈ Rkℓr2 uniformly in t, i.e., for every u ∈ Rkℓr2 , there exists a neighbourhood
N ⊆ Rkℓr2 of u such that

sup
t∈I

sup
u1 6= u2,
u1, u2 ∈ N

|gℓ(t, u1) − gℓ(t, u2)|

|u1 − u2|
< ∞,

for ℓ = 1, . . . , r.
(A3) (t, x, φ) 7→ h(t, x, φ) ∈ Rr2 is continuous in t ∈ I, and locally Lipschitz continuous

in φ ∈ Rr2 uniformly in (t, x), i.e., for every φ ∈ Rr2 for some r2 ∈ N, there exists a
neighbourhood N ⊆ Rr2 of φ such that

sup
t∈I

sup
x∈X

sup
φ1 6= φ2,

φ1, φ2 ∈ N

|h(t, x, φ1) − h(t, x, φ2)|

|φ1 − φ2|
< ∞.

(A4) ηℓ ∈ B(X,M+(Xkℓ−1)), for ℓ = 1, . . . , r.

(A4)′ ηℓ ∈ C(X,M+(Xkℓ−1)), for ℓ = 1, . . . , r.

(A5) ν· ∈ C(I,B∗(X,M+(Rr2 ))) is uniformly compactly supported in the sense that there
exists a compact set Eν·

⊆ Rr2 such that ∪t∈R ∪x∈X supp νx
t ⊆ Eν·

.

(A6) There exists a convex compact set Y ⊆ R
r2 such that for all ν· satisfying (A5) uniformly

supported within Y , the following inequality holds:

V [η, ν·, h](t, x, φ) · υ(φ) ≤ 0, for all t ∈ I, x ∈ X, φ ∈ ∂Y,

where ∂Y = Y ∩ Rr2 \ Y , υ(φ) is the outer normal vector at φ, and

(3.1)

V [η, ν·, h](t, x, φ) =

r∑

ℓ=1

∫

Xkℓ−1

∫

Rr2

. . .

∫

Rr2︸ ︷︷ ︸
kℓ−1

gℓ(t, φ, ψ1, . . . , ψkℓ−1)dν
ykℓ−1

t (ψkℓ−1) · · · dνy1

t (ψ1)

· dηx
ℓ (y1, . . . , ykℓ−1) + h(t, x, φ), t ∈ I, x ∈ X, φ ∈ R

r2

(A7) (t, x, φ) 7→ h(t, x, φ) ∈ Rr2 is continuous in x uniformly in φ:

lim
|x−x′|→0

sup
φ∈Y

|h(t, x, φ) − h(t, x′, φ)| = 0, t ∈ I,

where Y is the compact set given in (A6). Moreover, h is integrable uniformly in x:
∫ T

0

∫

Y

sup
x∈X

|h(t, x, φ)|dφdt < ∞.

Under (A1)-(A5), the Vlasov operator V given in (3.1) is well defined.
Now we provide some intuitive explanation for these assumptions. These assumptions can

be regarded as analogues of those for digraph measures in [31], in the context of DHGMs.
Assumption (A1) means that the underlying generalized directed hyper-digraphs (DHGMs)
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have the same compact vertex space X . Such compactness is crucial in establishing discret-
ization of DHGMs. Assumptions (A2)-(A3) are the standard Lipschitz conditions for the
well-posedness of (non-local) ODE models. Assumption (A4) means that we interpret the
hyper-graphs as measure-valued functions (see also [31]); note that we can think of ηx

ℓ as the
local hyper-edge density or connectivity near vertex x. Next, we need the assumption for
the approximation of the VE (i.e., the mean field equation for the IPS) that the family of
DHGMs ηx are continuous in the vertex variable x, which is encoded in assumption (A4)′

(essentially used in Lemma 5.3). As mentioned in [31], (A4)′ is sufficient but not necessary
for the approximation results. For instance, one can relax this assumption by allowing x 7→ ηx

ℓ

(ℓ = 1, . . . , r) to have finitely many discontinuity points.
Next, we propose a generalized network on r limits of sequences of directed hypergraphs

of cardinality kℓ, for ℓ = 1, . . . , r.

dφ(t, x)

dt
=V [η, ν·, h](t, x, φ(t, x)), t ∈ I, x ∈ X,

φ(0, x) =ϕ(x), x ∈ X.
(3.2)

Indeed, a special case of the network (3.2) is the following discrete set of ODEs:

φ̇N
i (t) =hN

i (t, φN
i (t)) +

r∑

ℓ=1

1

Nkℓ−1

N∑

j1=1

· · ·
N∑

jkℓ−1=1

W ℓ,N
i,j1,...,jkℓ−1

gℓ(t, φ
N
i (t), φN

j1
(t), . . . , φN

jkℓ −1
(t)).

(3.3)

To verify that (3.3) is a special case of (3.2), let X = [0, 1], and {IN
i }N

i=1 be an equipartition
of X with IN

i being defined in Example 2.6, µX ∈ P(X) be the reference measure,

νx
t = δφN

i
(t), x ∈ IN

i , i = 1, . . . , N,

dηx
ℓ,N (y1, . . . , ykℓ−1)
∏kℓ−1

j=1 dµX(yj)
= W ℓ,N

i1,...,ikℓ−1
, (y1, . . . , ykℓ−1) ∈ IN

i1
× . . .× IN

ikℓ −1
, ℓ = 1, . . . , r,

φ(t, x) = φN
i (t), h(t, x, φ(t, x)) = hN

i (t, φN
i (t)), x ∈ IN

i .

Substituting the expressions above into (3.2) simply yields (3.3).
The following well-posedness of the network (3.3) is a standard result of ODE theory [48].

Proposition 3.1. Assume hN
i (for i = 1, . . . , N) and gℓ (for ℓ = 1, . . . , N) are locally

Lipschitz. Then there exists a local solution to the IVP of (3.3). In particular, if there exists
a compact positively invariant set for (3.3), then the solution is global.

The IVP of (3.2) confined to a finite time interval I is the so-called fiberized equation of
characteristics (or fiberized characteristic equation) [28, 31]. When the underlying space X
is finite, and the measures νx

t and ηx
ℓ for all x ∈ X are finitely supported, (3.2) becomes a

system of ODEs as (3.3) coupled on a finite set of directed graphs in terms of {ηℓ}1≤ℓ≤r.
Hence, the fiberized characteristic equation connects a finite-dimensional IPS and the VE,
while maintaining the information about both systems. Analogous to Proposition 3.1, the
well-posedness of (3.2) is also a standard result from ODE theory [48].

Theorem 3.2. Assume (A1)-(A5). Let φ0 ∈ B(X,Rr2). Then for every x ∈ X and
t0 ∈ I, there exists a solution φ(t, x) to the IVP of (3.2) with φ(t0, x) = φ0(x) for all

t ∈ (T x,t0

min , T
x,t0
max) ∩ I with (T x,t0

min , T
x,t0
max) ⊆ R being a neighbourhood of t0 such that

(i) either (i-a) T x,t0
max > T or (i-b) T x,t0

max ≤ T and limt↑T
x,t0
max

|φ(t, x)| = ∞ holds, and

(ii) either (ii-a) T x,t0

min < 0 or (ii-b) T x,t0

min ≥ 0 and limt↓T
x,t0
min

|φ(t, x)| = ∞ holds.
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In addition, assume (A6) and ν· is uniformly supported within Y , then (T x,t0

min , T
x,t0
max) ∩ I = I

for all x ∈ X, and there exists a fiberized flow of the vector field V [η, ν·, h] such that

d

dt
Φx

t,0[η, ν·, h](φ) =V [η, ν·, h](t, x,Φx
t,0[η, ν·, h](φ)), t ∈ I,

Φx
0,0[η, ν·, h](φ) =φ

4. Well-posedness of the Vlasov equation

From Theorem 3.2, we have for all x ∈ X ,

Φx
t,0[η, ν·, h])−1 = Φx

0,t[η, ν·, h], t ∈ I.

The pushforward under the flow Φx
t,0[η, ν·, h] of an initial measure νx

0 ∈ B∗(X,M+(Y )) defines
another time-dependent measure in B∗(X,M+(Y )) via the following fixed point equation

(4.1) νx
t = (A[η, h]ν)x

t , t ∈ I.

where (A[η, h]ν)x
t := Φx

0,t[η, ν·, h]♯ν
x
0 denotes the push-forwards of νx

0 along Φx
0,t[η, ν·, h]. In

particular, if ν· ∈ C(I,B∗(X,M+,abs(Y ))), then A[η, h]ν· ∈ C(I,B∗(X,M+,abs(Y ))) by the
positive invariance of Y . Hence the Vlasov operator can be represented in terms of the density

ρ(t, y, φ) :=
dνy

t (φ)

dµX(y)dφ for every t ∈ I:

V̂ [η, ρ(·), h](t, x, φ) =

r∑

ℓ=1

∫

Xkℓ−1

∫

Y

· · ·

∫

Y︸ ︷︷ ︸
kℓ−1

gℓ(t, φ, ψ1, ψ2, . . . , ψkℓ−1)

kℓ−1∏

ℓ=1

ρ(t, yℓ, ψℓ)dψ1 · · · dψkℓ−1

dηx
ℓ (y1, . . . , ykℓ−1) + h(t, x, φ).

(4.2)

Let L
1(X×Y ;µX ⊗m) be the space of all integrable functions w.r.t. the reference measure

µX ⊗ m. Let

L
1
+(X × Y ;µX ⊗ m) =

{
f ∈ L

1(X × Y ;µX ⊗ m) :

∫

X×Y

fdµXdm = 1,

f ≥ 0, µX ⊗ m a.e. on X × Y
}
,

be the space of densities of probabilities on X × Y . Conversely, for every function ρ : I →
L

1
+(X × Y ;µX ⊗ m), for (t, y) ∈ I × X ,

dνy
t (φ) = ρ(t, y, φ)dφ

defines ν· ∈ B(I,B∗(X,M+(Y ))). Hence (4.2) can be transformed to the Vlasov operator
(3.1) in terms of ν·.

Let ρ0 : X × Y → R+ be continuous in x for m-a.e. φ ∈ Y , and integrable in φ for every
x ∈ X such that ∫

X

∫

Y

ρ0(x, φ)dφdµX (x) = 1.

Consider the VE

∂ρ(t, x, φ)

∂t
+ divφ

(
ρ(t, x, φ)V̂ [η, ρ(·), h](t, x, φ)

)
= 0, t ∈ (0, T ], x ∈ X, m-a.e. φ ∈ Y,(4.3)

ρ(0, ·) = ρ0(·).

First, let us define the weak solution to (4.3). This definition is analogous to [31, Defini-
tion 4.6].
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Definition 4.1. Let Y be a compact positively invariant subset of (3.2) given in Theorem 3.2.
We say ρ : I ×X × Y → R+ is a uniformly weak solution to the IVP (4.3) if for every x ∈ X ,
the following three conditions are satisfied:

(i) Normalization.
∫

X

∫
Y ρ(t, x, φ)dφdx = 1, for all t ∈ I.

(ii) Uniform weak continuity. The map t 7→
∫

Y
f(φ)ρ(t, x, φ)dφ is continuous uniformly in

x ∈ X , for every f ∈ C(Y ).

(iii) Integral identity: For all test functions w ∈ C1(I × Y ) with suppw ⊆ [0, T [×U and
U ⊂⊂ Y , the equation below holds:

(4.4)

∫ T

0

∫

Y

ρ(t, x, φ)

(
∂w(t, φ)

∂t
+ V̂ [η, ρ(·), h](t, x, φ) · ∇φw(t, φ)

)
dφdt

+

∫

Y

w(0, φ)ρ0(x, φ)dφ = 0,

where suppw = {(t, u) ∈ I × Y : w(t, u) 6= 0} is the support of w, and V̂ [η, ρ(·), h] is given in
(4.2).

The well-posedness of the VE associated with the generalized IPS depends on continu-
ity properties of the operator A. We comment that Definition 4.1 is well-posed, c.f. [31,
Remark 4.7].

We first provide the continuity property of A.

Proposition 4.2. Assume (A1)-(A6). Denote η = (ηℓ)
r
ℓ=1.

(i) Continuity in t.

t 7→ (A[η, h]νt ∈ C(I,B∗(X,M+(Y ))).

In particular, if ν· ∈ C(I, C∗(X,M+(Y ))), then A[η, h]ν· ∈ C(I, C∗(X, M+(Y ))).
Moreover, the mass conservation law holds:

A[η, h]νx
t (Y ) = νx

0 (Y ), ∀x ∈ X.

(ii) Lipschitz continuity in ν·. For ν1, ν2 ∈ C∗(X,M+(Y ))), we have

d∞(A[η, h]ν1
t ,A[η, h]ν2

t ) ≤ eL1td∞(ν1
0 , ν

2
0) + L2eL1t

∫ t

0

d∞(ν1
τ , ν

2
τ )e−L1τ dτ,

where L1 := L1(ν2
· ) and L2 := L2(ν1

· , ν
2
· ) are constants.

(iii) Lipschitz continuity of A[η, h] in h. For h1, h2 satisfying (A3) and (A7) with h
replaced by hi for i = 1, 2,

d∞(A[η, h1]νt,A[η, h2]νt) ≤ L3‖h1 − h2‖∞,I ,

where L3 := L3(ν·) is a constant.
(iv) Absolute continuity. If ν0 ∈ B∗(X,M+,abs(Y )), then

A[η, h]νt ∈ B∗(X,M+,abs(Y )), ∀t ∈ I.

The proof of Proposition 4.2 is provided in Appendix A.

Proposition 4.3. Assume (A1)-(A4) and (A6)-(A7). Let ν0 ∈ B∗(X,M+(Y )), and L1,
L2, and L3 be defined as in Proposition 4.2. Then there exists a unique solution ν· ∈
C(I,B∗(X,M+(Y ))) to the fixed point equation (4.1). In addition, if (A4)′ holds and ν0 ∈
C∗(X,M+(Y )), then ν· ∈ C(I, C∗(X, M+(Y ))); if ν0 ∈ B∗(X,M+,abs(Y )), then

νt ∈ B∗(X,M+,abs(Y )), ∀t ∈ I.

Moreover, the solutions have continuous dependence on
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(i) the initial conditions:

d∞(ν1
t , ν

2
t ) ≤ e(L1(ν2

·
)+L2‖ν1

·
‖)td∞(ν1

0 , ν
2
0), t ∈ I,

where νi
· is the solution to (4.1) with initial condition νi

0 for i = 1, 2.
(ii) h: Assume ν1

0 = ν2
0 . Then

d∞(ν1
t , ν

2
t ) ≤

1

L3(ν2· )
‖ν1

· ‖eBL(h2)eL1(ν2
·

)T T e(L1(ν2
·

)+L2‖ν1
·

‖)t‖h1 − h2‖∞,

where νi
· is the solution to (4.1) with h replaced by hi for i = 1, 2.

(iii) η: Let {ηK
ℓ }K∈N ⊆ B(X,M+(Xkℓ−1)) such that limK→∞ d∞(ηℓ, η

K
ℓ ) = 0, for ℓ =

1, . . . , r. Assume ν0, ν
K
0 ∈ C∗(X,M+(Y )) with

lim
K→∞

d∞(ν0, ν
K
0 ) = 0.

Then

lim
K→∞

sup
t∈I

d∞(νt, ν
K
t ) = 0,

where νK
· is the solution to (4.1) with ηℓ replaced by ηK

ℓ for ℓ = 1, . . . , r and K ∈ N.

The proof of Proposition 4.3 is provided in Appendix B.
With the above assumptions and under appropriate metrics, one can show that the operator

defined in (4.1)

A = (Ax)x∈X : C(I,B∗(X,M+(Y ))) → C(I,B∗(X,M+(Y )))

is a contraction. Now we obtain the well-posedness of the VE (4.3).

Theorem 4.4. Assume (A1)-(A4) and (A6). Let ρ0 ∈ L
1
+(X × Y ;µX ⊗ m). Assume

additionally that ρ0(x, φ) is continuous in x ∈ X for m-a.e. φ ∈ Y . Then there exists a
unique uniform weak solution to the IVP of (4.3) with initial condition ρ(0, x, φ) = ρ0(x, φ),
x ∈ X, φ ∈ Y .

Proof. The proof is the same as that of [31, Theorem 4.8], which is independent of the specific

form of V and V̂ , but based on the continuous dependence properties given in Proposition 4.2
and Proposition 4.3. �

5. Approximation of time-dependent solutions to VE

In this section, we study approximation of the solution to the VE (4.4).
Based on the continuous dependence of solutions to the fixed point equation on the un-

derlying DHGMs {ηℓ}r
ℓ=1, on the initial measure ν0, as well as on function h established

in Proposition 4.3, together with the recently established results on deterministic empirical
approximation of positive measures [50, 14, 3] (see Propositions 5.2 and 5.3 below), we will
establish the discretization of solutions of VE over finite time interval I by a sequence of dis-
crete ODE systems coupled on finite directed hypergraphs converging weakly to the DHGMs
{ηℓ}r

ℓ=1 (Theorem 5.6 below).
Beforehand, let us recall some approximation results from [31].

Proposition 5.1 (Partition of X). [31, Lemma 5.4] Assume (A1). Then there exists a
sequence of pairwise disjoint partitions {Am

i : i = 1, . . . ,m}m∈N of X such that X = ∪m
i=1A

m
i

for every m ∈ N and

lim
m→∞

max
1≤i≤m

DiamAm
i = 0.

Proposition 5.2 (Approximation of the initial distribution). [31, Lemma 5.5] Assume (A1)
and ν0 ∈ B∗(X,M+(Y )). Let {Am

i }1≤i≤m be a partition of X for m ∈ N satisfying

lim
m→∞

max
1≤i≤m

DiamAm
i = 0.
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Let xm
i ∈ Am

i , for i = 1, . . . ,m, m ∈ N. Then there exists a sequence {ϕm,n
(i−1)n+j : i =

1, . . . ,m, j = 1, . . . , n}n,m∈N ⊆ Y such that

lim
m→∞

lim
n→∞

d∞(νm,n
0 , ν0) = 0,

where νm,n
0 ∈ B∗(X,M+(Y )) with

νm,n,x
0 :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δϕm,n

(i−1)n+j
, x ∈ X,

am,i =





∫
Am

i

νx
0 (Y )dµX (x)

µX (Am
i

) , if µX(Am
i ) > 0,

ν
xm

i

0 (Y ), if µX(Am
i ) = 0.

Proposition 5.3 (Approximation of the DHGM). Assume (A1) and (A4)′. For every m ∈
N, let Am

i and xm
i be defined in Proposition 5.2 for i = 1, . . . ,m, m ∈ N. Then for every

ℓ = 1, . . . , r, there exists a sequence {yℓ,m,n
(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}m,n∈N ⊆ Xkℓ−1

such that

lim
m→∞

lim
n→∞

d∞(ηm,n
ℓ , ηℓ) = 0,

where ηm,n
ℓ ∈ B(X,M+(Xkℓ−1)) with

ηm,n,x
ℓ :=

m∑

i=1

1Am
i

(x)
bℓ,m,i

n

n∑

j=1

δyℓ,m,n

(i−1)n+j

, x ∈ X,

bℓ,m,i =





∫
Am

i

ηx
ℓ (X)dµX(x)

µX(Am
i

) , if µX(Am
i ) > 0,

η
xm

i

ℓ (X), if µX(Am
i ) = 0.

The proof of Proposition 5.3 is analogous to that of [31, Lemma 5.6] and thus is omitted.

Proposition 5.4 (Approximation of h). [31, Lemma 5.9] Assume (A3) and (A7).
For every m ∈ N, let xm

i be defined in Proposition 5.2 and

hm(t, z, φ) =

m∑

i=1

1Am
i

(z)h(t, xm
i , φ), t ∈ I, z ∈ X, φ ∈ Y.

Then

lim
m→∞

∫ T

0

∫

Y

sup
x∈X

|hm(t, x, φ) − h(t, x, φ)| dφdt = 0.

Now we are ready to provide a discretization of the VE on the DHGM by a sequence of
ODEs. To summarize, there exists

• a partition {Am
i }1≤i≤m of X and points xm

i ∈ Am
i for i = 1, . . . ,m, for every m ∈ N,

• a sequence {ϕm,n
(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}n,m∈N ⊆ Y kℓ−1 and {am,i : i =

1, . . . , m}m∈N ⊆ R+, for ℓ = 1, . . . , r, and

• a sequence {yℓ,m,n
(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}m,n∈N ⊆ Xkℓ−1 and {bℓ,m,i : i =

1, . . . , m}m∈N ⊆ R+, for ℓ = 1, . . . , r,

such that

lim
m→∞

lim
n→∞

d∞(νm,n
0 , ν0) = 0,

lim
m→∞

lim
n→∞

d∞(ηm,n
ℓ , ηℓ) = 0, ℓ = 1, . . . , r,

lim
m→∞

∫ T

0

∫

Y

sup
x∈X

|hm(t, x, φ) − h(t, x, φ)| dφdt = 0,
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where

νm,n,x
0 :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δϕm,n

(i−1)n+j
, x ∈ X,

ηm,n,x
ℓ :=

m∑

i=1

1Am
i

(x)
bℓ,m,i

n

n∑

j=1

δyℓ,m,n

(i−1)n+j

, x ∈ X,

hm(t, z, φ) :=

m∑

i=1

1Am
i

(z)h(t, xm
i , φ), t ∈ I, z ∈ X, φ ∈ Y.

(5.1)

Consider the following IVP of a coupled ODE system:

(5.2) φ̇(i−1)n+j = Fm,n
i (t, φ(i−1)n+j ,Φ), 0 < t ≤ T, φ(i−1)n+j(0) = ϕm,n

(i−1)n+j ,

i = 1, . . . ,m, j = 1, . . . , n,

where Φ = (φ(i−1)n+j)1≤i≤m,1≤j≤n and

Fm,n
i (t, ψ,Φ) =

r∑

ℓ=1

bℓ,m,i

n

n∑

j=1

m∑

p1=1

am,p1

n
1Am

p1
(yℓ,m,n

(i−1)n+j,1) · · ·
m∑

pkℓ−1=1

am,pkℓ−1

n

1Am
pkℓ−1

(yℓ,m,n
(i−1)n+j,kℓ−1)

n∑

q1=1

· · ·
n∑

qkℓ−1=1

gℓ(t, ψ, φ
m,n
(p1−1)n+q1

, . . . , φm,n
(pkℓ−1−1)n+qkℓ−1

) + hm(t, xm
i , ψ)

The following well-posedness result is akin to Proposition 3.1 and hence the proof is omit-
ted.

Proposition 5.5. Then there exists a unique solution φm,n(t) = (φm,n
(i−1)n+j(t)) to (5.2), for

m,n ∈ N.

Based on Proposition 5.5, let

(5.3) νm,n,x
t :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δφm,n

(i−1)n+j
(t), x ∈ X.

Now we present the approximation of solutions to the VE (4.3).

Theorem 5.6. Assume (A1)-(A3), (A4)′, (A6)-(A7). Assume ρ0(x, φ) is continuous in
x ∈ X for m-a.e. φ ∈ Y such that ρ0 ∈ L

1
+(X × Y ;µX ⊗ m) and

sup
x∈X

‖ρ0(x, ·)‖L1(Y ;m) < ∞.

Let ρ(t, x, φ) be the uniformly weak solution to the VE (4.3) with initial condition ρ0. Let
ν· ∈ C(I,B∗(X,M+,abs(Y ))) be the measure-valued function defined in terms of the uniform
weak solution to (4.3):

dνx
t (φ) = ρ(t, x, φ)dφ, for every t ∈ I and x ∈ X, m a.e. φ ∈ Y.

Then νt ∈ C∗(X,M+(Y )), for all t ∈ I, provided ν0 ∈ C∗(X,M+(Y )). Moreover, let νm,n
0 ∈

B∗(X,M+(Y )), ηℓ,m,n ∈ B(X,M+(Xkℓ−1)), and hm ∈ C(I ×X×Y,Rr2) be defined in (5.1),
and νm,n

t be defined in (5.3). Then

lim
n→∞

d0(νm,n
· , ν·) = 0.

The proof of Theorem 5.6 is provided in Section 8.
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6. Applications

In this section, we apply our main results to investigate the MFL of three networks with
higher order interactions emerging from physics, epidemiology, and ecology.

6.1. A Kuramoto-Sakaguchi model with heterogeneous higher order interactions.

Consider the following Kuramoto-Sakaguchi phase reduction network proposed in [5]:

φ̇N
i =hN

i +
1

N

N∑

j=1

W
(1,N)
i,j g1(φN

i , φ
N
j ) +

1

N2

N∑

j=1

N∑

k=1

W
(2,N)
i,j,k g2(φN

i , φ
N
j , φ

N
k )

+
1

N3

N∑

j=1

N∑

k=1

N∑

p=1

W
(3,N)
i,j,k,pg3(φN

i , φ
N
j , φ

N
k , φ

N
p ),

where φN
i ∈ T is the phase and hi the natural frequency of the i-th oscillator, and gℓ (ℓ =

1, 2, 3) are the coupling functions of different higher-order interactions.
Let (IN

j )1≤j≤N be an equi-partition of X = [0, 1] defined as in(2.6), and let hN :=∑N
j=1 1IN

j
hN

j .

Assume

(H1.1) gℓ (ℓ = 1, 2, 3) are Lipschitz continuous.
(H1.2) hN

j (j = 1, . . . , N) fulfill that there exists h ∈ C(X) such that

lim
N→∞

sup
x∈X

|h(x) − hN (x)| = 0.

(H1.3) For ℓ = 1, 2, 3, W (ℓ,N) converges in the uniform bounded Lipschitz metric to ηℓ ∈
C(X,M+(Xℓ)).

Note that (H1.2) implies that

lim
N→∞

‖h− hN‖1 = 0.

Now we consider the VE

∂ρ(t, x, φ)

∂t
+ divφ

(
ρ(t, x, φ)V̂ [η, ρ, h](t, x, φ)

)
= 0, t ∈ (0, T ], x ∈ X, m-a.e. φ ∈ T,(6.1)

ρ(0, ·) = ρ0(·),

where

V̂ [η, ρ, h](t, x, φ) =h(x) +

∫

X

∫

T

g1(φ(t, x), ψ)ρ(t, y, ψ)dψdηx
1 (y)

+

∫

X2

∫

T

∫

T

g2(φ(t, x), ψ1, ψ2)ρ(t, y1, ψ1)ρ(t, y2, ψ2)dψ1dψ2dηx
2 (y1, y2)

+

∫

X3

∫

T

∫

T

∫

T

g3(φ(t, x), ψ1, ψ2, ψ3)ρ(t, y1, ψ1)ρ(t, y2, ψ2)ρ(t, y3, ψ3)

dψ1dψ2dψ3dηx
3 (y1, y2, y3).

Theorem 6.1. Assume (H1.1)-(H1.3). Let T > 0. Assume ρ0(x, φ) is continuous in x ∈ X
for m-a.e. φ ∈ Y such that ρ0 ∈ L

1
+(X × Y ;µX ⊗ m) and

sup
x∈X

‖ρ0(x, ·)‖L1(Y ;m) < ∞.

Define ν0 ∈ B∗(X,M+(Y )) by

ρ0(x, φ) =
dν0(x, φ)

dφ
for x ∈ X and m-a.e. φ ∈ T.
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Then there exists a unique uniformly weak solution ρ(t, ·) to the VE (6.1). Moreover, if
ν0 ∈ C∗(X,M+(Y )) and limN→∞ d∞(νN,0, ν0) = 0, then

lim
N→∞

d0(νN,·, ν·) = 0.

In particular,

lim
N→∞

dBL

( 1

N

N∑

i=1

δφN
i

(t),

∫

X

νx
t (•)dµX(x)

)
= 0, for t ∈ I.

Proof. The proof is similar to those of Theorem 4.4 and Theorem 5.6. Here we still have the
invariance under the flow of fiberized equation of characteristics of a compact set which is T

(in lieu of a compact set Y in a Euclidean space). �

6.2. An epidemic model with higher-order interactions. Assume

(H2.1) (X,B(X), µX) is a compact probability space.

(H2.2) For (u1, u2) ∈ R2
+, let β(t, u1, u2) ≥ 0 be the disease transmission function satisfying

β(t, u1, u2) = 0 provided u1u2 = 0. Moreover, β is continuous in t, and locally Lipschitz
continuous in u1, u2 uniformly in t.

(H2.3) For u ∈ R+, let γ(t, x, u) ≥ 0 be the recovery rate function, and for every x ∈ X ,
γ(t, x, 0) = 0. Moreover, γ is continuous in t, and continuous in x uniformly in u, and Lipschitz
continuous in u ∈ R+ uniformly in t.

For any fixed N ∈ N, let

(6.2) Y = {u ∈ R
2
+ : u1 + u2 = N}.

(H2.4) η ∈ C(X,M+(X2)).

(H2.5) ν· ∈ C(I,B∗(X,M+(R2))) is uniformly compactly supported within Y ⊆ R2
+.

Under (H2.1)-(H2.5), motivated by [9], we propose the following generalized non-local
multi-group SIS epidemic model on a DHGM η incorporating the higher-order interactions
due to the nonlinear dependence of both the infection pressure and the community structure
(home and workplace):

∂Sx

∂t
= −

∫

X2

∫

R2
+

∫

R2
+

(β(t, ψ1,2, Sx) + β(t, ψ2,2, Sx)) dνy2

t (ψ2)dνy1

t (ψ1)dηx(y1, y2)

+ γ(t, x, Ix),

∂Ix

∂t
=

∫

X2

∫

R2
+

∫

R2
+

(β(t, ψ1,2, Sx) + β(t, ψ2,2, Sx)) dνy2

t (ψ2)dνy1

t (ψ1)dηx(y1, y2)

− γ(t, x, Ix),

which further generalizes the epidemic network on a digraph measure proposed in [31]. Here
Sx and Ix stand for the number of susceptible and infected individuals at location x ∈ X
(or interpreted as in the group with label x), β(t, ψ1

2 , Sx) stands for the infection caused by
family members of Sx at home while β(t, ψ2

2 , Sx)/Sx the infection rate caused by colleagues
of Sx in the workplace, and η : X → M+(X2) is the generalized hypergraph.

By (H2.3), let

g(t, φ, ψ1, ψ2) = β(t, ψ1,2, φ1) + β(t, ψ2,2, φ1)

(
−1
1

)
, h(t, x, φ) = γ(t, x, φ1)

(
1

−1

)
,

V [η, ν·, h](t, x, φ) =

∫

X2

∫

Y

∫

Y

g(t, φ, ψ1, ψ2)dνy2

t (ψ2)dνy1

t (ψ1)dηx(y1, y2) + h(t, x, φ),

and
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V̂ [η, ρ·, h](t, x, φ) =

∫

X2

∫

Y

∫

Y

g(t, φ, ψ1, ψ2)ρ(t, y1, ψ1)ρ(t, y2, ψ2)dψ2dψ1dηx(y1, y2)+h(t, x, φ).

Consider the VE

∂ρ(t, x, φ)

∂t
+ divφ

(
ρ(t, x, φ)V̂ [η, ρ(·), h](t, x, φ)

)
= 0, t ∈ (0, T ], x ∈ X, m-a.e. φ ∈ Y,

ρ(0, ·) = ρ0(·).

(6.3)

According to Propositions 5.1-5.4, there exists

• a partition {Am
i }1≤i≤m of X and points xm

i ∈ Am
i for i = 1, . . . ,m, for every m ∈ N,

• a sequence {ϕm,n
(i−1)n+j

:= i = 1, . . . ,m, j = 1, . . . , n}n,m∈N ⊆ Y and {am,i : i = 1, . . . ,

m}m∈N ⊆ R+, and
• a sequence {ym,n

(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}m,n∈N ⊆ X2 and {bm,i : i = 1, . . . ,

m}m∈N ⊆ R+,

such that

lim
m→∞

lim
n→∞

d∞(νm,n
0 , ν0) = 0,

lim
m→∞

lim
n→∞

d∞(ηm,n, η) = 0,

lim
m→∞

∫ T

0

∫

Y

sup
x∈X

|hm(t, x, φ) − h(t, x, φ)| dφdt = 0,

where

νm,n,x
0 :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δϕm,n

(i−1)n+j
, x ∈ X,

ηm,n,x :=

m∑

i=1

1Am
i

(x)
bm,i

n

n∑

j=1

δym,n

(i−1)n+j
, x ∈ X,

hm(t, z, φ) :=

m∑

i=1

1Am
i

(z)h(t, xm
i , φ), t ∈ I, z ∈ X, φ ∈ Y.

(6.4)

Consider the following IVP of a coupled ODE system:

(6.5) φ̇(i−1)n+j = Fm,n
i (t, φ(i−1)n+j ,Φ), 0 < t ≤ T, φ(i−1)n+j(0) = ϕm,n

(i−1)n+j ,

i = 1, . . . ,m, j = 1, . . . , n,

where Φ = (φ(i−1)n+j)1≤i≤m,1≤j≤n and

Fm,n
i (t, ψ,Φ) =

bm,i

n

n∑

j=1

m∑

p1=1

am,p1

n
1Am

p1
(ym,n

(i−1)n+j,1)

m∑

p2=1

am,p2

n
1Am

p2
(ym,n

(i−1)n+j,2)

n∑

q1=1

n∑

q2=1

g(t, ψ, φ(p1−1)n+q1
, φ(p2−1)n+q2

) + hm(t, xm
i , ψ).

Then by Proposition 5.5, there exists a unique solution φm,n(t) = (φm,n
(i−1)n+j(t))1≤i≤m,1≤j≤n

to (6.5), for m,n ∈ N.
For t ∈ I, define

(6.6) νm,n,x
t :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δφm,n

(i−1)n+j
(t), x ∈ X.
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Theorem 6.2. Assume (H3.1)-(H3.4). Then there exists a unique uniformly weak solution
ρ(t, x, φ) to (6.3). Assume additionally ρ0(x, φ) is continuous in x ∈ X for m-a.e. φ ∈ Y
such that ρ0 ∈ L

1
+(X × Y ;µX ⊗ m) and

sup
x∈X

‖ρ0(x, ·)‖L1(Y ;m) < ∞.

Let ν· ∈ C(I,B∗(X,M+,abs(Y ))) be the measure-valued function defined in terms of the uni-
formly weak solution to (6.3):

dνx
t = ρ(t, x, φ)dφ, for every t ∈ I, and x ∈ X.

Then νt ∈ C∗(X,M+(Y )), for all t ∈ I, provided ν0 ∈ C∗(X,M+(Y )). Moreover, let νm,n
0 ∈

B∗(X,M+(Y )), ηm,n ∈ B(X, M+(Y )), and hm ∈ C(I ×X × Y,R2) be defined in (6.4), and
νm,n

t be defined in (6.6). Then
lim

n→∞
d0(νm,n

· , ν·) = 0.

Proof. It is straightforward to verify that (H3.1) implies (A1), (H3.2) implies (A2), and
(H3.3) implies (A3) and (A7). It remains to show (A6) is fulfilled with Y defined in (6.2).
This is a simple consequence of the fact that this SIS model is conservative:

∂

∂t
(Sx(t) + Ix(t)) = 0.

�

6.3. Lotka-Volterra model with dispersal on a hypergraph. Assume that

(H3.1) (X,B(X), µX) be a compact probability space.

(H3.2) Wi,j are odd functions and locally Lipschitz continuous satisfying 0 ≤ Wi,j(u) ≤ u
for all u ∈ R+ for all i, j = 1, 2.

(H3.3) η1, η2 ∈ B(X,M+(X2)).

Let Λ1, Λ2 > 0 satisfy

(6.7) Λ1 ≥
α

β
, Λ2 ≥ −

ι

θ
+
σ

θ
Λ1.

Let Y = {φ ∈ R2
+ : φ1 ≤ Λ1, φ2 ≤ Λ2} be the rectangle in the positive cone, which is a convex

compact set.

(H3.4) ν· ∈ C(I, C∗(X,M+(R2))) is uniformly compactly supported within Y ⊆ R
2
+.

Under (H3.1)-(H3.4), consider the general Lotka-Volterra with the species of two types
moving on generalized directed hypergraphs:

∂φ1(t, x)

∂t
=φ1(t, x)(α − βφ1(t, x) − γφ2(t, x)) +

∫

X

∫

X

∫

Y

∫

Y

(W1,1(ψ1 − φ1(t, x)) +W1,2(ψ2 − φ1(t, x))) dνy1

t (ψ1)dνy2

t (ψ2)dηx
1 (y1, y2)

∂φ2(t, x)

∂t
=φ2(t, x)(−ι+ σφ1(t, x) − θφ2(t, x)) +

∫

X

∫

X

∫

Y

∫

Y

(W2,1(ψ1 − φ2(t, x)) +W2,2(ψ2 − φ2(t, x))) dνy1

t (ψ1)dνy2

t (ψ2)dηx
2 (y1, y2),

where φ1(t) and φ2(t) stand for population densities of two competing species at time t,
respectively, and all given functions and parameters are non-negative. The model can be
regarded as a generalization of the Lotka-Volterra model on the graph proposed in [45].

Let

g1(t, φ, ψ1, ψ2) =

(
W1,1(ψ1 − φ1) +W1,2(ψ2 − φ1)

0

)
,

g2(t, φ, ψ1, ψ2) =

(
0

W2,1(ψ1 − φ2) +W2,2(ψ2 − φ2)

)
,
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h(φ) =

(
φ1(α− βφ1 − γφ2)
φ2(−ι+ σφ1 − θφ2)

)
,

and

V̂ [η, ρ·, h](t, x, φ) =

2∑

ℓ=1

∫

X

∫

X

∫

Y

∫

Y

gℓ(t, φ, ψ1, ψ2)ρ(t, y1, ψ1)ρ(t, y2, ψ2)dψ1dψ2dηx
ℓ (y1, y2)

+ h(φ).

Consider the VE

∂ρ(t, x, φ)

∂t
+ divφ

(
ρ(t, x, φ)V̂ [η, ρ(·), h](φ)

)
= 0, t ∈ (0, T ], x ∈ X, m-a.e. φ ∈ Y,

ρ(0, ·) = ρ0(·).
(6.8)

Note that there exists

• a partition {Am
i }1≤i≤m of X and points xm

i ∈ Am
i for i = 1, . . . ,m, for every m ∈ N,

• a sequence {ϕm,n
(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}n,m∈N ⊆ Y and {am,i : i = 1, . . . ,

m}m∈N ⊆ R+, and

• a sequence {yℓ,m,n
(i−1)n+j : i = 1, . . . ,m, j = 1, . . . , n}m,n∈N ⊆ X2 and {bℓ,m,i : i = 1, . . . ,

m}m∈N ⊆ R+, for ℓ = 1, 2,

such that

lim
m→∞

lim
n→∞

d∞(νm,n
0 , ν0) = 0,

lim
m→∞

lim
n→∞

d∞(ηm,n
ℓ , ηℓ) = 0, ℓ = 1, 2,

lim
m→∞

∫ T

0

∫

Y

sup
x∈X

|hm(t, x, φ) − h(t, x, φ)| dφdt = 0,

where

νm,n,x
0 :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δϕm,n

(i−1)n+j
, x ∈ X,

ηm,n,x
ℓ :=

m∑

i=1

1Am
i

(x)
bℓ,m,i

n

n∑

j=1

δyℓ,m,n

(i−1)n+j

, x ∈ X, ℓ = 1, 2,

hm(t, z, φ) :=

m∑

i=1

1Am
i

(z)h(t, xm
i , φ), t ∈ I, z ∈ X, φ ∈ Y.

(6.9)

Consider the following IVP of a coupled ODE system:

(6.10) φ̇(i−1)n+j = Fm,n
i (t, φ(i−1)n+j ,Φ), 0 < t ≤ T, φ(i−1)n+j(0) = ϕm,n

(i−1)n+j ,

i = 1, . . . ,m, j = 1, . . . , n,

where Φ = (φ(i−1)n+j)1≤i≤m,1≤j≤n and Φ = (φ(i−1)n+j)1≤i≤m,1≤j≤n and

Fm,n
i (t, ψ,Φ) =

2∑

ℓ=1

bℓ,m,i

n

n∑

j=1

m∑

p1=1

am,p1

n
1Am

p1
(yℓ,m,n

(i−1)n+j,1)

m∑

p2=1

am,p2

n
1Am

p2
(yℓ,m,n

(i−1)n+j,2)

n∑

q1=1

n∑

q2=1

gℓ(t, ψ, φ(p1−1)n+q1
, φ(p2−1)n+q2

) + hm(t, xm
i , ψ).

Then by Proposition 5.5, there exists a unique solution φm,n(t) = (φm,n
(i−1)n+j(t))1≤i≤n,1≤j≤m

to (6.10), for m,n ∈ N.
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For t ∈ I, define

(6.11) νm,n,x
t :=

m∑

i=1

1Am
i

(x)
am,i

n

n∑

j=1

δφm,n

(i−1)n+j
(t), x ∈ X.

Theorem 6.3. Assume (H3.1)-(H3.4). Additionally assume Λ1,Λ2 satisfy (6.7). Then
there exists a unique uniformly weak solution ρ(t, x, φ) to (6.8). Assume additionally ρ0(x, φ)
is continuous in x ∈ X for m-a.e. φ ∈ Y such that ρ0 ∈ L

1
+(X × Y ;µX ⊗ m) and

sup
x∈X

‖ρ0(x, ·)‖L1(Y ;m) < ∞.

Let ν· ∈ C(I,B∗(X,M+,abs(Y ))) be the measure-valued function defined in terms of the uni-
formly weak solution to (6.8):

dνx
t = ρ(t, x, φ)dφ, for every t ∈ I, and x ∈ X.

Then νt ∈ C∗(X,M+(Y )), for all t ∈ I, provided ν0 ∈ C∗(X,M+(Y )). Moreover, let νm,n
0 ,

ηℓ,m,n for ℓ = 1, 2, and hm be defined in (6.9), and νm,n
t be defined in (6.11). Then

lim
n→∞

d0(νm,n
· , ν·) = 0.

Proof. First note that (H3.1) implies (A1) and (H3.2) implies (A2). It is readily verified
that (A3) and (A7) are fulfilled since Y is compact. In addition, (A4)′ follows from (H3.3).
Hence it suffices to show that (A6) holds with Y for some c,Λ > 0.

Note that ∂Y = {φ1 = 0} ∪ {φ2 = 0} ∪ {φ1 = Λ1} ∪ {φ2 = Λ2}. In the following, we will
show that

V [η, ν·, h](t, x, φ) · υ(φ) ≤ 0, for all t ∈ T , x ∈ X, φ ∈ ∂Y,

where υ(φ) is the outer normal vector at φ. We prove it case by case.

(i) For φ ∈ {ϕ ∈ Y : ϕ1 = 0}, υ(φ) = (−1, 0), and

V [η, ν·, h](t, x, φ) · υ(φ)

= −

∫

X

∫

X

∫

Y

∫

Y

(W1,1(ψ1 − φ1) +W1,2(ψ2 − φ1)) dνy1

t (φ1)dνy2

t (φ2)dηx
1 (y1, y2) ≤ 0.

(ii) For φ ∈ {ϕ : ϕ2 = 0}, υ(φ) = (0,−1), and

V [η, ν·, h](t, x, φ) · υ(φ)

= −

∫

X

∫

X

∫

Y

∫

Y

(W2,1(ψ1 − φ2) +W2,2(ψ2 − φ2)) dνy1

t (φ1)dνy2

t (φ2)dηx
2 (y1, y2) ≤ 0.

(iii) For φ ∈ {ϕ : ϕ1 = Λ1}, υ(φ) = (1, 0). By (6.7),

V [η, ν·, h](t, x, φ) · υ(φ)

=Λ1(α− βΛ1 − γφ2)

+

∫

X

∫

X

∫

Y

∫

Y

(W1,1(ψ1 − Λ1) +W1,2(ψ2 − Λ1)) dνy1

t (φ1)dνy2

t (φ2)dηx
1 (y1, y2)

≤Λ1(α− βΛ1) ≤ 0,

since Λ1 ≥ α
β , due to (6.7).

(iv) For φ ∈ {ϕ : ϕ2 = Λ2}, υ(φ) = (1, 0). By (6.7), and ψ2 ≤ Λ2 for ψ ∈ Y , we have

V [η, ν·, h](t, x, φ) · υ(φ)

=Λ2(−ι+ σφ1 − θΛ2)

+

∫

X

∫

X

∫

Y

∫

Y

(W2,1(ψ1 − Λ2) +W2,2(ψ2 − Λ2)) dνy1

t (ψ1)νy2

t (ψ2)dηx
2 (y1, y2)

≤Λ2(−ι+ σΛ1 − θΛ2) ≤ 0,

since by (6.7), we have Λ2 ≥ − ι
θ + σ

θ Λ1.
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7. Discussion

In this paper we regard directed hypergraph limits as elements in B(X,M+(Xk−1)) for
some k ∈ N \ {1}, the space of bounded measure-valued functions. The motivation of doing
such a work comes from the emergent demanding applications from networks models of higher-
order interactions [8]. We extend the idea proposed in [31] in a plain way from directed graph
measures to directed hyper-graph measures. We apply our main results to Kuramoto networks
of higher-order interactions in physics as well as models in epidemiology and ecology. There
are also models of higher-order interactions which do not admit a compact positively invariant
set [2], and hence our results cannot directly apply. It would be desirable to derive similar
results on MFLs of IPS with an unbounded invariant set. In addition, our results only apply to
the case where the hypergraph measure is a limit of the sequence of hypergraphs of uniformly
bounded cardinalities. It will be challenging while exciting to study the case e.g., where the
hypergraph measure is a limit of the sequence of hypergraphs of unbounded cardinalities ,
e.g., a sequence of simpicial complexes of expanding cardinalities.

We also point out that there is a generic drawback of our definition of DHGM as a gener-
alization of hypergraphs. In the theory of large limits of graphs [35], the topology is induced
by the cut distance which is sufficient to gurantee that a Cauchy sequence of finite graphs has
a graph limit object. However, the extension to hypergraphs with the same property seems
rather non- trivial and involved [19, 35], which makes it impossible to define hypergraphon in
a trivial way as direct translation of graphons from graphs to hypergraphs, while preserving
the above property ensuring the existence of a limit object. Such topology induced by cut
distance is weaker than the weak topology induced by bounded Lipschitz functions. For this
reason, our definition of DHGM can be narrower than a more desriable and natural one to
be defined for limits of hypergraphs. In other words, potentially there may exist a limit of a
sequence of hypergraphs with a uniform cardinality which may not be defined as a DHGM;
and there can be discretizations as ODE networks by construction or obstruction which are
different from the concrete constructions we provide in this paper. Nevertheless, our definition
makes a decent trade-off in the applications, in the light of the rather rare literature [?] which
uses the weaker topology aforementioned in the analysis of MFL of networks of dynamical
systms, due to the obvious difficulty in obtaining estimates of distances of the empirical dis-
tribution and the MFL, caused by the combinatorial nature of the definition of cut distance.
We leave all these worth questions for our future work.

8. Proof of Theorem 5.6

Proof. First, the proof of ν· ∈ C(I, C∗(X,M+(Y ))) follows directly from that of [31, The-
orem 5.15]. The strategy based on four steps to prove the approximation result is identical
to that given in the proof of [31, Theorem 5.15]. Steps II-IV among the four steps are in-

dependent of V̂ . We essentially need to verify that νm,n
· is the unique solution to the fixed

point equation associated with ηm,n and hm:

νm,n
· = A[ηm,n, hm]νm,n

· .

In the light of Step I in the proof of [31, Theorem 5.15], it suffices to express the Vlasov
operator in the discrete context and show it is consistent with the definition of Fm,n

i .
Denote ηm,n = (ηm,n

ℓ )1≤ℓ≤r. For x ∈ IN
i , t ∈ I, by (5.1) and (5.3), we have

V m,n[ηm,n, νm,n
· , hm](t, x, φ)

=

r∑

ℓ=1

∫

Xkℓ−1

∫

Rr2

. . .

∫

Rr2︸ ︷︷ ︸
kℓ−1

gℓ(t, φ, ψ1, . . . , ψkℓ−1)dν
m,n,ykℓ−1

t (ψkℓ−1)
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· · · dνm,n,y1

t (ψ1) · dηm,n,x
ℓ (y1, . . . , ykℓ−1) + hm(t, x, φ),

=

r∑

ℓ=1

bℓ,m,i

n

n∑

j=1

∫

Rr2

. . .

∫

Rr2︸ ︷︷ ︸
kℓ−1

gℓ(t, φ, ψ1, . . . , ψkℓ−1)

· dν
m,n,yℓ,m,n

(i−1)n+j,kℓ−1

t (ψkℓ−1) · · · dν
m,n,yℓ,m,n

(i−1)n+j,1

t (ψ1) + hm(t, xm
i , φ)

=

r∑

ℓ=1

bℓ,m,i

n

n∑

j=1

m∑

p1=1

am,p1

n
1Am

p1
(yℓ,m,n

(i−1)n+j,1) · · ·
m∑

pkℓ−1=1

am,pkℓ−1

n

1Am
pkℓ−1

(yℓ,m,n
(i−1)n+j,kℓ−1)

n∑

q1=1

· · ·
n∑

qkℓ−1=1

gℓ(t, φ, φ
m,n
(p1−1)n+q1

, . . . , φm,n
(pkℓ−1−1)n+qkℓ−1

) + hm(t, xm
i , φ)

=Fm,n
i (t, φ,Φm,n(t)).

�

Acknowledgements

Both authors thank Giulio Zucal for bringing [11] to their attention. We also thank Chris-
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[29] Keliger, D. and Horváth, I. Accuracy criterion for mean field approximations of Markov processes on

hypergraphs. Phys. A: Stat. Mech., 609:128370, 2023.
[30] Kiss, I.Z., Miller, J.C., and Simon, P.L. Mathematics of Epidemics on Networks: From Exact to Ap-

proimate Models, volume 46 of Interdisciplinary Applied Mathematics. Springer International Publishing,
Cham, 2019.

[31] Kuehn, C. and Xu, C. Vlasov equations on digraph measures. J. Diff. Equ., 339:261–349, 2022.
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[37] Oelschläger, K. Morale, D., Capasso, V. An interacting particle system modelling aggregation be-

havior: from individuals to populations. J. Math. Biol., 50:49–66, 2005.
[38] Mulas, R., Kuehn, C., and Jost, J. Coupled dynamics on hypergraphs: Master stability of steady states

and synchronization. Phys. Rev. E, 101:062313, 2020.
[39] Neunzert, H. An introduction to the nonlinear Boltzmann-Vlasov equation. In Cercignani, C., editor,

Kinetic Theories and the Boltzmann Equation, volume 1048 of Lect. Notes Math., pages 60–110. Springer-
Verlag, Berlin, Heidelberg, 1984.

[40] Newman, M.E.J. Networks. Oxford Univ. Press, Oxford, UK, 2nd edition, 2018.
[41] Nijholt, E. and DeVille, L. Dynamical systems defined on simplicial complexes: Symmetries, con-

jugacies, and invariant subspaces. Chaos, 32:093131, 2022.
[42] Oliveira, R.I., Reis, G.H., and Stolerman, L.M. Interacting diffusions on sparse graphs: hydrodynam-

ics from local weak limits. Electron. J. Probab., 25:1–35, 2020.
[43] Pielou, E.C. An Introduction to Mathematical Ecology, volume 46. Wiley-Interscience, New York, USA,

1969.
[44] Roddenberry, T.M. and Segarra, S. Limits of dense simplicial complexes. arXiv:2207.07980, 2022.
[45] Slav́ık, A. Lotka–Volterra competition model on graphs. SIAM J. Appl. Dyn. Syst., 19:725–762, 2020.
[46] Spohn, H. Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer-

Verlag, Berlin, Heidelberg, 1st edition, 1991.
[47] Tao, T. A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A, 113:1257–1280, 2006.
[48] Teschl, G. Ordinary Differential Equations and Dynamical Systems, volume 140 of Grad. Stud. Math.

AMS, Providence, Rhode Island, 2012.



VE ON DHGM 33

[49] Torres, L. et al. The why, how, and when of representations for complex systems. SIAM Rev, 63:435–485,
2021.

[50] Xu, C. and Berger, A. Best finite constrained approximations of one-dimensional probabilities. J. Ap-

prox. Theory, 244:1–36, 2019.
[51] Zhao, Y.F. Hypergraph limits: A regularity approach. Random Struct. and Alg., 47:205–226, 2015.

Appendix A. Proof of Proposition 4.2

Proof. Denote η = (ηℓ)
r
ℓ=1 We will suppress the variables in V [η, ν·, h](t, x, ψ) and Φx

s,t[η, ν·, h]
whenever they are clear and not the emphasis from the context.

The proof of the absolute continuity property is analogous to that of [31, Proposition 4.4(iv)].
In the following, we prove the rest three continuous dependence properties item by item.
The properties of A follows from that of Φx

0,t[η, ν·, h]. Hence in the following, we will first
establish corresponding continuity and Lipschitz continuity for Φx

0,t[η, ν·, h] and then apply
the results to derive respective properties for A.

(i) Continuity in t. Indeed,

d∞(A[η, h]νt,A[η, h]νs)

= sup
x∈X

dBL(Φx
t,0[η, ν·, h]#νx

0 ,Φ
x
s,0[η, ν·, h]#νx

0 )

= sup
x∈X

sup
f∈BL1(Y )

∣∣∣∣
∫

Y

(
f ◦ Φx

t,0[η, ν·, h]φ− f ◦ Φx
s,0[η, ν·, h]φ

)
dνx

0 (φ)

∣∣∣∣

≤ sup
x∈X

∫

Y

∣∣Φx
t,0[η, ν·, h]φ− Φx

s,0[η, ν·, h]φ
∣∣ dνx

0 (φ)

= sup
x∈X

∫

Y

∣∣∣
∫ t

s

(
h(τ, x,Φx

τ,0[η, ν·, h]φ)

+

r∑

ℓ=1

∫

Xkℓ−1

∫

Y

· · ·

∫

Y︸ ︷︷ ︸
kℓ−1

gℓ(τ,Φ
x
τ,0[η, ν·, h]φ, ψ1, ψ2, . . . , ψkℓ−1)dν

ykℓ−1

τ (ψkℓ−1) · · · dνy1

t (ψ1)

dηx
ℓ (y1, . . . , ykℓ−1)

)
dτ

∣∣∣dνx
0 (φ)

≤ sup
x∈X

∫

Y

∫ t

s

( r∑

ℓ=1

∫

Xkℓ−1

∫

Y

· · ·

∫

Y

‖gℓ‖∞dν
ykℓ−1

τ · · · dνy1
τ dηx

ℓ (y1, . . . , ykℓ−1) + ‖h‖∞,I
)

dτdνx
0 (φ)

≤‖ν·‖
( r∑

ℓ=1

‖ν·‖
kℓ−1‖gℓ‖∞‖ηℓ‖ + ‖h‖∞,I

)
|t− s|

≤L1‖ν·‖|t− s| → 0, as |s− t| → 0,

where

L1 := L1(ν·) = BL(h) +

r∑

ℓ=1

BL(gℓ)‖ηℓ‖‖ν·‖
kℓ−1,

BL(h) = supt∈I supx∈X BL(h(t, x, ·)) and BL(gℓ) = supt∈I supx∈X BL(gℓ(t, x, ·)) for
ℓ = 1, . . . , r.

This shows that

t 7→ A[η, h]νt ∈ C(I,B∗(X,M+(Y ))).

The proof of the mass conservation law is the same as that of [31, Proposition 4.4].
(ii) Next, we show Ax[η, h]ν· is Lipschitz continuous in ν·. We first prove Lipschitz con-

tinuity of Φx
t,0φ in the initial condition φ. Note that

|V [η, ν·, h](t, x, φ1) − V [η, ν·, h](t, x, φ2)|
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≤
r∑

ℓ=1

∫

Xkℓ−1

∫

Y

. . .

∫

Y︸ ︷︷ ︸
kℓ−1

|gℓ(t, φ1, ψ1, . . . , ψkℓ−1) − gℓ(t, φ2, ψ1, . . . , ψkℓ−1)|dν
ykℓ−1

t (ψkℓ−1)

· · · dνy1

t (ψ1) · dηx
ℓ (y1, . . . , ykℓ−1) + |h(t, x, φ1) − h(t, x, φ2)|

≤L1(ν·)|φ1 − φ2|, t ∈ I,
(A.1)

This yields

|Φx
t,0φ1(x) − Φx

t,0φ2(x)|

≤|φ1(x) − φ2(x)| +

∫ t

0

|V [η, ν·, h](τ, x,Φx
τ,0φ1(x)) − V [η, ν·, h](τ, x,Φx

τ,0φ2(x))|dτ

≤|φ1(x) − φ2(x)| + L1(ν·)
∫ t

0

|Φx
τ,0φ1(x) − Φx

τ,0φ2(x)|dτ.

By Gronwall’s inequality,

(A.2) |Φx
t,0φ1(x) − Φx

t,0φ2(x)| ≤ eL1(ν·)t|φ1(x) − φ2(x)|,

Similarly, one can also show that

|Φx
0,tφ1(x) − Φx

0,tφ2(x)| ≤ eL1(ν·)t|φ1(x) − φ2(x)|.

Now we are ready to show Ax[η, h]ν· is Lipschitz continuous in ν·. Observe that

dBL(Φx
t,0[ν1

· ]#ν
1,x
0 ,Φx

t,0[ν2
· ]#ν

2,x
0 )

≤dBL(Φx
t,0[ν1

· ]#ν
1,x
0 ,Φx

t,0[ν2
· ]#ν

1,x
0 ) + dBL(Φx

t,0[ν2
· ]#ν

1,x
0 ,Φx

t,0[ν2
· ]#ν

2,x
0 ).(A.3)

Note that

|V [ν1
· ](t, x, φ) − V [ν2

· ](t, x, φ)|

≤
r∑

ℓ=1

∫

Xkℓ−1

∣∣∣
∫

Y kℓ−1

gℓ(t, φ, ψ1, . . . , ψkℓ−1)d(⊗kℓ−1
j=1 ν

1,yj

t (ψj) − ⊗kℓ−1
j=1 ν

2,yj

t (ψj))
∣∣∣

· dηx
ℓ (y1, . . . , ykℓ−1)

=

r∑

ℓ=1

∫

Xkℓ−1

∣∣∣
∫

Y kℓ−1

gℓ(t, φ, ψ1, . . . , ψkℓ−1)d(ν1,y1

t (ψ1) ⊗ ν1,y2

t (ψ2) · · · ⊗ ν
1,ykℓ−1

t (ψkℓ−1)

− ν2,y1

t (ψ1) ⊗ ν1,y2

t (ψ2) · · · ⊗ ν
1,ykℓ−1

t (ψkℓ−1) + ν2,y1

t (ψ1) ⊗ ν1,y2

t (ψ2) · · · ⊗ ν
1,ykℓ−1

t (ψkℓ−1)

− ν2,y1

t (ψ1) ⊗ ν2,y2

t (ψ2) ⊗ ν1,y3

t (ψ3) · · · ⊗ ν
1,ykℓ−1

t (ψkℓ−1) + · · ·

+ ν2,y1

t (ψ1) ⊗ ν2,y2

t (ψ2) · · · ⊗ ν
2,ykℓ−2

t (ψkℓ−2) ⊗ ν
1,ykℓ−1

t (ψkℓ−1) − ⊗kℓ−1
j=1 ν

2,yj

t (ψj))
∣∣∣

· dηx
ℓ (y1, . . . , ykℓ−1)

≤L2d∞(ν1
t , ν

2
t ), t ∈ I,

where L2 = L2(η, ν1
· , ν

2
· ) :=

{∑r
ℓ=1 ‖ηℓ‖BL(gℓ)

∑kℓ−2
i=1 ‖ν1

· ‖i‖ν2
· ‖kℓ−2−i, if kℓ > 2,∑r

ℓ=1 ‖ηℓ‖BL(gℓ), if kℓ = 2.

We now estimate the first term.

dBL(Φx
t,0[ν1

· ]#ν
1,x
0 ,Φx

t,0[ν2
· ]#ν

1,x
0 )

= sup
f∈BL1(Y )

∫

Y

f(φ)d(Φx
t,0[ν1

· ]#ν
1,x
0 − Φx

t,0[ν1
· ]#ν

2,x
0 )

= sup
f∈BL1(Y )

∫

Y

((f ◦ Φx
t,0[ν1

· ])(φ) − (f ◦ Φx
t,0[ν2

· ])(φ))dν1,x
0 (φ)
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≤

∫

Y

∣∣Φx
t,0[ν1

· ](φ) − Φx
t,0[ν2

· ](φ)
∣∣ dν1,x

0 (φ) =: λx(t)

≤

∫

Y

∫ t

0

∣∣V [ν1
· ](τ, x, φ) − V [ν2

· ](τ, x, φ)
∣∣ dτdν1,x

0 (φ)

≤L2(ν1
· , ν

2
· )ν1,x

0 (Y )

∫ t

0

d∞(ν1
τ , ν

2
τ )dτ.(A.4)

Next, we estimate the second term. For f ∈ BL1(Y ), from (A.2) it follows that

L(f ◦ Φx
t,0[ν2

· ]) ≤ L(f)L(Φx
t,0[ν2

· ]) ≤ L(f)eL1(ν2
·

)t, ‖f ◦ Φx
t,0[ν2

· ]‖∞ ≤ ‖f‖∞.

Hence

(A.5) BL(f ◦ Φx
t,0) ≤ eL1(ν2

·
)t.

For every x ∈ X ,

dBL(Φx
t,0[ν1

· ]#ν
1,x
0 ,Φx

t,0[ν2
· ]#ν

1,x
0 )

= sup
f∈BL1(Y )

∫

Y

(f ◦ Φx
t,0[ν2

· ])(φ)d(ν1,x
0 (φ) − ν2,x

0 (φ))

≤eL1(ν2
·

)tdBL(ν1,x
0 , ν2,x

0 ) ≤ eL1(ν2
·

)td∞(ν1
0 , ν

2
0).(A.6)

Combining (A.4) and (A.6), it follows from (A.3) that

d∞(A[η, h]ν1
t ,A[η, h]ν2

t ) = sup
x∈X

dBL(Φx
t,0[ν1

· ]#ν
1,x
0 ,Φx

t,0[ν2
· ]#ν

1,x
0 )

≤eL1(ν2
·

)td∞(ν1
0 , ν

2
0 ) + ‖ν1

· ‖L2(η, ν1
· , ν

2
· )eL1(ν2

·
)t

∫ t

0

d∞(ν1
τ , ν

2
τ )e−L1(ν2

·
)τ dτ.

(iii) Lipschitz continuity of A[η, h] in h.
We first need to establish the Lipschitz continuity for Φx

s,t[h] on h. Note that

|Φx
t,0[h1]φ− Φx

t,0[h2]φ|

≤

∫ t

0

|h1(τ, x,Φx
τ,0[h1]φ) − h2(τ, x,Φx

τ,0[h2]φ)|dτ

+

∫ t

0

r∑

ℓ=1

∫

Xkℓ−1

∫

Y

· · ·

∫

Y

∣∣∣gℓ(τ,Φ
x
0,τ [h1]φ, ψ1, ψ2, . . . , ψkℓ−1)

− gℓ(τ,Φ
x
0,τ [h2]φ, ψ1, ψ2, . . . , ψkℓ−1)

∣∣∣dνykℓ−1

τ (ψkℓ−1) · · · dνy1
τ (ψ1)dηx

ℓ (y1, . . . , ykℓ−1)dτ

≤

∫ t

0

|h1(τ, x,Φx
τ,0[h1]φ) − h2(τ, x,Φx

τ,0[h1]φ)|dτ +

∫ t

0

|h2(τ, x,Φx
τ,0[h1]φ) − h2(τ, x,Φx

τ,0[h2]φ)|dτ

+

∫ t

0

r∑

ℓ=1

∫

Xkℓ−1

∫

Y

· · ·

∫

Y

∣∣∣gℓ(τ,Φ
x
τ,0[h1]φ, ψ1, ψ2, . . . , ψkℓ−1) − gℓ(τ,Φ

x
τ,0[h2]φ, ψ1, ψ2, . . . , ψkℓ−1)

∣∣∣

dν
ykℓ−1

τ (ψkℓ−1) · · · dνy1
τ (ψ1)dηx

ℓ (y1, . . . , ykℓ−1)dτ

≤T ‖h1 − h2‖∞,I + (L(h2) +

r∑

ℓ=1

L(gℓ)‖ηℓ‖‖ν·‖
kℓ−1)

∫ t

0

|Φx
τ,0[h1]φ− Φx

τ,0[h2]φ|dτ

≤T ‖h1 − h2‖∞,I + L1(ν·)
∫ t

0

|Φx
τ,0[h1]φ− Φx

τ,0[h2]φ|dτ.

By Gronwall’s inequality,

|Φx
t,0[h1]φ− Φx

t,0[h2]φ| ≤T eL1(ν·)t‖h1 − h2‖∞,I.
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This shows that

d∞(A[η, h1]νt,A[η, h2]νt)

= sup
x∈X

dBL(Φx
t,0[η, ν·, h1]#νx

0 ,Φ
x
t,0[η, ν·, h2]#νx

0 )

= sup
x∈X

sup
f∈BL1(Y )

∣∣∣∣
∫

Y

(
f ◦ Φx

t,0[η, ν·, h1]φ− f ◦ Φx
t,0[η, ν·, h2]φ

)
dνx

0 (φ)

∣∣∣∣

≤

∫

Y

|Φx
t,0[η, ν·, h1]φ− Φx

t,0[η, ν·, h2]φ|dνx
0 (φ)

≤L3‖h1 − h2‖∞,I ,

where

(A.7) L3 = L3(ν·) := T eL1(ν·)T ‖ν·‖.

�

Appendix B. Proof of Proposition 4.3

Proof. The unique existence of solutions to the fixed point equation (4.1) is proved by the
Banach fixed point theorem, which is analogous to that of [31, Proposition 4.5].

• Continuity in t. It follows directly from Proposition 4.2(i).
• Continuity in x. Assume ν· ∈ C(I, C∗(X,M+(Y ))). We will show A[η, h]ν· ∈

C(I, C∗(X,M+(Y ))). It suffices to show that the continuity of measures in x is pre-
served: x 7→ νx

0 ◦ Φx
t,0[η, ν·, h] is continuous. Indeed,

dBL(Φx
t,0[η, ν·, h]#νx

0 ,Φ
x′

t,0[η, ν·, h]#νx′

0 )

= sup
f∈BL1(Y )

∣∣∣∣
∫

Y

f ◦ Φx
t,0[η, ν·, h]φdνx

0 (φ) − f ◦ Φx′

t,0[η, ν·, h]φdνx′

0 (φ)

∣∣∣∣

≤

∫

Y

∣∣∣Φx
t,0[η, ν·, h]φ− Φx′

t,0[η, ν·, h]φ
∣∣∣ dνx

0 (φ)

+ sup
f∈BL1(Y )

∣∣∣∣
∫

Y

f ◦ Φx′

t,0[η, ν·, h]φd(νx
0 (φ) − νx′

0 (φ))

∣∣∣∣ .

It follows from (A.2) that Φx′

t,0[η, ν·, h]φ is Lipschitz continuous in φ with constant

eL1(ν·)T , and from (A.5) it follows that

f ◦ Φx′

t,0[η, ν·, h]

eL1(ν·)T
∈ BL1(Y ).

In addition, from (A.1), we have

|V [η, ν·, h](τ, x,Φx
τ,0[η, ν·, h]φ) − V [η, ν·, h](τ, x′,Φx′

τ,0[η, ν·, h]φ)|

≤|V [η, ν·, h](τ, x,Φx
τ,0[η, ν·, h]φ) − V [η, ν·, h](τ, x,Φx′

τ,0[η, ν·, h]φ)|

+ |V [η, ν·, h](τ, x,Φx′

τ,0[η, ν·, h]φ) − V [η, ν·, h](τ, x′,Φx′

τ,0[η, ν·, h]φ)|

≤L1(ν·)|Φ
x
τ,0[η, ν·, h]φ− Φx′

τ,0[η, ν·, h]φ| +

r∑

ℓ=1

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1))

⊗kℓ−1
j=1 dνyj

τ (ψj)d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣

+ |h(τ, x,Φx′

τ,0[η, ν·, h]φ) − h(τ, x′,Φx′

τ,0[η, ν·, h]φ)|

≤L1(ν·)|Φ
x
τ,0[η, ν·, h]φ− Φx′

τ,0[η, ν·, h]φ| + sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|
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+

r∑

ℓ=1

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1) ⊗kℓ−1
j=1 dνyj

τ (ψj)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣

≤L1(ν·)|Φ
x
τ,0[η, ν·, h]φ− Φx′

τ,0[η, ν·, h]φ| + sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|

+

r∑

ℓ=1

∣∣∣
∫

Xkℓ−1

(∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1) ⊗kℓ−1
j=1 dνyj

τ (ψj)
)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣.

This implies that

|Φx
t,0[η, ν·, h]φ− Φx′

t,0[η, ν·, h]φ|

=

∫ t

0

|V [η, ν·, h](τ, x,Φx
τ,0[η, ν·, h]φ) − V [η, ν·, h](τ, x′,Φx′

τ,0[η, ν·, h]φ)|dτ

≤L1(ν·)
∫ t

0

|Φx
τ,0[η, ν·, h]φ− Φx′

τ,0[η, ν·, h]φ|dτ +

∫ t

0

sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|dτ

+

r∑

ℓ=1

∫ t

0

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, · · · , ψkℓ−1) ⊗kℓ−1
j=1 dνyj

τ (ψj)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣dτ.

By Gronwall’s inequality,

|Φx
t,0[η, ν·, h]φ− Φx′

t,0[η, ν·, h]φ|

≤
( r∑

ℓ=1

∫ t

0

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, · · · , ψℓk−1) ⊗kℓ−1
j=1 dνyj

τ (ψj)d(ηx
ℓ (y1, . . . , ykℓ−1)

− ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣dτ +

∫ t

0

sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|dτ
)

eL1(ν·)t.

By (A.5), this further shows that

dBL(Φx
t,0[η, ν·, h]#νx

0 ,Φ
x′

t,0[η, ν·, h]#νx′

0 )

≤

∫

Y

|Φx
t,0[η, ν·, h]φ− Φx′

t,0[η, ν·, h]φ|dνx
0 (φ) + eL1(ν·)TdBL(νx

0 , ν
x′

0 )

≤eL1(ν·)T
(∫ t

0

∫

Y

r∑

ℓ=1

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d ⊗kℓ−1
j=1 νyj

τ (ψj)(B.1)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣dνx

0 (φ)dτ

+ ‖ν0‖

∫ t

0

sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|dτ + dBL(νx
0 , ν

x′

0 )
)
.

Since ν· ∈ C(I, C∗(X,M+(Y )), by Proposition 2.3(iv), ⊗kℓ−1
j=1 ν

yj

t is weakly continuous

in (y1, . . . , ykℓ−1). By (A2), gℓ is bounded Lipschitz continuous in φ, ψ1, . . . , ψkℓ−1;

and Φx′

τ,0[η, ν·, h]φ is Lipschitz continuous in φ by (A.2), we have gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . ,
ψkℓ−1) is bounded continuous in φ and ψ1 . . . , ψkℓ−1. Hence for ℓ = 1, . . . , r,∫

Y kℓ−1 gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d⊗kℓ−1
j=1 ν

yj
τ (ψj) is continuous in (y1, . . . , ykℓ−1).
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Moreover,
∣∣∣
∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d ⊗kℓ−1
j=1 νyj

τ (ψj)
∣∣∣ ≤ BL(gℓ)‖ν·‖

kℓ−1 < ∞

is also uniformly bounded for x ∈ X . Hence by Proposition 2.3(iii), we know

lim
|x−x′|→0

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d ⊗kℓ−1
j=1 νyj

τ (ψj)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣ = 0,

(B.2)

since η ∈ C(X,M+(Xkℓ−1)). Notice that
∫ t

0

∣∣∣
∫

Xkℓ−1

∫

Y kℓ−1

gℓ(τ,Φ
y
τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d ⊗kℓ−1

j=1 νyj
τ (ψj)dηx

ℓ (y1, . . . , ykℓ−1)
∣∣∣dτ

≤BL(gℓ)‖ν·‖
kℓ−1‖ηℓ‖T < ∞,

by the Dominated Convergence Theorem, it follows from (B.2) that

lim
|x−x′|→0

∫ t

0

∣∣∣
∫

Xkℓ−1

∫

Y

. . .

∫

Y

gℓ(τ,Φ
x′

τ,0[η, ν·, h]φ, ψ1, . . . , ψkℓ−1)d ⊗kℓ−1
j=1 νyj

τ (ψj)

d(ηx
ℓ (y1, . . . , ykℓ−1) − ηx′

ℓ (y1, . . . , ykℓ−1))
∣∣∣dτ = 0.

Moreover, by (A7) as well as the Dominated Convergence Theorem again,

lim
|x−x′|→0

∫ t

0

sup
ϕ∈Y

|h(τ, x, ϕ) − h(τ, x′, ϕ)|dτ = 0.

Since ν0 ∈ C∗(X,M+(Y )), we have

lim
|x−x′|→0

dBL(νx
0 , ν

x′

0 ) = 0.

Hence from (B.1) it follows that

lim
|x−x′|→0

dBL(Φx
t,0[η, ν·, h]#νx

0 ,Φ
x′

t,0[η, ν·, h]#νx′

0 ) = 0.

The absolute continuity of solutions follow from Proposition 4.2(iv). In the following, we
prove properties (i)-(iii) item by item.

(i) Lipschitz continuity in ν0. It follows from Proposition 4.2(ii) via Gronwall inequality.
(ii) Lipschitz continuity of ν· in h. Assume ν1

0 = ν2
0 .

We first need to establish the Lipschitz continuity for Φx
s,t[h]. Note that

|Φx
0,t[ν

1, h1]φ− Φx
0,t[ν

2, h2]φ|

≤|Φx
0,t[ν

1, h1]φ− Φx
0,t[ν

1, h2]φ| + |Φx
0,t[ν

1, h2]φ− Φx
0,t[ν

2, h2]φ|.

The second term follows from (A.6). The estimate for the first term follows from
Proposition 4.2 (iii). It follows from (A.1) that

≤

∣∣∣∣
∫ t

0

(
V [ν1, h1](τ, x,Φx

0,τ [h1]φ) − V [ν1, h2](τ, x,Φx
0,τ [h2]φ)

)
dτ

∣∣∣∣

≤

∫ t

0

∣∣V [ν1, h1](τ, x,Φx
0,τ [h1]φ) − V [ν1, h2](τ, x,Φx

0,τ [h1]φ(x))
∣∣ dτ

+

∫ t

0

∣∣V [ν1, h2](τ, x,Φx
0,τ [h1]φ) − V [ν1, h2](τ, x,Φx

0,τ [h2]φ)
∣∣ dτ

≤

∫ t

0

∣∣h1(τ, x,Φx
0,τ [h1]φ(x)) − h2(τ, x,Φx

0,τ [h1]φ(x))
∣∣ dτ
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+ L1(ν·)
∫ t

0

∣∣Φx
0,τ [h1]φ− Φx

0,τ [h2]φ
∣∣ dτ.

By Gronwall’s inequality, we have

∣∣Φx
0,t[ν

1, h1]φ− Φx
0,t[ν

2, h2]φ
∣∣ ≤eL1(ν·)t

∫ t

0

|h1(τ, x,Φx
0,τ [h1]φ) − h2(τ, x,Φx

0,τ [h1]φ)|dτ.

Hence

dBL(Φx
0,t[h1]#νx

0 ,Φ
x
0,t[h2]#νx

0 )

= sup
f∈BL1(Y )

∫

Y

f(φ)d(Φx
0,t[h1]#νx

0 − Φx
0,t[h2]#νx

0 )

= sup
f∈BL1(Y )

∫

Y

(
(f ◦ Φx

t,0[h1])(φ) − (f ◦ Φx
t,0[h2])(φ)

)
dνx

0 (φ)

≤

∫

Y

∣∣Φx
t,0[h1]φ− Φx

t,0[h2]φ)
∣∣ dνx

0 (φ)

≤eL1(ν·)t

∫ t

0

∫

Y

|h1(τ, x,Φx
0,τ [h1]φ) − h2(τ, x,Φx

0,τ [h1]φ)|dνx
0 (φ)dτ

≤eL1(ν·)t

∫ t

0

∫

Y

|h1(τ, x, φ) − h2(τ, x, φ)|dνx
τ (φ)dτ

≤L3‖h1 − h2‖∞,I ,

where L3 is defined in (A.7), which further implies that

d∞(A[η, h1](νt),A[η, h2](νt))

= sup
x∈X

dBL(Φx
0,t[h1]#νx

0 ,Φ
x
0,t[h2]#νx

0 ) ≤ L3(ν·)‖h1 − h2‖∞,I .

(iii) Continuous dependence on η. Since ν0 ∈ C∗(X,M+(Y )), we have ν· ∈ C(I, C∗
(X,M+(Y ))). Based on the continuous dependence on the initial distributions proved
in (i), as well as a triangle inequality, it suffices to prove the case assuming

νK
0 = ν0

Let νK
· ∈ C(I,B∗(X,M+(Y ))) with νK

0 = ν0 be the solutions to the fixed point
equations

νt = A[η, h]νt, νK
t = A[ηK , h]νK

t , t ∈ I,

where ηK = (ηK
ℓ )r

ℓ=1. Assume

lim
K→∞

d∞(ηℓ, ηK,ℓ) = 0, ℓ = 1, . . . , r.

In the following, we show

lim
K→∞

d∞(A[η, h]νt,A[ηK , h]νK
t ) = 0, t ∈ I.

By the triangle inequality,

dBL(νx
t , ν

K,x
t ) =dBL(Φx

t,0[η, ν·]#ν
x
0 ,Φ

x
t,0[ηK , νK

· ]#ν
x
0 )

≤dBL(Φx
t,0[ηK , ν·]#ν

x
0 ,Φ

x
t,0[ηK , νK

· ]#ν
x
0 )(B.3)

+ dBL(Φx
t,0[η, ν·]#ν

x
0 ,Φ

x
t,0[ηK , ν·]#ν

x
0 ).

From (A.4) it follows that

dBL(Φx
t,0[ηK , ν·]#ν

x
0 ,Φ

x
t,0[ηK , νK

· ]#ν
x
0 )

≤

∫

Y

|Φx
t,0[ηK , ν·]φ− Φx

t,0[ηK , νK
· ]φ|dνx

0 (φ) =: βK
x (t),
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≤L2,K(ηK)‖ν·‖eL1,K(νK
·

)t

∫ t

0

d∞(ντ , ν
K
τ )e−L1,K(νK

·
)τ dτ,(B.4)

where the index K in the constants indicates the dependence on K.
We now estimate the second term. By (A.1),

dBL(Φx
t,0[η, ν·]#ν

x
0 ,Φ

x
t,0[ηK , ν·]#ν

x
0 )

= sup
f∈BL1(Y )

∫

Y

fd(Φx
t,0[η, ν·]#ν

x
0 − Φx

t,0[ηK , ν·]#ν
x
0 )

= sup
f∈BL1(Y )

∫

Y

(
(f ◦ Φx

t,0[η, ν·])(φ) − (f ◦ Φx
t,0[ηK , ν·])(φ)

)
dνx

0 (φ)

≤

∫

Y

|Φx
t,0[η, ν·]φ− Φx

t,0[ηK , ν·]φ)|dνx
0 (φ) =: γK

x (t)

=

∫

Y

∣∣∣∣
∫ t

0

(V [η, ν·](τ, x,Φ
x
τ,0[η, ν·]φ) − V [ηK , ν·](τ, x,Φ

x
τ,0[ηK , ν·]φ))dτ

∣∣∣∣ dνx
0 (φ)

≤

∫

Y

∣∣∣∣
∫ t

0

(V [η, ν·](τ, x,Φ
x
τ,0[η, ν·]φ) − V [η, ν·](τ, x,Φ

x
τ,0[ηK , ν·]φ))dτ

∣∣∣∣ dνx
0 (φ)

+

∫

Y

∣∣∣∣
∫ t

0

(V [η, ν·](τ, x,Φ
x
τ,0[ηK , ν·]φ) − V [ηK , ν·](τ, x,Φ

x
τ,0[ηK , ν·]φ))dτ

∣∣∣∣ dνx
0 (φ)

≤

∫

Y

∫ t

0

∣∣V [η, ν·](τ, x,Φ
x
τ,0[η, ν·]φ) − V [η, ν·](τ, x,Φ

x
τ,0[ηK , ν·]φ)

∣∣ dτdνx
0 (φ)

+

∫

Y

∫ t

0

∣∣V [η, ν·](τ, x,Φ
x
τ,0[ηK , ν·]φ) − V [ηK , ν·](τ, x,Φ

x
τ,0[ηK , ν·]φ)

∣∣ dτdνx
0 (φ)

≤L1(ν·)
∫ t

0

∫

Y

∣∣Φx
τ,0[η, ν·]φ− Φx

τ,0[ηK , ν·]φ
∣∣ dνx

0 (φ)dτ

+

∫ t

0

∫

Y

∣∣V [η, ν·](τ, x,Φ
x
τ,0[ηK , ν·]φ) − V [η, ν·](τ, x,Φ

x
τ,0[ηK , νK

· ]φ)
∣∣ dνx

0 (φ)dτ

+

∫ t

0

∫

Y

∣∣V [η, ν·](τ, x,Φ
x
τ,0[ηK , νK

· ]φ) − V [ηK , ν·](τ, x,Φ
x
τ,0[ηK , νK

· ]φ)
∣∣ dνx

0 (φ)dτ

+

∫ t

0

∫

Y

∣∣V [ηK , ν·](τ, x,Φ
x
τ,0[ηK , νK

· ]φ) − V [ηK , ν·](τ, x,Φ
x
τ,0[ηK , ν·]φ)

∣∣ dνx
0 (φ)dτ

≤L1(ν·)
∫ t

0

γK
x (τ)dτ + L1(ν·)

∫ t

0

∫

Y

∣∣Φx
τ,0[ηK , ν·]φ− Φx

τ,0[ηK , νK
· ]φ

∣∣ dνx
0 (φ)dτ

+

∫ t

0

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dνK,x

τ (φ)dτ

+ L1,K(ν·)
∫ t

0

∫

Y

∣∣Φx
τ,0[ηK , νK

· ]φ− Φx
τ,0[ηK , ν·]φ

∣∣ dνx
0 (ψ)dτ

=L1(ν·)
∫ t

0

γK
x (τ)dτ + (L1(ν·) + L1,K(ν·))

∫ t

0

βK
x (τ)dτ

+

∫ t

0

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dνK,x

τ (φ)dτ.

To obtain further estimates, let

ζK
x (τ) :=

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dνx

τ (φ).
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By the triangle inequality,
∫ t

0

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dνK,x

τ (φ)dτ

≤

∫ t

0

ζK
x (τ)dτ

+

∫ t

0

∣∣∣∣
∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ d(νK,x

τ (φ) − νx
τ (φ))

∣∣∣∣ dτ.

Recall that

sup
x∈X

ηK,x
ℓ (Y ) ≤ sup

x∈X

(
ηx

ℓ (Y ) + d∞(ηx
ℓ , η

K,x
ℓ )

)
, ℓ = 1, . . . , r.

Moreover, since
lim

k→∞
d∞(νK

0 , ν0) = 0

and
r∑

ℓ=1

∣∣‖ηℓ‖ − ‖ηK
ℓ ‖

∣∣ ≤
r∑

ℓ=1

d∞(ηℓ, η
K
ℓ ) → 0, as K → ∞,

we have there exists some b > 0 independent of K such that

(B.5) sup
K∈N

(L1(ν·) + L1,K(ν·)) ≤ b, sup
K∈N

(L2(η, ν·, ν
K
· ) + L2(ηK , ν·, ν

K
· )) ≤ b.

Let
fK(τ, x, ϕ) :=

∣∣V [η, ν·](τ, x, ϕ) − V [ηK , ν·](τ, x, ϕ)
∣∣ .

Using analogous arguments as in the proof for the limit [31, (A.2)], we have

lim
K→∞

sup
x∈X

|fK(τ, x, ϕ)| = 0,

which further implies that fK is bounded. Moreover, it follows from (A.1) again that

|fK(τ, x, ϕ) − fK(τ, x, φ)|

≤ |V [η, ν·](τ, x, ϕ) − V [η, ν·](τ, x, φ)| +
∣∣V [ηK , ν·](τ, x, ϕ) − V [ηK , ν·](τ, x, φ)

∣∣
≤(L1 + L1,K)|ϕ− φ| ≤ b|ϕ− φ|.

Further, by (A.1), one can show that fK(τ, x, ϕ) is bounded Lipschitz continuous in

ϕ with some constant b̂ > 0 such that

sup
K∈N

sup
τ∈I

sup
x∈X

BL(fK(τ, x, ·)) ≤ b̂.

Hence
∣∣∣
∫ t

0

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ d(νK,x

τ (φ) − νx
τ (φ))dτ

∣∣∣

≤b̂

∫ t

0

dBL(νK,x
τ , νx

τ )dτ.

This further implies that

γK
x (t) ≤L1

∫ t

0

γK
x (τ)dτ + b

∫ t

0

βK
x (τ)dτ + b̂

∫ t

0

dBL(νK,x
τ , νx

τ )dτ +

∫ t

0

ζK
x (τ)dτ.

By Gronwall’s inequality, we have

γK
x (t) ≤ eL1t

(
b

∫ t

0

βx(τ)dτ + b̂

∫ t

0

dBL(νK,x
τ , νx

τ )dτ +

∫ t

0

ζK
x (τ)dτ

)

Hence by (A.4), (B.3), (B.4), and (B.5), we have for t ∈ I,

dBL(νx
t , ν

K,x
t ) ≤ βK

x (t) + γK
x (t)
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≤βK
x (t) + eL1t

(
b

∫ t

0

βx(τ)dτ + b̂

∫ t

0

dBL(νK,x
τ , νx

τ )dτ +

∫ t

0

ζK
x (τ)dτ

)

≤L2,K‖ν·‖
∫ t

0

eL1,K(t−τ)d∞(νK
τ , ντ )dτ

+ eL1tb

∫ t

0

βx(τ)dτ + b̂eL1t

∫ t

0

dBL(νK,x
τ , νx

τ )dτ + eL1t

∫ t

0

ζK
x (τ)dτ

≤(b− L2)‖ν·‖
∫ t

0

e(b−L1)(t−τ)d∞(νK
τ , ντ )dτ

+ eL1tb

∫ t

0

(b − L2)‖ν·‖
∫ τ

0

e(b−L1)(τ−s)d∞(νK
s , νs)dsdτ

+ b̂eL1t

∫ t

0

dBL(νK,x
τ , νx

τ )dτ + eL1t

∫ t

0

ζK
x (τ)dτ

≤(b− L2)‖ν·‖(1 + eL1tbt)

∫ t

0

e(b−L1)(t−τ)d∞(νK
τ , ντ )dτ

+ b̂eL1t

∫ t

0

dBL(νK,x
τ , νx

τ )dτ + eL1t

∫ t

0

ζK
x (τ)dτ

≤(b− L2)‖ν·‖(1 + bT )eL1t

∫ t

0

e(b−L1)(t−τ)d∞(νK
τ , ντ )dτ

+ b̂eL1t

∫ t

0

dBL(νK,x
τ , νx

τ )dτ + eL1t

∫ t

0

ζK
x (τ)dτ

≤L4

∫ t

0

d∞(νK
τ , ντ )dτ + eL1T

∫ t

0

ζK
x (τ)dτ,

where L4 := ebT (b − L2)‖ν·‖(1 + bT ) + eL1T b̂. By Gronwall’s inequality,

d∞(νK
t , νt) ≤ eL4+L1T sup

x∈X

∫ t

0

ζK
x (τ)dτ.

To show limK→∞ d0(νK
· , ν·) = 0, it suffices to show

lim
K→∞

sup
x∈X

∫ T

0

ζK
x (τ)dτ = 0.

For every t ∈ I, define ν̂t ≡ supx∈X νx
t :

ν̂t(E) = sup
x∈X

νx
t (E), ∀E ∈ B(Y ).

Since νt ∈ B(X,M+(Y )), it is easy to show that ν̂t ∈ M+(Y ). By Fatou’s lemma,

sup
x∈X

ζK
x (τ) = sup

x∈X

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dνx

τ (φ)

≤ sup
x∈X

∫

Y

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dν̂τ (φ)

≤

∫

Y

sup
x∈X

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dν̂τ (φ).

Since ν· ∈ B(I,M+(Y )), we have ν̂· ∈ B(I,M+(Y )). Using analogous arguments as
those for proving [31, Proposition 3.2], we have

sup
x∈X

∫ T

0

ζK
x (τ)dτ ≤

∫ T

0

sup
x∈X

ζK
x (τ)dτ
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≤

∫ T

0

∫

Y

sup
x∈X

∣∣V [η, ν·](τ, x, φ) − V [ηK , ν·](τ, x, φ)
∣∣ dν̂τ (φ)dτ → 0, as K → ∞.
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