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Abstract

We formulate and prove a Bott periodicity theorem for an ℓp-space (1 ≤ p < ∞). For

a proper metric space X with bounded geometry, we introduce a version of K-homology at

infinity, denoted by K∞
∗ (X), and the Roe algebra at infinity, denoted by C∗

∞(X). Then the
coarse assembly map descends to a map from limd→∞ K∞

∗ (Pd(X)) to K∗(C∗
∞(X)), called the

coarse assembly map at infinity. We show that to prove the coarse Novikov conjecture, it
suffices to prove the coarse assembly map at infinity is an injection. As a result, we show

that the coarse Novikov conjecture holds for any metric space with bounded geometry which

admits a fibred coarse embedding into an ℓp-space. These include all box spaces of a residually
finite hyperbolic group and a large class of warped cones of a compact space with an action

by a hyperbolic group.
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1 Introduction

The Novikov conjecture claims that the higher signatures of closed oriented smooth manifolds are

invariant under orientation preserving homotopy equivalences. It is implied by the injectivity of

the Baum-Connes assembly map [2]. The coarse Novikov conjecture, as a geometric analogue of

the Novikov conjecture, is the injectivity part of the coarse Baum–Connes conjecture [12, 18]. It

offers a technique to determine when an elliptic operators higher index on a noncompact com-

plete Riemannian manifold is nonzero. A detailed survey on the coarse Novikov conjecture can

be found in [31].

In [4], X. Chen, Q. Wang and G. Yu generalized Gromov’s notion of coarse embedding into

Hilbert space and introduced the notion of fibred coarse embedding (see Definition 2.4) and

showed that if a discrete metric space X with bounded geometry admits a fibred coarse em-

bedding into Hilbert space, then the maximal coarse Baum–Connes conjecture holds for X. Later

in [8], M. Finn-Sell showed that the coarse Novikov conjecture also holds for X in such a case.

Our main theorem in this paper states as follows:

Theorem 1.1. [Theorem 2.5] Let X be a metric space with bounded geometry. If X admits a fibred coarse

embedding into an ℓp-space for some p ∈ [1, ∞), then the coarse Novikov conjecture holds for X, i.e. the

coarse assembly map

µ : lim
d→∞

K∗(Pd(X)) → K∗(C
∗(X))

is injective.

Warped cones over actions of hyperbolic groups and box spaces of residually finite hyper-

bolic groups are typical examples to which our main result appies. A sequence of nested normal

subgroups {Γi} of a residually finite group Γ is said to be a filtration if the sequence has trivial

intersection. The box space of Γ associated to a filtration {Γi}, denoted by Box{Γi}Γ, is the coarse

disjoint union
⊔

Γ/Γi, where each quotient is equipped with the word length metric. Warped

cones are metric spaces introduced by J. Roe [20] from discrete group actions on compact met-

ric spaces. Typically, let Γ be a finite generated group, M a compact Riemannian manifold. The
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warped cone for (Γ, M), denoted by OΓ(M), is constructed from the action Γ on M by diffeomor-

phisms. It is a metric space whose underlying topological space is the open cone OM on M, but

whose coarse geometry produces large groups of translations. The second section will have a

comprehensive introduction for warped cones.

In [22], D. Sawicki and J. Wu found a relationship between fibred coarse embeddability of

warped cones and existence of proper affine isometric actions of discrete groups on Banach

spaces. They proved that if (Γ, M) is free and admits a linearization by unitary operators in a

Hilbert space H and Γ admits a proper affine isometric action on H (i.e., Γ is a-T-menable), then

OΓ(M) admits a fibred coarse embedding into Hilbert space. The result still holds if we replace

the Hilbert space with an ℓp-space. The same question is also considered by Q. Wang and Z. Wang

in [24]. They provided a different proof for the case of ℓp spaces and replace the condition Γ y M

is free by that M is required to contain a dense and free orbit of Γ in their paper.

As corollaries, we have the following results:

Corollary 1.2. Let Γ be a finite generated discrete group and let M be a compact manifold. Assume that

the action of Γ on M is linearisable in an ℓp-space and Γ y M is free (or M contains a dense free orbit). If

Γ admits a proper affine isometric action on an ℓp-space, then the coarse Novikov conjecture holds for the

warped cone OΓ(M).

Combining the result in [3, 21, 30], we also have

Corollary 1.3. Let Γ be a finitely generated residually finite hyperbolic group, and G = Γ̂((Γn)) the

corresponding profinite completion. Then the coarse Novikov conjecture hold for OΓ(G) and any box apace

Box{Γn}Γ.

We now give a short explaination about serveral key ingredients in our proof. We briefly

recall the proof of the maximal coarse Baum-Connes conjecture for a metric space which admits

a fibred coarse embedding into a Hilbert space in [4]. The authors firstly reduced the issue to

proving the maximal coarse Baum-Connes conjecture at infinity for the coarse disjoint unions of

finite metric spaces. By using a geometric Dirac-dual-Dirac argument, they further reduced the

problem to a twisted version of coarse Baum-Connes conjecture at infinity by using a C∗-algebra

constructed in [11]. Then the theorem follows by using a cutting and pasting argument of G. Yu

introduced in the Section 6 of [29]. We try to follow the outline of their proof, however there are

servarl problems.

For the first step, we need to use a Mayer-Vietoris argument and Five Lemma to reduce the

problem to ’infinity’. First of all, a coarse Mayer-Vietoris argument in [13] enables us to just

take into consideration of the coarse Baum-Connes conjecture for coarse disjoint unions of finite

subsets. For the case when X =
⊔

n∈N Xn where each Xn is finite, one can use the following
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diagram, see [4]:

0

��

0

��
lim
d→∞

K∗(Pd(XNd
))⊕

⊕∞
n=Nd

K∗(Pd(Xn))
∼= //

��

K∗(K)

��
lim
d→∞

K∗(Pd(X))
µ //

��

K∗(C∗
max(X))

Φ∗

��
lim
d→∞

∏n∈N K∗(Pd(Xn))⊕
n∈N K∗(Pd(Xn))

µ∞ //

��

K∗(C∗
max,u,∞(Pd(Xn)))

��
0 0

.

The vertical sequence on the right side is exact only when we take the maximal norm and the top

horizantal map is an isomorphism. Then it suffices to prove the assembly map at infinity µ∞ is

an isomorphism.

However, when we consider the coarse Novikov conjecture for certain spaces, the coarse

Mayer-Vietories argument above does not work anymore as the Five Lemma fails if we only

have the injectivity part of the assembly map µ. The argument holds only for a coarse disjoint

union of a sequence of finite metric spaces X =
⊔

n∈N Xn. One can still reduce the coarse Novikov

conjecture for X to ’infinity’ by using the following diagram, see [25, 26].

0

��

0

��
lim
d→∞

K∗(Pd(XNd
))⊕

⊕∞
n=Nd

K∗(Pd(Xn))
∼= //

��

K∗(K)

i∗

��
lim
d→∞

K∗(Pd(X))
µ

//

��

K∗(C∗(X))

Φ∗

��
lim
d→∞

∏n∈N K∗(Pd(Xn))⊕
n∈N K∗(Pd(Xn))

µ∞ //

��

K∗(C∗
u,∞(Pd(Xn)))

0

.

Notice that i∗ : K∗(K) → K∗(C∗(X)) is injective only when X is a coarse disjoint union of finite

spaces, see [16]. By using a diagram chasing argument, to prove µ is injective, it suffices to prove

µ∞ is injective.
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For the general case (especially the case when X can not be seen as a coarse disjoint union of finite met-

ric spaces), in order to make the whole progress work well, we introduce a notion of K-homology

at infinity for a locally compact Hausdorff space and a notion of Roe algebra at infinity for a

proper metric space in Section 4 and construct the following diagram:

lim
d→∞

K∗(Pd(X))
π∗ //

µ

��

lim
d→∞

K∞
∗ (Pd(X))

µ∞

��
K∗(C∗(Pd(X)))

Φ∗ // K∗(C∗
∞(Pd(X)))

.

A metric space with bounded geometry is said to admit an infinite coarse component if there exists

R > 0 such that the Rips complex PR(X) has an unbounded component. It is an opposite state-

ment to the coarse disjoint union (see Proposition 5.5). We prove that π∗ is an injection if X admits

an infinite coarse component. Thus we can still reduce the Novikov conjecture for X to proving

µ∞ is injective in this case. Moreover, we show in Section 5 that our construction coincides with

the construction in [4] for the coarse disjoint union case. This means that we can always reduce

the coarse Novikov conjecture to ’infinity’ by using our construction (see Theorem 5.7).

For the second step, we need to construct a twisted version of the coarse Baum-Connes con-

jecture by using an algebra associated with B = ℓp(N, R) for p ∈ [1, ∞). As B is of property (H)

introduced by G. Kasparov and G. Yu in [14], we wanted to use the C∗-algebra Q((An⊗̂K)n∈N)

introduced in [5, 14] to solve this problem. For any a ∈ Q((An⊗̂K)n∈N), we shall need a C∗-

isomorphism t∗ : Q((An⊗̂K)n∈N) → Q((An⊗̂K)n∈N) associated to an affine isometry t on B

to translate the support of a. However, Q((An⊗̂K)n∈N) is built by using a dense subspace of B

which may not be invarinat under t. To solve this problem, we construct a new algebra A(B) for

an ℓp-space B = ℓp(N, R) in Section 3. Our construction is inspired from the paper of S. Gong,

J. Wu and G. Yu [10] for the case when p = 2. We construct a Bott homomorphism βx0 : S → A(B)
associated with a base point x0 ∈ B by using the p/2-Hölder extension of the Mazur map intro-

duced by E. Odell and T. Schlumprecht in [15] and extended by Q. Cheng in [6]. We show that the

Bott homomorphism induces an isomorphism on K-theory which does not depend on the choice

of the base point, i.e., (βx0)∗ : K∗(S) → K∗(A(B)) is an isomorphism for any x0 ∈ B (see Theorem

3.15).

Actually, it has been pointed out in G. Kasparov and G. Yu’s paper [14] that the Bott periodicity

theorem holds for ℓp-spaces. Indeed, the Mazur map can be extended to a homeomorphism

between ℓp(N, R) and ℓ2(N, R) and the Bott periodicity for ℓ2(N, R) has been proved in [11].

However, the constructions in [11] and [14] also rely on a dense subspace of ℓp(N, R) which is

sightly different from ours.

This paper is organized as follows. In Section 2, we briefly recall the Roe algebra and Yu’s

localization algebra, and states the coarse Novikov conjecture. After that we go over the concept

of warped metric and warped cones introduced by John Roe [20]. In Section 3, we introduce an

algebra A(B) associated with B = ℓp(N, R) and calculate its K-theory. It will play an important

role in the following proof. In Section 4, we introduce K-homology at infinity, Roe algebra at

infinity and the coarse Novikov conjecture at infinity for a proper metric space. In Section 5. we
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compare the case of coarse disjoint union and the case of spaces which admit an infinite coarse

component, and reduce both cases to the coarse Novikov conjecture at infinity. In Section 6, we

define twisted algebras at infinity and compute their K-theories by using a cutting and pasting

technique introduced by G. Yu in [29]. In Section 7, we define the Bott map and complete the

proof.

2 The coarse Novikov conjecture

First of all, let us recall the definition of the Roe algebra and the coarse Baum-Connes assembly

map for a proper metric space (cf. [2, 18, 19]) in this section.

Assume that (X, d) is a proper metric space. For δ > 0, a δ-net of X is a discrete subset

of Xδ ⊂ X such that there exists r > 0 such that d(x, x′) > r for all distinct x, x′ ∈ Xδ and⋃
x∈Xδ

B(x, δ) = X. Moreover, X is said to have bounded geometry if X contains a net Xδ with

bounded geometry for some δ > 0, i.e., for any r > 0 there exists N > 0 such that any ball of

radius r in Xδ contains at most N elements.

We denote C0(X) to be the C∗-algebra of all continuous functions on X which vanish at infinity.

A separable infinite-dimensional Hilbert space HX is said to be an X-module if HX is equipped

with a non-degenerate ∗-representation π : C0(X) → B(HX). Moreover, HX is said to be ample if

no non-zero element of C0(X) acts as a compact operator.

Definition 2.1 ([18]). Let HX be an ample X-module and T ∈ B(HX).

(1) T is said to be locally compact if f T and T f are compact operators for any f ∈ C0(X);

(2) The support of T, denoted by supp(T), is defined to be the set of all points (x, y) ∈ X × X

such that for all f , g ∈ C0(X) with f (x) 6= 0 and g(y) 6= 0, we have that f Tg 6= 0;

(3) The propagation of T is defined to be

Prop(T) = sup{d(x, y) | (x, y) ∈ supp(T)} ∈ [0, ∞].

Moreover, T is said to have finite propagation if Prop(T) < ∞.

(4) The algebraic Roe algebra of X, denote by C[X, HX ] (or simply C[X]), is defined to be the

∗-algebra of all finite propagation locally compact operators on HX.

(5) The Roe algebra of X, denoted by C∗(X, HX) (or simply C∗(X)), is the norm closure of C[X]

in B(HX).

Note that C∗(X, HX) does not depend on the choice of X-module HX up to a non-canonical ∗-

isomorphism [13]. Hence, it is convenient to discuss the following specific X-module. Let Z ⊆ X

be a countable dense subset of X and H be a fixed infinite dimensional Hilbert space. We denote

K(H) to be the set of all compact operators on H. We define HX = ℓ2(Z)⊗ H to be an ample X-

module equipped with the pointwise multiplication representation of C0(X) on ℓ2(Z). It is easy

to check that HX is ample.
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Definition 2.2. Define C f [X] to be the set of all bounded functions T : Z × Z → K(H) satisfying

the following conditions:

(1) for any bounded subset B ⊂ X, the set

#{(x, y) ∈ (B × B) ∩ (X × X) | T(x, y) 6= 0} < ∞;

(2) there exists L > 0 such that

#{y ∈ Z|T(x, y) 6= 0} < L, #{y ∈ Z | T(y, x) 6= 0} < L

for all x ∈ Z;

(3) there exists R > 0 such that T(x, y) = 0 whenever d(x, y) > R for x, y ∈ Z.

Notice that C f [X] can be viewed as a dense ∗-subalgebra of C[X, HX] in C∗(X), where the

algebraic operation of C f [X] is given by viewing T ∈ C f [X] as Z-by-Z matrix. In this sequel, we

will use C f [X] to replace C[X] to define the Roe algebra of X.

We next recall the assembly map µ for the Roe algebras. Let X be a proper metric space.

Recall that the K-homology groups Ki(X) = KKi(C0(X), C) (i = 0, 1) are generated by certain

cycles modulo certain equivalence relations

(1) a cycle for K0(X) is a pair (HX , F), where HX is an X-module and F is a bounded linear

operator acting on HX such that F∗F − I and FF∗ − I are locally compact, and ϕF − Fϕ is

compact for all ϕ ∈ C0(X);

(2) a cycle for K1(X) is a pair (HX, F), where HX is an X-module and F is a self-adjoint operator

acting on HX such that F2 − I is locally compact, and ϕF − Fϕ is compact for all ϕ ∈ C0(X).

Let (HX, F) represent a cycle in K0(X). For any R > 0, one can always take a locally finite,

uniformly bounded open cover {Ui}i∈I of X such that the diameter of each Ui is no more than R.

Let {φi}i∈I be a continuous partition of unity subordinate to the open cover {Ui}i∈I . Define

F′ = ∑
i

φ
1
2
i Fφ

1
2
i ,

where the sum converges in the strong operator topology. It is not hard to see that (HX, F) and

(HX , F′) are equivalent via (HX, (1 − t)F + tF′), where t ∈ [0, 1]. Note that both F′ and F′2 − 1

have finite propagation, so F′ is a multiplier of C∗(X) and F′ is invertible modulo C∗(X). Hence

F′ gives rise to an element, denoted by ∂([F′]) in K0(C∗(X)), where

∂ : K1(M(C∗(X))/C∗(X)) → K0(C
∗(X))

is the boundary map of K-theory, and M(C∗(X)) is the multiplier algebra of C∗(X). We define the

index of (HX, F) to be ∂([F′]). Similarly, we can define the index map from K1(X) to K1(C
∗(X)).
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Now we are ready to introduce the coarse Baum–Connes assembly map for a metric space

with bounded geometry.

Definition 2.3. Let X be a discrete metric space with bounded geometry. For each d ≥ 0, the Rips

complex of X at scale d, denoted by Pd(X), consists as a set of all formal sums

z = ∑
x∈X

txx

such that each tx is in [0, 1], such that ∑x∈X tx = 1, and such that the support of z defined by

supp(z) := {x ∈ X | tx 6= 0} has diameter at most d.

We will next discuss the semi-simplicial metric of the Rips complex of X. One can find more

details of Rips complex in the section 7.2 of [27]. We shall first define the spherical metric dS

on Pd(X). On each path connected component of Pd(X), the spherical metric is the maximal

metric whose restriction to each simplex {∑
n
i=0 tixi | ti ≥ 0, ∑i ti = 1} is the metric obtained by

identifying the simplex with Sn
+ via the map

n

∑
i=0

tixi →


 t0√

∑
n
i=0 t2

i

, · · · ,
tn√

∑
n
i=0 t2

i


 ,

where Sn
+ = {(x0, · · · , xn) ∈ Rn+1 | xi ≥ 0, ∑

n
i=0 x2

i = 1} endowed with the standard Riemannian

metric on the unit n-sphere.

For any x, y ∈ Pd(Z), a semi-simplicial path δ between x and y is a finite sequence of points

x = x0, y0, x1, y1, · · · , xn, yn = y

where xi and yi are in X for each i = {1, · · · , n}. The length of δ is defined to be

l(δ) =
n

∑
i=0

d(xi, yi) +
n−1

∑
i=0

dS(yi, xi+1)

We define the semi-spherical metric dPd
on Pd(X) by

dPd
(x, y) = inf{l(δ) | δ is a semi-simplicial path between x and y}.

One can check that (P0(X), dP0
) identifies isometrically with (X, d). Moreover, it has been proved

in [27, Proposition 7.2.11] that the canonical inclusion id : X → Pd(X) is a coarse equivalence for

each d ≥ 0.

If d < d′, then Pd(X) is included in Pd′(X) as a subcomplex via a simplicial map. Passing to

inductive limit, we obtain the assembly map

µ : lim
d→∞

K∗(Pd(X)) → lim
d→∞

K∗(C
∗(Pd(X))) ∼= K∗(C

∗(X)).

The coarse Novikov conjecture. If X is a discrete metric space with bounded geometry, then the coarse
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assembly map

µ : lim
d→∞

K∗(Pd(X)) → K∗(C
∗(X))

is injective.

To state our main theorem, we will also need some preparations of coarse geometry and group

actions. Recall that a metric space (X, d) is said to admits a coarse embedding into a Hilbert space

if there exists a map f : X → H and two non-decreasing unbounded functions ρ−, ρ+ : R+ → R+

such that

ρ−(dX(x, x′)) ≤ ‖ f (x)− f (x′)‖H ≤ ρ+(dX(x, x′)).

The concept of fibred coarse embedding is introduced by X. Chen, Q. Wang and G. Yu in [4] as a

generalization of coarse embedding. In this paper, we will only focus on the case when a space

admits a fibred coarse embedding into a real ℓp-space as following:

Definition 2.4 ([4]). Let p ≥ 1 and let B denote the real Banach space ℓp(N, R). A metric space

(X, d) is said to admit a fibred coarse embedding into B if there exists

• a field of Banach space (Bx)x∈X over X such that each Bx is isometric to B;

• a section s : X →
⊔

x∈X Bx, i.e. s(x) ∈ Bx for each x ∈ X;

• two non-decreasing functions ρ− and ρ+ from R+ to R+ with limr→∞ ρ±(r) = ∞

such that, for any R > 0, there exists a bounded subset K ⊂ X for which there exists a trivializa-

tion

tx,R : (Bz)z∈B(x,R) → B(x, R)× B

for each x ∈ X\K, that is, a map from (Bz)z∈B(x,R) to the constant field B(x, R)× B such that tx,R

restrict to the fibre Vz is an affine-isometry tx,R(z) : Vz → V, satisfying the following conditions:

(1) for any z1, z2 ∈ B(x, R),

ρ−(d(z1, z2)) ≤ ‖tx,R(z1)(s(z1))− tx,R(z2)(s(z2))‖p ≤ ρ+(d(z1, z2));

(2) for any x, y ⊂ X\K with B(x, R)∩ B(y, R) 6= ∅, there exists an affine-isometry txy,R : V → V

such that tx,R(z) ◦ t−1
y,R(z) = txy,R for all z ∈ B(x, R) ∩ B(y, R).

Notice that for x ∈ X and R′ > R > 0, if there exists two trivilizations tx,R and tx,R′ for B(x, R)

and B(x, R′), respectively. Without loss of generality, we may assume that

tx,R′ |B(x,R) = tx,R.

For the notational convenience, we denote tx and txy for all tx,R and txy,R, respectively.

In the rest of this paper, we will prove the following theorem:

Theorem 2.5. Let X be a discrete metric space with bounded geometry. If X admits a fibred coarse embed-

ding into an ℓp space, then the coarse Novikov conjecture holds for X.
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2.1 Warped Cones and proper affine isometric group actions

In this subsection, we shall recall some basic notions of warped cones and proper affine group

actions (cf. [20, 21]). These are prominent examples of spaces which admit a fibred coarse embed-

ding into an ℓp-space.

Let (Y, dY) be a compact metric space. The open cone of Y, denoted by OY, is the set Y× [1, ∞)

with the metric dOY defined by

dOY((y1, t1), (y2, t2)) = |t1 − t2|+ min{t1, t2} ·
dY(y1, y2)

diam(Y)
.

Let (X, dX) be a proper metric space, Γ a finite generated countable group acting by homeo-

morphisms on X and S ⊆ Γ a finite generating set. The warped metric δΓ on X is defined to be

the greatest metric satisfying that

δΓ(x, x′) ≤ dX(x, x′) and δΓ(sx, x) ≤ 1

for any x, x′ ∈ X and s ∈ S. The warped metric on X always exists and the coarse structure

induced by the warped metric does not depend on the choice of generating set S for Γ (see [20,

Proposition 1.7]). For any γ ∈ Γ, let |γ| denote the word length of γ relative to the generating set

S. Let x, x′ ∈ X, the warped distance between from x to y is [20]

δΓ(x, x′) = inf

{
N−1

∑
i=0

d(γixi, xi+1) + |γi|
∣∣∣ x = x0, x1, · · · , xN = x′ ∈ X, γi ∈ Γ

}
.

Definition 2.6 ([21]). Let (Y, dY) be a compact metric space and let Γ be a finitely generated group

acting on Y by homeomorphisms. The warped cone of Y, denoted by OΓ(Y), is the open cone OY

with the warped metric, where the warping group action is defined by γ(y, t) = (γy, t).

Definition 2.7 (P. C. Baayen and J. De. Groot [1]). A group action Γ y Y is said to admit a

linearization in Banach space B if and there exists an isometric representation of Γ on B and Y

admits a bi-Lipschtz equivariant embedding into B

One is referred to the section 3.1 in [22] for more informations about linearization.

For a residually finite group, it is well-known that the coarse geometric properties of the box

sapces Box(Γ) are closely related to the analytic properties of Γ. A summary of the relationship

can be found in [3, 7]. Actually, similar results also appear in the relationship between the coarse

geometric properties OΓY and the dynamical and analytic properties of Γ:

Theorem 2.8. Let Γ be a finte gnerated group and (Y, d) a compact metric apace. Assume that there is a

free group action Γ y Y.

(1) The warped cone OΓY has property A if and only if the action Γ y Y is amenable.
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(2) Assume moreover the action Γ y Y admit a linearization in the real Banach space ℓp(N, R) for

some p ≥ 1. If Γ admits a proper affine isometric action on ℓp(N, R), then OΓY admits fibred coarse

embedding into ℓp(N, R).

The first term of the theorem above is proved by combining [20, Theorem 3.4] and [22, The-

orem 4.2]. The second term is proved in [22, Theorem 3.2] for the case of p = 2. Actually their

prove also holds for any p ≥ 1. One can also find another proof in [24, Theorem 3.2] for the case

of p 6= 2.

In the last of this section, we introduce a typical example constructed by profinite completion:

Examples 2.9. Let Γ be a residually finite group and {Γn}∞
n=1 a decreasing sequence of finite

index normal subgroups with
⋂∞

n=1 Γn = {e}. We denote the quotient group by Gn = Γ/Γn. The

identity map of Γ induces an group homomorphism Gn → Gn−1 for each n ∈ N. Then we have

the following sequence:

· · · → Gn → · · · → G2 → G1 → 1.

We denote Γ̂((Γn)) the inverse limit of this sequence and call it the profinite completion of Γ with

respect to (Γn). It is well-known that Γ̂((Γn)) is a compact metrizable group containing Γ as a

dense subgroup and Γ acts freely on Γ̂((Γn)) by left multiplication and admit a linearization in

ℓp(N, R) for any 1 ≤ p < ∞ ([22, Lemma 3.19]).

If Γ admits a proper affine isometric action on ℓp(N, R) for some p ≥ 1, then the warped cone

OΓ(Γ̂((Γn))) admits a fibred coarse embedding into ℓp(N, R).

Combining with Theorem 2.5, we have the following corollaries:

Corollary 2.10. Let Γ be a countable discrete group, Y be a compact metric space with a free Γ-action.

If this action admits a linearization in the ℓp(N, R) and Γ admits a proper affine isometric action on

ℓp(N, R) for some p ≥ 1, then the coarse Novikov conjecture holds for OΓY.

G. Yu proved hyperbolic groups always admits a proper affine isometric action on ℓp(N, R)
for a sufficiently large p ≥ 1 in [30, Theorem 1.1]. In particular, we have the following:

Corollary 2.11. Let Γ be a finitely generated residually finite hyperbolic group, and G = Γ̂((Γn)) the

corresponding profinite completion. Then the coarse Novikov conjecture holds for OΓ(G).

3 A Bott periodicity theorem for ℓp spaces

In this section, we will introduce a C∗-algebra A(B) associated to a given real Banach space B =

ℓp(N, R) and calculate its K-theory.

In [14], G. Kasparov and G. Yu introduced a C∗-algebra for Banach space with Property (H).

They pointed out that its K-theory can be calculated if the base space is an ℓp-space. We provide a

detailed proof in this section. We would like to mention that our construction is slightly different
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from theirs. The C∗-algebra A(X) in [14] is generated by some certain functions on a dense

subspace V of B. To build the twisted algebras in Section 6, for any affine isometry in Definition

2.4, we shall need a C∗-isomorphism associated to the affine isometry to translate the support of

a function in A(X). However, the affine isometries in Definition 2.4 may not preserve the dense

subspace in [14]. Our construction A(B) will circumvent this problem.

3.1 A Clifford algebras for a Hilbert space

In this subsection, we will recall the definition of Clifford algebras for Hilbert spaces.

Let H be an infinite dimensional separable real Hilbert space. For each n ≥ 0, denote

H⊙n
C

= C ⊙H⊙H⊙ · · · ⊙ H︸ ︷︷ ︸
n times

,

where ⊙ means the algebraic tensor product over R and H⊗0
C

= C. Then H⊙n
C

is equipped with

a natural structure of complex vector space. We define the complex inner product on H⊙n
C

by the

formula:

〈z1 ⊗ v1 ⊗ · · · ⊗ vn, z2 ⊗ w1 ⊗ · · · ⊗ wn〉 = z1 · z2 · 〈v1, w1〉 · . . . · 〈vn, wn〉,

and denote H⊗n
C

the completion of H⊙n
C

under the inner product about. We denote 1 ⊗ v1 ⊗ · · · ⊗
vn simply by v1 ⊗ · · · ⊗ vn.

Denote Kn the closed subspace of H⊗n
C

which is spanned by

{
v1 ⊗ · · · ⊗ vk − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

∣∣ v1, · · · , vn ∈ H, σ is a k-permutation
}

.

Define the k-th complex exterior power of H to be the quotient Hilbert space

∧nHC = H⊗n
C

/Kn,

where the equivalence class in ∧nHC is always denoted by v1 ∧ · · · ∧ vn. Let {e1, · · · , en, · · · }
be an orthonormal basis of H. Then the set {ei1 ∧ ei2 ∧ · · · ∧ ein

| i1 < i2 < · · · < in} gives an

orthonormal basis of ∧kHC. Define the antisymmetric Fock space:

∧∗HC =
⊕

k∈N

∧kHC.

For any v ∈ H, we define the creation operator C(v) by

C(v)(v1 ∧ · · · ∧ vk) = v ∧ v1 ∧ · · · ∧ vk.
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It is not hard to check that the adjoint operator defined by

C∗(v)(v1 ∧ · · · ∧ vk) =
k

∑
i=1

(−1)i+1〈v, vi〉v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk.

We define a self-adjoint operator

v̂ := C(v) + C∗(v) ∈ B(∧∗HC)

for each v ∈ H, then we have that

ŵv̂ + v̂ŵ = 2〈w, v〉.

The complex Cliiford algebra CliffC(H) to be subalgebra of B(∧∗HC) generated by {v̂ | v ∈ H}.

If V is a linear subspace of H, then ∧∗VC is clearly a subspace of ∧∗HC. Thus CliffC(V) can be

naturally viewed as a subalgebra of CliffC(H).

Proposition 3.1. Let {Vn}n∈N be an increasing sequence of finite-dimensional Hilbert space such that⋃
n∈N Vn is dense in H. Then

lim
n→∞

CliffC(Vn) ∼= CliffC(H).

Proof. For each n ∈ N, we can view CliffC(Vn) as a subalgebra of CliffC(H). It suffices to prove

⋃

n∈N

CliffC(Vn) = CliffC(H),

which follows directly from the fact that ‖v̂‖CliffC(H) = ‖v‖H and
⋃

n∈N Vn = H.

Remark 3.2. Actually, there is another way to construct the Clifford algebra for H. Let T (H) =

⊕∞
n=0H

⊙n
C

be tha complex algebraic tensor algebra of H. Let I be the ideal of T (H) which is

generated by
{

v ⊗ v − ‖v‖2
H · 1 | v ∈ H

}
. Denote Cl(H) the quotient algebra T (H)/I. As a linear

space, T (H) is also a dense subspace of the Hilbert space ⊕∞
n=0H

⊗n
C

. Denote by H(Cl(H)) the

completion of Cl(H) under the inner product induced by ⊕∞
n=0H

⊗n
C

. Then Cl(H) has a canonical

faithful representation by the left multiplication on H(Cl(H)). Then the Clifford algebra

CliffC(H) = Cl(H)‖·‖

where the norm ‖ · ‖ is given by the canonical representation on H(Cl(H)).

3.2 A C∗-algebra associated with a real ℓp space

Fix 1 ≤ p < ∞ and denote B = ℓp(N, R) to be the real Banach space. Specially, we denote

H = ℓ2(N, R) the real Hilbert space. We define the sign function sgn : R → R by the formula

sgn(a) =

{
0 , a = 0;

a|a|−1 , a 6= 0.
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Denote by S(B) the closed unit sphere of B. Recall the Mazur map ψ : S(B) → S(H), defined by

ψ(a1, · · · , an, · · · ) = (sgn(a1)|a1|
p/2, · · · , sgn(an)|an|

p/2, · · · ),

is a uniform homeomorphism, i.e., the r-oscillation of ψ and ψ−1 tend to 0 as r tends to 0, where

the r-oscillation of ψ is defined to be

ωr(ψ) = sup
x,x′∈S(B),‖x−x′‖p≤r

‖ψ(x)− ψ(x′)‖.

We consider the p/2-Hölder extension of the Mazur map ψ, which is a map φ : B → H defined by

φ(x) =





0 , x = 0;

‖x‖
p/2
p ψ

(
‖x‖−1

p x
)

, x 6= 0.

Actually, we have the following uniform homeomorphism extension theorem due to E. Odell and

T. Schlumprecht [15, Proposition 2.9] and Q. Cheng [6, Theorem 2.4]:

Proposition 3.3 ([6, 15]). For any R > 0, the extended Mazur map restricted on the ball φ|BallB(0,R) :

BallB(0, R) → BallH(0, Rp/2) is a uniform homeomorphism, i.e.,

ωr

(
φ|BallB(0,R)

)
→ 0 as r → 0.

As a corollary, φ forms a homeomorphism between B and H. When p = 2, the extended

Mazur map is the identity map on H.

Denote by R+ = [0, ∞). Let C(B × R+, CliffC(H⊕ R)) be the algebra of all continuous func-

tions from B × R+ to CliffC(H⊕ R). We view CliffC(H) as a subalgebra of CliffC(H⊕ R) in the

following paper.

Definition 3.4. Define Cb,0(B ×R+, CliffC(H⊕R)) to be the subalgebra of C(B×R+, CliffC(H⊕
R)) consisting of all bounded functions f such that

f (x, 0) ∈ CliffC(H) ⊆ CliffC(H⊕ R)

for all x ∈ B.

Definition 3.5. For any x0 ∈ B, we define the Clifford operator Cx0 ∈ C(B × R+, CliffC(H⊕ R))

by

Cx0(x, t) = (φ(x − x0), t) ∈ H⊕ R ⊆ CliffC(H⊕ R)

for any x ∈ B and t ∈ R+.

We denote C0(R)ev (or C0(R)odd, respectively) the subset of C0(R) of all even (or odd, respec-

tively) functions. For any Hilbert space H, we next define the functional calculus of CliffC(H):

for any f ∈ C0(R)ev and v ∈ H ⊂ CliffC(H), we define f (v) = f (‖v‖) ∈ C ⊂ CliffC(H) and for
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g ∈ C0(R)odd, we define the functional calculus by

g(v) =





0 , v = 0

g(‖v‖)
v

‖v‖
, v 6= 0,

where g(v) is an element of CliffC(H).

Lemma 3.6. For any x0 ∈ B and f ∈ C0(R), the Bott map βx0 is defined by functional calculus such that

(βx0( f ))(x, t) = f (Cx0(x, t)),

for each x ∈ B and t ∈ R+. Then βx0 gives a graded homomorphism from C0(R) to Cb,0(B×R+, CliffC(H⊕
R)).

Proof. Combining the definition of the functional calculus and the fact that φ is continuous, it is

obvious that βx0( f ) is continuous.

Definition 3.7. The algebra A(B) is the C∗-subalgebra Cb,0(B × R+, CliffC(H⊕R)) generated by

{βx( f ) | x ∈ B, f ∈ C0(R)}.

Let W be a subspace of B, the algebra A(B, W) is defined to be the C∗-subalgebra of A(B) gener-

ated by

{βx( f ) | x ∈ W ⊆ B, f ∈ C0(R)}.

Lemma 3.8. Fix f ∈ S .

(1) For any ε > 0, there exists δ > 0 such that

‖βx( f )− βy( f )‖ ≤ ε

whenever x, y ∈ B satisfies ‖x − y‖p ≤ δ.

(2) As a corollary, let {xn} ∈ B be a sequence which converges to x0 ∈ B. Then

lim
n→∞

‖βxn ( f )− βx0( f )‖ = 0

for each f ∈ C0(R).

Proof. Let f0 and f1 be the even part and odd part of f . There exists R > 0 such that | f (t)| ≤ ε/2

for all |t| > R.

Case 1. For the even part, by definition, for each x, y, z ∈ B, we have that

‖(βx( f0)− βy( f0))(z, t)‖ = | f0(‖Cx(z, t)‖)− f0(‖Cy(z, t)‖)|.
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If (z, t) satisfies that both ‖Cx(z, t)‖ and ‖Cy(z, t)‖ are greater than R, then

| f0(‖Cx(z, t)‖) − f0(‖Cy(z, t)‖)| ≤ | f0(‖Cx(z, t)‖)|+ | f0(‖Cy(z, t)‖)| ≤ ε.

Notice that ‖Cx(z, t)‖ = (‖φ(z − x)‖2 + t2)1/2 = (‖z − x‖
p
p + t2)1/2. If one of ‖Cx(z, t)‖ or

‖Cy(z, t)‖ is less than R, without loss of generality, assume that ‖Cx(z, t)‖ < R. Then ‖z − x‖
p
p <

R2. Notice that

∣∣‖Cx(z, t)‖ − ‖Cy(z, t)‖
∣∣ =

(
‖z − x‖

p
p + t2

)1/2
−
(
‖z − y‖

p
p + t2

)1/2

≤
(
‖z − x‖

p
p − ‖z − y‖

p
p

)1/2
,

and ∣∣‖z − x‖p − ‖z − y‖p

∣∣ ≤ ‖x − y‖p.

Set δ0 > 0 satisfying that | f0(t1) − f0(t2)| < ε
2 for all t1, t2 with |t1 − t2| < δ0. As y(t) = tp

is uniform continuous in [0, Rp/2 + 1], then there exists δ1 > 0 such that |t
p
1 − t

p
2 | < δ2

0 for all

t1, t2 ∈ [0, Rp/2 + 1] with |t1 − t2| < δ1. Set δev = min{δ1, 1}. If ‖x − y‖p ≤ δev, then both ‖z − x‖p

and ‖z − y‖p are in [0, Rp/2 + 1] and we have that

| f0(‖Cx(z, t)‖) − f0(‖Cy(z, t)‖)| ≤
ε

2
.

Case 2. For the odd part, assume that there exists g ∈ C0(R)ev such that f1(t) = tg(t). Such

elements are dense in C0(R)odd. Then, by definition,

‖(βx( f1)− βy( f1))(z, t)‖ =
∥∥g(‖Cx(z, t)‖)Cx(z, t)− g(‖Cy(z, t)‖)Cy(z, t)

∥∥
≤
∥∥g(‖Cx(z, t)‖)− g(‖Cy(z, t)‖)Cx(z, t)

∥∥
+ |g(Cy(z, t))| · ‖Cx(z, t)− Cy(z, t)‖.

Similarly, if both ‖Cx(z, t)‖ and ‖Cy(z, t)‖ are greater than R, then

∥∥g(‖Cx(z, t)‖)Cx(z, t)− g(‖Cy(z, t)‖)Cy(z, t)
∥∥ ≤ | f1(‖Cx(z, t)‖)|+ | f1(‖Cy(z, t)‖)| ≤ ε.

If one of ‖Cx(z, t)‖ or ‖Cy(z, t)‖ is less than R, with a similar argument as above, we can find a

δ3 > 0 such that |g(‖Cx(z, t)‖)− g(‖Cy(z, t)‖)| ≤ ε
4R . For the second term, we have that

‖Cx(z, t)− Cy(z, t)‖ = ‖φ(z − x)− φ(z − y)‖.

By Proposition 3.3, there exists 0 < δ4 < 1 associated with φ|BallB(0,R2/p+1) such that if ‖x− y‖ ≤ δ4,

then ‖φ(z − x) − φ(z − y)‖ ≤ ε
4‖g‖ . Set δodd = min{δ3, δ4}, we conclude that if ‖x − y‖p ≤ δodd,

then

‖(βx( f1)− βy( f1))(z, t)‖ ≤
ε

2

for all (z, t) ∈ B × R.
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Set δ = min{δev, δodd}, then

‖βx( f )− βy( f )‖ ≤ ‖βx( f0)− βy( f0)‖+ ‖βx( f1)− βy( f1)‖ ≤ ε.

This completes the proof.

Corollary 3.9. Let {Wn}n∈N be an increasing sequence of finite dimensional linear subspaces of B with⋃
n∈N Wn dense in B. Then

(1) A(B, B) = A(B) and A(B, Wn) ⊆ A(B, Wn+1);

(2) limn→∞ A(B, Wn) = A(B,
⋃

n∈N Wn) = A(B,
⋃

n∈N Wn).

Proof. The first term and the first equality in (2) are immediate from the definition. The second

equality in (2) comes from Lemma 3.8.

3.3 The K-theory of A(B)

In this subsection, we shall calculate the K-theory of A(B). We will show that the Bott map

(βx0)∗ : K∗(S) → K∗(A(B)) is an isomorphism for any x0 ∈ B. One can find a proof in [10,

Remark 7.7] for the case when p = 2. We remark that the Bott periodicity theorem holds for any

Banach space which is spherical equivalent to ℓ2 by using a similar argument.

Let Nn = {0, 1, · · · , n} ⊆ N. We denote Bn = ℓp(Nn, R) and Hn = ℓ2(Nn, R) to be the finite

dimensional subspaces of B and H, respectively. It is clear that
⋃∞

n=0 Bn = B and
⋃∞

n=0 Hn = H.

Denote S = C0(R) equipped with the grading according to even and odd functions.

Define Cb,0(Bn × R+, CliffC(Hn ⊕ R)) to be the subalgebra of Cb(Bn × R+, CliffC(Hn ⊕ R))
consisting of all bounded function f such that

f (x, 0) ∈ CliffC(Hn) ⊆ CliffC(Hn ⊕ R).

Since the Mazur map restricts to a uniform homeomorphism ψn = ψ|Bn : S(Bn) → S(Hn), for any

x0 ∈ Bn, we can still define the Clifford operator Cn
x0
∈ C(Bn × R+, CliffC(Hn ⊕ R)) on Bn by

Cn
x0
(x, t) = (φn(x − x0), t) ∈ CliffC(Hn ⊕ R),

where φn : Bn → Hn is the extended Mazur map of ψn and x ∈ Bn, t ∈ R+. The Bott map

βn
x0

: S → Cb,0(Bn × R+, CliffC(Hn ⊕ R)) is defined to be

(
βn

x0
( f )
)
(x, t) = f (Cn

x0
(x, t)).

Definition 3.10. Define A(Bn) to be the subalgebra of Cb,0(Bn × R+, CliffC(Hn ⊕ R)) generated

by

{βn
x( f ) | f ∈ S , x ∈ Bn}.
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Similarly, one can also define the Clifford operator on Hn and A(Hn) by taking p = 2. To

clearfy the notation, we write the Bott map for Hn associated to v ∈ Hn by βHn
v .

Lemma 3.11. A(Bn) is a (Bn × R+)-C∗-algebra.

Proof. Let Aev(Bn) be the C∗-subalgebra of A(Bn) generated by

{βn
x( f ) | x ∈ Bn, f ∈ C0(R)ev} .

Then Aev(Bn) is a subalgebra of the center Z(A(Bn)). It is clear that βn
x( f ) ∈ C0(Bn × R+) for

any x ∈ Bn and f ∈ C0(R)ev. For any different points (x1, t1), (x2, t2) ∈ Bn × R+ with t1 ≤ t2, we

have that

‖Cx1
(x1, t1)‖ = |t1| <

√
‖x1 − x2‖

p
p + t2

2 = ‖Cx1
(x2, t2)‖.

Choose a suitable f ∈ C0(R)ev such that f (‖Cx1
(x1, t1)‖) 6= f (‖Cx1

(x2, t2)‖), i.e.,

(
βn

x1
( f )
)
(x1, t1) 6=

(
βn

x1
( f )
)
(x2, t2)

By Stone-Weierstrass theorem, we conclude that Aev(Bn) ∼= C0(Bn × R+).

For any f ∈ Cc(R), let f0 ∈ C0(R) be an even function such that f0(t) = 1 for all t ∈ supp( f ),
thus βn

x( f )βn
x( f0) = βn

x( f ) for any x ∈ Bn. This means that C0(Bn ×R+) · A(Bn) is dense in A(Bn).

Then A(Bn) is a (Bn × R+)-C∗-algebra.

In [14], G. Kasparov and G. Yu introduced a C∗-algebra SC(Bn) associated with Bn. We briefly

recall the definition here. Denote C(Bn) = C0(Bn, CliffC(Hn)) equipped with the grading induced

from CliffC(Hn). Denote SC(Hn) = S⊗̂C(Hn) to be the graded tensor product.

Theorem 3.12. With notations as above, A(Bn) is isomorphic to SC(Bn) for any n ∈ N.

Proof. By definition, SC(Bn) = { f ⊗̂h | f ∈ C0(R), h ∈ C0(Bn, CliffC(Hn))}. Define

B = { f ∈ C0(R+, CliffC(R)) | f (0) ∈ C}.

B is induced with the grading of CliffC(R) ∼= C ⊕C, the scalar part and the vector part. We define

a homomorphism ϕ : S → B by the following formula:

(ϕ( f ))(t) = fev(t)1 + fodd(t)e,

where fev and fodd are respectively the even and odd parts of f and e is a unit vector of R. It is not

hard to see that ϕ is an isomorphism preserving the grading.

As a corollary, we have the identification:

SC(Bn) = { f ∈ C0(Bn × R+, CliffC(Hn ⊕ R)) | f (x, 0) ∈ CliffC(Vn)},

where we view CliffC(Hn) as a subalgebra of CliffC(Hn ⊕R). Notice that C0(Bn ×R+) ∼= C0(R)ev ⊗
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C0(Bn) is a subalgebra of Z(SC(Bn)), the center of SC(Bn), which makes SC(Bn) a (Bn × R+)-

C∗-algebra.

Notice that A(Bn) is a subalgebra of SC(Bn). Indeed,

lim
(x,t)→∞

(βn
x0
( f ))(x, t) = 0 and f (C(v, 0)) = f (v) ∈ CliffC(V).

It suffices to prove A(Bn) is dense in SC(Bn). As both algebras are (Bn × R+)-C∗-algebras, it

suffices to prove the fiber of A(Bn) at (x, t) is the same as SC(Bn) for any (x, t) ∈ Bn × R+. The

fiber of A(Bn) at (x, t) is given by

A(Bn)/C0(Bn × R\{(x, t)}) · A(Bn) ∼= CliffC(Hn ⊕ tR),

where

tR =

{
0 , t = 0;

R , t 6= 0,

which is actually same as SC(Bn). We then finish the proof that A(Bn) ∼= SC(Bn).

Corollary 3.13. The Bott map induces an isomorphism on K-theory:

(βn
x)∗ : K∗(S)

∼=−→ K∗(A(Bn))

for any x ∈ Bn.

Proof. For any x0, x1 ∈ Bn, we take xs = (1 − s)x0 + sx1 for each s ∈ [0, 1]. Then s 7→ xs is

a continuous path connecting x0 and x1. By Lemma 3.8, we have that βxs forms a homotopy

between βx0 and βx1
. Thus it suffices to prove the theorem for 0 ∈ Bn.

Define φ∗ : A(Hn) → A(Bn) by

(φ∗(σ))(x, t) = σ(φ(x), t), σ ∈ A(Hn) and x ∈ Bn.

As φ is a homeomorphism, it is clearly to see that φ∗ a ∗-isomorphism. For any f ∈ S and

(x, t) ∈ Bn × R+, one can check that

(
φ∗
(

βHn
0 ( f )

))
(x, t) =

(
βHn

0 ( f )
)
(φ(x), t)

= f (φ(x), t)

= (βn
0( f )) (x, t).
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This shows that φ∗ ◦ βHn
0 ( f ) = βn

0( f ). Thus, we have the following commuting diagram:

K∗(S) K∗(A(Hn))

K∗(A(Bn)).
(βBn

0 )∗

(βHn
0 )∗

φ∗

It is proved that
(

βHn
0

)
∗

is an isomorphism in [11] and [10]. As a result, (βn
0)∗ is an isomorphism.

For any n ∈ N, we denote B′
n = ℓp(N\Nn, R). Then one can easily see that B = Bn ⊕p B′

n,

where ⊕p means that Bn ⊕ B′
n is equipped with the norm

‖(x, y)‖p = (‖x‖
p
p + ‖y‖

p
p)

1/p

for any (x, y) ∈ Bn ⊕p B′
n. Denote by Pn : B → Bn and Qn : B → B′

n the direct sum projection, i.e.,

for any x = (x1, x2) ∈ B = Bn ⊕p B′
n we have that Pn(x) = x1 and Qn(x) = x2. The following fact

which will be very useful in the next lemma can be checked with a easy calculation:

Fact. For any (x, y) ∈ Bn ⊕p B′
n = B, we have that

φ(x, y) = (φ(x), φ(y)) ∈ Hn ⊕ H′
n = H,

i.e., φ = φ|Bn ⊕ φB′
n

: Bn ⊕p B′
n → Hn ⊕ H⊥

n .

For any σ ∈ A(B, Bn), we define the restriction homomorphism πn : A(B, Bn) → A(Bn) by

(πn(σ))(x, t) = σ(x, t)

for all x ∈ Wn. To see πn is well-defined, one can check that

(πn ◦ βx0( f ))(x, t) = πn( f (Cx0(x, t))) = f (Cn
x0
(x, t)),

for any x0, x ∈ Bn and t ≥ 0.

Lemma 3.14. The restriction homomorphism πn : A(B, Wn) → A(B) is an isomorphism.

Proof. For each (w, t) ∈ B′
n ⊕ R, we define

τn
w,t : Hn ⊕ R → H⊕ R

to be the inclusion which is identity on Hn and maps (0, (‖w‖2
p + t2)1/2) ∈ Vn ⊕ R to (0, φ(w), t),

i.e., τn
w,t(0⊕R) is the one-dimensional subspace of H⊥

n ⊕R spanned by (φ(w), t) and the inclusion

is an isometry. This map clearly induces an inclusion of Clifford algebras CliffC(Vn ⊕ R) →
CliffC(H⊕ R).
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Define

Φ : C(Bn × R+, CliffC(Hn ⊕ R)) → C(B × R+, CliffC(H⊕ R))

by the following formula:

(Φ(σ))(x, t) = τn
Qn(x),t

(
σ(Pn(x), (‖Qn(x)‖2

p + t2)1/2)
)
∈ CliffC(H⊕ R),

where (Pn(x), (‖Qn(x)‖2
p + t2)1/2) ∈ Bn × R+. It is clear that Φ is a ∗-homomorphism.

Let x0 ∈ Bn, consider the Clifford operator Cn
x0

∈ C(Bn × R+, CliffC(Hn ⊕ R)) on Bn, i.e.,

Cn
x0
(x, t) = (x − x0, t) for each (x, t) ∈ Bn ⊕ R. Then for any y ∈ B, we have

(Φ(Cn
x0
))(y, t) = τn

Qn(y),t
(Cn

x0
(Pn(y), (‖Qn(y)‖

2
p + t2)1/2))

= τn
Qn(y),t

(φ(Pn(y)− x0), (‖Qn(y)‖
2
p + t2)1/2)

= (φ(Pn(y)− x0)⊕ φ(Qn(y)), t).

(1)

As φ = φ|Bn ⊕ φ|B′
n

: Bn ⊕p B′
n → Hn ⊕ H⊥

n , then φ(x) = φ(x1) + φ(x2) for any x = (x1, x2) ∈ Bn ⊕
B′

n = B. Thus φ(Pn(y)− x0) + φ(Qn(y)) = φ(Pn(y) + Qn(y) − x0) = φ(y − x0). Combining the

equation (1), we have that Φ(Cn
x0
) = Cx0 the Clifford operator of B. Write ty =

√
‖Qn(y)‖2

p + t2.

Then for any f ∈ C0(R), we have that

(Φ(βn
x0
( f )))(y, t) =τn

Qn(y),t
( f (Cn

x0
(Pn(y), ty)))

=τn
Qn(y),t

(
fev

(
‖Cn

x0

(
Pn(y), ty

)
‖
))

+

τn
Qn(y),t

(
fodd

(
‖Cn

x0

(
Pn(y), ty

)
‖
) Cn

x0
(Pn(y), ty)

‖Cn
x0
(Pn(y), ty)‖

)

= fev (‖Cx0 (y, t) ‖) + fodd (‖Cx0 (y, t) ‖)
τn

Qn(y),t
(Cn

x0
(Pn(y), ty))

‖Cx0(y, t)‖

= fev (‖Cx0 (y, t) ‖) + fodd (‖Cx0 (y, t) ‖)
Cx0(y, t)

‖Cx0(y, t)‖
= βx0( f )(y, t)

(2)

This shows that Φ maps A(Wn) to A(B) and Φ(A(Wn)) is actually equal to A(B, Wn). This also

shows that Φ is the inverse of πn.

Theorem 3.15. For any x0 ∈ B, the Bott homomorphism

βx0 : C0(R) → A(B)

induces an isomorphism on K-theory, i.e.,

(βx0)∗ : K∗(S) → K∗(A(B))

is an isomorphism.

Proof. Similarly, it suffices to prove the theorem for some fixed x0 ∈ B.
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Viewing Bn as a subspace of Bn+1, one can similarly define a map

Φn : A(Bn) → A(Bn+1, Bn) ⊆ A(Bn+1).

By compute on the generators, it is not hard to check that we have the following commuting

diagram

S
βn

x0 //

βn+1
x0 ##●

●
●
●
●
●
●
●
●
●

A(Bn)

Φn

��

Φ // A(B, Bn)

��
A(Bn+1)

Φ // A(B, Bn+1)

where β is defined as in [11]. Combining the results we prove before, we have that

A(B) = lim
n→∞

A(B, Bn) ∼= lim
n→∞

A(Bn).

As the K-functor commutes with the direct limits (see [27]), the theorem holds directly from The-

orem 3.12.

4 K-homology at infinity and Roe algebra at infinity

In this section, we will introduce K-homology at infinity and Roe algebra at infinity for a proper

metric space.

The approach to K-homology via localization algebras is first introduced by G. Yu in [28]. In

this paper, we will also need to work with a version of localization algebras introduced by R.

Willett and G. Yu in [27]. For the convenience of the readers, we shall briefly recall its definition

and its functoriality. Let X be a proper metric space.

Definition 4.1 ([27]). Let H+
X be an X+-module, where X+ is the one point compactification.

Define L[H+
X ; ∞] to be the collection of all bounded functions (Tt) from [1, ∞) to B(H+

X ) such

that:

(1) for any compact subset K of X, there exists tK ≥ 0 such that for all t ≥ tK, the operators χKTt

and TtχK are compact and the functions

t 7→ χKTt and t 7→ TtχK

are uniformly continuous when restricted to [tK, ∞);

(2) for any open neighbourhood U of diagonal in X+ × X+, there exists tU ≥ 1 such that for all

t > tU

supp(Tt) ⊆ U.

Define L∗(H+
X ; ∞), or simply L∗(X+; ∞), to be the C∗-algebra completion of L[H+

X ; ∞] for the
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norm

‖(Tt)‖ = sup
t

‖Tt‖B(HX).

By [27, Proposition 6.6.2], [28, Theorem 3.2] and [17, Theorem 3.4], we have the following

result:

Theorem 4.2. The K-homology group K∗(X) is isomorphic to the K-theory group K∗(L∗(H+
X ; ∞)), i.e.,

K∗(X) ∼= K∗(L∗(H+
X ; ∞))

and K∗(L∗(H+
X ; ∞)) does not depend on the choice of ample modules up to the canonical equivalence.

Let H+
X be a geometric module. Let L0[H

+
X ; ∞] be the collection of all (Tt) ∈ L[H+

X ; ∞] such

that for any compact subset K ⊆ X there exists tK ≥ 0 such that for all t ≥ tK,

χKTt = TtχK = 0.

It is not difficult to see that L0[H
+
X ; ∞] is a ∗-ideal in L[H+

X ; ∞]. Let L∗
0(H+

X ; ∞) be the closure of

L0[H
+
X ; ∞] inside L∗(H+

X ; ∞), let

L∗
Q(H+

X ; ∞) = L∗(H+
X ; ∞)/L∗

0(H+
X ; ∞)

be the corresponding quotient C∗-algebra. Using an Eilenberg swindle, we have the following

result as in [27, Lemma 6.4.11]

Lemma 4.3. The quotient map L∗(H+
X ; ∞) → L∗

Q(H+
X ; ∞) induces an isomorphism on K-theory. �

To see the functoriality, we still need some preparations:

Definition 4.4. Let K be a closed subspace of X, and let H+
X be an X+-module. Define L[H+

X ; K+]
to be the subset of L[H+

X ; ∞] consisting of (Tt) such that for any open subset U of X+ × X+ that

contains K+ × K+, there exists tU such that for all t ≥ tU

supp(Tt) ⊆ U

Define L∗(H+
X ; K+), or simply L∗(X+; K+), to be the closure of L[H+

X ; K+] inside L[H+
X ; ∞].

Similarly, we shall define L∗
0(H+

X ; K+) = L∗(H+
X ; K+) ∩ L∗

0(H+
X ; ∞) and

L∗
Q(H+

X ; K+) = L∗(H+
X ; K+)/L∗

0(H+
X ; K+).

It is easy to show that the quotient map L∗(H+
X ; K+) → L∗

Q(H+
X ; K+) induces an isomorphism on

the K-theory level. The following lemma has been proved in [27, Lemma 6.3.6].

Lemma 4.5. The inclusion homomorphism from L∗(H+
K ; ∞) to L∗(H+

X ; K+) induces an isomorphism

from K∗(L∗(H+
K ; ∞)) to K∗(L∗(H+

X ; K+)), i.e.,

K∗(K) ∼= K∗(L∗(X+; K+)) ∼= K∗(L∗
Q(X

+; K+)).
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Let K ⊂ X be a close subset and U = X\K, then we have the short sequence of topological

spaces

K+ i
−→ X+ c

−→ U+

where i : K+ → X+ is the inclusion and c : X+ → U+ is the collapse map which is the identity on

U and sends X+\U to the point at infinity in U+.

Proposition 4.6. With the notation above, there is a natural sic-term exact sequence

K0(K)
i∗ // K0(X)

j∗ // K0(U)

��
K1(U)

OO

K1(X)
j∗

oo K1(K)
i∗

oo

induced by the short exact sequence of C∗-algebra

0 → L∗
Q(X

+; K+)
ad(Vi

t )−→ L∗
Q(X

+; ∞)
ad(Vc

t )−→ L∗
Q(U

+; ∞) → 0.

where V i
t and Vc

t are the covering isometries for i and c, respectively.

Proof. Let d be a bounded metric function on X+. Let Z ⊂ X be a countable dense subset of X

whose intersection with K, U is also dense in K, U respectively for each n ∈ N. Let H be a sepa-

rable, infinite-dimensional Hilbert space, and define ample X+, K+ and U+-module respectively

by

H+
X = ℓ

2(Z, H)⊕ H, H+
K = ℓ

2(Z ∩ K, H)⊕ H, H+
U = ℓ

2(Z ∩ U, H)⊕ H

Define v : ℓ2(Z ∩ K, H) → ℓ2(Z, H) to be the canonical inclusion. Let u : ℓ2(Z ∩ K, H)⊕ H →
H be an unitary operator and define

w = idℓ2(Z∩U,H) ⊕ u : H+
X = ℓ

2(Z ∩ U, H)⊕ (ℓ2(Z ∩ K, H)⊕ H) → H+
U

Define V i
t = v ⊕ idH and Vc

t = w. It is easy to see V i
t and Vc

t are the covering isometries for i and

c, respectively.

Notice that L∗
Q(X

+, K+) is a two-side ideal of L∗
Q(X

+, ∞) and ad(V i
t ) is actually the inclusion.

Thus it suffices to prove
L∗

Q(X
+, ∞)

L∗
Q(X

+, K+)
∼= L∗

Q(U
+, ∞).

Let (Cn) be an increasing sequence of compact subsets of U whose union is all of U. Let

χ : R+ → B(U) be a continuous map from R+ to the set of all bounded Borel functions on U

defined by

χ(t) = (n + 1 − t)χCn
+ (t − n)χCn+1
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if t ∈ [n, n + 1), where χCn
is the characteristic function of Cn. Provisionally define maps

Φ :
L∗

Q(X
+, ∞)

L∗
Q(X

+, K+)
→ L∗

Q(U
+, ∞), [[Tt]] 7→ [ad(Vc

t )(Tt)]

and

Ψ : L∗
Q(U

+, ∞) →
L∗

Q(X
+, ∞)

L∗
Q(X

+, K+)
, [Tt] 7→ [[χ(t)Ttχ(t)]],

where χ(t)Ttχ(t) can be view as a operator on B(H+
X ) by viewing ℓ2(Z ∩ U, H) as a subspace of

H+
X for each t ∈ R+. It is easy to see ad(Vc

t )(Tt) and χ(t)Ttχ(t) satisfy the conditions in Definition

4.1.

First, we show that Φ and Ψ are well-defined ∗-homomorphisms. Let [Tt] ∈ L∗
Q(X

+, K+). For

any compact subset C ⊂ U, we have that d(C, K+) > 0. Take ε < d(C, K+), there exists T > 0

such that

supp(Tt) ⊂ {(x, y) ∈ X × X | d(x, K+) < ε, d(y, K+) < ε},

for all t > T. Then χC(ad(Vc
t )(Tt)) = χCTt = 0 for all t > T, which means that ad(Vt)(Tt) ∈

L∗
0(U

+, ∞). Therefore, Φ is a well-defined map ∗-homomorphism.

Similarly, one can show Ψ is also well-defined. Indeed, let Tt ∈ L∗
0(U

+, ∞). For any ε > 0,

denote Nε(K+) = {x ∈ X+ | d(x, K+) < ε}. Then C = X+\Nε(K+) ⊂ U is a compact subset of

U. By definition, there exists T > 0 such that χCTt = TtχC = 0 for all t > T. Thus, for all t > T,

we have that

supp(χ(t)Ttχ(t)) ⊂ Nε(K
+)×Nε(K

+),

i.e., χ(t)Ttχ(t) ∈ L∗
Q(X

+, K+). By [27, Lemma 6.1.2], the multiplier of L∗
Q(U

+, ∞) defined by χ(t)
is central. Thus Ψ is a well-defined ∗-homomorphism.

At last, we show that Ψ induces a mutually inverse of Φ. Computing, for [Tt] ∈ L∗
Q(U

+, ∞)

Φ(Ψ([Tt ])) = [ad(Vc
t )(χ(t)Ttχ(t))] = [χ(t)Ttχ(t)],

here we view χ(t)Ttχ(t) as an operator on H+
U for each t ∈ R+. Notice that for any compact

subset C ⊂ U,

χC(Tt − χ(t)Ttχ(t)) = χCTt − χ(t)χCTtχ(t).

As limt→∞ Prop(Tt) = 0 and U =
⋃

n∈N Cn, there exists T > 0 and a compact subset C′ ⊂ U such

that χCχ(t) = χC and χCTt = χCTtχC′ for all t > T. Thus χC(Tt − χ(t)Ttχ(t)) = 0 for all t > T,

i.e., [Tt] = [χ(t)Ttχ(t)].

On the other hand, for [[Tt ]] ∈
L∗

Q(X+,∞)

L∗
Q(X+,K+)

,

Ψ(Φ([[Tt ]])) = [[χ(t)ad(Vc
t )(Tt)χ(t)]] = [χ(t)Ttχ(t)],

here we view χ(t)Ttχ(t) as an operator on H+
X for each t ∈ R+. For any ε > 0, let C =
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X+\Nε(K+) ⊂ U be a compact subset of U. Then by a similar argument above

χC(Tt − χ(t)Ttχ(t)) = 0

for sufficiently large t, this completes the proof.

Let X be a unbounded proper metric space. Fix a based point x0 ∈ X, and let KR = {x ∈ X |
d(x, x0) ≤ R}. Denoted by UR = X\KR. Thus we have the following commuting diagram by [27,

Proposition B.2.3]:

K0(KR)
i∗ // K0(X)

j∗
// K0(UR)

��
K1(UR)

OO

K1(X)
j∗

oo K1(KR)
i∗

oo

where i∗ is induced by the natural inclusion i : KR → X and j∗ is induced by the collapse KR to ∞

map c : X+ → U+
R .

If R < R′ ∈ R, we denote iRR′ : KR → KR′ and jRR′ : UR′ → UR the inclusion map. Let

cRR′ : U+
R → U+

R′ be the collapse map that is identity on U and sends U+\UR′ to the point at

infinity in U+. Then we have the following commuting diagram

KR ⊔ {∞}
i //

iRR′

��

X+ c // U+
R

cRR′

��
KR′ ⊔ {∞}

i //

��

X+ c // U+
R

��
...

...
...

(3)

Taking the direct limit as R tends to infinity, we get a commutative diagram

lim
R→∞

K0(KR)
i∗ // K0(X)

j∗ // lim
R→∞

K0(UR)

��
lim

R→∞
K1(UR)

OO

K1(X)
j∗
oo lim

R→∞
K1(KR)

i∗
oo

Definition 4.7. The K-homology at infinity of X, denote by K∞
∗ (X), is defined to be the group

lim
R→∞

K∗(UR).

For any locally compact, secondly countable, Hausdorff space X, we can define a unbounded

proper metric on X. We can still define the K-homology at infinity for X according to this metric.

By the definition, we can see that K∞
∗ (X) does not depend on the choice of the metric. Moreover,

if X is compact, then K∞
∗ (X) is zero group. Recall the definition of the representable K-homology:
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Definition 4.8 ([27]). Let HX be an X module. Define RL[HX ] to be the collection of all elements

(Tt) of L[H+
X , ∞] such that there exists a compact subset K of X and tK ≥ 1 such that

Tt = χKTtχK

for all t ≥ tK. Define RL∗(HX) to be the completion of RL[HX ] for the norm

‖(Tt)‖ = sup
t

‖Tt‖B(HX).

The representable K-homology of X, denoted by RK∗(X), is defined to be the K-theory group

RK∗(X) := K∗(RL∗(HX))

Remark 4.9. It is obvious that RL∗(HX) is a closed ideal of L∗(H+
X , ∞). Notice that lim

R→∞
K∗(KR)

is actually the representable K-homology [27, Proposition 9.4.7]. Thus the diagram can be rewrite

as following:

RK0(X)
i∗ // K0(X)

j∗ // K∞
0 (X)

��
K∞

1 (X)

OO

K1(X)
j∗

oo RK1(X).
i∗

oo

Let HX be an ample X-module, L∗(H+
X , ∞) and RL∗(HX) be as above. Define L∗

∞(HX) to be

the quotient algebra L∗(H+
X , ∞)/RL∗(HX).

Proposition 4.10. The K-homology at infinity K∞
∗ (X) is isomorphic to the K-theory group of L∗

∞(HX),

i.e.,

K∞
∗ (X) ∼= K∗(L∗

∞(HX)).

Proof. Let Z ⊂ X be a countable dense subset of X whose intersection with Kn, Un is also dense

in Kn, Un respectively for each n ∈ N. Let H be a separable, infinite-dimensional Hilbert space,

and define ample X+, K+
n and U+

n -module respectively by

H+
X = ℓ

2(Z, H)⊕ H, H+
Kn

= ℓ
2(Z ∩ Kn, H)⊕ H, H+

Un
= ℓ

2(Z ∩ Un, H)⊕ H

For each n, n′ ∈ N, assume that n < n′, define vn : ℓ2(Z ∩ Kn, H) → ℓ2(Z, H) and vnn′ :

ℓ2(Z ∩ Kn, H) → ℓ2(Z ∩ K′
n, H) to be the canonical inclusion. Let un : ℓ2(Z ∩ Kn, H) ⊕ H → H

and unn′ : ℓ2(Un ∩ Kn′ , H)⊕ H → H be unitaries and define

wn = idℓ2(Z∩Un,H) ⊕ un : H+
X = ℓ

2(Z ∩ Un, H)⊕ (ℓ2(Z ∩ Kn, H)⊕ H) → H+
Un

and

wnn′ = idℓ2(Z∩Un′ ,H) ⊕ unn′ : H+
Un

= ℓ
2(Z ∩ Un′, H)⊕ (ℓ2(Un ∩ Kn′ , H)) → H+

Un′

Define (Vt)n = vn, (Vt)nn′ = vnn′ , (Wt)n = wn and (Wt)nn′ = wnn′. Then we have the following
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commuting diagram:

0 // L∗
Q(X

+, K+
n )

ad((Vt)n) //

ad((Vt)nn′)

��

L∗
Q(X

+, ∞)
ad((Wt)n) // L∗

Q(U
+
n , ∞)

ad((Wt)nn′)

��

// 0

0 // L∗
Q(X

+; K+
n′)

ad((Vt)n′ ) //

��

L∗
Q(X

+; ∞)
ad((Wt)n′) // L∗

Q(U
+
n′ ; ∞)

��

// 0

...
...

...

Taking the direct limit as n tends to infinity, by [27, Proposition 9.4.7], we have that

0 → RL∗
Q(X

+; ∞) → L∗
Q(X

+; ∞)
J

−→ lim
n→∞

L∗
Q(U

+
n ; ∞) → 0.

We denote the map

J = lim
n→∞

ad((Wt)n) : L∗
Q(X

+; ∞) → lim
n→∞

L∗
Q(U

+
n ; ∞).

For any Tt ∈ RL[X+; ∞], there exists a compact subset K ⊂ X and tK > 1 such that Tt = χKTtχK

for all t ≥ tK. Set N ∈ N such that K ⊂ KN, then [ad((Wt)N)(Tt)] = 0 ∈ L∗
Q(U

+
N , ∞). Thus

J([Tt ]) = 0 for all [Tt] ∈ RL∗
Q(X

+, ∞). Then J descends to a map on the quotient:

J∞ : L∗
∞,Q(X

+; ∞) → lim
n→∞

L∗
Q(U

+
n ; ∞).

Thus we have the following commuting diagram

0 // RL∗
Q(X

+; ∞) // L∗
Q(X

+; ∞) // L∗
∞,Q(X

+; ∞)

J∞

��

// 0

0 // RL∗
Q(X

+; ∞) // L∗
Q(X

+; ∞) // lim
n→∞

L∗
Q(U

+
n ; ∞) // 0

Thus (J∞)∗ : K∞
∗ (X) → K∗(L∗

∞(HX)) is an isomorphism by Five Lemma, as desire.

For technical convenience, we will consider the following version of localization algebra and

representable localization algebra (c.f. [28, 29]). Let H0 be an infinite dimensional Hilbert space,

and Z ⊆ X be a countable dense subset and C f [X] be as in Definition 2.2.

Definition 4.11 ([28]). The algebraic localization algebra, denoted by CL[X], is the ∗-algebra of all

uniformly bounded and uniformly continuous functions

g : [0, ∞) → C f [X] ⊆ C[X]

such that the family (g(t))t∈[0,∞) satisfy the conditions in Definition 2.2 with uniform constants
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and there exists a bounded function R(t) : [0, ∞) → [0, ∞) with limt→∞ R(t) = 0 such that

(g(t))(x, y) = 0 whenever d(x.y) > R(t)

for all x, y ∈ Z and t ∈ [0, ∞).

Define C∗
L(X) to be the completion of CL[X] with respect to the norm

‖g‖ = sup
t∈R+

‖g(t)‖.

Theorem 4.12 ([17, 28]). Suppose that X is a proper metric space with bounded geometry, then there

exists a local index map µL : K∗(Pd(X)) → K∗(C∗
L(Pd(X))) which is an isomorphism.

Consequently, if X is a discrete metric space with bounded geometry, we have the following

commuting diagram:

lim
d→∞

K∗(Pd(X))

µ

��

µL

tt❥❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

lim
d→∞

K∗(C∗
L(Pd(X)))

ev∗ // K∗(C∗(X)),

where the evaluation homomorphism ev : C∗
L(X) → C∗(X) is defined by ev( f (t)) = f (0) for all

f ∈ C∗
L(X). Then, to proof the coarse Novikov conjecture for X, it suffices to prove the evaluation

homomorphism

ev∗ : lim
d→∞

K∗(C
∗
L(Pd(X))) → lim

d→∞
K∗(C

∗(Pd(X)))

is an injection.

Definition 4.13. The representable localization algebra of X, denoted by RC∗
L(X), is the closure

of the collection of all elements g(t) of C∗
L(X) such that there exists a compact subset K of X such

that

g(t) = χKg(t)χK

for all t ∈ [0, ∞). It is not hard to see that RC∗
L(X) is a two-sided closed ideal of C∗

L(X).

The proof of the following lemma is similar with [27, Proposition 9.4.2, Proposition 6.6.2] and

[28, Theorem 3.2].

Lemma 4.14. Let X be a proper metric space. Then we have

K∗(L∗(H+
X , ∞)) ∼= K∗(C

∗
L(X)) and K∗(RL∗(HX)) ∼= K∗(RC∗

L(X)).

As a consequence, the K-homoloogy at infinity K∞
∗ (X) is isomorphic to K∗(C∗

L(X)/RC∗
L(X)). �

Next, we will introduce the Roe algebra at infinity for a proper metric space X. Fix x0 ∈ X, let

Kn = B(x0, n) and Un = X\Kn. Let Z be a countable subset of X.
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Definition 4.15. The algebraic Roe algebra at infinity, denoted by C∞[X], is the set of all equiva-

lence classes [T], where T ∈ C f (X) and the equivalence relation ∼ on [T] is defined by T ∼ S if

and only if

lim
n→∞

sup
x,y∈Un

‖T(x, y) − S(x, y)‖ = 0.

The algebraic operation of C∞[X] is given by the usual matrix operations of C f [X]. Define the

Roe algebra at infinity C∗
∞(X) to be the completion of C∞[X] with respect to the norm

‖[T]‖ = lim sup
n→∞

‖χUn T‖.

One can see that the Roe algebra at infinity is also invariant up to coarse equivalence, so

C∗
∞(X) is isomorphic to C∗

∞(Pd(X)) for each d ≥ 0. If X is bounded, then C∗
∞(X) = 0.

Definition 4.16. The localization algebra at infinity of X, denoted by CL,∞[X], is defined to be the

∗-algebra of all bounded and unformly norm-continuous functions

g : [0, ∞) → C∞[X]

such that g is of the form g(t) = [Tt] with Tt ∈ C[X] where the family (Tt)t∈R+ satisfies the

conditions in Definition 2.2 with uniform constants and there exists a bounded function R(t) :

[0, ∞) → [0, ∞) with limt→∞ R(t) = 0 such that

(Tt)(x, y) = 0 whenever d(x.y) > R(t)

for all x, y ∈ Z and t ∈ [0, ∞).

Define C∗
L,∞(X) to be the completion of CL,∞[X] with respect to the norm

‖g‖ = sup
t∈R+

‖g(t)‖.

There exists a canonical quoitent map C∗
L(X) → C∗

L,∞(X) defined by g 7→ g′ where g′(t) =
[g(t)] for each t ∈ R+. One can also see that g′ = 0 for any g ∈ RC∗

L(X) ∩ CL[X] as g(t) is

uniformly supported in some compact subset of X. Then we have a homomorphism

q :
C∗

L(X)

RC∗
L(X)

→ C∗
L,∞(X)

which induces a homomorphism on K-theory

q∗ : K∞
∗ (X) → K∗(C

∗
L,∞(X)).

Theorem 4.17. Suppose X is a discrete metric space with bounded geometry. Then

q∗ : K∞
∗ (Pd(X)) → K∗(C

∗
L,∞(Pd(X)))
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is an isomorphism for each d ≥ 0.

Proof. By using an Eilenberg swindle argument as [28, Theorem 3.4], one can show that both

groups above are invariant under strongly Lipschitz homotopies and both groups admits a Mayer-

Vietories sequence. Then it is suffices to prove the theorem for the case when Pd(X) is 0-dimensional,

which obviously holds as both groups are trivial.

5 Reduction to the coarse Novikov conjecture at infinity

In this section, we discuss the strategy to prove the main theorem. As general metric spaces (such

as warped cones) are always not of the form of coarse disjoint unions of a sequence of bounded

subsets, we can not use the techniques in [4] directly. We will show that there exists an assmbly

map at infinity from the K-homology group at infinity to the K-theory group of the Roe algebra at

infinity, and the coarse Novikov conjecture can always be reduced to verifying the assembly map

at infinity to be injective whether the space is of the form of coarse disjoint union or not.

5.1 The case of coarse disjoint unions

In this section, we assume that X =
⊔

n∈N Xn is a coarse disjoint union of a sequence of uniformly

bounded geometry, finite metric spaces such that #Xn → ∞ as n → ∞. Actually, this situation has

been discussed in Section 4 of [4].

Lemma 5.1. Let X =
⊔

n∈N Xn be a coarse disjoint union of a sequence of uniformly bounded geometry,

finite metric spaces such that #Xn → ∞ as n → ∞. Then for sufficiently large d, we have that

K∞
∗ (Pd(X)) =

∏
∞
n=0 K∗(Pd(Xn))⊕∞
n=0 K∗(Pd(Xn))

.

Proof. For any d ≥ 0, there exists Nd ∈ N large enough such that d(Xn, Xm) > d for n, m ∈
Nd. Let XNd

=
⋃Nd−1

n=0 Xn, then we have that Pd(X) = Pd(XNd
) ∪ ⊔

n>Nd

Pd(Xn). Then the maps

RK∗(Pd(Xn)) → RK∗(Pd(X)) and K∗(Pd(Xn)) → K∗(Pd(X)) induced by the inclusions Xn → X

induce isomorphisms

RK∗(Pd(X)) ∼= K∗(Pd(XNd
))⊕

⊕

n>Nd

K∗(Pd(Xn))

and

K∗(Pd(X)) ∼= K∗(Pd(XNd
))⊕ ∏

n>Nd

K∗(Pd(Xn)).

The inclusion
⊕

n>Nd
K∗(Pd(Xn)) → ∏n>Nd

K∗(Pd(Xn)) is an injection, i.e., RK∗(Pd(X)) → K∗(Pd(X))

is an injection. Thus, we have the short exact sequence

0 → RK∗(Pd(X)) → K∗(Pd(X)) → K∞
∗ (Pd(X)) → 0
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This means that

K∞
∗ (Pd(X)) =

K∗(Pd(X))

RK∗(Pd(X))
=

∏
∞
n=0 K∗(Pd(Xn))⊕∞
n=0 K∗(Pd(Xn))

,

which completes the proof.

For each d > 0. let Zd ⊂ Pd(X) be a countable dense subset, and let Zd,n = Zd ∩ Pd(Xn) for

any d ≥ 0, n ∈ N. We assume that Zd,n ⊂ Zd,n′ , if d′ < d. In this case, the Roe algebra at infinity

can be also described as follow:

Definition 5.2 ([4]). For each d ≥ 0, define Cu,∞[(Pd(Xn))n∈N] to be the set of all equivalence

classes T = [(T(0), · · · , T(n), · · · )] of sequences (T(0), · · · , T(n), · · · ) described as follows:

(1) {T(n)}n∈N is a family of uniformly bounded functions, where T(n) is a function from Zd,n ×
Zd,n to K for all n ∈ N;

(2) for any bounded subset B ⊂ Pd(Xn), we have that

#{(x, y) ∈ B × B ∩ Zd,n × Zd,n | T(n)(x, y) 6= 0} < ∞;

(3) there exists L > 0 such that

#{y ∈ Zd,n|T
(n)(x, y) 6= 0} < L, #{y ∈ Zd,n | T(n)(y, x) 6= 0} < L

for all x ∈ Zd,n, n ∈ N;

(4) there exists R > 0 such that T(n)(x, y) = 0 whenever d(x, y) > R for x, y ∈ Zd,n, n ∈ N. The

least such R is called the propagation of the sequence (T(0), · · · , T(n), · · · ).

The equivalence relation ∼ on these sequences is defined by

(T(0), · · · , T(n), · · · ) ∼ (S(0), · · · , S(n), · · · )

if and only if

lim
n→∞

sup
x,y∈Zd,n

‖T(n)(x, y)− S(n)(x, y)‖K = 0.

By viewing T(n) as Zd,n ×Zd,n matrices, the product structure for Cu,∞[(Pd(Xn))n∈N] is defined

as the usual matrix operations. Define C∗
u,∞((Pd(Xn))n∈N) to be the completion of Cu,∞[(Pd(Xn))n∈N]

with respect to the norm

‖T‖ = lim sup
n→∞

‖T(n)‖,

where each operator T(n) is viewed as an element of the Roe algebra C∗(Pd(Xn)).

The following notion of localization algebra has its origin in [28], we shall recall its relation

with K-homology at infinity.
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Definition 5.3. Let CL,u,∞[(Pd(Xn))n∈N] be the set of all bounded, uniformly norm-continuous

functions

g : R+ → Cu,∞[(Pd(Xn))n∈N]

such that g(t) is of the form g(t) = [g(0)(t), · · · , g(n)(t), · · · ] and satisfies that there exists a

bounded function R(t) : R+ → R+ with limt→∞ R(t) = 0 such that (g(n)(t))(x, y) = 0 when-

ever d(x, y) > R(t) and n ∈ N;

The localization algebra at infinity C∗
L,u,∞((Pd(Xn))n∈N) is defined to be the norm completion

of CL,u,∞[(Pd(Xn))n∈N], where C∗
L,u,∞((Pd(Xn))n∈N) is endowed with the norm

‖g‖∞ = sup
t∈R+

‖g(t)‖.

One can see that the C∗
u,∞((Pd(Xn))n∈N) coincides with C∗

∞(X) and C∗
L,u,∞((Pd(Xn))n∈N) coin-

cides with C∗
L,∞(Pd(X)).

For each d > 0, there is a ∗-homomorphism

Φ : C f [Pd(X)] → Cu,∞[(Pd(Xn))n∈N]

defined by Φ(T) = [(Φ(0)(T), · · · , Φ(n)(T), · · · )] for T ∈ C f [Pd(X)], with

Φ(n)(T)(x, y) =

{
0, if n < NR

T|Zd,n×Zd,n
, if n ≥ NR,

where R = Prop(T) and NR ∈ N is large enough such that

dPd(X)

(
Pd(Xn), Pd

(
n−1⊔

i=0

Xi

))
> R,

for all n ≥ NR. Then Φ extends to a C∗-homomorphism Φ : C∗(Pd(X)) → C∗
u,∞((Pd(Xn))n∈N),

see [4, Theorem 4.5].

For any d ≥ 0, there exists Nd ∈ N large enough such that d(Xn, Xm) > d for n, m ∈ Nd. Let

XNd
=
⋃Nd−1

n=0 Xn. As Pd(X) = Pd(XNd
)
⊔
(⊔n≥Nd

Pd(Xn)), we have that

K∗(Pd(X)) = K∗(Pd(XNd
))
⊕ ∞

∏
n=Nd

K∗(Pd(Xn)).
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By the definition of the assembly maps, we have the following commutative diagram

0

��

0

��
K∗(Pd(XNd

))⊕
⊕∞

n=Nd
K∗(Pd(Xn)) //

��

K∗(K)

��
K∗(Pd(X))

ev∗ //

��

K∗(C∗(Pd(X)))

Φ∗

��
K∞
∗ (Pd(X))

ev∞,∗ //

��

K∗(C∗
u,∞(Pd(Xn)))

0

where ev∞,∗ is induced by the evaluation map

ev∞ : C∗
L,∞(Pd(X)) → C∗

∞(X), g 7→ g(0).

By [16, Remark 2.12], one has that K∗(K) → K∗(C∗(Pd(X))) is an injection.

Passing to inductive limit as d → ∞, the top horizontal arrow is an isomorphism for the

following reason. An element in the sum, as a finite sequence, is supported on summands below

some fixed m and, as d → ∞, will eventually be absorbed into the first term on a single simplex.

Thus, to prove µ is injective, it suffices to prove µ∞ is injective by diagram chasing.

5.2 The case of spaces which admit an infinite coarse component

The next notion is introduced by M. Finn-Sell in [8].

Definition 5.4 ([8]). A bounded geometry proper metric space X is said to have an infinite coarse

component if there exists R > 0 such that PR(X) has an unbounded connected component. Oth-

erwise, we say X only has finite coarse components.

Lemma 5.5. A bounded geometry proper metric space X has only finite coarse components if and only if

it is a coarse disjoint union of a sequence of finite metric spaces.

Proof. Let X =
⊔

n∈N Xn be a coarse disjoint union of the sequence of finite metric spaces {Xn}.

For each R > 0, there exists N > 0 such that d(Xi, Xj) > R for all i, j > N. Let XNR
=
⊔N

n=1 Xn

and we have that PR(X) = PR(XNR
) ⊔

⊔
n>N PR(Xn). Thus X has only finite coarse components.

On the other hand, let X be a metric space which has only finite coarse components. Fix
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x0 ∈ X, denote Pd(X)x0 the connected component of Pd(X) which contains x0. Then let

X1 = P21(X)x0 ∩ X;

X2 = (P22(X)x0 ∩ X)\X1;

· · ·

Xn = (P2n(X)x0 ∩ X)\Xn−1;

· · ·.

Then we have that X =
⊔

n∈N Xn. As X has bounded geometry and finite coarse components, Xn

is a finite metric space for each n ∈ N. Assume that i, j ∈ N (i > j) and any two points xi ∈ Xi,

xj ∈ Xj. As xi /∈ P2j(X)x0 , we have that

d(xi, xj) > 2j,

which means that d(Xi, Xj) → ∞ as i, j → ∞. Thus X is the coarse disjoint union of the sequence

{Xn}n∈N.

Lemma 5.6. Let X be a bounded geometry metirc space which admits an infinite coarse component. Then

(1) the K-theory map i∗ : K∗(K) → K∗(C∗(X)) induced by the canonical inclusion i : K → C∗(X)
is the zero map, where K = K(HX) is the algebra of all compact operators on the geometric module

HX ;

(2) the map limd→∞ RK∗(Pd(X)) → limd→∞ K∗(Pd(X)) induced by the canonical inclusion RC∗
L(Pd(X)) →

C∗
L(Pd(X)) is also the zero map.

Proof. As X has an infinite coarse component and bounded geometry property, then there exists

R > 0 and x0 ∈ X for which there is a unbounded component contianing x0 ∈ PR(X). Thus there

exists a sequence {xi}
∞
i=1 ⊂ X such that limi→∞ d(xi, x0) = ∞ and d(xi, xi+1) ≤ R for all i ∈ N.

Let Kn = {x ∈ X | d(x0, x) ≤ n} for all n ∈ N. As X is proper metric space, for any compact

subset K ⊂ X, there exists n ∈ N such that K ⊂ Kn. We can identify K(HX) by limn→∞ C∗(Kn),

where C∗(Kn) is the Roe algebra of Kn.

To prove Property (1), we will only need to show that (in)∗ : K∗(C∗(Kn)) → C ∗ (X) is the

zero map for all n ∈ N, where (in)∗ is induced by the canonical inclusion in : Kn → X. By the

definition of {xi}, we have that Kn ∪ {xi} is coarse equivalent to R+. Thus, in can be seen the

composition Kn → Kn ∪ {xn} → X. Notice that K∗(C∗(R+)) = 0, then the following diagram

commutes

K∗(C∗(Kn))
(in)∗ //

++❱❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

K∗(X)

K∗(C∗(Kn ∪ {xi})) ∼= K∗(C∗(R+)) = 0

OO
.

Then (in)∗ is the zero map. The canonical inclusion Kn → Kn+1 induces an isomorphism K∗(K) →
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K∗(K). Thus we have that

K∗(C∗(Kn))
(in)∗ //

=
��

K∗(C∗(X))

=
��

K∗(C∗(Kn+1))
(in+1)∗ // K∗(C∗(X))

.

Therefore, i∗ : K∗(K) = limn→∞ K∗(Kn) → K∗(C∗(X)) is the zero map.

We will next prove Property (2). Notice that RK∗(Pd(X)) = limn→∞ K∗(Pd(Kn)). Then it

suffices to show

lim
d→∞

lim
n→∞

K∗(Pd(Kn)) → lim
d→∞

K∗(Pd(X))

is the zero map for all n ∈ N, where the map is induced by the canonical inclusion Pd(Kn) →
Pd(X) for each n ∈ N and d > 0. Notice that we have the following commutative diagram

K∗(Pd(Kn)) //

��

K∗(Pd′(Kn))

��
K∗(Pd(Kn′)) // K∗(Pd′(Kn′))

.

for all d′ > d, n′ > n, where the arrows are all given by the inclusions. Thus we have that

lim
d→∞

RK∗(Pd(X)) ∼= lim
d→∞

lim
n→∞

K∗(Pd(Kn)) ∼= lim
n→∞

lim
d→∞

K∗(Pd(Kn)).

Now it suffices to show that, for each n ∈ N, K∗(Pd(Kn)) → K∗(Pd(X)) is the zero map for

sufficiently large d.

For given n ∈ N, let Rn be a real number such that diam(Kn) < Rn and d(xi, xi+1) < Rn for

all i ≥ 0. For each d > Rn, the inclusion Pd(Kn) → Pd(X) can be seen as the composition

Pd(Kn) → Pd(Kn ∪ {xi}) → Pd(X).

Notice that Pd(Kn ∪ {xi}) is homotopy equivalent to R+ and K∗(R+) = 0. Thus we have the

following commuting diagram

K∗(Pd(Kn)) //

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

K∗(Pd(X))

K∗(Pd(Kn ∪ {xi})) ∼= K∗(R+) = 0

OO
.

This shows that limd→∞ K∗(Pd(Kn)) → limd→∞ K∗(X) is the zero map for each n ∈ N. Taking the

direct limit as n tends to infinity, this completes the proof.

Let g(t) ∈ RC∗
L(X) be a function such that there exists a compact subset K ⊂ X such that

g(t) = χKg(t)χK ∈ K for all t ∈ [0, ∞). Consider the evaluation map ev : C∗
L(X) → C∗(X) defined

by ev(g) = g(0). Notice that the restriction of ev to RC∗
L(X) is a ∗-homomorphism RC∗

L(X) → K.
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Define Φ : C∗(X) → C∗
∞(X) by T 7→ [T] and the evaluation map at infinity

ev∞ : C∗
L,∞(Pd(X)) → C∗

∞(Pd(X)) by [g] 7→ [g(0)].

Then for each d ≥ 0, we have the following commuting diagram:

0 // RC∗
L(Pd(X)) //

ev

��

C∗
L(Pd(X)) //

ev

��

C∗
L,∞(Pd(X))

ev∞

��

// 0

0 // K // C∗(Pd(X))
Φ // C∗

∞(Pd(X))

and the commuting diagram of K-theory:

· · · // lim
d→∞

RK∗(Pd(X)) //

ev∗

��

lim
d→∞

K∗(Pd(X)) //

ev∗

��

lim
d→∞

K∞
∗ (Pd(X))

(ev∞)∗
��

// · · ·

K∗(K) // K∗(C∗(Pd(X)))
Φ∗ // K∗(C∗

∞(Pd(X)))

.

Notice that the bottom sequences of both diagrams are not exact at C∗(Pd(X)) and K∗(C∗(Pd(X))),

respectively. To prove ev∗ : lim
d→∞

K∗(Pd(X)) → K∗(C∗(X)) is an injection, it suffices to prove

(ev∞)∗ is an injection by diagram chasing and Lemma 5.6.

We summarize this section by the following theorem:

Theorem 5.7. To prove the coarse Novikov conjecture for X, it suffices to prove the coarse Novikov con-

jecture at infinity for X, i.e., the K-theoretic homomorphism induced by the evaluation map at infinity

(ev∞)∗ : lim
d→∞

K∗(Pd(X)) → K∗(C
∗
∞(X))

is injective.

6 Twisted algebras at infinity and their K-theories

In the rest of this paper, we shall prove the evaluation map at infinity

(ev∞)∗ : lim
d→∞

K∗(C
∗
L,∞(Pd(X))) → K∗(C

∗
∞(X))

is an injection, where X is a bounded geometry metric space which admits a fibred coarse em-

bedding into ℓp(N, R). The strategy of the proof is to build the following commuting diagram

for each d ≥ 0:

K∗(C∗
L,∞(Pd(X)))

(βL)∗ //

(ev∞)∗
��

K∗(C∗
L,∞(Pd(X),A(B)))

(evA∞)∗
��

K∗(C∗
∞(Pd(X)))

β∗ // K∗(C∗
∞(Pd(X),A(B)))

(4)
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where C∗
L,∞(Pd(X),A(B)) and C∗

∞(Pd(X),A(B)) are twisted localization algebra and twisted Roe

algebra, respectively. We will show that the evaluation homomorphism evA∞ between the twisted

algebras induces an isomorphism on K-theory and (βL)∗ is an injection. By a diagram chasing

argument, we can see that (ev∞)∗ is injective.

In this section, we will focus on proving evA∞ in (4) induces an isomorphism on K-theory.

We first introduce the twisted algebras at infinity, which are constructed by using the fact that

X admits a fibred coarse embedding into ℓp(N, R). The basic ideal of this section comes from

[4, 5, 29].

6.1 The twisted algebras at infinity

Let X be a discrete metric space with bounded geometry which admits a fibred coarse embedding

into B = ℓp(N, R).

Definition 6.1. Let t : B → B be an affine isometry. We define a homomorphism

t∗ : A(B) → A(B)

by

t∗(βx(g)) = βt(x)(g).

for any generator βx(g) ∈ A(B) where x ∈ B and g ∈ S .

For each d ≥ 0, the Rips complex Pd(X) endowed with the semi-spherical metric admits a

fibred coarse embedding into B as X is coarse equivalent to Pd(X). We give some explainations

as follow. As X is countable, we write X = {x1, · · · , xn, · · · }, For each n ≥ 1, we define

Bd,xn
:=

{

∑
i∈N

tixi ∈ Pd(X)
∣∣∣ ti = 0 for all i < n and tn 6= 0

}
.

Then it is obvious that Br,x is contained in the union of the simplices that contain x as a vertex

and {Bd,x}x∈X forms a disjoint Borel cover of Pd(X) by definition. For any x ∈ Pd(X), there exists

a unique x̄ ∈ X such that x ∈ Bd,x̄. Define the Borel map

jd : Pd(X) → X by x 7→ x̄.

It is easy to check jd is a coarse equivalence for each d ≥ 0. Thus let Bx = Bx̄ and s(x) = s(x̄) for

each x ∈ Pd(X). We define tx(y) = tx̄(ȳ) for any x, y ∈ Pd(X) with ȳ ∈ B(x̄, R). One can check

that the field of V0, sections and trivializations defined above satisfy the conditions in Definition

2.4.

Take a countable dense subset Zd ⊂ Pd(X) consisting of all rational points in Pd(X), i.e. the

point ∑x∈X txx ∈ Pd(X) with all coefficients tx taking rational value. Fix x0 ∈ X, denote Kd,m =
BPd(X)(x0, 2m) to be the bounded subset of Pd(X) for each m ∈ N and d ≥ 0 and Ud,m = X\Kd,m.
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By the definition of fibred coarse embedding, there exists a sequence of non-negative real number

(ld,m)m∈N such that

(1) there exists a trivialization tx for B(x, ld,m) as in Definition 2.4 for each x ∈ Ud,m and m ∈ N+;

(2) (ld,m) is non-decreasing and unbounded, i.e. 0 ≤ ld,1 ≤ · · · ≤ ld,m ≤ · · · and lim
m→∞

ld,m = ∞.

Now, we are ready to define the twisted algebras.

Definition 6.2. For each d ≥ 0, define C∞[Pd(X),A(B)] to be the set of all equivalence classes of

[T], where T : Zd × Zd → A(B)⊗̂K is a bounded function satisfying the following conditions

(1) for any bounded subset F ⊂ X, we have that

#{(x, y) ∈ (F × F) ∩ (Zd × Zd) | T(x, y) 6= 0} < ∞;

(2) there exists L > 0 such that

#{y ∈ Zd | T(x, y) 6= 0} ≤ L, #{y ∈ Zd | T(y, x) 6= 0} ≤ L

for all x ∈ Zd;

(3) there exists R ≥ 0 such that T(x, y) = 0 whenever d(x, y) > R for x, y ∈ Zd, we denote

Prop(T) = R the propagation of the representative element T;

(4) there exists r > 0 such that for all x, y ∈ Zd, we have that

supp(T(x, y) ⊆ BB×R+(tx(x)(s(x)), r)

where, tx = tx,ld,m
is the trivialization for x ∈ Ud,m ∩ Kd,m+1 and s is the section as in Defini-

tion 2.4.

The equivalence relationship ∼ is defined by T ∼ S if and only if

lim
m→∞

sup
x,y∈Ud,m

‖T(x, y) − S(x, y)‖A(B)⊗̂K = 0.

The product structure for C∞[Pd(X),A(B)] is defined as follow. For any [T], [S] ∈ C∞[Pd(X),A(B)],

we define

TS : Zd × Zd → A(B)⊗̂K

to be the function such that there exists a sufficiently large M ∈ N depending only on the Prop(T)
and Prop(S) such that TS(x, y) = ∑z∈Zd

T(x, z) ((txz)∗(S(z, y))) for all (x, y) ∈ Ud.m × Ud,m with

m > M where (tzx)∗ is as in Definition 6.1 and T(x, y) = 0 otherwise. The product of [T] and [S]
is defined to be [TS].
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The ∗-structure for C∞[Pd(X),A(B)] is defined by the formula

[T]∗ = [T∗]

where

(T∗)(x, y) = (txy)∗(T(y, x)∗)

for all x, y ∈ Ud,m with m large enough and 0 otherwise.

Remark 6.3. We will give some explanations to the product structure and ∗-structure for C∞[Pd(X),A(B)]
here. For any [T] ∈ C∞[Pd(X),A(B)], there exists R > 0 such that T(x, z) = 0 for all d(x, z) > R.

Then there exists M > 0 such that ld,m ≥ 2R for all m > M. Thus txz is well-defined for all

x, z ∈ Ud,m. Combining with the condition (2) of Definition 2.4, we can check that TS defined

above satisfies the condition (4) of Definition 6.2. Moreover, one can also check that the ∗-structure

is also well-defined in a similar way.

Let
⊕

x∈X A(B)⊗̂K be the C∗-algebraic direct sum, i.e. the algebra of all bounded sequences

(ax)x∈X with ax ∈ A(B)⊗̂K for each x. Let

Bc

(
Zd,

⊕

x∈X

A(B)⊗̂K

)

be the set of all bounded functions Zd →
⊕

x∈X A(B)⊗̂K with finite supports. For notational

convenince, we write the element of Bc

(
Zd,

⊕
x∈X A(B)⊗̂K

)
by ∑z∈Zd

az[z]. Consider E to be the

subset of Bc

(
Zd,

⊕
x∈X A(B)⊗̂K

)
with all elements ∑z∈Zd

az[z] with compact support satisfying

that

(1) az = (ax
z ) and ax

z ∈ A(B)⊗̂K for each z ∈ Zd and x ∈ X;

(2) ax
z = 0 if d(x, z) > ld,m for all z ∈ Kd,m+1 ∩ Ud,m.

Then E is a pre-Hilbert module over A(B)⊗̂K:

〈

∑
z∈Zd

az[z], ∑
z∈Zd

bz[z]

〉
= ∑

z∈Zd ,x∈X

(ax
z )

∗bx
z ;

(

∑
z∈Zd

az[z]

)
a = ∑

z∈Zd

aza[z],

where (aza)x = ax
z a for any a ∈ A(B)⊗̂K. Define the Hilbert module E to be the completion of E.

For any given [T] ∈ C∞[Pd(X),A(B)], let T act on E by

T

(

∑
z∈Zd

az[z]

)
= ∑

z∈Zd

(

∑
y∈Zd,n

T(z, y)ay

)
[z],
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where (T(z, y)ay)x = (txz)∗(T(z, y))ax
y ∈ A(B)⊗̂K and the sum is finite for the condition (2) in

Definition 6.2.

By Definition 6.2, for given [T] ∈ C∞[Pd(X),A(B)], one can verify that the representation

element χUd,m
TχUd,m

is a bounded module homomorphism which has an adjoint module homo-

morphism for large enough m and the adjoint is compatible with the ∗-structure of T, which gives

[T] a C∗-norm. We shall check some details in the following remark.

Remark 6.4. Assume that [T] ∈ C∞[Pd(X),A(B)] has propagation R and the representation ele-

ment T(x, y) = 0 for all x, y ∈ Kd,m with m satisfies that ld,m > 2R. The reason T acts as a bounded

module homomorphism is similar to the proof of [27, Proposition 12.2.4]. We will only show how

the ∗-structure of T fits with the inner product.

For given [T] ∈ C∞[Pd(X),A(B)] , there exists R > 0 such that T(z, y) = 0 whenever d(y, z) >

R for x, z ∈ Zd. By the definition, we can comupute that

〈

∑
z∈Zd

az[z], T ∑
z∈Zd

bz[z]

〉
= ∑

x∈X,z∈Zd

(ax
z )

∗

(

∑
y∈Zd,n

(T(z, y)by)
x

)

= ∑
x∈X,y,z∈Zd

(ax
z )

∗(txz)∗ (T(z, y)) bx
y .

Similarly, we can also comupute that

〈
T∗ ∑

z∈Zd

az[z], ∑
z∈Zd

bz[z]

〉
= ∑

x∈X,z∈Zd

(

∑
y∈Zd

(T∗(z, y)ay)
x

)∗

(bx
z )

= ∑
x∈X,y,z∈Zd

(
(txz)∗(T

∗(z, y))ax
y

)∗
bx

z .

Combining the ∗-structure of C∞[Pd(X),A(B)] and the fact that txy = txztzy whenever z ∈
B(x, R) ∩ B(y, R′) such that there exists a trivialization on B(x, R) and B(y, R′) as in Definition

2.4, we have that

∑
x∈X,y,z∈Zd

(
(txz)∗(T

∗(z, y))ax
y

)∗
bx

z = ∑
x∈X,y,z∈Zd

(ax
y)

∗(txy)∗(T(y, z))bx
z

= ∑
x∈X,y,z∈Zd

(ax
z )

∗(txz)∗ (T(z, y)) bx
y .

Thus we have show that the representation is compatible with the the ∗-structure. With a similar

argument, we can check that the representation is also compatible under the multiplication.

Definition 6.5. The twisted Roe algebra at infinity C∗
∞(Pd(X),A(B)) is defined to be the operator

norm closure of C∞[Pd(X),A(B)] with respect to the norm

‖[T]‖ = lim sup
m∈N

‖χUd,m
T‖,

where T and χUd,m
are viewed as bounded operators on E.
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Definition 6.6. Let CL,∞[Pd(X),A(B)] be the set of all bounded, uniformly norm-continuous func-

tions

g : R+ → C∞[Pd(X),A(B)]

such that g can be viewed as an equivalent class [g] of g, where g(t) is a function from Zd × Zd →
A(B)⊗̂K for each t and satisfies the following conditions

(1) there exists a bounded function R(t) : R+ → R+ with lim
t→∞

R(t) = 0 such that (g(t))(x, y) =

0 whenever d(x, y) > R(t);

(2) there exists r > 0 such that

supp(g(t)) ⊆ BB(tx(x)(s(x)), r)

for all t ∈ R+ and x, y ∈ Zd, where x ∈ Kd,m+1 ∩ Ud,m for some m > 0 and tx = tx,ld,m
:

(Bz)z∈B(x,ld,m) → B(x, ld,m)× B is the trivialization.

We remark that [g] = [h] if there exists m > 0 such that χUm(g(t)− h(t)) = 0 for all t ∈ R+.

Definition 6.7. The twisted localization algebra at infinity C∗
L,∞(Pd(X),A(B)) is defined to be the

norm completion of CL,∞[Pd(X),A(B)] with respect to the norm

‖g‖ = sup
t∈R+

‖g(t)‖.

The evaluation homomorphism at infinity

evA∞ : C∗
L,∞(Pd(X),A(B)) → C∗

∞(Pd(X),A(B))

is defined by evA∞(g) = g(0). which induces a homomorphism on K-theory:

(evA∞)∗ : K∗(C
∗
L,∞(Pd(X),A(B))) → K∗(C

∗
∞(Pd(X),A(B))).

6.2 The twisted coarse Baum-Connes conjecture at infinity

In this subsection, we will prove the following theorem

Theorem 6.8. The K-theoretic evaluation homomorphism at infinity

(evA∞)∗ : K∗(C
∗
L,∞(Pd(X),A(B))) → K∗(C

∗
∞(Pd(X),A(B)))

is an isomorphism.

The strategy is similar to the proof in [4, 29] by using cutting and pasting techniques. To begin

with, we will first introduce the ideals of the twisted algebras at infinity associated with open

subsets of B.
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Definition 6.9. A collection O = (Ox)x∈X of open subsets of B is said to be coherent if there exists

r > 0 such that for all but finite m ∈ N, we have that

txy(Oy ∩ B(ty(y)(s(y)), r) = Ox ∩ B(tx(y)(s(y)), r), (5)

for all x, y ∈ Ud,m with d(x, y) ≤ ld,m.

Examples 6.10. Fix r > 0. We define

Ox =
⋃

z∈BXn (x,ln)

B(tx(z)(s(z)), r)

for all x ∈ X. Then the collection

O = (Ox)x∈X

is certainly a coherent system of open subsets.

For any two coherent collections O(1) and O(2) of open subsets of V0, we say O(1) ⊂ O(2) if

O
(1)
x ⊂ O

(2)
x for all x ∈ X. Denote O(1) ∪ O(2) = (O

(1)
x ∪ O

(2)
x ) and O(1) ∩ O(2) = (O

(1)
x ∩ O

(2)
x ). It is

easy to check both O(1) ∩ O(2) and O(1) ∪ O(2) are coherent.

Definition 6.11. Let O = (Ox)x∈X be a coherent family of open subsets of B. We define

C∞[Pd(X),A(B)]O

to be the ∗-subalgebra of C∞[Pd(X),A(B)] generated by the equivalence class of [T] such that

supp(T(x, y)) ⊆ Ox̄

for all x, y ∈ Zd with x ∈ Bd,x̄ and n ∈ N, where x̄ is defined such that x belongs to the Borel set

Bd,x̄ as before.

Define

CL,∞[Pd(X),A(B)]O

to be the ∗-subalgebra of CL,∞[Pd(X),A(B)] consisting of all functions

g : R+ → C∞[Pd(X),A(B)]O.

Define C∗
∞(Pd(X),A(B))O and C∗

L,∞(Pd(X),A(B))O to be the norm closures of C∞[Pd(X),A(B)]O
and CL,∞[Pd(X),A(B)]O, respectively.

It is easy to check that C∗
∞(Pd(X),A(B))O is a well-defined two-side ideal of C∗

∞(Pd(X),A(B))

for each coherent family of open set O. The equation (5) in Definition 6.9 guarantees that the

algebraic structure can be induced from C∗
∞(Pd(X),A(B)).

Lemma 6.12. Let O(1) and O(2) be coherent families of open subsets of V0. Then we have

(1) C∗
∞(Pd(X),A(B))O(1) + C∗

∞(Pd(X),A(B))O(2) = C∗
∞(Pd(X),A(B))O(1)∪O(2) ;
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(2) C∗
∞(Pd(X),A(B))O(1) ∩ C∗

∞(Pd(X),A(B))O(2) = C∗
∞(Pd(X),A(B))O(1)∩O(2) ;

(3) C∗
∞(Pd(X),A(B))O(1) + C∗

∞(Pd(X),A(B))O(2) = C∗
∞(Pd(X),A(B))O(1)∪O(2) ;

(4) C∗
∞(Pd(X),A(B))O(1) ∩ C∗

∞(Pd(X),A(B))O(2) = C∗
∞(Pd(X),A(B))O(1)∩O(2) ;

Proof. The proof is similar to the proof of [29, Lemma 6.3]. We will only prove part (1) and the

rest can be proved in a similar way. It suffices to show that for any [T] ∈ C∞[Pd(X),A(B)]O(1)∪O(2) ,

there exists [T(1)] and [T(2)] such that [T(1)] + [T(2)] = [T] and

[T(i)] ∈ C∞[Pd(X),A(B)]O(i) , i = 1, 2.

With no loss of generality, for each x ∈ Zd, we assume there exist bounded subsets C
(1)
x and

C
(2)
x such that

supp(T(x, y)) ⊆ C
(1)
x ∪ C

(2)
x ⊆ O

(1)
x ∪ O

(2)
x

for all y ∈ Zd. By using a partition of unity similar as [29, Lemma 6.3], there exists h
(1)
x ∈ C0(O

(1)
x )

and h
(2)
x ∈ C0(O

(2)
x ) such that

h
(1)
x (v) + h

(2)
x (v) = 1

for all v ∈ C
(1)
x ∪ C

(2)
x . Define

T(1)(x, y) = h
(1)
x T(x, y) and T(2)(x, y) = h

(2)
x T(x, y).

Then we have

T(1) + T(2) = T and [T(i)] ∈ C∞[Pd(X),A(B)]O(i) , i = 1, 2.

We complete the proof.

Proposition 6.13. Let G be a subset of X and O = (Ox)x∈X be a coherent collection of open subsets of B

such that

(1) each Ox splits as a disjoint union Ox =
⊔

g∈G∩B(x,ld,m) Ox,g of open subsets;

(2) there exists r > 0 for each x such that

Ox,g ⊆ B(tx(g)(s(g)), r);

(3) for any x, y ∈ Ud,m with g ∈ B(x, ld,m) ∩ B(y, ld,m), we have that

txy(Oy,g) = Ox,g.

Then the K-theortic homomorphism

ev∗ : lim
d→∞

K∗(C
∗
L,∞(Pd(X),A(B))O) → lim

d→∞
K∗(C

∗
∞(Pd(X),A(B))O)
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induced by the evaluation-at-zero map is an isomorphism.

Such a coherent collection in Proposition 6.13 is also called (G, r)-separated. We still need

some preparations before we prove it. For each g ∈ G, define Yg to be a bounded subset of Pd(X).

Then the collection Y = (Yg)g∈G forms a sequence of bounded subspaces of X. Assume that Y

satisfies

(1) g ∈ Yg for all g ∈ Yg;

(2) Yg is uniformly bounded, i.e. there exists R > 0 such that diam(Yg) ≤ R for all g ∈ G.

For example, we can take Yg = {g} for each g ∈ G or Yg = B(g, R) for some given R > 0 and

all g ∈ G. For the notational convenience, we denote GR = (B(g, R))g∈G when Yg = B(g, R).
Specially, G0 = ({g})g∈G .

We denote A(Og,g) to be the subalgebra of A(B) with all functions whose supports are in Og,g.

With the notation above, we introduce the following algebra:

Definition 6.14. Define A∞[Y] to be the subalgebra of

∏g∈G C∗(Yg)⊗A(Og,g)⊕
g∈G C∗(Yg)⊗A(Og,g)

(6)

generated by all equivalence class [(Tg)g∈G] of tuples (Tg)g∈G described as follows:

(1) Tg is a bounded function from (Zd × Zd) ∩ (Yg ×Yg) to A(B)⊗̂K for all g ∈ G such that

sup
g∈G

sup
x,y∈Zd

‖Tg(x, y)‖ < ∞;

(2) for any bounded subset B ⊂ Yg ∩ Zd, we have

#{(x, y) ∈ B × B | T(x, y) 6= 0} < ∞;

(3) there exists L > 0 such that

#{y ∈ Zd | Tg(x, y) 6= 0} ≤ L, #{y ∈ Zd | Tg(y, x) 6= 0} ≤ L

for all x ∈ Yg ∩ Zd and g ∈ G;

(4) there exists R ≥ 0 such that Tg(x, y) = 0 whenever d(x, y) > R for all g ∈ G, the least such

R is called the propagation of the representative element T, denoted by Prop(T);

(5) there exists r > 0 such that for all x, y ∈ Yg ∩ Zd and g ∈ G, then

supp(Tg(x, y)) ⊆ Og,g

for all n ∈ N.
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The algebraic structure of A∞[Y] is defined by viewing A∞[Y] as the subalgebra of the C∗-

algebra in equation (6) and A∗
∞(Y) is defined to be the norm closure of A∞[Y] with the induced

norm.

Definition 6.15. Define AL,∞[Y] to be the ∗-algebra of all bounded, uniformly norm-continuous

functions

f : R+ → A∞[Y]

such that f = ( fg) satisfies the conditions in Definition 6.6 with uniform constants.

Define A∗
L,∞(Y) to be the completion of AL,∞[Y] with respect to the norm

‖ f‖ = sup
t∈R+

‖ f (t)‖.

Let evA be the evaluation map

evA : A∗
L,∞(Y) → A∗

∞(Y)

defined by evA(g) = g(0).

Proposition 6.16. Suppose that O = (Ox) is a coherent collection of open subsets of B which is (G, r)-
separated for some G. We denote GR = (B(g, R))g∈G to be the family of subsets of Pd(X). Then we

have

(1) C∗
∞(Pd(X),A(B))O

∼= limR→∞ A∗
∞(GR);

(2) C∗
L,∞(Pd(X),A(B))O

∼= limR→∞ A∗
L,∞(GR).

Proof. Take an arbitary element

[T] ∈ C∞[Pd(X),A(B)]O.

By definition, we have that

supp(T(x, y)) ⊂ Ox =
⊔

g∈B(x,ld,m)∩G

Ox,g,

where x ∈ Kd,m+1 ∩Ud,m. Since the coherent open susbet is (G, r)-separate. Then we have a direct

sum decomposition

T(x, y) =
⊕

G∩B(x,ld,m)

Tg(x, y),

where

Tg(x, y) = T(x, y)|Ox,g

is the restriction of T(x, y) on Ox,g for all x, y ∈ Zd and g ∈ G. By property (4) in Definition 6.2,

there exists r1 > 0 such that

supp(T(x, y)) ⊆ B(tx(x)(s(x)), r1).
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Conbining with the fact that

Ox,g ⊆ B(tx(g)(s(g)), r),

we have that Tg(x, y) = 0 for all x with d(tx(x)(s(x)), tx(g)(s(g))) > r1 + r. It follows that there

exists R > 0 such that Tg(x, y) = 0 for all d(x, g) > R.

We define

Sg(x, y) = (tgx)∗(Tg(x, y))

for all but finite g ∈ G and 0 otherwise. Notice that T has finite propagation and O is (G, r)-
separated, then Sg is well defined for all g ∈ G ∩ Ud,m with m large enough. Then we have that

Sg defines an element in C∗(B(g, R))⊗A(Og,g).

Now, notice that the tuples (Sg)g∈G forms an element of A∞[GR]. Then the correspondence

[T] 7→ [(Sg)] extends to a ∗-isomorphism by the fact that the norms in these two C∗-algebras

agrees. One can see the proof of [23, Lemma 3.9] for essentially the same arguments which can be

used to show the norms in these two algebras agree.

Now let us recall the notion of strong Lipschitz homotopy introduced by G. Yu in [28, 29].

Let (Yg)g∈G and (Wg)g∈G be be two families of uniformly bounded closed subspaces of Pd(X)
satisfying the condition in Definition 6.14. A map

f :
⊔

g∈G

Yg →
⊔

g∈G

Wg

is said to be Lipschitz if

(1) f (Yg) ⊂ Wg for all g ∈ G;

(2) there exists a constant c > 0 such that

d( f (x), f (y)) ≤ c · d(x, y)

for all x, y ∈ Yg and g ∈ G.

Definition 6.17 ([28]). Let f and h be two Lipschitz maps from
⊔

g∈G Yg to
⊔

g∈G Wg. A continuous

homotopy F(x, t)(t ∈ [0, 1]) between f and h is said to be strongly Lipschitz if

(1) d(F(x, t), F(y, t)) ≤ Cd(x, y) for all x, y ∈ Yg, g ∈ G and t ∈ [0, 1], where C is a constant

(called the Lipschitz constant of F);

(2) F is equi-continuous in t, i.e., for any ε > 0, there exists δ > 0 such that d(F(x, t1), F(x, t2)) ≤
ε for all x ∈

⊔
g∈G Yg if |t1 − t2| < δ;

(3) F(x, 0) = f (x), F(x, 1) = h(x) for all x ∈
⊔

g∈G Yg.

We say (Yg)g∈G is strongly Lipschitz homotopy equivalent to (Wg)g∈G if there exists Lipschitz

maps

f :
⊔

g∈G

Yg →
⊔

g∈G

Wg
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and

h :
⊔

g∈G

Wg →
⊔

g∈G

Yg

such that f ◦ h and h ◦ f are strongly Lipschitz homotopy equivalent to the identity maps, respec-

tively.

The proof of the following result is similar to [29, Lemma 6.4], one can check it with a Eilenberg

swindle argument as in [29].

Lemma 6.18 ([29]). Let A∗
L,0,∞(Y) be the C∗-subalgebra of A∗

L,∞(Y) consisting of those functions f such

that f (0) = 0. We have the following results:

(1) If Y = (Yg)g∈G is strongly Lipschitz homotopy equivalent to W = (Wg)g∈G, then

K∗(A∗
L,0,∞(Y)) ∼= K∗(A∗

L,0,∞(W)).

(2) If GR = (B(g, R))g∈G, then

K∗(A∗
L,0,∞(GR)) = 0.

As a corollary, the evaluation map induces an isomorphism on the level of K-theory, i.e.

(evA)∗ : K∗(A∗
L,∞(GR)) → K∗(A∗

∞(GR))

is an isomorphism.

Proof of Proposition 6.13. By Proposition 6.16, we have the following commuting diagram:

lim
d→∞

K∗(C∗
L,∞(Pd(X),A(B))O)

(evA∞)∗ //

∼=

��

lim
d→∞

K∗(C∗
∞(Pd(X),A(B))O)

∼=

��
lim
d→∞

lim
R→∞

K∗(A∗
L,∞(GR))

∼=

��

(evA)∗ // lim
d→∞

lim
R→∞

K∗(A∗
∞(GR))

∼=

��
lim

R→∞
lim
d→∞

K∗(A∗
L,∞(GR))

(evA)∗ // lim
R→∞

lim
d→∞

K∗(A∗
∞(GR)).

in which all vertical maps are isomorphisms. By Lemma 6.18, we have that the bottom horizontal

map (evA)∗ is an isomorphism. Thus, (evA∞)∗ is also an isomorphism.

Finally, we are able to prove Theorem 6.8.

Proof of Theorem 6.8. For any r > 0, we define O
(r)
x by

O
(r)
x =

⋃

y∈B(x,ld,m)

B(tx(y)(s(y)), r)
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for any x ∈ Kd,m+1 ∩ Ud,m. Then it is easy to check that O(r) = (O
(r)
x )x∈X is a coherent collection

of open subsets.

For any d ≥ 0, by the definition of the twisted algebras, we have that

C∗
∞(Pd(X),A(B)) = lim

r→∞
C∗

∞(Pd(X),A(B))O(r) ,

C∗
L,∞(Pd(X),A(B)) = lim

r→∞
C∗

L,∞(Pd(X),A(B))O(r) .

Notice that the limits of C∗
∞(Pd(X),A(B))O(r) with limits order limd→∞ limr→∞ and limd→∞ limr→∞

are actually the same. Consequently, it suffices to prove that the K-theortic homomorphism

ev∗ : lim
d→∞

K∗(C
∗
L,∞(Pd(X),A(B))O(r)) → lim

d→∞
K∗(C

∗
∞(Pd(X),A(B))O(r))

induced by the evaluation-at-zero map is an isomorphism for each r > 0.

For any given r > 0, as X has bounded geometry, there exists Nr > 0 such that

X =
Nr⊔

k=1

Xk

satisfying that for any z ∈ Zd ∩ Ud,m and x, y ∈ Xk ∩ B(z, ld,m), we have

‖tz(x)(s(x))− tz(y)(s(y))‖ > 2r.

We shall define

O
(r)
x,k =

⋃

y∈Xk∩B(x,ld,m)

B(tx(y)(s(y)), r)

for all x ∈ X and k ∈ {1, · · · , Nr}. Then O
(r)
k = (O

(r)
x,k)x∈X is a coherent collection which satisfies

the condition in Proposition 6.13. Thus we have that

ev∗ : lim
d→∞

K∗(C
∗
L,∞(Pd(X),A(B))

O
(r)
k

) → lim
d→∞

K∗(C
∗
∞(Pd(X),A(B))

O
(r)
k

)

for all k ∈ {1, · · · , Nr}. Then it follows from a Mayer-Vietories argument by using Lemma 6.12 to

complete the proof.

7 The geometric Bott map and proof of the main theorem

In this section, we shall define the Bott map β from the K-theory group of the Roe algebra to K-

theory group of the twisted Roe algebra and its localization algebraic version βL. The construction

relies heavily on the Bott periodicity theorem we introduced in Section 5.
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For each t ≥ 1 and g ∈ S , denote gt ∈ S to be the function

gt(r) = g(t−1r).

For any x ∈ X, we define the Bott map β(x) : S → A(B) to be

(β(x))(g) = βtx(x)(s(x))(g),

where tx is the trivilazition on B(x, ld,m) defined as in Definition 2.4, tx(x)(s(x)) ∈ B and βtx(x)(s(x))

is the Bott map defined as in Section 5.

Definition 7.1. For each d ≥ 0 and t ∈ [1, ∞), define a map

βt : S⊗̂C∞[Pd(X)] → C∞[Pd(X),A(B)]

for each g ∈ S , [T] ∈ C∞[Pd(X)] by the formula

βt(g⊗̂[T]) = [βt(g⊗̂T)],

where

(βt(g⊗̂T))(x, y) = (β(x))(gt)⊗̂T(x, y).

Definition 7.2. For each d ≥ 0 and t ∈ [1, ∞), define a map

(βL)t : S⊗̂CL,∞[Pd(X)] → CL,∞[Pd(X),A(B)]

for each g ∈ S , f ∈ CL,∞[Pd(X)] by the formula

((βL)t(g⊗̂ f ))(r) = βt(g⊗̂ f (r)),

for each r ∈ R+.

The following lemma is proved similarly with [29, Proposition 7.6] and [4, Lemma 7.3]

Lemma 7.3. For each d ≥ 0, the maps βt and (βL)t extend respectively to asymptotic morphisms

β : S⊗̂C∗
∞(Pd(X)) C∗

∞(Pd(X), A(B))

βL : S⊗̂C∗
L,∞(Pd(X)) C∗

L,∞(Pd(X), A(B)).

Proof. We will only prove it for β and the case for βL follows similarly.

First of all, we claim that

∥∥[βt(gh⊗̂ST)]− [βt(g⊗̂S)][βt(h⊗̂T)]
∥∥ → 0

for any [S], [T] ∈ C∞[Pd(X)]. By definition, we can calculate that the (x, y)-th entry of the above
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matrix coefficients of βt(gh⊗̂ST) and βt(g⊗̂S)βt(h⊗̂T) are

∑
z∈Zd

β(x)(gtht)⊗̂S(x, z)T(z, y)

and

∑
z∈Zd

β(x)(gt)(txy)∗(β(y)(ht))⊗̂S(x, z)T(z, y),

respectively. By using [9, Lemma 3.4], it suffices to prove for any ε > 0 and h ∈ S , there exists

T > 0 such that

‖β(x)(ht)− (txy)∗(β(y)(ht))‖ < ε

for all t ≥ T. To simplify the notation, we denote vx = tx(x)(s(x)) and vy = tx(y)(s(y)).

Write R the propagation of [ST]. Assmue that d(x, y) ≤ R and d(x, x0) is large enough such

that ty(y)(s(y)) = txy(vy), where x0 is the base point we choose. Combining Definition 6.1, we

have that

‖β(x)(ht)− (txy)∗β(y)(ht)‖ = sup
(v,r)∈B×R+

‖ht(Cvx(v, r))− ht(Cvy(v, r))‖

= sup
(v,r)∈B×R+

∥∥∥h
(

t−1φ(v − vx), t−1r
)
− h

(
t−1φ(v − vy), t−1r

)∥∥∥

= sup
(v,r)∈B×R+

∥∥∥h
(

φ(t−2/p(v − vx)), t−1r
)
− h

(
φ(t−2/p(v − vy)), t−1r

)∥∥∥

= ‖βt−2/pvx
(h)− βt−2/pvy

(h)‖

Notice that ‖vx − vy‖ ≤ ρ+(d(x, y)) ≤ ρ+(R), where ρ+ is the controlled function defined as in

Definition 2.4. By using the fact lim
t→∞

t−2/p = 0 and Lemma 3.8, we complete the proof of the

claim.

The rest part of the proof is similar with [29, Lemma 7.6]. One can similarly prove that

βt(g⊗̂[T]) ≤ ‖g‖ · ‖[T]‖.

for all g ∈ S and [T] ∈ C∞[Pd(X)]. Hence βt extends to an well-defined asymptotic morphism

from S⊗̂maxC∗
∞(Pd(X)) to C∗

∞(Pd(X),A(B)). Since S is nuclear, we complete the proof.

Note that the asymptotic morphisms

βt : S⊗̂C∗
∞(Pd(X)) C∗

∞(Pd(X),A(B))

(βL)t : S⊗̂C∗
L,∞(Pd(X)) C∗

L,∞(Pd(X),A(B))

induce homomorphisms on K-theory

β∗ : K∗(S⊗̂C∗
∞(Pd(X))) K∗(C

∗
∞(Pd(X),A(B)))

(βL)∗ : K∗(S⊗̂C∗
L,∞(Pd(X))) K∗(C

∗
L,∞(Pd(X),A(B))).
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Theorem 7.4. For any d > 0, the Bott map

(βL)∗ : K∗(S⊗̂C∗
L,∞(Pd(X))) K∗(C

∗
L,∞(Pd(X),A(B))).

is an isomorphism.

Proof. The K-theory of the localization algebra is invariant under the strong Lipschtiz homotopy

equivalence (see [28, 29]). By a Mayer-Vietoris sequence argument and induction on the dimen-

sion of the skeletons [13, 28], the general case can be reduced to the zero-dimensional case, i.e., if

∆(0) ⊆ Pd(X) is the 0-skeleton of Pd(X), then

(βL)∗ : K∗

(
S⊗̂C∗

L,∞

(
∆(0)

))
→ K∗

(
C∗

L,∞

(
∆(0),A(B)

))

is an isomorphism.

Notice that

K∗

(
S⊗̂C∗

L,∞

(
∆(0)

))
=

∏γ∈∆(0) K∗(S⊗̂C∗
L({γ}))

⊕
γ∈∆(0) K∗(S⊗̂C∗

L({γ}))

K∗

(
C∗

L,∞

(
∆(0),A(B)

))
=

∏γ∈∆(0) K∗(C∗
L({γ},A(B)))

⊕
γ∈∆(0) K∗(C∗

L({γ},A(B)))
.

Moreover, one can see that K∗(S⊗̂C∗
L({γ})) ∼= K∗(S⊗̂K) and K∗(C∗

L({γ},A(B))) ∼= K∗(K⊗̂A(B))

and the Bott map (βL)∗ coincides with βtγ(γ)(s(γ)) when (βL)∗ restricts on K∗({γ}) ∼= K∗(S) to

K∗(C∗
L({γ},A(B))) ∼= K∗(A(B)). Then the theorem follows from Theorem 3.15 directly.

Then we can finally prove the main result:

Proof of Theorem 2.5. We have the following commuting diagram:

K∗(C∗
L,∞(Pd(X)))

(βL)∗ //

(ev∞)∗
��

K∗(C∗
L,∞(Pd(X),A(B)))

(evA∞)∗
��

K∗(C∗
∞(Pd(X)))

β∗ // K∗(C∗
∞(Pd(X),A(B))).

By Theorem 6.8 and Theorem 7.4, we show that evA∞ is an isomorphism and (βL)∗ is injective. It

forces ev∞ to be an injection. Combining Theorem 5.7, we conclude that the coarse assembly map

µ : lim
d→∞

K∗(Pd(X)) → K∗(C
∗(X))

is injective.
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