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THE INTRINSIC HOPF-LAX SEMIGROUP VS. THE INTRINSIC SLOPE

DANIELA DI DONATO

Abstract. In this note, we introduce a natural notion of intrinsic Hopf-Lax semigroup in
the context of the so-called intrinsically Lipschitz sections. The main aims are to prove the
link between the intrinsic Hopf-Lax semigroup and the intrinsic slope and to show that the
intrinsic Hopf-Lax semigroup is a subsolution of Hamilton-Jacobi type equality.
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1. Introduction

Let M be a compact Riemannian manifold, then the quadratic Hamilton-Jacobi equation
on M is

∂F

∂t
+

|∇F |2

2
= 0.

Given an initial condition f ∈ C(M,R), it is well-known the viscosity solution to the
Hamilton-Jacobi equation is given by the Hopf-Lax formula

F (y, t) = inf
z∈M

{

f(z) +
d2(y, z)

2t

}

,

where d is the geodesic distance on M and t ∈ R
+. The map that sends f to F (·, t)

defines a semigroup action of R
+ on C(M,R), called the Hamilton-Jacobi semigroup or

Hopf-Lax semigroup. Motivated by the fact that these semigroups are the key ingredients
in [AGS14a, LV07], we define a natural notion of the "intrinsic Hopf-Lax semigroup" (see
Definition 3.1) in the intrinsic context introduced in [DDLD22]. More precisely, in general
metric spaces, Le Donne and the author give a ’different’ notion of Lipschitz graph starting
from two simple facts:
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(1) we generalize the notion of intrinsically Lipschitz maps in subRiemannian Carnot
groups [ABB19, BLU07, CDPT07] introduced and studied by Franchi, Serapioni and
Serra Cassano [FSSC01, FSSC03b, FSSC03a].

(2) we consider graphs instead of maps.

In our context we consider a section ϕ : Y → X of π : X → Y (i.e., π ◦ϕ = idY ) such that
π produces a foliation for X, i.e., X =

∐

π−1(y) and the Lipschitz property of ϕ consists to
ask that the distance between two points ϕ(y1), ϕ(y2) is not comparable with the distance
between y1 and y2 but between ϕ(y1) and the fiber of y2. Following this idea, it is natural to
define the intrinsic Hopf-Lax semigroup as follows. Let X = R

κ, Y ⊂ R
κ be bounded and

π : X → Y a quotient map. The intrinsic Hopf-Lax semigroup is the family of operators
(iQ·)t>0 defined as

f 7→ iQtf(y) := inf
z∈Y

{

max
j=1,...,κ

fj(z) +
1

2t
d2(f(z), π−1(y))

}

.

for any continuous section f : Y → X of π. We also consider the case κ > 1 because being
intrinsically Lipschitz is equivalent to Lipschitz in the classical sense when we consider the
basic case X = Y = R.

Yet, in the context of metric measure spaces, there are different notions of "energies"
like Cheeger energy and Dirichlet form and a natural question is to ask when a Dirichlet
form is regular (i.e., when it coincides with the Cheeger energy). The first step of this
study is to consider the Hopf-Lax semigroup and to prove its link with the descending slope.
The reader can see [Che99, ACDM15, AES16, AGS08, AGS14a, AGS14b, AGS15, BGL01,
KSY14, KY12, FOM10, KM16, Kei04].

Here we prove the following results:

(1) Theorem 3.9: we estimate of the time derivative of the Hopf-Lax semigroup in terms
of D±f (see Definition 3.1).

(2) Theorem 4.1: we prove the link between the intrinsic Hopf-Lax semigroup and the
intrinsic slope.

(3) Corollary 3.12: we show that the intrinsic Hopf-Lax semigroup is a subsolution of
Hamilton-Jacobi type equality.

The long-term objective is to obtain the regularity of a suitable Dirichlet form in

our intrinsic context. This question arises from the fact that the key point to obtain
the regularity of a classical Dirichlet form turns out to be the existence of a "suitable"
Lipschitz approximation for any function f : Y → R inside the domain of the form. Yet,
in our context, it is plausible that the appropriate approximation will be in terms of the
intrinsically Lipschitz sections because they play the same role of classic Lipschitz notion in
many results as proved in [DDLD22, DD22a, DD22c, DD22b, DD22d].

Acknowledgements. We would like to thank Professor Giuseppe Savaré for the reference
[AGS14a] which is the core of this paper.

2. Intrinsic Lipschitz sections

2.1. Intrinsic Lipschitz sections. The notion of intrinsically Lipschitz maps was intro-
duced by Franchi, Serapioni and Serra Cassano [FSSC01, FSSC03b, FSSC03a] (see also
[SC16, FS16]) in the context of subRiemannian Carnot groups after a negative result given
by Ambrosio and Kirchheim [AK00]. Their aim is to establish a good definition of rectifiab-
ility in Carnot groups.
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Here we present a generalization of this concept introduced in [DDLD22]. Our setting
is the following. We have a metric space X, a topological space Y , and a quotient map
π : X → Y , meaning continuous, open, and surjective. The standard example for us is when
X is a metric Lie group G (meaning that the Lie group G is equipped with a left-invariant
distance that induces the manifold topology), for example a subRiemannian Carnot group,
and Y if the space of left cosets G/H , where H < G is a closed subgroup and π : G → G/H
is the projection modulo H , g 7→ gH .

Definition 2.1. We say that a map ϕ : Y → X is a section of π if

(1) π ◦ ϕ = idY .

Moreover, we say that a map ϕ : Y → X is an intrinsically Lipschitz section of π with

constant L, with L ∈ [1,∞), if in addition

(2) d(ϕ(y1), ϕ(y2)) ≤ Ld(ϕ(y1), π
−1(y2)), for all y1, y2 ∈ Y.

Here d denotes the distance on X, and, as usual, for a subset A ⊂ X and a point x ∈ X, we
have d(x,A) := inf{d(x, a) : a ∈ A}.

A first observation is that this class is contained in the class of continuous maps (see
[DDLD22, Section 2.4]) but cannot be uniformly continuous (see Example 1.2 in [DD22b]). In
the case π is a Lipschitz quotient or submetry [BJL+99, VN88], being intrinsically Lipschitz
is equivalent to biLipschitz embedding, see Proposition 2.4 in [DDLD22]. Moreover, since ϕ
is injective by (1), the class of Lipschitz sections not include the constant maps.

Remark 2.2. If Y is bounded, we get that

K := sup
y1,y2∈Y

d(ϕ(y1), π
−1(y2)) < +∞.

This follows because, on the contrary, if K = +∞, then we get the contradiction +∞ =
d(ϕ(y1), π

−1(y2)) ≤ d(ϕ(y1), ϕ(y2)).

2.2. Intrinsic Lipschitz constants. We recall the definition of the intrinsic Lipschitz con-
stants as in [DD22a, DD22d], where we have adapted the theory of [Che99, DM14] in our
intrinsic case.

Definition 2.3. Let ϕ : Y → X be a section of π. Then we define

ILS(ϕ) := sup
y1,y2∈Y
y1 6=y2

d(ϕ(y1), ϕ(y2))

d(ϕ(y1), π−1(y2))
∈ [0,+∞]

and

ILS(Y,X, π) := {ϕ : Y → X : ϕ is an intrinsically Lipschitz section of π and ILS(ϕ) < +∞},

ILSb(Y,X, π) := {ϕ ∈ ILS(Y,X, π) : spt(ϕ) is bounded}.

For simplicity, we will write ILS(Y,Rκ) instead of ILS(Y,Rκ, π).

Definition 2.4. Let ϕ : Y → X be a section of π. Then we define the local intrinsically
Lipschitz constant (also called intrinsic slope) of ϕ the map Ils(ϕ) : Y → [0,+∞) defined as

Ils(ϕ)(z) := lim sup
y→z

d(ϕ(y), ϕ(z))

d(ϕ(y), π−1(z))
,

if z ∈ Y is an accumulation point; and Ils(ϕ)(z) := 0 otherwise.
3



Definition 2.5. Let ϕ : Y → X be a section of π. Then we define the asymptotic intrinsically
Lipschitz constant of ϕ the map Ilsa(ϕ) : Y → [0,+∞) given by

Ilsa(ϕ)(z) := lim sup
y1,y2→z

d(ϕ(y1), ϕ(y2))

d(ϕ(y1), π−1(y2))

if z ∈ Y is an accumulation point and Ils(ϕ)(z) := 0 otherwise.

Remark 2.6. Notice that by ϕ(y2) ∈ π−1(y2), it is trivial that d(ϕ(y1), π
−1(y2)) ≤ d(ϕ(y1), ϕ(y2))

and so Ils(ϕ) ≥ 1. Moreover, it holds

Ils(ϕ) ≤ Ilsa(ϕ) ≤ ILS(ϕ).

3. The intrinsic Hopf-Lax semigroup

3.1. The intrinsic Hopf-Lax semigroup: Definition. In this section, we give a natural
definition of the Hopf-Lax semigroup in our intrinsic context: the classical one is widely
used in different situations, from metric measure spaces theory to optimal transportation.
We used the similar technique shown in [AGS14a, Section 3] (see also [LV07, Por17]).

For any fixed t ∈ R
+ we give the key definition of this note.

Definition 3.1. Let X = R
κ, Y ⊂ R

κ be bounded and π : X → Y a quotient map. The
intrinsic Hopf-Lax semigroup is the family of operators (iQ·)t>0 defined as

(3) f 7→ iQtf(y) := inf
z∈Y

F (t, y, z),

for any section f = (f1, . . . , fκ) ∈ C(Y,Rκ) of π, where

(4) F (t, y, z) = max
j=1,...,κ

fj(z) +
1

2t
d2(f(z), π−1(y)).

Given a continuous section f : Y → R
κ of π, iQtf(y) is then defined by the minimum

problem (3). We also define:

(5)
iD+f(y, t) := sup

{

lim sup
n→∞

d(f(yn), π
−1(y)) : (yn)n is a minimizing sequence in (3)

}

iD−f(y, t) := inf
{

lim inf
n→∞

d(f(yn), π
−1(y)) : (yn)n is a minimizing sequence in (3)

}

The map (y, t) 7→ iQtf(y), Y × (0,∞) → R ∪ {±∞} is obviously upper semicontinuous.
The behavior of iQtf is not trivial only in the set

{y ∈ Y : d(f(z), π−1(y)) < ∞ for some z ∈ Y with max
j

fj(z) < ∞},

and so we shall restrict our analysis in this set. In particular, it is sufficient to ask that f is
a bounded section and Y is a bounded subset of Rκ (see Remark 2.2). Moreover, it this set,
iQtf(y) ∈ R ∪ {−∞} and so we also define

t∗(y) := sup{t ∈ R
+ : iQtf(y) > −∞},

with the convention t∗(y) = 0 if iQtf(y) = −∞ for all t > 0.

Remark 3.2. Notice that by Remark 2.2, if Y is bounded, then iD+f < +∞. Moreover, in
general we have that

iD+f(y, t) ≥ iD−f(y, t), ∀y ∈ Y, t ∈ R
+.
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Proposition 3.3 (Semicontinuity of iD±). Let yn → y and tn → t ∈ (0, t∗(y)). Then,

iD−f(y, t) ≤ lim inf
n→∞

iD−f(yn, tn),

iD+f(y, t) ≥ lim sup
n→∞

iD+f(yn, tn).

In particular, for every y ∈ Y the map t 7→ iD−f(y, t) is left continuous in (0, t∗(y)) and the

map t 7→ iD+f(y, t) is right continuous in (0, t∗(y)).

Proof. We adapt the proof as in [AGS14a, Proposition 3.2]. For every n ∈ N, let (yℓn)ℓ∈N be a
minimizing sequence for F (tn, yn, ·) for which the limit of d(f(yℓn), π

−1(yn)) as ℓ → ∞ equals
iD−(yn, tn). By Remark 2.2, supℓ,n d(f(y

ℓ
n), π

−1(yn)) < +∞ and for any n we have that

lim
ℓ→∞

f(yℓn) +
1

2tn
d2(f(yℓn), π

−1(yn)) = iQtnf(yn).

Moreover, the upper semicontinuity of (y, t) 7→ iQtf(y) gives that lim supn iQtnf(xn) ≤
iQtf(y). Since d(f(yℓn), π

−1(yn)) is bounded, it follows that

sup
ℓ

|d2(f(yℓn), π
−1(yn))− d2(f(yℓn), π

−1(y))|

is infinitesimal and so by a diagonal argument we can find a sequence n 7→ ℓ(n) such that

lim sup
n→∞

f(yℓ(n)) +
1

2t
d2(f(yℓn), π

−1(y)) ≤ iQtf(y),

|d(f(yℓ(n)n ), π−1(yn))− iD−(yn, tn)|≤
1

n
.

This implies that y 7→ y
ℓ(n)
n is a minimizing sequence for F (t, y, ·), therefore

D−f(y, t) ≤ lim inf
n→∞

d(f(yℓ(n)n ), π−1(y)) = lim inf
n→∞

d(f(yℓ(n)n ), π−1(yn)) = lim inf
n→∞

D−f(yn, tn).

Notice that in the equality we used that fact that yn → y which we will prove in Proposition
3.5 (ii). In a similar way, if we choose instead sequence (yℓn)ℓ on which the supremum in the
definition of iD+f(yn, tn) is attained, we obtain the upper semicontinuity property of iD+f .

�

We conclude this section with an easy result when f is an intrinsically Lipschitz section.

Proposition 3.4. Let f ∈ ILS(Y,Rκ) and let L ≥ 1 be its Lipschitz constant. Then,

2tL ≥ iD+f(y, t) ≥ iD−f(y, t),

for every y ∈ Y and t ∈ R
+.

Proof. We can suppose iQtf(y) < maxj=1,...,κ fj(y); indeed, if not, it must be

iQtf(y) = max
j=1,...,κ

fj(y) ⇒ iD+f(y, t) = 0.

Hence we can take a minimizing sequence (yn)n for iQtf(y) so that definitively

max
j=1,...,κ

fj(yn) +
1

2t
d2(f(yn), π

−1(y)) ≤ max
j=1,...,κ

fj(y).

Using the fact that f in an intrinsically L-Lipschitz sections, it follows that

d2(f(yn), π
−1(y)) ≤ 2td(f(y), f(yn)) ≤ 2tLd(f(yn), π

−1(y)).

Dividing for d(f(yn), π
−1(y)) and taking the limsup in n, we find the thesis. �
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3.2. The intrinsic Hopf-Lax semigroup: Properties. The next theorem treats the
main properties of the intrinsic Hopf-Lax semigroup. Like in the classical case, note that no
completeness is needed and there is no reference measure. In particular, the point (iv) of the
next result shows that iD±f(y, ·) are non increasing and they coincide out of a countable
set (see Remark 3.7).

Proposition 3.5. Let f ∈ Cb(Y,R
κ) be a section of π : Rκ → Y . Then we have the following

basic properties for iQf(y) :

i: infz∈Y minj=1,...,κ fj ≤ iQtf ≤ maxj=1,...,κ fj ≤ supz∈Y maxj=1,...,κ fj < +∞.
ii: iQtf → maxj=1,...,κ fj pointwise as t → 0.
iii: for any fixed y ∈ Y, the map t 7→ iQtf(y) is Lipschitz in the classical sense in

(δ, t∗(y)) for all δ such that 0 < δ < t∗(y) and the Lipschitz constant depends on δ
and Osc(f) := supmaxj=1,...,κ fj − inf maxj=1,...,κ fj .

iv: for every y ∈ Y and 0 < t < s < t∗(y), it holds: iD+f(y, t) ≤ iD−f(y, s).

Proof. We adapt the proof as in [Por17, Theorem 2.3.3].
(i). It is a trivial consequence of the fact that 1

2t
d2(f(z), π−1(z)) ≥ 0 and that we can use

z = y as a competitor in the infimum of (3).
(ii). Fix y ∈ Y and take a sequence tn → 0; consider a quasi-minimizing sequence (yn)n

for iQtnf(y), in the sense that:

iQtnf(y) +
1

n
≥ max

j=1,...,κ
fj(yn) +

1

2tn
d2(f(yn), π

−1(y)), ∀n ∈ N.

Firstly, note that the uniform bound given by (i) and f ∈ Cb(Y,R
κ) yields

(6) f(yn) → f(y).

Indeed,

d2(f(yn), π
−1(y)) ≤ 2tn

(

iQtnf(y) +
1

n
− max

j=1,...,κ
fj(yn)

)

≤ 2tn

(

2‖f‖∞+
1

n

)

−→ 0,

and so

f(yn) → a ∈ π−1(y).

Moreover, notice that π(f(yn)) = yn and using the fact that f is a section, we get yn →
π(a) = y. Consequently, (6) holds by continuity of f . Now, since the simply fact

iQtnf(y) +
1

n
≥ fℓ(yn) +

1

2tn
d2(f(yn), π

−1(y)), ∀n ∈ N,

for every ℓ = 1, . . . , κ, if maxj=1,...,κ fj(y) = fo(y), then

fo(y) ≥ lim
n→+∞

iQtnf(y) ≥ lim
n→+∞

fo(yn) = fo(y),

and so we get the second point (ii).
(iii). Fix y ∈ Y, ε > 0 and consider s, t ∈ R with s > t. Let’s take an ε-quasi minimum ys

for iQsf(y), i.e.,

iQsf(y) + ε ≥ max
j=1,...,κ

fj(ys) +
1

2s
d2(f(ys), π

−1(y)).

6



Now using ys as a competitor for the inf-problem of iQtf(y) we get

(7)

|iQtf(y)− iQsf(y)|−ε = iQtf(y)− iQsf(y)− ε

≤ max
j=1,...,κ

fj(ys) +
1

2t
d2(f(ys), π

−1(y))− max
j=1,...,κ

fj(ys)−
1

2s
d2(f(ys), π

−1(y))− ε

≤
|s− t|

2ts
d2(f(ys), π

−1(y))− ε

We need to have some control on the distance along the quasi minimizing sequence (ys)s; to
get it, note that we can confine our "attention" in the inf-problem of iQsf(y) to a subset of
Y (dependent on s, y); precisely we can suppose to work with z inside the set

(8)

{

z ∈ Y :
1

2s
d2(f(z), π−1(y)) ≤ sup max

j=1,...,κ
fj − inf max

j=1,...,κ
fj =: Osc(f)

}

.

Indeed, if we take z ∈ Y such that does not satisfy the inequality in (8), we deduce that

max
j=1,...,κ

fj(z) +
1

2s
d2(f(z), π−1(y)) > inf max

j=1,...,κ
fj + sup max

j=1,...,κ
fj − inf max

j=1,...,κ
fj

= sup max
j=1,...,κ

fj ≥ max
j=1,...,κ

fj(z) ≥ iQsf(y).

Hence, without loss of generality, we can suppose:

ys ∈ B(y,
√

2sOsc(f)) ⊂ Y.

Thanks to (7), it holds

|iQtf(y)− iQsf(y)| ≤
|s− t|

2ts
d2(f(ys), π

−1(y)) + ε

≤
|s− t|

t
Osc(f) + ε

≤
|s− t|

δ
Osc(f) + ε,

for all ε > 0 and recall that t ∈ (δ,+∞). By the arbitrariness of ε, this gives us the sought
uniformly Lipschitzianity with respect to t, as desired.

(iv). Fix 0 < t < s and y ∈ Y. Let’s make this proof under the additional condition
that the infimum in iQtf(y) and in iQsf(y) are both attained and so they are minima (if
not one should arrange a bit the proof but it is mainly the same idea). Hence take yt, ys
minima related respectively to iQtf(y) and iQsf(y) and, by definition of the intrinsic Hopf
Lax semigroup, we deduce that

max
j=1,...,κ

fj(yt) +
1

2t
d2(f(yt), π

−1(y)) ≤ max
j=1,...,κ

fj(ys) +
1

2t
d2(f(ys), π

−1(y)),

max
j=1,...,κ

fj(ys) +
1

2s
d2(f(ys), π

−1(y)) ≤ max
j=1,...,κ

fj(yt) +
1

2s
d2(f(yt), π

−1(y)).

Summing up the previous equations, it holds
(

1

2t
−

1

2s

)

d2(f(yt), π
−1(y)) ≤

(

1

2t
−

1

2s

)

d2(f(ys), π
−1(y)),

and so, recall that s > t and 1/s < 1/t, we obtain

d2(f(yt), π
−1(y)) ≤ d2(f(ys), π

−1(y)).
7



Now let the square root in the last inequality, d(f(yt), π
−1(y)) ≤ d(f(ys), π

−1(y)) holds.
More precisely,

d(f(yt), π
−1(y)) ≤ d(f(ys), π

−1(y))

is true for every choice (ys, yt) into the class of minimizers of iQsf(y) and iQtf(y), respect-
ively. This gives us the sought inequality and the proof of the statement is complete. �

Remark 3.6. We notice that in Theorem 3.5 (iii) we do not expect the Lipschitzianity in the
second variable. We do not know if iQtf is intrinsic Lipschitz in the second variable but this
proof does not work because in our context we consider the distance between a set and a
point instead of between two points.

Remark 3.7. It holds

(9) iD+f(y, t) = iD−f(y, t), for a.e. t ∈ R
+.

Indeed,

sup
s<t

iD+f(y, s) ≤ iD−f(y, t) ≤ inf
s>t

iD+f(y, s),

for every y ∈ Y and t ∈ R
+. Notice that in the first inequality we used Theorem 3.5 (v).

Moreover, given y ∈ Y, we have that

sup
s<t

iD+f(y, s) = iD+f(y, t) = inf
s>t

iD+f(y, s),

for any t ∈ R
+, where iD+f(y, ·) is continuous; nevertheless, iD+f(y, ·) is non decreasing

and so there are at most countable many points of discontinuity. Consequently, (9) is true.

As corollaries of Theorem 3.5 we get the following results.

Corollary 3.8. Under the assumption of Theorem 3.5, for every fixed y ∈ Y the map

t 7→ iQtf(y)

turns out to be differentiable almost everywhere with respect to the L1-measure in R
+.

Proof. It is enough to consider Theorem 3.5 (iii) and Rademacher’s Theorem. �

3.3. The time derivative of iQtf . We find a precise estimate of the time derivative of the
Hopf-Lax semigroup in terms of D±f(y, t); in order to do this fact, we give an alternative
proof of Lipschitz property of iQtf. Moreover, we recall that semiconcave map g on an
open interval are local quadratic perturbations of concave maps; they inherit from concave
functions all pointwise differentiability properties, as existence of right and left derivatives
d−

dt
g ≥ d+

dt
g which is important for the next result.

Proposition 3.9 (Time derivative of iQtf). The map (0, t∗(y)) ∋ t 7→ iQtf(y) is locally

Lipschitz and locally semiconcave. For all t ∈ (0, t∗(y)) it satisfies

(10)

d−

dt
iQtf(y) = −

(iD−f(y, t))2

2t2
,

d+

dt
iQtf(y) = −

(iD+f(y, t))2

2t2
,

In particular, t 7→ iQtf(y) is differentiable at t ∈ (0, t∗(y)) if and only if iD+f(y, t) =
iD−f(y, t).

8



Proof. We follows [AGS14a, Proposition 3.3]. Let (ynt )n, (y
n
s )n be minimizing sequences for

F (t, y, ·) and F (s, y, ·). We have

(11)

iQsf(y)− iQtf(y) ≤ lim inf
n→∞

F (s, y, ynt )− F (t, y, ynt )

= lim inf
n→∞

d2(f(ynt )), π
−1(y))

2

(

1

s
−

1

t

)

,

(12)

iQsf(y)− iQtf(y) ≥ lim sup
n→∞

F (s, y, yns )− F (t, y, yns )

= lim sup
n→∞

d2(f(yns )), π
−1(y))

2

(

1

s
−

1

t

)

.

Now we have two cases: s > t or vice versa. In the first case, we get

(13)
(iD−f(y, s))2

2

(

1

s
−

1

t

)

≤ iQtf(y)− iQsf(y) ≤
(iD+f(y, t))2

2

(

1

s
−

1

t

)

,

recalling that lims→t iD
−f(y, s) = iD+f(y, t), a division by s − t (noting that 1/s − 1/t =

−(s − t)/st) and a limit as s → t gives the identity for the right derivative in (10). In a
similar way, we can obtain the left derivative.

Moreover, the local Lipschitz continuity follows by (13) recalling that iD±f(y, ·) are locally
bounded functions; we easily get the quantitative bound

∥

∥

∥

∥

d

dt
iQtf(y)

∥

∥

∥

∥

L∞(τ1,τ2)

≤
1

2τ 21
‖iD+f(y, ·)‖L∞(τ1,τ2),

for every 0 < τ1 < τ2 < t∗(y). Finally, since the distributional derivative of the map t 7→
(iD+f(y, t))2/(2t2) is locally bounded from below, we also deduce that t 7→ iQtf is locally
semiconcave, as desired. Hence, the proof is complete. �

Remark 3.10. We want to underline that since Y ⊂ R
κ is bounded, then the map (0, t∗(y)) ∋

t 7→ iQtf(y) is globally Lipschitz.
This fact follows from (13), noticing that iD±f(y, ·) are globally bounded functions by

Remark 2.2.

Proposition 3.11. Let f : Y → R
κ be a continuous section of π. Then, it holds

(14) t ∈ (0, t∗(y)) ⇒ lim sup
y→z

iQtf(z)− iQtf(y)

d(f(y), π−1(z))
≤

iD+f(z, t)

t

Proof. We use a similar technique as in [AGS14a, Proposition 3.4].
Let y, z ∈ Y such that iQtf(y) > −∞. We want to show that

(15) iQtf(z)− iQtf(y) ≤ d(f(z), π−1(y))

(

iD−f(y, t)

t
+

d(f(z), π−1(y))

2t

)

.
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Let (yn)n be a minimizing sequence for F (t, y, ·) on which the infimum in the definition of
iD−f(y, t) is attained, obtaining

iQtf(z)− iQtf(y) ≤ lim inf
n→∞

F (t, z, yn)− F (t, y, yn)

= lim inf
n→∞

d2(f(yn), π
−1(z))

2t
−

d2(f(yn), π
−1(y))

2t

≤ lim inf
n→∞

d(f(y), π−1(z))

2t
(d(f(yn), π

−1(z)) + d(f(yn), π
−1(y)))

≤
d(f(y), π−1(z))

2t
(d(f(y), π−1(z)) + iD−f(y, t)),

where in the second inequality we used the fact that f(yn) → f(y) (see (6)). Hence (15)
holds. Now dividing both sides of (15) by d(f(y), π−1(z)) and taking the lim sup as y → z
we get the first inequality of (14), since Proposition 3.3 yields the upper-semicontinuity of
iD+f. �

3.4. iQtf as a subsolution of Hamilton-Jacobi type inequality. In our case, we don’t
know if iQtf is a subsolution of Hamilton-Jacobi inequality as in [AGS14a, Theorem 3.5];
however, we have the following corollary.

Corollary 3.12. Let f : Y → R
κ be a continuous section of π with Y ⊂ R

κ bounded. Then,

it holds
d+

dt
iQtf(y) +

1

2
lim sup

y→z

(

iQtf(z)− iQtf(y)

d(f(y), π−1(z))

)2

≤ 0.

Proof. It is enough to consider Proposition 3.9 and 3.11. �

4. Intrinsic Hopf-Lax semigroup vs. Intrinsic slope

Our main goal now is to prove a "duality formula" for the intrinsic slope of a continuous
section using the intrinsic Hopf-Lax semigroup. In the classical case, this result is the first
step in order to get the regularity of Dirichlet form. Here, we adapt the proof of [Por17,
Theorem 2.3.6].

Theorem 4.1. Let f : Y → R
κ be a continuous section of π. Then,

Ils(f)2(y) ≥ 2 lim sup
t→0

maxj=1,...,κ fj(y)− iQtf(y)

t
.

Proof. Fix y ∈ Y and let ℓ ∈ {1, . . . , κ} such that maxj=1,...,κ fj(yt) = fℓ(yt) We consider a
quasi-minimizing sequence (yt)t>0 for iQtf(y), i.e.,

iQtf(y) + εt ≥ fℓ(yt) +
1

2t
d2(f(yt), π

−1(y)),

where, without loss of generality,

lim
t→0

εt
t
= 0.

Yet, without loss of generality, we can suppose that iQtf(y) < fℓ(y) definitively in t → 0.
Hence, noting

fℓ(y)−iQtf(y)−εt ≤ fℓ(y)−fℓ(yt)−
1

2t
d2(f(yt), π

−1(y)) ≤ d(f(y), f(yt))−
1

2t
d2(f(yt), π

−1(y))

10



we have that

lim sup
t→0

fℓ(y)− iQtf(y)

t
−

εt
t

≤ lim sup
t→0

d2(f(y), f(yt))

d(f(yt), π−1(y))

d(f(yt), π
−1(y))

t
−

d2(f(yt), π
−1(y))

2t2

≤ lim sup
t→0

1

2

d2(f(y), f(yt))

d2(f(yt), π−1(y))
+

1

2

d2(f(yt), π
−1(y))

t2
−

d2(f(yt), π
−1(y))

2t2
,

=
1

2
Ils(f)2(y),

where in the last inequality we used Young inequality and in the last equality we used the
fact that yt → y as t → 0 (see (6)). �
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