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MARKED LENGTH SPECTRUM RIGIDITY FOR

RELATIVELY HYPERBOLIC GROUPS

THANG NGUYEN AND SHI WANG

Abstract. We consider a coarse version of the marked length spectrum
rigidity: given a group with two left invariant metrics, if the marked
length spectrum (the translation length function) under the two metrics
are the same, then the two metrics are uniformly close. We prove the
rigidity theorem for relatively hyperbolic groups. This generalizes a
result of Fujiwara [Fuj15].

1. Introduction

Given a closed Riemannian manifold (M,g), if g has negative curvature,
then each free homotopy class c associates a unique closed geodesic γc on
M . Denote C the set of all free homotopy classes, or equivalently the set of
conjugacy classes of π1(M). The function

ℓg : C → R
≥0

given by ℓg(c) := L(γc) is called the marked length spectrum of (M,g),
where L denotes the length of a curve. The definition extends naturally to
manifolds of nonpositive curvature, in which case the closed geodesic might
not be unique, but its length is uniquely determined by the homotopy class.

The well-known marked length spectrum rigidity conjecture [BK85] states
that if two closed negatively curved Riemannian manifolds have the same
marked length spectrum, then they are isometric. This is known to be
true for surfaces by the result of Otal [Ota90] and Croke [Cro90] indepen-
dently. When one of the Riemannian manifolds is rank one locally symmet-
ric, Hamenstädt [Ham99] proved the conjecture using the minimal entropy
rigidity theorem of Besson-Courtois-Gallot [BCG95]. More recently, Guil-
larmou and Lefeuvre [GL19] showed that the conjecture holds if the two
metrics are close enough. However, the conjecture remains open in general.

The main purpose of this draft is to consider a “coarse” version of the
marked length spectrum rigidity problem. Let Γ be a finitely generated
group acting isometrically on a metric space (X, d). A natural generalization
of the marked length spectrum is given by the following.
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Definition 1.1. Let Γ be a group acting on a metric space (X, d) by isome-
tries. For every γ ∈ Γ, the translation length of γ is defined as

|γ|∞ = lim
n→+∞

d(x, γnx)

n
,

for any (and thus all) x ∈ X. Similarly, we call the function

ℓd : Γ → [0,+∞)

given by ℓd(γ) = |γ|∞ the marked length spectrum of the Γ-action on (X, d).

We note that, when (X, d) is a CAT(0) space, the translation length
defined above coincides with the usual definition of translation length of an
isometry γ, which is defined as

ℓ(γ) = inf
x∈X

d(x, γx).

In Furman [Fur02], this notion is called stable length as it coincides with the
usual stable length when X is a Cayley graph of Γ. Here we choose to use
the terminology translation length as in Fujiwara’s [Fuj15].

The translation length only depends on the conjugacy class of γ. In
the case Γ = π1(M) where M is a nonpositively curved Riemannian mani-
fold, the above defined marked length spectrum for the action of Γ on the

Riemannian universal cover M̃ coincides with the classical marked length
spectrum for (M,g).

Unlike the Riemannian setting, the large scale geometry of the metric
spaces is often considered in geometric group theory. Thus, we may naturally
consider the following coarse marked length spectrum rigidity problem.

Question 1.2. Let Γ be a finitely generated group, and let X and Y be
metric spaces. We assume that Γ acts on X and Y cocompactly (or more
generally coboundedly) by isometries. Suppose the two actions have the same
marked length spectrum, is it true that X and Y must be roughly isometric,
namely there exists f : X → Y and there exists C > 0 such that f is a
(1, C)-quasi-isometry?

We will say two metrics are roughly equal if they are (1, C)-quasi-isometric
for some C ≥ 0. This is also called “an almost isometry” in the literature
and certain rigidity results have been studied in [KLS16, LSvL17]. When
the metric spaces are proper (for example in the Riemannian context), a
cobounded action is equivalent to a cocompact action. However, there are
natural actions of certain groups on nonproper spaces. For example, when
Γ is relatively hyperbolic, it naturally acts on a hyperbolic space which may
not be proper. Another example is the mapping class group of a surface
which acts on the (nonproper) curve complex.

We can further simplify our notions by pulling back the metric from the
metric space to the group. Let Γ acts isometrically on a metric space (X, d).
By choosing any base point o ∈ X, we may identify Γ with its orbit Γ·o ⊂ X,
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which is also a metric space viewed as a subspace of (X, d). Equivalently, it
gives rise to a left invariant metric dX on Γ, given by

dX(γ1, γ2) = d(γ1 · o, γ2 · o) ∀γ1, γ2 ∈ Γ.

Thus, via the left translation, Γ acts isometrically on (Γ, dX), and it is clear
that the marked length spectrum of this action coincides with that of the
action on (X, d). Moreover, such a pull back metric dX satisfies the following
two additional properties:

(1) dX is quasi-isometric to the word metric of Γ if the action is cocom-
pact: this is due to Švarc-Milnor lemma. Also, the group Γ is finitely
generated if the action is properly discontinuous.

(2) dX is roughly geodesic (See the precise definition as follows): This
is because (Γ, dX ) can be identified with Γ · o ⊂ X, so any pair of
points γ1 ·o, γ2 ·o can be connected by a geodesic in X, and all points
on the geodesic are always uniformly close to some orbit point since
the action is cobounded.

We recall a definition given by Bonk and Schramm.

Definition 1.3 ([BS00]). Let (X, d) be a metric space and let δ ≥ 0. We
say the metric d is δ-roughly geodesic metric if for every x, y ∈ X there is a
(1, δ)-quasigeodesic from x to y. A metric is said roughly geodesic if there
is δ ≥ 0 such that it is δ-roughly geodesic.

Inspired by the observations, our Question 1.2 can be reformulated (at
least for proper metric spaces) as follows (cf. Burago and Margulis [Obe06,
Problem session]):

Question 1.4. Let Γ be a finitely generated group, and d1, d2 be two roughly
geodesic left invariant metrics that are quasi-isometric to a word metric. If
the actions under d1, d2 have the same marked length spectrum, then are
d1, d2 roughly equal, that is, |d1 − d2| ≤ C for some constant C?

The main result of this paper is to give an affirmative answer to the
question when Γ is a relatively hyperbolic group. It is easy to see that the
converse statement is also true: if two metrics are roughly equal, then their
marked length spectra are the same.

Theorem 1.5. Let Γ be a finitely generated relatively hyperbolic group with
respect to a family of infinite finitely generated proper peripheral subgroups
{H1, ...,Hn}. Let d1 and d2 be two roughly geodesic left invariant metrics
that are quasi-isometric to a proper word metric d. If the actions under
d1, d2 have the same marked length spectrum, then d1, d2 are roughly equal.

We would like to point out that the roughly geodesic property of the
left-invariant metrics is necessary for the theorem. We consider the ex-
ample where Γ = F2 =< a, b >, the free group with two generators a
and b. On Γ we let d1 be the word metric defined by the generating set
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S = {a, a−1, b, b−1}. We also consider another left invariant metric d2 de-

fined by d2(γ1, γ2) = d1(γ1, γ2) +
√

d1(γ1, γ2), for every γ1, γ2 ∈ Γ. We
observe that d2 is (2, 1)-quasi-isometric with d1. The group Γ is nonelemen-
tarily hyperbolic and thus is relatively hyperbolic, for example, relatively
to the cyclic subgroup < a >. The two metrics d1 and d2 have the same
marked length spectrum, however they are not roughly equal. The result
fails simply because d2 is not a roughly geodesic metric.

Regarding the history, Question 1.4 was previously known to be true when

(1) Γ is abelian by Burago [Bur92],
(2) Γ is a 3-dimensional integer Heisenberg group by Krat [Kra99],
(3) Γ is finitely generated Gromov hyperbolic by Furman [Fur02],
(4) Γ is a reductive Lie groups and the metrics d1, d2 are word metrics,

by Abels-Margulis [AM04],
(5) Γ is Gromov hyperbolic (a different proof from Furman’s) or rela-

tively hyperbolic groups with toral peripheral subgroups by Fujiwara
[Fuj15].

Our result further generalizes Fujiwara’s as we do not have additional as-
sumptions on the peripheral subgroups. When Γ is non-elementary hyper-
bolic, we can treat Γ as a relatively hyperbolic group with respect to an
infinite cyclic subgroup, thus our result also recovers the hyperbolic case.
Moreover, our proof is different from both Fujiwara and Furman’s argu-
ments.

It is also worth pointing out that Question 1.4 is known to be false in
general. Breuillard [Bre14, Section 8.3] gave a counterexample in the case
Γ = H3 × Z where H3 is the integer Heisenberg group of dimension 3.

Strategy of the proof. The main technical part of the proof is to estab-
lish the genericity of certain elements in Γ with a good periodicity property.
These are elements g such that for every n ∈ N, geodesics from 1 to gn pe-
riodically passing through a uniform neigborhood of gi for each 0 ≤ i ≤ n,
where the uniform constant depends on the metrics only and is independent
of n. One key observation is that: if an element g has good periodicity prop-
erty and it has the same translation lengths with respect to two metrics d1
and d2, then d1(1, g) and d2(1, g) must be uniformly close. So the rigidity
result holds at least for elements with good periodicity property. Further-
more, we show that for a relatively hyperbolic group, elements with good
periodicity property is generic in an appropriate sense, and can be obtained
from perturbations of any given element. Thus by triangle inequality, the
rigidity result holds for all elements, that is, d1 and d2 are roughly equal.

Compared to the previous works of [Bur92, Kra99, Fuj15], our notion
of good periodicity property is new and is the main difference. In [Bur92,
Kra99, Fuj15], they showed that for all/generic elements g ∈ Γ, and for all
n ∈ N, there exists a geodesic from 1 to gn that are uniformly (does not
depends on g and n) close to the union of consecutive geodesic segments
from gi−1 to gi, for every 1 ≤ i ≤ n. However, this is a much stronger
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property. For a general relatively hyperbolic group, we do not expect to
have many such elements since the behaviors of geodesics along peripheral
subgroups are mysterious. The good periodicity property we introduced is a
good replacement and we are able to show for relatively hyperbolic groups,
generic elements satisfy this property. The idea is to add a suitable prefix
and suffix to any given element so that the resulting element initially travels
transversely to all peripheral subsets and eventually stays in a particular
peripheral subset. Then using the geometry of relatively hyperbolic group,
we show this element has good periodicity property. This is done in Section
3.

It is natural to further ask for which classes of groups our theorem still
holds. Our proof, and also the argument of Fujiwara [Fuj15], use certain
hyperbolic geometry of the groups, and we believe it is possible to extend
to a broader context in which the groups share similar hyperbolic features.
On the other hand, the cautionary example of Breuillard indicates that
such feature of hyperbolicity may be necessary. We end this section by the
following question:

Question 1.6. Does our theorem hold for products of hyperbolic groups,
mapping class groups, or more generally hierarchically hyperbolic groups?

Acknowledgments: We would like to thank Jason Behrstock, Igor Bele-
gradek, Bob Bell, Cornelia Drutu, Mitul Islam, Jean Lafont, Ben Schmidt
and Ralf Spatzier for useful discussions about relatively hyperbolic groups
and the marked length spectrum rigidity. The authors would like to thank
the University of Michigan and Michigan State University respectively for
their hospitalities while the work was done.

2. On relatively hyperbolic groups

Gromov in [Gro87] emphasized the parallelism between the notion of hy-
perbolicity in geometric group theory and manifolds of negative sectional
curvature. The fundamental group of a closed negatively curved manifold
has such hyperbolicity which is now known as Gromov hyperbolic (or δ-
hyperbolic). He also suggested that there should be a suitable notion of
relative hyperbolicity that serves as an analogous parallelism to include the
fundamental group of finite volume negatively curved manifolds or more
generally manifolds of non-positive sectional curvature.

Since the first attempt was given by Farb [Far98], there has been many
analogous definitions and equivalent characterizations due to the work of
Bowditch, Drutu–Sapir, Osin, Groves–Manning, and Sisto [Bow12, DS05,
Osi06, GM08, Sis13]. In this paper, we use the notion of relative hyperbolicity
in the sense of strongly relative hyperbolicity defined by Drutu and Sapir
[DS05, Definition 8.4].

There are many well-known examples and constructions of relatively hy-
perbolic groups. Fujiwara, in his work [Fuj15], gave several examples of
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relatively hyperbolic groups with toral peripheral subgroups. Since our the-
orem further generalizes to arbitrary relatively hyperbolic groups, we list
here a few more examples of relatively hyperbolic groups whose peripheral
subgroups are not toral.

(1) If G and H are two infinite groups then G ∗H is a relatively hyper-
bolic group with respect to the family {G,H}. If G and H are not
hyperbolic and not toral then G ∗ H is an example of a relatively
hyperbolic group with non toral peripheral subgroups.

(2) Let n be an integer that is at least 2. Non-uniform lattices in the fol-
lowing rank one Lie groups SU(n, 1), Sp(n, 1), or F−20

4 are examples
of relatively hyperbolic groups with nilpotent peripheral subgroups.

(3) One can construct closed smooth manifolds with relatively hyper-
bolic fundamental group using the relative hyperbolization [Bel07]:
For any compact manifold with boundary (e.g. a hyperbolic mani-
fold with truncated cusps), after taking the relative hyperbolization,
one obtains a new smooth manifold with boundary whose fundamen-
tal group is relatively hyperbolic. Then by taking the double and
glue along the boundary, one constructs a closed manifold whose
fundamental group is still relatively hyperbolic.

3. Elements with good periodicity property

For this section, we consider a finitely generated group Γ, which is rel-
atively hyperbolic with respect to a finite family {H1, ...,Hn} of finitely
generated, infinite, proper peripheral subgroups. We note that we do not
lose any generality by assuming all peripheral subgroups are infinite as if any
peripheral subgroup is finite, we can remove it from the list of peripheral
subgroups while still keeping the relative hyperbolicity.

It is shown in [DS05, Theorem 9.1] that the Cayley graphX of Γ is asymp-
totically tree-graded with respect to the corresponding peripheral subsets
P = {gHi : g ∈ Γ, 1 ≤ i ≤ n}. Moreover, Sisto [Sis13, Theorem 2.14] proved
that (X,P) is an almost projection system (see definition below). Since the
metric and the sets of peripheral subsets are (left) Γ-invariant, the system of
projections is clearly Γ-equivariant. In this draft, we will mainly use Sisto’s
characterization. We recall here some of the definitions and results that we
will heavily use in the proofs later.

Denote d the Cayley metric onX, then (X, d) is a complete geodesic space
where Γ acts isometrically. For simplicity, we identify Γ as the vertex subset
in X, and denote |g| = d(1, g), the norm measured in the word metric.

Definition 3.1. ([Sis13, Definition 1.12]) For every x ∈ X and for every
peripheral subset P ∈ P, the projection πP (x) is defined as the set of points
in P whose distances to x is less than d(x, P ) + 1.

We note that when X is a Cayley graph of Γ and P is the collection of
all left cosets of peripheral subgroups, then the projection πP (x) is precisely
the set of points in P whose distance equal d(x, P ).
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Definition 3.2. ([Sis13, Definition 2.1]) We say a family of maps Π = {πP :
X → P} is an almost projection system if there exists a constant C > 0 such
that for any P ∈ P, the following properities hold:

(1) ∀x ∈ X,∀p ∈ P , d(x, p) ≥ d(x, πP (x)) + d(πP (x), p)− C,
(2) ∀x ∈ X with d(x, P ) = d, diam(πP (Bd(x))) ≤ C,
(3) ∀P 6= Q ∈ P, diam(πP (Q)) ≤ C.

For our purpose, we will only use the property (3) in the above. As a
special case, we have diam(πP (x)) ≤ C for any x ∈ X and P ∈ P.

Lemma 3.3. Let (X,P) be an almost projection system. Given P ∈ P and
x ∈ X. If z ∈ πP (x) is any point and y is any point on a geodesic segment
connecting x and z, then z ∈ πP (y).

Proof. First we notice by triangle inequality that d(x, P ) ≤ d(x, y)+d(y, P ).
Since z ∈ πP (x), we have d(x, z) < d(x, P ) + 1. Since y is a point on a
geodesic segment connecting x and z, we have d(x, z) = d(x, y) + d(y, z).
Now combining all the (in)equalities, we obtain d(y, z) < d(y, P ) + 1. Thus
by definition, z ∈ πP (y). �

Besides, we will also need the following two geometric properties of this
almost projection system.

Lemma 3.4. [Sis13, Lemma 2.3] For every x, y ∈ Γ and for every peripheral
P ∈ P,

d(πP (x), πP (y)) < d(x, y) + 6C,

where C is the constant in Definition 3.2.

In what follows and later, we use NbhdR(A) to denote theR-neighborhood
of a set A, that is the set of all elements whose distance to the set A is less
than R.

Lemma 3.5. [Sis13, Lemma 1.15] There exists L so that if d(πP (x), πP (y)) ≥
L, then all (K0, C0)-quasi geodesics connecting x, y intersect NbhdR(πP (x))
and NbhdR(πP (y)) where R = R(K0, C0).

For the convenience, we introduce the following definitions.

Definition 3.6. Let T > 0 be a constant and H be a peripheral subgroup.
We say an element g ∈ Γ

(1) has T -short head in H if d(πH(g), 1) < T , and
(2) it has T -long tail in H if d(πgH(1), g) > T .

Remark 3.7. Note by the Γ-invariance of the metric, g−1 has T -short head
in H if and only if d(πgH(1), g) < T , in particular, g does not have T -long
tail in H.

From now on, we let R = R(1, 0) be the constant from Lemma 3.5. We
fix a constant R0 such that

(3.1) R0 > max{R+ 10C,L + 3C},
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where C,R,L are defined as above. The following proposition shows that
given an arbitrary element in Γ, we can always perturb by adding a prefix
so that the new element has short head property.

Proposition 3.8. For any g ∈ Γ and any peripheral subgroup H,
there exists k ∈ Γ which satisfies

(1) |k| ≤ 1,
(2) kg has R0-short head in H.

Proof. We divide into the following two cases.
Case 1: when g already has R0-short hand in H. That is d(πH(g), 1) < R0

for the given peripheral subgroup H. Then we can simply choose k = 1,
and the proposition holds automatically.
Case 2: when g does not have R0-short hand inH. That is d(πH(g), 1) ≥ R0

for the given peripheral subgroup H. We choose k ∈ Γ\H to be a generator
of Γ so that |k| = 1. Such a k always exists sinceH is a proper subgroup of Γ.
We claim that kg has R0-short head in H. In other words, let x ∈ πH(kg) be
an arbitrary element that achieves d(1, x) = d(1, πH (kg)), we need to show
d(1, x) < R0.

Since |k| = 1, we have both d(1, k) = d(k,H) and d(1, k−1) = d(k−1,H),
and it follows that 1 ∈ πH(k) and 1 ∈ πH(k−1). The latter containment
implies k ∈ πkH(1) ⊂ πkH(H) by the left invariance of the metric. Since
diam(πkH(H)) < C according to Definition 3.2, we know d(k, πkH(x)) < C.
By triangle inequality,

d(πkH(x), πkH(kg))

≥ d(k, πkH(kg)) − d(k, πkH(x))− diam(πkH(kg)) − diam(πkH(x))

≥ d(k, πkH(kg)) − d(k, πkH(x))− 2C

≥ d(k, πkH(kg)) − 3C

= d(1, πH (g)) − 3C

≥ R0 − 3C,

where the second inequality uses Definition 3.2. By the choice of R0, we
have that R0 − 3C > L where L is the constant from Lemma 3.5. It follows
by this lemma that any geodesic from kg to x passes through a point y in
R-neighborhood of πkH(x) (recall R = R(1, 0)). Since d(k, πkH(x)) < C, the
point y is contained in (R+C)-neighborhood of k, that is d(y, k) ≤ R+C.
On the other hand, since the geodesic from kg to x ∈ πH(kg) passes through
y, by Lemma 3.3 the point x is in πH(y). Therefore, we have

d(πH(kg), 1) = d(x, 1) ≤ d(πH(y), 1) + C

≤ d(πH(y), πH(k)) + d(πH(k), 1) + 2C + C

≤ (R+ C) + 6C + 0 + 3C.

≤ R+ 10C,
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where the first inequality uses the fact that x ∈ πH(y) and also Definition
3.2, the second inequality follows from the triangle inequality and the third
inequality uses Lemma 3.4. With the choice of R0 such that R0 > R+10C,
we have that d(πH(kg), 1) < R0. �

In the next proposition, we show that the above element can be further
perturbed by adding a suffix to obtain an element having the long tail prop-
erty, while keeping the short head property.

Proposition 3.9. Let g ∈ G such that d(1, g) > R0 + 1. Then for every
C3 ≥ max{1, C}, if there is a peripheral subgroup H such that g has R0-short
head, then there exists a perturbation g′ = gh such that

(1) |h| ≤ 4C3,
(2) g′ has C3-long tail in H, and
(3) g′ has (R0 + C)-short head in H.

Proof. If d(πgH(1), g) > C3, we then just choose h = 1. Thus, we assume
that d(πgH(1), g) ≤ C3. Since H is an infinite subgroup, we can choose
h ∈ H such that 3C3 < |h| ≤ 4C3, and let g′ = gh. By triangle inequality,

d(πg′H(1), g′) = d(πgH(1), g′) ≥ d(g, g′)− d(πgH(1), g) − C

> 3C3 −C3 − C

≥ C3.

It remains to check that the new element g′ still has short head property.
That is to check d(πH(g′), 1) < R0 + C. For this, we first note that g /∈ H.
Otherwise g ∈ H implies that πH(g) = Bg(1), the ball radius 1 around g.
Thus by triangle inequality d(1, g) < d(1, πH (g))+1. Since d(1, g) > R0+1,
we have d(1, πH(g)) > R0, which contradicts with the assumption that g
has R0-short head in H.

Therefore diam(πH(g′H)) = diam(πH(gH)) < C by Definition 3.2. It
follows by triangle inequality that d(πH(g′), 1) ≤ d(πH(g), 1) + C < R0 +
C. �

Elements with short head and long tail in a peripheral subgroup will be
shown later to satisfy the good periodicity property, and Proposition 3.8 and
Proposition 3.9 simply descibes how such an element can be obtained from
a perturbation.

Next we show that if an element g has short head and long tail in some
peripheral subgroup H, then its power gn also has short head and long tail
in H, with possibly worse constants, but they are uniform on n.

Proposition 3.10. For any δ > 0, there exist constants C1, C2, C3 > 0
explicitly given by

C1 = δ +R+ 9C

C2 = C1 + L+ 3C

and
C3 = C2 +R+ 10C + δ + 2,
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such that the following holds: for every g ∈ G, if there exists a peripheral
subgroup H such that g has δ-short head and C3-long tail in H, then for any
n ∈ N, we have

(1) gn has C1-short head in H.
(2) gn has C2-long tail in H.

Proof. We first note that the element g which satisfies the condition can-
not belong to the peripheral subgroup H. Otherwise, πH(g) consists of
elements in H whose distance to g are at most 1, so by triangle inequality
d(πH(g), 1) ≥ d(g, 1)−1. On the other hand, since g has C3-long tail inH, we
have d(πgH(1), g) > C3. It follows similarly that d(πgH(1), g) < d(1, g) + 1.
Thus, combining with the previous inequalities, we have

d(g, πgH (1)) > C3 − 2 > δ,

which contradicts the δ-short head assumption of g.
For every n ∈ N, we let P (n) be the statement that (1) and (2) hold for

n. We prove by induction that P (n) holds for every n ∈ N.
Base case n = 1: This follows immediately from the assumption of g and
the choices that C1 > δ and C3 > C2.
Induction hypothesis: Suppose P (n) holds for all n ≤ k (where k ∈ N).
Induction step: We need to show P (k + 1) holds. We prove (1) and
(2) separately, that is, d(πH(gk+1), 1) < C1 and d(πgk+1H(1), gk+1) > C2

respectively.
Proof of (1): Let x ∈ πH(gk+1) ⊂ H be an arbitrary element. We denote

γ a geodesic segment from gk+1 to x. By induction hypothesis, we have

d(πgH(gk+1), g) = d(πH(gk), 1) < C1,

and also d(πgH(1), g) > C2. Since g /∈ H, by Defninition 3.2 we have
diam(πgH(H)) < C . So by the triangle inequality, we have

d(πgH(x), g) ≥ d(πgH(1), g) − diam(πgH(H)) > C2 − C.

Thus,

d(πgH(x), πgH(gk+1))

≥ d(πgH(x), g) − d(πgH(gk+1), g) − diam(πgH(x))− diam(πgH(gk+1))

≥ C2 − C −C1 − C − C

≥ L,

by the choice of C1, C2. Apply Lemma 3.5 on γ, we see that γ intersects with
NbhdR(πgH(x)), and if we let z ∈ γ ∩ NbhdR(πgH(x)) and let z′ ∈ πgH(x)
such that d(z, z′) < R, then by Lemma 3.4, we have

d(πH(z), πH (z′)) < d(z, z′) + 6C

≤ R+ 6C.

Since γ is a geodesic connecting gk+1 with x and x ∈ πH(gk+1), we have
x ∈ πH(z) by Lemma 3.3. On the other hand, since both z′ and g belongs to
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the peripheral subset gH, we see that πH(z′) and πH(g) are both contained
in the set πH(gH) whose diameter is bounded by C. Thus we have

d(1, πH (z′)) ≤ d(1, πH(g)) + C < δ + C,

where the last inequality uses the assumption that g has δ-short head in H.
Finally, we can estimate

d(1, x) ≤ d(1, πH(z′)) + d(πH(z′), πH(z)) + d(πH(z), x) + 2C

< (δ + C) + (R+ 6C) + 0 + 2C

= C1,

by the choice of C1. Thus, (1) of P (k + 1) holds.
Proof of (2): Let y ∈ πgk+1H(1) be arbitrary. We denote γ′ a geodesic

path from 1 to y. By induction hypothesis, we have

d(πgkH(gk+1), gk) = d(πH(g), 1) < δ,

and also d(πgkH(1), gk) > C2. Note that

diam(πgkH(gk+1H)) = diam(πH(gH)) < C

since g /∈ H. So d(πgkH(y), πgkH(gk+1)) ≤ diam(πgkH(gk+1H) ≤ C. Thus
by the triangle inequality, we have

d(πgkH(y), πgkH(1)) ≥ d(πgkH(1), gk)− d(πgkH(gk+1), gk)− diam(πgkH(gk+1))

> C2 − δ − C

> L.

By Lemma 3.5, we have γ′ ∩NbhdR(πgkH(y)) 6= ∅. We choose w ∈ πgkH(y)

and w′ ∈ γ′ ∩ NbhdR(πgkH(y)) such that d(w,w′) < R. Then by triangle
inequality, we have

d(w′, gk) ≤ d(w′, πgkH(y)) + diam(πgkH(gk+1H)) + d(πgkH(gk+1), gk)

< d(w′, w) + C + d(πH(g), 1)

< R+ C + δ,

where the second inequality follows from the fact that w ∈ πgkH(y), by
Lemma 3.3. On the other hand, since γ′ is a geodesic and y ∈ πgk+1H(1),
by Lemma 3.3 we have y ∈ πgk+1H(w′). It follows by Lemma 3.4 that

d(y, πgk+1H(gk)) ≤ d(y, πgk+1H(w′)) + d(πgk+1H(w′), πgk+1H(gk))

+ diam(πgk+1H(w′)) + diam(πgk+1H(gk))

< 0 + d(w′, gk) + 6C + 2C

< R+ C + δ + 8C

= R+ 9C + δ.



12 THANG NGUYEN AND SHI WANG

Note that d(πgk+1H(gk), gk+1) = d(πgH(1), g) > C3 by the assumption.
Thus,

d(y, gk+1) ≥ d(πgk+1H(gk), gk+1)− d(y, πgk+1H(gk))− diam(πgk+1H(gk))

> C3 − (R+ 9C + δ)− C

> C2.

Hence (2) of P (k + 1) holds.
Therefore, by induction, the proposition holds. �

We now fix all constants so that they depend only on the projection
system, or equivalently a finitely generated word metric on Γ. We first fix
R0 by choosing

(3.2) R0 = R+ L+ 10C,

where we recall that R = R(1, 0) and L are constants from Lemma 3.5. In
particular, it satisfies inequality (3.1). Besides, we also fix δ = R0 + C as
in the following proposition. We emphasize that by doing so, all constants
including R,L,C,C1, C2, and C3 are now determined and they only depend
on the projection system. We summarize the above discussions into the
following proposition, which will be the main technical preparation of our
theorem.

Proposition 3.11. There exist C1, C2, C3 explicitly given by

C1 = δ +R+ 9C

C2 = C1 + L+ 3C

C3 = C2 +R+ 10C + δ + 2,

where

δ = R0 + C = R+ L+ 11C,

with the following properties: for every element g0 ∈ Γ with |g0| > R0 + 2,
there exist an element g = kg0h ∈ Γ and a peripheral subgroup H such that

(1) |k| ≤ 1.
(2) |h| ≤ 4C3.
(3) for every n ∈ N, gn has C1-short head and C2-long tail in H.

Proof. Given any element g0 ∈ Γ, by Proposition 3.8, there exist k ∈ Γ and
a peripheral subgroup H such that |k| ≤ 1 and kg0 has R0-short head in H.
Since |g0| > R0+2, by triangle inequality we have |kg0| ≥ |g0|−|k| > R0+1.
By applying Proposition 3.9 on the element kg0, there exists h ∈ Γ such
that |h| < 4C3 and kg0h has (R0 +C)-short head, C3-long tail in H. Apply
Proposition 3.10 to the element g = kg0h and on the scale δ = R0 + C, we
conclude that gn has C1-short head and C2-long tail in H for any n ∈ N. �

One significance of obtaining such an element is that all its iterated powers
belong to a uniform neighborhood of a geodesic. This is what we were
referring to as the good periodicity property in the introduction, and we will
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show in the next proposition. Thus, together with the above proposition,
we show that up to appropriate perturbations, essentially all elements in a
relatively hyperbolic group will have good periodicity property.

Proposition 3.12. Let g be an element such that for every n ∈ N, gn has
C1-short head and C2-long tail in a peripheral subgroup H, where C1 and
C2 are constants from Proposition 3.11. For every τ ≥ 1 and η ≥ 0, there is
a constant κ > 0, depending only on τ, η and Γ, such that for every n ∈ N

and for every (τ, η)-quasigeodesic γ from 1 to gn, gi is in κ-neighborhood of
γ for each 0 ≤ i ≤ n.

Proof. For every 0 < i < n, since gi has C2-long tail in H, we know
d(πgiH(1), gi) > C2. Since gn−i has C1-short head in H, we have

d(gi, πgiH(gn)) = d(1, πH(gn−i)) < C1.

Thus, by triangle inequality, we have

d(πgiH(1), πgiH(gn))

≥ d(πgiH(1), gi)− d(gi, πgiH(gn))− diam(πgiH(gn))− diam(πgiH(1))

> C2 − C1 − 2C

≥ L

by the choice of C1, C2. By Lemma 3.5, there exists a constant R(τ, η)
such that γ intersects the neighborhood NbhdR(τ,η)(πgiH(gn)). On the other

hand, since d(πgiH(gn), gi) = d(πH(gn−i), 1) < C1, it follows by the triangle

inequality that gi is in (R(τ, η) + C1 + C)-neighborhood of γ.
For i = 0 or i = n, gi is in the η-neighborhood of γ. Hence if we choose

κ = R(τ, η) + C1 + C + η, the proposition follows. �

4. Rigidity

In this section, we assume that d1 and d2 are two left invariant roughly
geodesic metrics on a finitely generated relatively hyperbolic group Γ. Fur-
thermore, assume that d1 and d2 have the same marked length spectrum.
We let ∆ = |d1−d2|. Suppose that both metrics are (L0, C0)-quasi-isometric
to a word metric d defined by a finite generating set.

Fujiwara proved the following almost additivity for the difference between
two metrics.

Lemma 4.1. [Fuj15, Lemma 2.3] For i = 1, 2, let γi be a (1, δ)-roughly
geodesic from x to y with respect to di metric. For every κ > 0 there exists
κ > 0 such that the following holds: if z ∈ γ1 is a point such that there exists
z′ ∈ γ2 with d2(z, z

′) ≤ κ, then |∆(x, z) + ∆(z, y)−∆(x, y)| < κ.

We are now ready to give a proof of our main theorem.

Proof of Theorem 1.5. Suppose τ ≥ 1 and η ≥ 0 are constants such that
d1 and d2 are (τ, η)-quasi-isometric to a word metric d. The marked length
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spectrum assumption implies that for every g ∈ Γ, we have the following
sub-linear growth ∆(1, gn) = o(n).

Suppose, for the sake of contradiction, that d1 and d2 are not roughly
equal. Thus for every E > 0, there is an element (hence infinitely many
elements) g′ ∈ Γ such that ∆(1, g′) > E . By possibly avoiding finitely many
elements, we may assume |g′| > R0 + 2 where we recall | · | is the norm
measured in word metric d and R0 is the constant chosen in (3.2). By
Proposition 3.11, there is a peripheral subgroup H, elements k, h ∈ Γ, and
constants C1, C2, C3 such that

(1) |d(1, k)| ≤ 1,
(2) |d(1, h)| ≤ 4C3,
(3) For every n, the element gn has C1-short head and C2-long tail in

H, where g = kg′h.

Since d1 and d2 are roughly geodesic, there is δ0 such that for any x, y ∈ Γ
are (1, δ0) quasi-geodesics from x to y with respect to d1 and d2. As d1
and d are (τ, η) quasi-isometric, any (1, δ0)-quasi-geodesic in d1 metric is a
(τ, τδ0 + η)-quasi-geodesic in the word metric d.

By Proposition 3.12, there exists κ for every n ∈ N, any (1, δ0)-quasi-
geodesic γn in d1 metric from 1 to gn passes through κ-neighborhoods of gi

for every 0 ≤ i ≤ n. Similarly, for every (1, δ0)-quasi-geodesic βn from 1 to
gn in d2 metric, βn passes through κ-neighborhoods of gi for every 0 ≤ i ≤ n.
By Lemma 4.1, there exists κ ≥ 0 such that

|∆(1, g) + ∆(g, g2) + · · · +∆(gn−1, gn)−∆(1, gn)| < nκ.

By left-invariance of d1, d2, and thus of ∆, this is equivalent with

|n∆(1, g) −∆(1, gn)| < nκ.

Therefore, ∆(1, gn) > n(∆(1, g) − κ). We note that C1, C2, C3 and thus κ,
κ depend only on δ0, τ , η, and the metric d, but they are independent of
the constant E . Since g = kg′h with |d(1, k)| ≤ 1 and |d(1, h)| ≤ 4C3, using
triangle inequalities we have that

∆(1, g) > ∆(1, g′)− 2(τ + η + τ · 4C3 + η).

Hence if we choose E > 2(τ + η + τ · 4C3 + η) + κ+ 1 then ∆(1, gn) > n for
every n ∈ N. This contradicts with the sub-linear growth ∆(1, gn) = o(n).

Therefore d1 and d2 are roughly equal. �

As an immediate corollary of our Theorem 1.5, we have the following:

Corollary 4.2. Let M be a closed smooth manifold whose fundamental
group is relatively hyperbolic. If g1 and g2 are two non-positively curved
Riemannian metrics with the same marked length spectrum, then there exists
a constant C ≥ 0 and a Γ-equivariant (1, C)-quasi-isometry between their

universal covers (M̃ , g̃1) and (M̃ , g̃2).
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