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BANACH-MAZUR DISTANCE FROM ℓ3p TO ℓ3∞

LONGZHEN ZHANG, LINGXU MENG, AND SENLIN WU

Abstract. The maximum of the Banach-Mazur distance dM
BM

(X, ℓn
∞
), where

X ranges over the set of all n-dimensional real Banach spaces, is difficult to
compute. In fact, it is already not easy to get the maximum of dM

BM
(ℓnp , ℓ

n
∞
)

for all p ∈ [1,∞]. We prove that dM
BM

(ℓ3p, ℓ
3
∞
) ≤ 9/5, ∀p ∈ [1,∞]. As

an application, the following result related to Borsuk’s partition problem in
Banach spaces is obtained: any subset A of ℓ3p having diameter 1 is the union
of 8 subsets of A whose diameters are at most 0.9.

1. Introduction

The (multiplicative) Banach-Mazur distance between two isomorphic Banach
spaces X and Y is defined as

dMBM (X,Y ) = inf
{

‖T ‖ ·
∥

∥T−1
∥

∥

∣

∣ T is an isomorphism from X onto Y
}

.

It is well known that

dMBM (X,Y ) ≤ dMBM (X,Z) · dMBM (Z, Y ),

where X , Y , and Z are isomorphic Banach spaces, see, e.g., [10].
A compact convex subset of Rn having interior points is called a convex body.

Let Kn be the set of all convex bodies in R
n and Cn be the set of convex bodies

that are symmetric with respect to the origin o of Rn. Let An be the set of all
nonsingular affine transformations on R

n. The Banach-Mazur distance between
K,L ∈ Kn is defined by

dMBM (K,L) = inf {γ ≥ 1 | ∃T ∈ An, x ∈ R
n, s.t. T (L) ⊆ K ⊆ γT (L) + x} .

The infimum can be attained. When K,L ∈ Cn, one can verify that

dMBM (K,L) = inf {γ ≥ 1 | ∃T ∈ T n, s.t. T (L) ⊆ K ⊆ γT (L)} ,
where T n is the set of all nonsingular linear transformations on R

n. Denote by
BX the unit ball of an n-dimensional Banach space X = (Rn, ‖·‖). We have
dMBM (X,Y ) = dMBM (BX , BY ), which connects the Banach-Mazur distance between
finite dimensional Banach spaces with the Banach-Mazur distance between two
convex bodies (cf. e.g., [2, p. 15, p. 47]) and provides a link between Banach space
theory and convex geometry. It is generally difficult to calculate the exact value of
the Banach-Mazur distance between convex bodies (or isomorphic Banach spaces).

Denote by ℓnp the space (Rn, ‖·‖p), where the p-norm ‖·‖p is given by

‖(α1, · · · , αn)‖p =





∑

i∈[n]

|αi|p




1
p

, ∀p ∈ [1,∞),

and

‖(α1, · · · , αn)‖∞ = max
i∈[n]

|αi|.
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Here we used the shorthand notation [n] := {i ∈ Z
+ | 1 ≤ i ≤ n}. Denote by Bn

p

the unit ball of ℓnp . Clearly, B
n
∞ = [−1, 1]n. We have the following classical result:

Theorem 1 (cf. [10, Proposition 37.6]). Let n be a positive integer and 1 ≤ p, q ≤
∞.

(i) If 1 ≤ p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞, then dMBM (ℓnp , ℓ
n
q ) = n1/p−1/q.

(ii) If 1 ≤ p < 2 < q ≤ ∞, then γnα ≤ dMBM (ℓnp , ℓ
n
q ) ≤ ηnα, where α =

max {1/p − 1/2 , 1/2 − 1/q }, and γ, η are universal constants. If n = 2k

(k ∈ N), then η = 1.

From Theorem 1, it follows that dMBM (ℓnp , ℓ
n
∞) = n1/p, ∀p ∈ [2,∞]. In general,

it is difficult to get the exact value of dMBM (ℓnp , ℓ
n
∞) for p ∈ [1, 2). The case when

n = 2 is an exception. Since ℓ21 and ℓ2∞ are isometric,

dMBM (ℓ2p, ℓ
2
∞) = dMBM (ℓ2p, ℓ

2
1) = 21−1/p, ∀p ∈ [1, 2).

When n = 2k for some k ∈ N, we have dMBM (ℓnp , ℓ
n
∞) ≤ √

n, ∀p ∈ [1,∞]. In
particular, we have

dMBM (ℓ4p, ℓ
4
∞) ≤ 2, ∀p ∈ [1,∞]. (1)

F. Xue [11] provided explicit upper bounds of dMBM (ℓn1 , ℓ
n
∞) for n ∈ {3, 4, 5, 6, 7, 8}.

and showed that

α
√
n ≤ dMBM (ℓn1 , ℓ

n
∞) ≤ (

√
2 + 1)

√
n, ∀n ∈ Z

+,

where α is an absolute constant (cf. [11, Theorem 1.5]).
When n = 3, Y. Lian and S. Wu [6] proved that

dMBM (ℓ3p, ℓ
3
∞) ≤

√
18 · 19
10

, ∀p ∈ [1, 2].

In this paper, we improve this result as follows:

Theorem 2. We have

dMBM (ℓ3p, ℓ
3
∞) ≤ 9

5
, ∀p ∈ [1,∞]. (2)

Most likely, the estimations (1) and (2) are both tight. By Theorem 1, The-
orem 2, and [6, Theorem 2], we have the following improvment of [6, Theorem
16]:

Corollary 3. For each p ∈ [1,∞], any set A of ℓ3p having diameter 1 is the union

of 8 subsets of A whose diameters are at most 0.9.

This result is closely related to Borsuk’s partition problem in finite dimensional
Banach spaces, see [6, 13] for more details. For Borsuk’s problem in ℓ32, Tolmachev
et al. [9] proved that, if the diameter of A ⊆ ℓ32 is 1, then A can be partitioned
into four subsets whose diameters are at most 0.966. Note that, a closed ball in
ℓ3∞ cannot be split into 7 subsets having smaller diameters. Therefore we cannot
replace 8 with a positive integer m ≤ 7 and obtain a result similar to Corollary 3.

2. Banach-Mazur distance to ℓn∞

Denote by GLn(R) the set of all nonsingular n×n matrices of real numbers. For
K,L ∈ Cn and A ∈ GLn(R), set

γ1(K,L;A) = inf {γ | γ > 0 and A(L) ⊆ γK} ,
γ2(K,L;A) = sup {γ | γ > 0 and γK ⊆ A(L)} .

Here we identify a member of GLn(R) with the corresponding nonsingular linear
transformation. Since both K and A(L) contain the origin o in their interior,
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γ1(K,L;A) and γ2(K,L;A) are well-defined and are positive. Moreover, since K

and A(L) are both compact, inf and sup in the definitions above can be replaced
with min and max, respectively.

Inspired by the proof of [6, Lemma 14], we have Lemma 4 and Lemma 5.

Lemma 4. For K,L ∈ Cn,

dMBM (K,L) = min

{

γ1(K,L;A)

γ2(K,L;A)

∣

∣

∣

∣

A ∈ GLn(R)

}

.

Proof. Let B be an arbitrary element of GLn(R). By the definitions of γ1(K,L;B)
and γ2(K,L;B), we have γ2(K,L;B)K ⊆ B(L) ⊆ γ1(K,L;B)K, or equivalently,

(

1

γ1(K,L;B)
B

)

(L) ⊆ K ⊆ γ1(K,L;B)

γ2(K,L;B)

(

1

γ1(K,L;B)
B

)

(L).

It follows that

dMBM (K,L) ≤ γ1(K,L;B)

γ2(K,L;B)
.

Hence

dMBM (K,L) ≤ inf

{

γ1(K,L;A)

γ2(K,L;A)

∣

∣

∣

∣

A ∈ GLn(R)

}

.

Conversely, there exists A0 ∈ GLn(R) such that A0(L) ⊆ K ⊆ dMBM (K,L)A0(L).

Then γ1(K,L;A0) ≤ 1 and γ2(K,L;A0) ≥
(

dMBM (K,L)
)−1

. Hence

dMBM (K,L) ≥ γ1(K,L;A0)

γ2(K,L;A0)
≥ inf

{

γ1(K,L;A)

γ2(K,L;A)

∣

∣

∣

∣

A ∈ GLn(R)

}

.

This completes the proof. �

Let (Rn, ‖·‖) be a Banach space and let (Rn, ‖·‖
∗
) be its dual. Each y ∈ R

n

defines a linear functional f on (Rn, ‖·‖) by f(x) = yT · x. When y 6= o, we have

‖f‖
∗
= (d(o, {x ∈ R

n | f(x) = 1}))−1
,

where d(·, ·) is the distance on R
n induced by ‖·‖.

Lemma 5. Let X = (Rn, ‖·‖) be a Banach space and A = (aij)n×n ∈ GLn(R).
Denote by Aij the cofactor of aij, and set

xi = (a1i, a2i, . . . , ani)
⊺, yj = (A1j , A2j , . . . , Anj)

⊺, ∀i, j ∈ [n].

Then

γ1(BX , Bn
∞;A) = max







∥

∥

∥

∥

∥

∥

∑

i∈[n]

σixi

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

σi ∈ {−1, 1}, ∀i ∈ [n]







, (3)

γ2(BX , Bn
∞;A) = min

{ | detA|
‖yi‖∗

∣

∣

∣

∣

i ∈ [n]

}

. (4)

In particular,

dMBM (X, ℓn∞)

= min
A∈GLn(R)

max







(| detA|)−1‖yi‖∗

∥

∥

∥

∥

∥

∥

∑

j∈[n]

σjxj

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

i ∈ [n], σj ∈ {−1, 1}, ∀j ∈ [n]







.

Proof. Evidently, A(Bn
∞) = A([−1, 1]n) is a convex polytope with






∑

i∈[n]

σixi

∣

∣

∣

∣

∣

∣

σi ∈ {−1, 1}, ∀i ∈ [n]
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as the set of vertices. Moreover, A(Bn
∞) is contained in γBX if and only if every

vertex of A(Bn
∞) is contained in γBX . Thus (3) holds.

For each i ∈ [n], let Hi be the hyperplane passing through xi and parallel to the
hyperplane spanned by {xj | j ∈ [n] \ {i}}. We easily verify that, ±H1, . . . ,±Hn

are the bounding hyperplanes of A(Bn
∞). For each i ∈ [n], the null space of the

linear functional fi defined by fi(x) = y
⊺

i · x is precisely span {xj | j ∈ [n] \ {i}}.
Thus

Hi = {x ∈ R
n | y⊺i · x = y

⊺

i · xi} =

{

x ∈ R
n

∣

∣

∣

∣

y
⊺

i

detA
· x = 1

}

.

It follows that

d(o,Hi) =
(∥

∥

∥

yi

detA

∥

∥

∥

∗

)−1

=
| detA|
‖yi‖∗

.

Assume that γ > 0. Then γBX ⊆ A(Bn
∞) if and only if γ ≤ min {d(o,Hi) | i ∈ [n]}.

Hence the equality (4) follows. �

Remark 6. Clearly, γ2(BX , Bn
∞;A) is the reciprocal of the operator norm

∥

∥A−1
∥

∥

of A−1. We can also deduce (4) using the fact that
∥

∥A−1
∥

∥ equals the operator
norm of its adjoint (cf. e.g., [1, Lemma 9.1]).

Remark 7. Set

Rn
∞ = max

{

dMBM (X, ℓn∞)
∣

∣ X is an n-dimensional Banach space
}

.

It is shown in [4] that there exists a universal constant c > 0 such that Rn
∞ ≤ cn5/6.

S. Taschuk [8] proved that, for n ≥ 3,

Rn
∞ ≤

√

n2 − 2n+ 2 +
2√

n+ 2− 1
. (5)

P. Youssef [12] showed that Rn
∞ ≤ (2n)5/6, which is better than the estimation in

(5) when n ≥ 22. Lemma 5 provides a way for estimating Rn
∞ when n is small.

3. Banach-Mazur distance from ℓ3p to ℓ3∞

Assume that A = (aij)3×3 ∈ GL3(R) and Aij is the cofactor of aij , ∀i, j ∈ [3].
Let x1, x2, x3 be the column vectors of A and set yi = (A1i, A2i, A3i)

⊺, ∀i ∈ [3].
For p ∈ [1,∞], put

gp(A) =
1

| detA| max
{

‖yi‖q‖x1 + σ2x2 + σ3x3‖p
∣

∣

∣ i ∈ [3], σ1, σ2 ∈ {−1, 1}
}

, (6)

where q is the conjugate of p. Set d(p) = dMBM (ℓ3p, ℓ
3
∞), ∀p ∈ [1,∞]. By Lemma 5,

d(p) is the optimal value of the optimization problem

min
A∈GL3(R)

gp(A). (7)

By (5), d(p) ≤
√

2
(√

5 + 11
)

/

2 ≈ 2.572553. Put

J =







A ∈ GL3(R)

∣

∣

∣

∣

∣

∣

gp(A) ≤

√

2
(√

5 + 11
)

2







.

Then (7) is equivalent to the optimization problem

min
A∈J

gp(A).

We use the Nelder-Mead simplex algorithm (cf. [5, 7]) to find a local minimum of
gp(A) starting from some A ∈ J , and apply a particle swarm algorithm (cf. [3]) to
process a global search. Numerical experiments yield estimations for upper bounds
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p 1 1.2 1.4 1.6 1.8 2

upper bound of d(p) 1.8000 1.71533 1.67744 1.67601 1.69732 1.73205

Table 1. Several estimations of d(p)

of d(p), see Table 1. When p = 2, the estimation in Table 1 is very close to
√
3,

which is the exact value of d(2).

Lemma 8. For p ∈ [1, 1.7], d(p) ≤ 9/5 .

Proof. By the proof of [6, Lemma 14], we have

d(1) ≤ ‖(1, 4, 1)‖1‖(3, 1, 3)‖∞
10

=
9

5
,

d(p) ≤ 1

10
(4p + 2)

1
p · (2 · 3

p
p−1 + 1)

p−1
p , ∀p ∈ (1, 2]. (8)

Thus we only need to consider the case when p ∈ (1, 1.7]. Set

f(p) = ln(2 + 4p) + (p− 1) · ln
(

2 · 3
p

p−1 + 1
)

, ∀p ∈ (1, 2].

Then (4p + 2)
1
p · (2 · 3

p
p−1 + 1)

p−1
p = e

f(p)
p . For p ∈ (1, 2], put r(p) = f(p)/p and

w(p) = pf ′(p)− f(p). We have r′(p) = w(p)
/

p2 and w′(p) = pf ′′(p), where

f ′(p) =
4p

2 + 4p
· ln 4 + ln

(

2 + 3−
p

p−1

)

+ ln 3 +
ln 3

(p− 1)(2 · 3
p

p−1 + 1)
,

f ′′(p) =
2 · ln2 4 · 4p
(2 + 4p)2

+
ln 3

(p− 1)3
· 2 · ln 3 · 3

p
p−1

(2 · 3
p

p−1 + 1)2
.

Obviously, lim
p→1+

f(p) = ln 18 and lim
p→1+

f ′(p) = 2
3 · ln 4 + ln 6. Therefore,

lim
p→1+

w(p) =
2

3
· ln 4− ln 3 < 0. (9)

Moreover,

w(2) =
16

9
ln 4 + 2 ln 19− 36

19
ln 3− ln(18 · 19) > 0. (10)

Since f ′′(p) is positive on (1, 2], w(p) is strictly increasing on (1, 2]. By (9) and
(10), there exists a unique p0 ∈ (1, 2) satisfying w(p0) = 0. Therefore, r′(p) ≤ 0
for p ∈ (1, p0] and r′(p) > 0 for p ∈ (p0, 2]. Hence r(p) decreases on (1, p0] and
increases on (p0, 2]. Since

2.8904 ≈ ln 18 = lim
p→1+

r(p) > r(1.7) ≈ 2.8864,

we have r(p) ≤ lim
p→1+

r(p) = ln 18, ∀p ∈ (1, 1.7]. By (8),

d(p) ≤ er(p)

10
≤ eln 18

10
=

9

5
, ∀p ∈ (1, 1.7]. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. By Theorem 1 and Lemma 8, we only need to consider the
case when p ∈ [1.7, 2]. Set

A1 =





13 −24 24
−24 13 24
24 24 13



 and A2 =





9 −17 17
−17 9 17
17 17 9



 .
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Using (6), we get d(1.7) ≤ g1.7(A1) ≤ 1.6967 and d(1.8) ≤ g1.8(A2) ≤ 1.7033. By
Theorem 1,

dMBM

(

ℓ31.7, ℓ
3
p

)

= 31/1.7−1/p ≤ 31/1.7−1/1.8 ≤ 1.0366, ∀p ∈ [1.7, 1.8],

dMBM

(

ℓ31.8, ℓ
3
p

)

= 31/1.8−1/p ≤ 31/1.8−1/1.9 ≤ 1.0327, ∀p ∈ [1.8, 1.9],

dMBM

(

ℓ32, ℓ
3
p

)

= 31/p−1/2 ≤ 31/1.9−1/2 ≤ 1.0294, ∀p ∈ [1.9, 2].

It follows that

dMBM (ℓ3p, ℓ
3
∞) ≤ dMBM (ℓ31.7, ℓ

3
∞) · dMBM

(

ℓ31.7, ℓ
3
p

)

<
9

5
, ∀p ∈ [1.7, 1.8],

dMBM (ℓ3p, ℓ
3
∞) ≤ dMBM (ℓ31.8, ℓ

3
∞) · dMBM

(

ℓ31.8, ℓ
3
p

)

<
9

5
, ∀p ∈ [1.8, 1.9],

dMBM (ℓ3p, ℓ
3
∞) ≤ dMBM (ℓ32, ℓ

3
∞) · dMBM

(

ℓ32, ℓ
3
p

)

<
9

5
, ∀p ∈ [1.9, 2].

Thus d(p) ≤ 9/5 , ∀p ∈ [1.7, 2]. This completes the proof. �
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ematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.
MR 2766381 (2012h:46001)

[3] V. Gazi and K.M. Passino, Swarm stability and optimization, Springer, New
York, 2011. MR 3235758

[4] A.A. Giannopoulos, A note on the Banach-Mazur distance to the cube, Geo-
metric aspects of functional analysis (Israel, 1992–1994), Oper. Theory Adv.
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